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ABSTRACT

In the domain of epidemiology, logistic regression modeling is
widely used to explain the relationships among explanatory vari-
ables and dichotomous outcome variables. However, logistic re-
gression modeling faces challenges such as overfitting, confound-
ing, and multicollinearity when there is a large number of explana-
tory variables. For example, in the birth defect study presented in
this paper, variable selection for building high quality models to
identify risk factors from hundreds of pollutant variables is diffi-
cult. To address this problem, we propose a novel visual analyt-
ics approach to logistic regression modeling for high-dimensional
datasets. It leverages the traditional modeling pipeline by providing
(1) intuitive visualizations for inspecting statistical indicators and
the relationships among the variables and (2) a seamless, effective
dimension reduction pipeline for selecting variables for inclusion
in high quality logistic regression models. A fully working proto-
type of this approach has been developed and successfully applied
to the birth defect study, which illustrates its effectiveness and ef-
ficiency. Its application in an insurance policy study and feedback
from domain experts further demonstrate its usefulness.

Keywords: High-dimensional, Logistic Regression, Dimension
Reduction, Visual Analytics

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces (GUI); G.3 [Probability
and Statistics]: Correlation and regression analysis

1 INTRODUCTION

Birth defects are structural or chromosomal abnormalities that a
baby has at birth. Despite the significant morbidity and mortal-
ity associated with these conditions, causes for an estimated 65%
to 75% of birth defects remain unknown [4]. Scientists do not fully
understand the specific relationships between the environment and
abnormalities. To help uncover these relationships, the authors have
been working on a project with the aim of revealing associations
between maternal exposure to air pollutants and congenital malfor-
mation in offspring.

A large, high-dimensional environmental health dataset has been
created for this study. In particular, information for 60,613 cases
(births with major congenital malformations) and 244,927 controls
(births without major congenital malformations) between 1996 and
2008 were retrieved from the Texas Birth Defects Registry and birth
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records. The dataset includes neural tube defects, heart defects, oral
clefts, and limb reduction defects. Information about the release of
449 toxic chemicals in Texas during the same period was retrieved
from the Toxics Release Inventory (TRI) database of the United
States Environmental Protection Agency (EPA). The case and con-
trol data and the TRI data were linked using procedures developed
by the research team [3, 37]. For each case and each control, ma-
ternal exposures to the 449 chemicals were calculated and recorded
as numerical values [38]. Five maternal and infant characteristics,
such as the mother’s age group, level of education, and the gender
of an infant, are recorded as categorical values.

Regression models [18] can be used to establish relationships
between response variables and explanatory variables. The inter-
pretation of regression coefficients (β parameters) is the expected
change in the response variable for a one-unit change in an ex-
planatory variable while holding other explanatory variables in the
model constant. In our study, the response variable defines whether
a child is born with one of the selected birth defects and the ex-
planatory variables are the chemical exposure and the maternal
and infant attributes. Because the response variable is dichoto-
mous, we model the logit-transformed probability [14] of having
the birth defect π(x) as a linear relationship with the explanatory
variables. Univariate logit models (i.e., logit[π(x)] = β0 + β1X)
may lead to an abundance of false-positives [31] because the ef-
fect of X might be caused by other explanatory variables that are
not considered in the model. In contrast, multivariate logit models
(i.e., logit[π(x)] = β0 +β1X1+β2X2+ ...+βpX p) simultaneously
measure the relationship between the dichotomous outcome vari-
able and multiple explanatory variables. This allows the model to
distinguish false-positives from true risk factors that should be fur-
ther confirmed/rejected through subsequent epidemiological analy-
ses.

The high-dimensional nature of our dataset brings significant
challenges to logit modeling. They include (1) Overfitting: A high-
dimensional logit model may describe noise or random error instead
of the underlying relationship between the outcome and explana-
tory variables [14], (2) Confounding: A confounder is an extrane-
ous variable associated with both the outcome and one or more true
risk factors. Along with the explanatory variable, it may explain
all or part of the observed effect of the true risk factors thereby
complicating and perhaps masking the true relationship between
the outcome and the explanatory variables. Extreme confounding
will lead to multicollinearity (see below), (3) Multicollinearity: If
two highly correlated variables are placed into the same model, it
may become unstable or over/under-estimate variable effects [5],
and (4) Weak effect: A weak association with the outcome may
not be easily found without eliminating the influence of other re-
lated explanatory variables.

Automatic approaches to selecting variables for logit model
building, such as Forward Stepwise selection [7], Ridge Regression
[6], LASSO [33], and the Elastic Net [39], often result in mod-
els that are unstable, non-reproducible, or have extra parameters
and bias. Therefore, it is desired to allow users to participate in



explanatory model building. They can identify confounders, deter-
mine variable inclusion and exclusion, and interpret weak associa-
tions.

To address this need, we propose a visual analytics approach that
facilitates the building of high quality logit models for risk fac-
tor identification. To the best of our knowledge, our approach is
among the first visual analytics efforts toward this purpose. The ap-
proach is motivated by the birth defect study and is general enough
to be used in other application domains where high-dimensional
logit modeling is needed for explanation. The main contributions of
this paper include: (1) A design study where visual analytics tech-
niques are developed for identifying birth defect risk factors from a
high-dimensional environmental health dataset, (2) A novel visual
analytics approach to high-dimensional logit modeling. It seam-
lessly integrates statistical procedures and visualization techniques
to make the modeling process easy, intuitive, and more accurate
than automatic approaches. A fully working prototype has been de-
veloped (see Figure 1) which received positive feedback from two
epidemiologists and a statistician, (3) Case studies where the pro-
totype was used to identify potential risk factors for limb reduction
defects and characterize caravan insurance policy holders.

