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Abstract— We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling
and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by
taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis
algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs
which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed
to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views
including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of
streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it
using massive taxi trajectories of Shenzhen, China. TrajGraph’s capability in revealing the importance of city streets was evaluated by
comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain
expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several
examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.

Index Terms—Graph based visual analytics, Centrality, Taxi trajectories, Urban network, Transportation assessment

1 INTRODUCTION

Nowadays, large amounts of taxi trajectory data are collected and uti-
lized by transportation administrations, companies, and researchers.
The data provides real situations from which real traffic flows can be
extracted and city-wide transportation patterns can be discovered. In
this paper, we propose a new visual analytics approach, TrajGraph,
to studying urban dynamic patterns using massive taxi trajectory data,
with a specific focus on discovering the importance of different parts
of city networks in transportation. Discovering this knowledge, such
as the time varying hubs and backbones of road networks, is critical
for optimizing urban planning and amending city operations. How-
ever, there is a lack of effective approaches to completing this task due
to several challenges.

First, most existing methods cannot support effective analysis of
the important roles of city roads in real traffic situations. Classic grid-
based models manage spatial data in the Euclidean space of a city
(e.g., [15]), which does not effectively represent the network structure
of roads. Graph methods based on static street networks have been
used in geography and transportation to study road network structures
and topologies in some city areas (e.g., [5, 27]). However, they cannot
reflect the real transportation roles of streets since they do not utilize
real traffic data. Although recent researches have been conducted on
utilizing urban trajectory data (e.g., [37, 39]), they do not create graphs
representing city-wide road networks and do not support interactive
analyses of road importance.
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Second, domain users need to interactively select city roads and
visually analyze their roles. Visualization is desired since it allows
the users to incorporate their domain knowledge and human intelli-
gence in the exploratory analysis process. However, the scale and
complexity of the data make interactive visualization a challenging
task, since street networks in large cities are very big and complex,
and the situation is greatly confounded when incorporating dynamic
traffic information from massive trajectory data. To facilitate interac-
tive visual exploration, effective and efficient computational methods
of road importance should be tightly integrated with intuitive visual-
izations. Domain users have been impeded due to the absence of such
visual analytics systems.

Designed to address these challenges, TrajGraph is a new visual
analytics approach which supports domain users, such as city plan-
ners and transportation researchers, in finding and comparing the time-
varying transportation roles of urban roads utilizing real traffic infor-
mation. It tightly integrates graph modeling, graph analytics, and visu-
alization techniques. Unlike existing methods, our approach generates
a graph from massive taxi trajectory data to represent an urban road
network and its traffic information in the whole city. This graph is
then aggregated, analyzed, and visualized to allow users to interac-
tively discover the dynamic urban patterns.

In particular, a road segment is mapped to a vertex if taxis pass
it, and edges are added between two connected road segments if and
only if there are taxis traveling between them. The vertex weight is
used to represent traffic information such as the average travel speed
to reflect dynamic use of the roads. Therefore, the graph manifests
the traffic information in addition to road connectivity in a network.
Consequently, TrajGraph provides a means to discover dynamic traffic
patterns through graph computing and analysis. To the best of our
knowledge, this approach of graph construction and weight definition
from taxi trajectories has not been used in previous work.

To address the scalability challenge, a graph partitioning algo-
rithm is applied to aggregate neighboring street vertices into partitions.
Thus, a street-level graph is converted into a region-level graph with
reduced size. Here the “region” refers to a combination of streets in-
stead of a conventional spatial cell. Users can flexibly select the num-
ber of regions to be used in analysis. Therefore, our system enables
effective visualizations and interactions over regions and exploratory
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visual analytics becomes possible. Moreover, graphs can be generated
and flexibly studied for different time periods to characterize the tem-
poral variation of importance. For example, users can study the chang-
ing traffic patterns by exploring multiple graphs constructed from taxi
trajectories in different periods (e.g., every two hours) of a day. There-
fore, TrajGraph enhances its usefulness and flexibility to meet the re-
quirement of domain users.

The Pagerank and betweenness centralities are computed for graph
vertices, which directly reflect the important roles of city roads in
transportation such as hub and backbone regions. Using different def-
initions of vertex weights, such as street distance, average taxi travel
speed, or travel time, the centralities can reveal a variety of critical
traffic patterns. More centrality metrics (e.g., closeness) can also be
added to our system.