2 RELATED WORK

Logit model building for high-dimensional data is an important
research topic and many automatic methods have been proposed.
However, all existing methods have drawbacks for our project.
Stepwise Forward selection [7] often exhibits high variance and
severe bias [14, 33]. Ridge Regression [6] shrinks the coefficient
estimates of all variables even though it performs well in terms of
multicollinearity. LASSO [33] is limited when handling highly cor-
related variables because it tends to choose only one among a group
of variables with high correlations. The Elastic Net [39] suffers
from a double amount of shrinkage which introduces unnecessary
bias. In addition, these methods cannot provide reliable confidence
intervals [22], which is not acceptable in epidemiology. Our visual
analytics approach proposes a new solution to address this problem.

Epidemiologists rely heavily on statistical software packages,
such as R [25] and IBM SPSS [15], to conduct logistic regres-
sion modeling. These packages allow users to conduct univari-
ate analysis, variable selection, and multivariate logistic regression
through a menu-driven or command line interface. However, they
do not provide an integrated pipeline allowing users to conduct the
multiple steps necessary for high-dimensional logit model build-
ing. Compared to these packages, our prototype provides a more
integrated, transparent, user-friendly, and efficient working envi-
ronment to conduct high-dimensional logit modeling.

In the visualization community, variable selection has been
widely studied. The Value and Relation display [35] visually con-
veys the correlation among the variables with textures and distances
and allows users to interactively select correlated or non-correlated
variables. DimStiller [16] is a visualization system with a dimen-
sion analysis and reduction workflow where users can interactively
transform the data using a variety of techniques. SmartStripes [23]
allows users to step through the feature selection process manually.
Similar to our work, it uses feature partitions for dimension reduc-
tion. It is designed to be a preliminary analysis tool and does not
consider cause-and-effect relationships. Fernstad et al. [8] use a
set of interestingness measures for dimension filtering and organize
correlated variables into clusters for effective subspace visual ex-
ploration. These works cannot be directly used to address the prob-
lem in this paper since they do not consider the association among
explanatory and response variables in the regression relationship.

A few visual analytics approaches have been proposed for re-
gression modeling in recent years. Steed et al. [30] use parallel
coordinates to build linear regression models for hurricane activ-
ity prediction. Bögl et al. [2] apply line, bar, and scatter plots to

a well-known statistical Box-Jenkins methodology for time series
data regression modeling. Krause et al. [20] present a tool called
“INFUSE” for comparing predictive features across feature selec-
tion and classification algorithms. Mühlbacher et al. [24] propose
a partition-based framework for predictive linear regression model
building. There are several differences from our approach. First,
we focus on the visual analytics of multicollinearity, confounding,
and weak effect instead of partitions. Second, many measures (i.e.
R-squared, RMSE, and OLS) are not as well suited as logit re-
gression because our response variables are not continuous. Third,
all of those approaches target predictive modeling while explana-
tory regression modeling is needed in our project. According to
Shumeli [29], explanatory regression modeling is fundamentally
different from predictive regression modeling and this distinguishes
our work from existing efforts. Predictive regression modeling aims
to minimize prediction errors but explanatory regression modeling
emphasizes characteristic expressions and the relationships among
variables for distinguishing between false-positive variables and
true risk factors. The criteria for variable selection differ signifi-
cantly in these two contexts [29].

3 REQUIREMENT ANALYSIS

A team of epidemiologists, computer scientists, and geographic sci-
entists, including most of the co-authors, participated in the envi-
ronmental health study. A set of essential tasks have been charac-
terized through intensive meetings and discussions.

Task 1: Dimension Reduction. According to a general guide-
line in logistic regression modeling [14], the complexity of mul-
tivariate studies can be reduced by first using univariate statistical
indicators to filter out irrelevant or non-significant variables. These
variables are ruled out as risk factors and confounders and do not
need to be considered in further analysis. Multiple indicators are of-
ten used for considering different aspects of measurements in this
dimension reduction process.

Task 2: Dimension Relationship Analysis for Model Build-
ing. Since univariate analysis may introduce false-positives, a vari-
able should always be analyzed with other correlated variables in
a multivariate logit model. To avoid problems such as overfitting,
confounding, and multicollinearity, the relationship among the vari-
ables needs to be carefully examined. First, variables correlated
with the selected variables may need to be included into the model
even if they are not in the initial candidate variable set. Second,
groups of highly correlated variables need to be identified whose
variability can be defined with a smaller set of latent variables. Vari-
ables within such groups should not be placed into a single super
model. Rather, they should be placed into different models that are
smaller and more stable [5]. Third, confounders need to be sepa-
rated for further epidemiological analyses.

Task 3: Effect Change with Demographic Characteristics.
The cases and controls in this project contain maternal and infant
characteristics. Some of the characteristics may not be direct causes
of birth defects, but instead modify the relationship between envi-
ronmental exposure and the risk of birth defects in offspring. To
assess the effect of a chemical, demographic characteristics need to
be considered.

Task 4: Model Evaluation and Result Reporting. Due to chal-
lenges such as weak association and multicollinearity, there is no
super model that can assess all the variables at the same time. Mul-
tiple models need to be built and evaluated interactively and pro-
gressively. The results need to be effectively conveyed to users so
that they can conduct further model building and report the findings.

To effectively support the above tasks, we argue that our visual
analytics system should have the following features: (1) Integra-
tion: The system should support the general workflow of risk factor
analysis and carry out all the aforementioned tasks in a seamless
pipeline. (2) Effective dimension reduction: Intuitive visualiza-



Figure 1: The interface of the prototype where the limb reduction defect is analyzed. (A1) The univariate analysis view. (A2) The descriptive
statistics information panel. (B) The variable grouping view. (C) The model evaluation and comparison view.

tion and flexible interactions should be provided so that users can
efficiently examine a variety of indicators for a large number of
variables to support the dimension reduction task. (3) Transparent
relationship analysis: The reason a variable is included/excluded
from a model should be transparent to users by explicitly provid-
ing the confounding and correlation information. (4) Interactive
model building: The system should allow users to interactively
build stable multivariate logit models based on dimension reduc-
tion, relation analysis, and domain knowledge. (5) Complete and
accurate results: The system should effectively facilitate users in
finding all potential risk factors from a high-dimensional dataset
and contain as few false-positives as possible. (6) Informative re-
porting: The system should provide not only the names of risk fac-
tors, but also details and meaningful information on confounders
and risk factors. (7) Intuitive visual interface: Targeting domain
experts such as epidemiologists, the visual encoding should carry
clear statistical meaning to users. Easy-to-use interactions should
be provided to help the domain experts conduct the tasks.

4 THE VISUAL ANALYTICS APPROACH

We propose a novel visual analytics approach and fully imple-
mented it in a working prototype. Figure 2 shows the visual an-
alytics pipeline supported in our system. It consists of three steps.
The output from a step is the input to the next step. Users can return
to a previous step at any time to refine their analysis.

Dimension Reduction

Factor Analysis

Confounding Tests

Goodness-of-fit

Effect Changes

Variable Selection Model Evaluation

Descriptive Stats.

Correlation Analaysis

Univariate Logit

Figure 2: Visual Analytics architecture for risk factors analysis.

4.1 Step 1: Dimension reduction

In this step, users interactively select interesting explanatory vari-
ables based on univariate indicators.

4.1.1 Statistical procedures

Our prototype provides the following indicators frequently used in
epidemiological analysis. They describe different aspects of the
relationship between an explanatory variable and the birth defect
variable.

(1) Point Biserial Correlations (rpb): In our system, rpb [32]
is used to measure the correlation between a birth defect (measured
as a dichotomous variable) and a chemical exposure (measured as
a continuous variable). Although correlation does not imply causa-
tion, there is a tendency for the two variables to fluctuate in tandem.
Rpb is expressed in a range from +1 to -1; values larger/smaller than
zero mean positive/negative correlation. The statistical significance
of rpb needs to be tested and only correlations whose p-values are
smaller than 0.05 are generally considered significant. (2) Wald
test p-value (WaldP): A WaldP [14] comes from a univariate logit
model that contains a chemical exposure variable and a birth de-
fect outcome. It is used for testing the statistical significance of the
model. If the p-value is less than or equal to a chosen significance
level, the chemical variable is doing much to help explain the birth
defect outcome. Generally, the significance level is set as 0.05. (3)
Crude Odds Ratios (OR) and their confidence intervals: OR is
a quantitative measure of the association between a binary explana-
tory variable X and a binary outcome variable Y. OR and its 95%
confidence interval can be calculated from a contingency table for
categorical variables [31] or from a logit model for continuous or
categorical variables. Higher ORs indicate higher odds of the out-
come. The association is significant if the lower/higher bound of
the confidence interval is greater/smaller than 1 for a risk/protective
factor. OR is crude in this step because it has not been adjusted for
other variables in a multivariate model. (4) Crude ORs based on
categorized chemical exposure variables and their confidence
intervals: To explore an association between an exposure and a



birth defect beyond a yes/no (dichotomous) exposure, but not as-
suming a linear association with a continuous exposure (as in the
point-biserial correlation), epidemiologists sometimes categorize
the exposure using quartiles or some other quantile based on the
reference group. Because a large proportion of the estimated expo-
sures in this dataset were zero, we categorized non-zero exposure
values as “low”, “medium”, or “high” where the number of obser-
vations in each group were approximately equal. We mark the odds
ratios as OR L, OR M, and OR H for the “low”, “medium”, and
“high” groups, respectively.

4.1.2 Visualization and interactions

Users need to examine the individual indicators as well as the con-
sistency among different indicators (e.g., all positive or negative)
for a large number of variables. They also need to select variables
of interest according to multiple indicators. Our system supports
those tasks using the Univariate Analysis View (UAV) (Figures 1
(A1) and 3). UAV allows users to effectively examine the varying
indicators for a large number of variables and select variables of
interest flexibly and efficiently.

Since the indicators are measured in different ways, their visual
representations are different. To help users judge them intuitively,
a consistent color design is used throughout the system: red indi-
cates a statistically significant risk factor, green indicates a statisti-
cally significant variable that has been proven to be false-positive
or protective, and gray means that the variable is not statistically
significant. A variable may turn green from red as the analysis goes
further.