A node-link graph view visually presents the centralities. On this
view users can easily select regions of interest according to their im-
portance. A map view coordinated with the node-link graph view
then allows users to visually examine and compare their importance
and traffic information (e.g., traffic flow, speed) in geographic context.
Furthermore, on a temporal information view, the temporal changes
of the importance and traffic information are depicted and can be well
compared among regions. The temporal changes can also be depicted
as rose charts on the map. The three views effectively support knowl-
edge exploration related to urban region importance.

TrajGraph was evaluated from multiple aspects. First, we evaluated
whether the importance of regions computed from centralities matched
the opinions of local residents. The evaluation was conducted with a
group of drivers in Shenzhen, the city where the trajectory data came
from. Second, we collected expert feedback from a geographer and
urban planner on the usability of the system. Third, we conducted a
user study to test whether the coordinated node-link graph view im-
proved user performance in visual exploration on the map view. We
also present a case study and report the implementation and computa-
tion performance of the system. These studies indicate that TrajGraph
is efficient and effective in utilizing taxi trajectory data to gain trans-
portation knowledge.

2 RELATED WORK

Urban modeling and planning: Urban researchers have developed
strategies that improve safety, mobility and sustainability in trans-
portation systems [25, 34]. Conventional platforms for urban trans-
portation forecasting, planning and analysis (e.g., [6, 8]) have en-
hanced human ability to simulate, maintain, and operate transportation
infrastructure. Many studies have been aimed to discover the relation-
ship between travel behavior and street network structure (see a liter-
ature review in [23]), in which human travel data was recently used
in statistical regression analyses. Here the travel data was studied in
aggregate levels, such as the congestion indexes (e.g., Travel Time In-
dex) of U.S. metropolitan areas [23]. These tools and approaches are
not developed utilizing real trajectory data.
Graph based urban study: In geography, Rozenblat and Melancon
[28] developed a project of modeling and analyzing multilevel geo-
graphical networks produced in complex dynamic systems, such as
a hierarchy of cities generated according to their control of multina-
tional firms. Their work utilized centralities and node-link visualiza-
tions in modeling such networks. However, they did not specifically
use real-world population trajectory data to construct graphs repre-
senting city roads/regions and traffic information. Using graph-based
methods, Rosvall et al. [27] and Porta et al. [26] studied and com-
pared city networks. Meanwhile, Buhl et al. [5] analyzed street net-
work topology to study evolution and functional properties. Crucitti
et al. [10] studied graph centralities of different world cities to com-
pare planned and self-organized cities. However, these methods used
a small part of a city to create a graph directly from street geometries.
They identified structural or topological features of cities, but did not
study transportation and traffic patterns, since no real traffic informa-
tion was involved. In contrast, we utilize taxi trajectory data to create
urban graphs and study dynamic transportation patterns through inter-
active visualization.

Taxi trajectory data mining and visualization: Taxi trajectory data
has been used in mining population behavior and traffic patterns [38].
Yuan et al. [37] developed the T-Drive system to recommend optimal
driving directions by computing the fastest paths on a time-dependent
landmark graph. Their application required fast routing so a small set
of landmarks (e.g., frequently visited roads) were used to simplify city
networks. Our method has a different goal of visually discovering im-
portance of city streets, so we compute centralities over all streets and
aggregate regions through graph partitions. Zheng et al. [39] divided a
city into spatial regions and then computed traffic transitions between
each pair of regions. Flaw region pairs having heavy traffic beyond
the designed capacity were modeled into graphs which were mined
for frequent sub-graph patterns to identify flawed city planning. Wang
et al. [33] explored traffic data recorded on sparsely distributed cells
in a city. Inter-cell correlations were studied in a similar way as a sim-
ple graph, which was visualized to display the correlations for visual
exploration. In these methods, the graphs were designed for reflecting
relations of selected salient regions which might not be geographical
neighbors. Users cannot interactively study the important roles of ur-
ban roads arbitrarily. In contrast, our graph is constructed to reflect
real street connections and their traffic information. It supports ex-
ploratory visual analysis on streets. Andrienko et al. [1] transformed
GPS-tracked car trajectories into aggregated flows between cellular
areas to depict important moving patterns over a city. They grouped
points of trajectories into clusters enclosed by convex polygons (e.g.,
Voronoi) to find salient areas. The connection between these areas
formed a graph where the traffic flow over their links was visualized.
Our method is different by constructing graphs of streets, instead of
clustered areas from GPS points, and applying centrality computation
over the graphs.

A large number of approaches have been proposed to visually ex-
plore movement data [2]. Many of them are focused on trajectory
origins and destinations (i.e., OD data), such as Flowstrates [3], OD
maps [36], visual queries [12], and visual analysis of human mobility
[18]. Other work visualizes trajectories using various visual metaphors
(e.g., lines/curves, heatmaps, and time rings) and interactions, such as
TripVista [14], FromDaDy [17], vessel movement [35], route diversity
[21], taxi topics [7], and more [9, 13, 30, 32, 31].
Graph centrality and visualization: For studying social networks,
Perer and Shneiderman [24] applied centralities to enable users to rank
nodes using ordered lists and highlight important nodes in node-link
diagrams. Their work showed how the centralities can help analyzers
understand complex networks more effectively. It inspired our work
where centralities are used to help domain users explore urban trans-
portation data.

3 REQUIREMENT ANALYSIS AND TRAJGRAPH OVERVIEW

In this paper, we use the taxi trajectory data of Shenzhen, China as
an example dataset. Shenzhen is a big city in southern China. It has
about fifteen million residents in a condensed area. Taxis are a major
instrument of resident transportation. The trajectory data was acquired
from 15,206 taxis. Each day a taxi trajectory records around 3k sample
points with time, GPS location, and speed at an interval of 20 seconds.
There are nearly 60 million sample points for each day. Our aim is to
use this data for visual analytics of the traffic-related roles of different
city streets, in order to provide support for city planners and trans-
portation analyzers. This aim involves several design requirements for
a visual analytics approach:
• R1: Traffic information representation

The approach needs to model real traffic information over the city
network from the trajectories. The importance of city roads, varying
at different time periods, should be computed at user desired spa-
tial and temporal scales. Meanwhile, the connectivity of the roads
needs to be maintained correctly for interactive user analyses over
geographical spaces;

• R2: System scalability
The approach needs to handle a large number of city streets and mas-
sive trajectory data. The raw data should be optimally aggregated so
that (1) the visual representations are convenient for domain users



to perform visual reasoning and exploration without overwhelming
amounts of data and cluttering, and (2) the computation speed is fast
enough to enable interactive visual analysis;

• R3: Meaningful and intuitive visualization
The importance computed by the approach should carry clear mean-
ing in urban transportation to domain users. The visualization
should be intuitive so that the users can easily identify interesting
patterns;

• R4: Interactive visual analytics capability
Users should be allowed to interactively explore the importance and
traffic information in the whole urban domain or in an area of in-
terest within different time periods. They should be able to study
different types of traffic-related roles within the same visual analyt-
ics framework. In addition, users should be facilitated to compare
multiple regions and investigate the time varying patterns when con-
ducting analysis tasks.

To address these needs, we propose TrajGraph, a visual analytics
approach that integrates graph based traffic data modeling, automatic
graph analyses, coordinated graph, map, and temporal data visualiza-
tions, as well as interactions. It provides the following solutions to the
aforementioned requirements:

• R1: It constructs a special graph directly from massive taxi trajec-
tories to represent not only the complex and unstructured urban net-
work, but also the real traffic information over the network. For
example, the raw GPS samples (60 million points) in Shenzhen is
converted into a graph of 37k vertices and 1,500k edges.

• R2: It applies graph partitioning to create a region-level graph with
a small number of vertices and edges. Through this aggregation,
users can interactively explore the city-wide traffic information at
desired region levels instead of at the street level, which has too
many vertices and edges to examine. For example, by creating a
graph of 100 vertices and 628 edges from the aforementioned raw
graph, users are enabled to interactively and visually examine 100
regions instead of 37k streets. The levels of aggregation in space
and time can be flexibly controlled by users. Users can select and
compare multiple regions of interest. Users can further study the
regions at the street level for more details.

• R3: It computes the graph centralities, Pagerank and betweenness,
from different types of traffic information. They reveal meaning-
ful roles (Table 1) of city streets, such as hubs and backbones, at
a given time period. The centralities are visualized by salient vi-
sual metaphors so that users can immediately identify and compare
the roles. More graph measures can be further examined to reflect
domain knowledge without changing the visual analytics platform.