As shown in Figure 3, the indicators are displayed in the UAV
in a table-like view. Each row represents a variable whose name is
displayed on the leftmost cell; each column represents an indica-
tor. With the juxtaposition design [11], it is convenient for users
to compare indicators/variables. Inspired by the rank-by-feature
framework [28], we allow users to sort the variables according to
one or more indicators and then select top ranked variables for fur-
ther analysis. Following Table Lens [26], we make the inspection
intuitive and effective by using visual attributes to represent indi-
cator values.. Horizontal bars encode the rpb values. Zero val-
ues, the center of the rpb range, are placed at the center of the
cell and marked by a short vertical line. Positive/negative rpb val-
ues are represented by a bar on the right/left of the vertical line;
the length of the bar represents the absolute rpb value. If the p-
value is greater than 0.05, the bar is colored gray. Otherwise it is
red/green to indicate statistically significant positive/negative cor-
relation. Significant/non-significant WaldP values are represented
by a red/gray dot.

Figure 3: Indicators displayed in the univariate analysis view. The
variables selected are highlighted in yellow.

For OR, OR L, OR M, and OR H, a horizontal axis is used in
the cell and 1 is marked by a vertical line. If 1 is between the
higher and lower bounds, the association is non-significant and we
color the rectangle between the lower and higher bounds gray. It
is desired to display a larger red/green portion in a cell of a more
risky/protective variable. Therefore, we color the rectangle between
the lower bound and the vertical line marking 1 red if the lower
bound is higher than 1.We color the rectangle between the higher
bound and the vertical line green if the higher bound is smaller than

1 (see Figure 3). This encoding makes it possible to rescale the cells
because even if the confidence intervals extend beyond the cells, the
risk/protective factors are still indicated by cell color (see Figure 3).

This view provides a set of interactions for dimension reduc-
tion. Users can filter out variables whose WaldP or rpb p-values are
higher than a threshold. They can also sort the variables based on
any of the indicators. An interesting interaction called comprehen-
sive sorting is provided. It sorts the variables by the maximum of
the lower bounds of OR, OR L, OR M, and OR H. This is a useful
interaction since a variable may have a strong association as long
as any of the indicators are significant. Users can interactively click
a variable to select/unselect it or use shift + click to bulk select.
Basic descriptive statistics of the selected variables are displayed in
the bottom of the UVA (see Figure 1 (A2)).

Users can send the selected variables to the next step by click-
ing a button. Since they can be unaware of risky variables corre-
lated to a selected variable, the system will automatically examine
if such variables exist and add them to the next step. In particu-
lar, confounding tests (see Section 4.2) are conducted for each se-
lected variable. All unselected variables which either confound or
are confounded by the selected variable are included into the selec-
tion. Real-time interactions are possible because confounding tests
for all chemical variables are conducted during pre-processing and
the results are stored in a matrix. The system only needs to find the
correct matrix location during the interactive selection. Variables
selected in the UAV view by a user are marked in the next view by
a small yellow block in front of the labels.

4.2 Step 2: Relation analysis for model building
In this step, users inspect the relationships among the variables from
step 1 and interactively select variables to build logit models. Infor-
mation such as correlations among the variables, variable stability,
and confounding are automatically analyzed and visually presented
to users.

4.2.1 Statistical procedures
Factor Analysis is often conducted to find intercorrelated variable
groups, variances explained by each group, and the contribution of
each variable in the group. This information can guide users to se-
lect variables that contribute more to the variability of the dataset
thereby avoiding superfluous variables whose response patterns are
caused by their association with an underlying latent variable. In
addition, group information is helpful for identifying variables with
weak associations whose significant associations can only be ob-
served when other variables in the same group are excluded from a
model (see Figure 5). Our system uses varimax rotation to impose a
partition where each variable has a large correlation coefficient with
the group it belongs to and small correlation coefficients with other
groups [18]. Each group defines a “factor”. The eigenvalue of a
factor reflects its contribution to the total variance in the correlation
coefficient matrix.

Confounding tests are conducted as follows: a bi-variate logit
model is constructed for the response variable and each pair of ex-
planatory variables. A explanatory variable having a change in OR
greater than 10% compared to its univariate logit model OR in any
bi-variate logit model is considered a confounder and the pairing
variable caused the confounding [13].

4.2.2 Visualization and interactions
In order to select variables for model building, users need to exam-
ine variable correlation, inspect Factor Analysis and confounding
test results, and study data distributions of the variables. Data dis-
tribution is important for domain experts to understand the quality
of data collection, inspect levels of exposures, and validate and hy-
pothesize the correlation between variables. Our system provides
the Variable Groups View (VGV) for interactive variable selection



Figure 4: A. The variable groups view. L0, L1, L12, and VA indicate risk factors identified by Forward Stepwise selection, LASSO, Elastic Net, and
our visual analytics approach, respectively. B. The result of a model with variables selected by L12. The gray in the rightmost column indicates
that the model is not statistically significant. The green background behind the chemical names in the first column indicates the presence of
confounding.

which supports the above tasks (see Figure 4). Compared with the
UAV, the VGV needs to provide many more details for a smaller
number of variables.

Presenting our dataset is challenging since its large proportion of
zeroes causes clutter in many visualization techniques. We selected
the pixel-oriented technique [19] since it can present datasets with
a large proportion of a single value without clutter. In addition, it
scales to large, high-dimensional datasets and allows users to in-
spect variable distributions and dimension correlations at the same
time. Other popular techniques such as scatterplot matrices [12]
and Parallel Coordinates [17] do not have all of these characteris-
tics.

In Figure 4, each square represents a variable. In a square, each
data item is represented by a pixel whose color represents its value
for the variable: white means zero; dark, medium, and light red rep-
resents high, medium, and low values of the exposure to that chem-
ical (calculated with the same partitioning approach used in the uni-
variate analysis), respectively. The squares can help users examine
the distributions of the variables. For example, Figure 4 shows that
lead is widely distributed while Cyanazine is sparsely distributed.
A data item has the same position in all the squares. Therefore,
correlated variables have similar textures in their squares. We can
observe that 1,1,2,2-tetrachloroethane and 1,2-dichloropropane are
highly related from Figure 4. Users can sort the items by clicking a
variable. The sorting will place items with high values for that vari-
able in the center of the display. This allows the correlation between
that variable and other variables to be clearly observed. In Figure
4, the records are sorted by Dioxin and Dioxin-like Compounds.

Variables are grouped and placed in the VGV based on the Fac-
tor Analysis results. To use the space efficiently without clutter, a
grid layout is used and the variables are placed on the grid line by
line. Variables of the same group are placed adjacent to each other.
Different groups are bounded by circles. Groups with larger eigen-
values are considered more important and their circles are bigger

and darker. Groups are sorted in descending order by eigenvalues.
Within a group, a variable that is more correlated with the group is
placed in front of variables that are less correlated.

Selection mode in the VGV allows users to add a variable into
a logit model by clicking it. Dynamic tips for Variance Inflation
Factor (VIF) [18] are provided during variable selection. It pro-
vides an estimation of the severity of multicollinearity in selected
variables according to the correlation matrix. In addition, the cumu-
lative variance of selected variables is also displayed at the bottom
of the VGV during the variable selection process. In this way users
can learn how much variability has been explained by the selected
variables (see Figure 1 B).

For the confounding tests, analysts are interested in OR changes
of 10% or more in the N-1 (N is the number of variables in the
VGV) bi-variate logit models in which a variable participates. Very
large OR values are also interesting since they are an extreme case
of confounding. We propose a compact grass view attached to each
pixel-oriented display for visualizing the variable’s OR values and
changes in the N-1 bi-variate logit models (see Figure 4). N-1 grass
blades (tiny vertical lines) grow on top of each square. Each grass
blade represents the result of one logit model. If the OR change is
10% or more, the grass blade and the label are green to indicate that
the variable is false-positive (a confounder). Otherwise the grass
blade is red. The label of a variable is red if all its OR changes are
less than 10% (it is not a confounder). The length of a grass blade
represents the OR value. It is normalized among all the variables
to enable comparison. Tall grass blades, which mean inflated ORs,
can be easily spotted. Since extremely high OR values of the con-
founders may skew the OR distribution, we set the upper bound of
the normalization to be the maximum of 20 and the largest OR.

When users hover a mouse over a grass blade, the blade of the
paired variable is highlighted by an increased width. Users can ex-
amine the OR value or click the label of that variable to find out
whether it confounds other variables (they will be highlighted). By



comparing the textures of the squares, users can learn the correla-
tion among the variables and thus get a deeper understanding of the
confounding. Users can also examine the pairing variables one by
one through a navigation widget triggered by clicking the grass.

Interactive visualization provides the flexibility of building mod-
els using different strategies. For example, users can start by adding
non-confounders with distinct pixel textures into the model. If the
model is good (the background color of the result column in the
Model Evaluation View is not gray), more variables whose group
mates are not in the model can be included. In addition, the weak
association between the outcome and a variable can be suppressed if
its group mates are in the same model. Removing the group mates
will allow the model to reveal the weak association (see Figure 5
for an example). Users can also use a full model with all non-
confounders, where they only pick one variable from each group
to build the model. Later, they can replace any variables with their
group mates to check the effect of the group mates. At any time
during interactive model building, if the model is not good (indi-
cated by a gray column in the Model Evaluation View), users can
remove the variables with unstable estimation from the model to
improve its stability.

4.3 Step 3: Model Evaluation and Effect Change As-
sessment

After users click a button in the VGV, a multivariate logit model will
be built with the variables selected in it. The users can interactively
examine the results of the model for refinement or for testing other
variables. The categorical demographic characteristics can also be
added into the model for effect change analysis.

4.3.1 Statistical procedures
The Newton-Raphson technique [36] is used to optimize logistic
regression coefficient computations. Their results include ORs and
confidence intervals for each variable. If a variable has a change in
OR greater than 10% compared to its OR in the univariate logit
model, it is considered a confounder. A non-confounder whose
lower confidence interval bound is larger than 1 is considered a
risk factor. If there are one or more variables with large OR values
(such as an OR larger than 20), the model is considered unstable
and needs to be improved.

The Likelihood Ratio test [14] is used to measure the statistical
significance of the model. The model is significant if the p-value is
smaller than 0.05. Akaike’s Information Criterion (AIC) is another
measure to assess the goodness of fit [14]. The smaller the AIC, the
better the model is.

To help users analyze categorical variables, a Chi-square inde-
pendence test [14] is conducted. It is not interesting to study a cat-
egorical variable which has a non-significant association with the
birth defect being studied. For each category in a variable, a con-
tingency table is constructed using a reference category assigned by
domain experts. ORs and confidence intervals of these groups are
calculated to discover groups vulnerable to the birth defect.

4.3.2 Visualization and interactions
The Model Evaluation View (MEV) allows users to examine the
results of a set of multivariable logit models. Besides the model
consisting of all the variables selected from the VGV, users can
interactively build more models with those variables and one or
more categorical variables so that the effect change of the categori-
cal variables can be evaluated. The results are presented in a table
(see Figure 1 C). Following SAS [27], the first column of the table
shows variable names and the other columns record the results of
the models. The names of the confounders are highlighted in green
(see Figure 4 B). The second column shows the ORs and the con-
fidence intervals resulting from univariate logit models. The other
columns show the ORs and the confidence intervals resulting from

the multivariate logit models. The ORs and the confidence intervals
are displayed using the same visual encoding of the UAV. Their nu-
meric values in the last model are displayed after the last column
so users can read the results accurately. Once users have a stable
model containing chemicals only, they can add categorical variables
into the model to examine their effect change. As shown in Figure 1
C, the color of the categorical variable name indicates their signifi-
cance in the Chi-square independence test (gray for non-significant
variables and red for significant variables). Clicking the name of a
categorical variable will trigger its Rose Plot (see Figure 1 C on the
left). A Rose Plot visually presents the population sizes, the propor-
tion of cases, and the significance of the ORs associated with each
variable category. In particular, it consists of multiple sectors, each
of which represents a population group defined by a category. The
angle of a sector is the proportional to the number of mothers in
this group. The radius is the ratio of cases to the number of mothers
in this group. The red/green color indicates this population group
has a significant OR with a confidence interval lower bound larger
than 1/higher bound smaller than 1 (vulnerable/resistant to the birth
defect). The reference group is colored blue and other groups are
colored gray. The Rose Plot is compact and allows users to effec-
tively compare populations and risks. It works well for variables
with a small number of categories, which is the case in this appli-
cation.

Users can gradually add the categorical variables into the model
by double clicking them. The results are shown column by column.
The effect change can be examined by comparing these columns.
For example, as shown in the Figure 1 C, column 3, 4, 5, and 6
do not show any big differences in ORs or in the confidence inter-
vals for the chemical lead. However, the effect for lead becomes
non-significant in the last column. The column has an additional
categorical variable region in the model. This tends to explain that
the effect of lead varies by region.

Weak effects can be uncovered by interactive model building.
For example, by looking at the data distribution in the VGV
(Figure 4 A), we find three chemicals tightly correlated. They
are 1,2-dichloropropane, 1,1,2,2-tetrachloroethane, and 1,1,2-
trichloroethane. A weak association between each of them and the
birth defect can be identified by the model shown in Figure 5.

Figure 5: Weak associations. A. 1,1,2-trichloroethane is included in
a model with stable variables. It has a red bar indicating its sta-
tistical significance. B and C show the same pattern for 1,1,2,2-
tetrachloroethane and 1,2-dichloropropane, respectively. D. The three
of them are added into the same model. They all have gray bars
which mean that they become non-significant.

5 CASE STUDIES

In this section, we first report a case study of identifying risk fac-
tors for Limb Reduction Defects (LRD) conducted by the authors.
The results are compared with five automatic dimension reduction
methods. Then we present a case study on the COIL Challenge
2000 benchmark dataset [34] to characterize caravan policy hold-
ers. The study was pair analytics [1] by a senior Ph.D. student in
Statistics and a visualization expert.



5.1 Identifying risk factors for Limb Reduction Defects
We conducted a case study for LRD using the environmental birth
defect dataset introduced in Section 1. Sixteen variables were se-
lected from the UAV (Figure 1 A1) with a 0.25 WaldP threshold ([5]
and [14] suggested this threshold for dimensional reduction). The
variables are sent to the VGV (Figure 1 B) together with three other
variables correlated to them (the three variables were later proven
to be non-risk factors). A robust model was quickly built. It iden-
tified five risk factors (the top five rows in Figure 1 C). Then, we
further identified three risk factors having weak associations with
LRD through interactive model building (Figure 5 illustrates this
process).

To compare our approach with existing approaches, we fed the
16 variables selected from the UAV into 4 automatic approaches
and compared their results with ours. They were Forward Stepwise
selection [7], LASSO [33], Ridge Regression [6], and the Elastic
Net [39]. The stats package [25] and the glmnet package [9] in R
were used. The penalty parameter lambda was chosen based on
cross-validation provided in the package.

The results favored our approach. First, only a small number
of identified risk factors were consistent among the automatic ap-
proaches. Second, several risk factors identified by one or more
automatic approaches were not identified in our case study. We
have proved that they are all confounders (see Figure 4 A for an ex-
ample). Third, our approach identified several risk factors that were
not identified by any automatic approaches. Among them, lead is
a well-studied metal, so we conducted a literature search to find
the ground truth. We found several articles [10, 21] suggesting that
lead levels in hair and blood of mothers are related to LRD, which
is consistent with our result that lead may be a risk factor for LRD.

5.2 Finding characteristics of caravan policy holders
The COIL 2000 Challenge benchmark dataset contains customer
information from an insurance company [34]. It consists of 9,000
data items and 86 variables, including product usage and socio-
demographic attributes. This dataset was selected because it repre-
sents many domain-specific problems: noisy data, correlated items,
redundancy, high-dimensional variables, and weak associations be-
tween the explanatory and response variables. The task is to char-
acterize caravan insurance policy holders and provide insights into
why customers have the insurance.

The participants were Jean, a senior Ph.D. student in Statis-
tics whose research area is variable selection and regression model
building, and Joe, a senior Ph.D. student in visualization who is fa-
miliar with our visual analytics prototype. Both of them were not
familiar with the dataset before the study. They did not know the
semantic meaning of the attributes (the text inside [ ] following a
variable name below) until the end of the study.

Jean and Joe explored the dataset side by side in front of a desk-
top where the dataset was loaded into the prototype. Joe briefly in-
troduced the overall workflow to Jean at the beginning of the study.
Jean then took charge of the reasoning process and Joe helped her
in manipulating the visual interface and explaining the visual en-
coding of the data displayed.

First, Jean filtered, sorted, and selected attributes through the
UAV. She used 0.25 as the threshold for the rpb P-value and Wald
test P-value. Thirty-two attributes were selected and sent to the
VGV. Extra attributes were automatically sent to the VGV since
they correlate to one or more variables she selected. From the tex-
tures of the squares in the VGV, Jean commented that she could
tell that the data was redundant and correlated. She found several
variable groups, such as a group consisting of MOSTYPE [cus-
tomer subtype] and MOSHOOFD [customer main type], as well
as a group consisting of MGEMOMV [avg. size household 1-
6], and MFWEKIND [household with children]. She noticed that
MKOOPKLA [purchasing power class] confounded the relation-

ship between the caravan policy and MGEMOMV [avg. size house-
hold 1-6]. She also found correlations between attributes after sort-
ing the textures. For example, MKOOPKLA [purchasing power
class] had a negative correlation with the group of MOSTYPE [cus-
tomer subtype] and MOSHOOFD [customer main type]. APER-
SAUT [number of car policies] and PPERSAUT [contribution car
policies] had a positive correlation. After three iterations in the
steps of model building, Jean obtained a good model with 21 vari-
ables. There were 13 non-significant and 8 significant attributes
as the color coding indicated. Excluding 2 confounders indicated
by a green background, Jean concluded that 6 significant attributes
were likely to describe the characteristics of caravan policy holders.
They were PPERSAUT [contribution car policies], MAUT1 [1 car],
MBERMIDD [middle management], MOPLHOOG [high level ed-
ucation], PBRAND [contribution fire policies], and ALEVEN [num-
ber of life insurances]. These attributes were commonly acknowl-
edged in [34]. They were likely to describe a group of rich people
with a more expensive car, a high level of education, and fire insur-
ance due to the need to carry gas for cooking in the caravan.

5.3 Expert Feedback
The LRD case study and experiment results were shared with the
epidemiologists in a written document. One epidemiologist com-
mented that the models from the automatic approaches were behav-
ing oddly. For example, one model had an OR of around 262 for
Tetrabromobisphenol A. The epidemiologist said it was extremely
unlikely to be valid. He suspected that the inconsistency among
the results of the automatic approaches was more likely caused by
the high correlation among the chemicals than caused by missing
observations, since our data contains 60,613 cases.

The univariate analysis view was demonstrated to the epidemi-
ologists. They were excited about the visualization and commented
that it was intuitive and makes their tasks of comparing the indica-
tors much easier. Since they are not experts in high-dimensional
logit modeling, they suggested that we consult a statistician for
feedback on the multivariate analysis part of the prototype.

We followed their advice and interviewed a statistician through
Skype. He has a PhD degree in statistics and currently is a profes-
sor and active researcher in the field. He has conducted intensive
research on high-dimensional logit modeling. The interview lasted
one hour, before which he had read a written document illustrating
our approach. We showed him a live demo of the system in the in-
terview. During the demo, we explained the statistical procedures
and visualization techniques to him. He validated the statistics pro-
cedures we used and made the following comments:

“This is a cool and useful system.”
“It allows statisticians to communicate with users much easier.

It conveys the modeling process to users in a visible, intuitive, user-
friendly way rather than using tedious word descriptions.”

“It follows the high-dimensional logit modeling pipeline we use.
It nicely integrates a variety of statistical procedures together for
effective logit modeling.”

6 CONCLUSION AND FUTURE WORK

In this paper, we present a novel visual analytics approach to high-
dimensional logit modeling for risk factor identification. It inte-
grates a set of useful statistical techniques for dimension reduction
and model building into a smooth analysis pipeline. It enhances
the analysis process with intuitive visualizations and interactions
that allow users to easily compare the results from varying statisti-
cal analyses, and allows users to effectively and efficiently conduct
dimension reduction and model building iteratively. Case studies
have been conducted where the prototype has been used to find po-
tential risk factors for limb reduction defects and characterize the
caravan insurance policy holders. The results present the effective-
ness and efficiency of our approach. Positive feedback has also



been received from two epidemiologists and a statistician. Our ap-
proach is limited to datasets where most variables to be examined
are numerical dimensions. In the future, we would like to extend
our approach to support analyzing datasets with a large number of
categorical variables.
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[2] M. Bögl, W. Aigner, P. Filzmoser, T. Lammarsch, S. Miksch, and
A. Rind. Visual analytics for model selection in time series anal-
ysis. Visualization and Computer Graphics, IEEE Transactions on,
19(12):2237–2246, Dec 2013.

[3] J. D. Brender, M. U. Shinde, F. B. Zhan, X. Gong, and P. H. Langlois.
Maternal residential proximity to chlorinated solvent emissions and
birth defects in offspring: a case-control study. Environmental Health,
13(1):96, 2014.

[4] R. L. Brent. Environmental causes of human congenital malforma-
tions: the pediatricians role in dealing with these complex clinical
problems caused by a multiplicity of environmental and genetic fac-
tors. Pediatrics, 113(Supplement 3):957–968, 2004.

[5] Z. Bursac, C. H. Gauss, D. K. Williams, and D. W. Hosmer. Pur-
poseful selection of variables in logistic regression. Source Code for
Biology and Medicine, 3(1):17, 2008.

[6] S. L. Cessie and J. C. V. Houwelingen. Ridge estimators in logistic
regression. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 41(1):191–201, 1992.

[7] M. Efroymson. Multiple regression analysis. Mathematical Methods
for Digital Computers, Wiley, New York, 1960.

[8] S. J. Fernstad, J. Shaw, and J. Johansson. Quality-based guidance
for exploratory dimensionality reduction. Information Visualization,
12(1):44–64, 2012.

[9] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for
generalized linear models via coordinate descent. Journal of Statisti-
cal Software, 33(1):1–22, 2010.

[10] E. Gilbert-Barness. Teratogenic causes of malformations. Annals of
Clinical & Laboratory Science, 40(2):99–114, 2010.

[11] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. Information
Visualization, 10(4):289–309, 2011.

[12] J. A. Hartigan. Printer graphics for clustering. Journal of Statistical
Computation and Simulation, 4(3):187–213, 1975.

[13] M. A. Hernán, S. Hernández-Dı́az, M. M. Werler, and A. A. Mitchell.
Causal knowledge as a prerequisite for confounding evaluation: an
application to birth defects epidemiology. American Journal of Epi-
demiology, 155(2):176–184, 2002.

[14] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied logistic
regression, volume 398. John Wiley & Sons, 2013.

[15] IBM Corp. . Released 2013. IBM SPSS Statistics for Windows, Version
22.0. Armonk, NY, 2013.

[16] S. Ingram, T. Munzner, V. Irvine, M. Tory, S. Bergner, and T. Möller.
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[24] T. Mühlbacher and H. Piringer. A partition-based framework for build-
ing and validating regression models. Visualization and Computer
Graphics, IEEE Transactions on, 19(12):1962–1971, 2013.

[25] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2015.

[26] R. Rao and S. K. Card. The table lens: merging graphical and sym-
bolic representations in an interactive focus+ context visualization for
tabular information. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’94, pages 318–322, New
York, NY, USA, 1994. ACM.

[27] SAS Institute Inc. SAS/STAT Software, Version 9.1. Cary, NC, 2003.
[28] J. Seo and B. Shneiderman. A rank-by-feature framework for un-

supervised multidimensional data exploration using low dimensional
projections. In Information Visualization, 2004. INFOVIS 2004. IEEE
Symposium on, pages 65–72, 2004.

[29] G. Shmueli. To explain or to predict? Statistical Science, 25(3):289–
310, 2010.

[30] C. Steed, J. Swan, T. Jankun-Kelly, and P. Fitzpatrick. Guided analysis
of hurricane trends using statistical processes integrated with interac-
tive parallel coordinates. In Visual Analytics Science and Technology,
2009. VAST 2009. IEEE Symposium on, pages 19–26, Oct 2009.

[31] L. M. Sullivan. Essentials of Biostatistics in Public Health. Jones &
Bartlett Learning, second edition, 2011.

[32] R. F. Tate. The theory of correlation between two continuous variables
when one is dichotomized. Biometrika, 42(1/2):205–216, 1955.

[33] R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
58(1):267–288, 1996.

[34] P. van der Putten and M. van Someren. CoIL challenge 2000: The in-
surance company case. Technical report, Leiden Institute of Advanced
Computer Science, 2000.

[35] J. Yang, D. Hubball, M. O. Ward, E. A. Rundensteiner, and W. Rib-
arsky. Value and Relation Display: Interactive Visual Exploration
of Large Data Sets with Hundreds of Dimensions. Visualization and
Computer Graphics, IEEE Transactions on, 13:494–507, 2007.

[36] T. J. Ypma. Historical development of the newton-raphson method.
SIAM Review, 37(4):531–551, 1995.

[37] F. B. Zhan, D. J. Brender, H. P. Langlois, and J. Yang. Air pollution-
exposure-health effect indicators: Mining massive geographically-
referenced environmental health data to identify risk factors for birth
defects. US Environmental Protection Agency, 2015. Final report
(2011-2015, 325 pages).

[38] B. Zou, J. G. Wilson, F. B. Zhan, and Y. Zeng. An emission-weighted
proximity model for air pollution exposure assessment. Science of The
Total Environment, 407(17):4939–4945, 2009.

[39] H. Zou and T. Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society. Series B (Statisti-
cal Methodology), 67(2):301–320, 2005.