• R4: The regions, streets, and their centralities and traffic informa-
tion can be interactively explored in a map view. A node-link graph
view is provided as an interactive control panel for the map view,
from which users can visually examine the centralities and select
regions of interest with ease. Users can also examine the tempo-
ral changes of centralities by line charts on a temporal information
view. The three components address the requirements of user ex-
ploration. Meanwhile, users can select an area to compute a local
graph and analyze the roles of streets in this area. Moreover, users
can interactively change the number of partitions and adjust param-
eters in graph construction and partition generation to achieve finer
or coarser granularities in both time and space.

A fully working prototype of TrajGraph has been implemented. With
this prototype, domain users such as city planners and traffic analyz-
ers can investigate a city in a global view to find interesting regions.
They can then interactively examine the traffic patterns in more details
over multiple views. This enables the preferred multiscale information
seeking mantra [29]: “overview first, zoom/filter, details on demand”
to facilitate visual exploration in urban transportation. To our best
knowledge, there is no similar system that can provide such interac-
tive visual analysis capabilities by utilizing taxi data on discovering
the transportation roles of city networks.
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(a) A street network (b) A corresponding graph
Fig. 1. Using graph to represent a street network in TrajGraph.

4 TRAJGRAPH MODEL

4.1 Transforming Trajectories to a Graph

TrajGraph constructs a graph, GT , to represent a road network where
taxis travel on in a given time period T . A vertex in GT represents
a road segment in a city. If a taxi travels from road segment A to its
connected neighbor B, a directed edge AB is added to GT . GT can thus
represent a road network from a large set of taxis traversing city streets.
Those streets where no taxis travel on are not considered significant
for the study of street importance. In addition, multiple graphs created
for different time periods can represent the varying traffic information.
This approach enables users to analyze the temporal changes of trans-
portation functions over multiple GT s such as by computing GT for
every two hours.

TrajGraph uses a dual graph representation which maps streets to
vertices and their connections to edges. Fig. 1b is an example graph
with vertices (A to G). It represents a street network shown in Fig. 1a
with six junctions (J1 to J6). When taxis travel over the streets, several
turns over the junctions are disallowed (shown in red arrows), such as
from C to A. Thus the directed edge CA is not included in the graph
while AC is. Consequently, this graph representation makes it easy to
reflect road network complexity and real traffic constraints. In con-
trast, using a primal graph mapping streets to edges and intersections
to vertices, the constraints need to be modeled by introducing extra
nodes and computation to the graph [22].

4.1.1 Graph Generation

In generating GT , the input is the GPS sample points of all taxi tra-
jectories during T . The output is GT whose vertices represent street
segments and whose edges represent the linkage between two phys-
ically connected segments (e.g., A and B). Here, the edge is added
when there exists at least one taxi travels from A to B. The computa-
tional steps are:
1. for each trajectory Tj do
2. for each GPS sample point Pt of Tj in T do

{
\\read next sample point on Tj

3. nextPt = Pt.nextPoint(); if nextPt is null, go to 1;
4. cID = Pt.roadID; nID = nextPt.roadID;
5. if (cID == nID), go to 2;

\\remove incorrect consecutive samples
6. if (Distance(Pt, nextPt)> ξd), go to 2;
7. if (TimeDifference(Pt, nextPt)> ξt ), go to 2;

\\update graph
8. add a new vertex NcID to GT when it is not in GT ;
9. add a new vertex NnID to GT when it is not in GT ;

10. add a directed edge EcID,nID to GT when it is not in GT ;
11. update the weight of NcID with proper methods (Sec. 4.1.2);

}
The weight of vertices is updated in Step 11 according to different
graph types which are discussed in Sec. 4.1.2.

In the raw taxi trajectory dataset, information would be wrongly
recorded if the device was misoperated or missed signals. This can
lead to erroneous time stamps and locations of sample points. We
need to keep only valid consecutive sample points on a trajectory so
that the graph can correctly reflect connectivity between neighboring
road segments. For example, if a taxi travels from street A to street



(a) (b) (c) (d)
Fig. 2. Creating region level graph of ShenZhen by graph partitioning: (a)(b) without traffic information; (c)(d) with traffic information. More nodes (i.e.,
regions) are generated in the arrowed downtown areas in (c)(d) than in (a)(b). Colors are selected to show different regions on the map.

B then to Street C, ideally graph edges EA,B and EB,C should be cre-
ated. However, the GPS sample on B may be missing, so that EA,C
is connected although they are not physically linked. Here we need
to avoid connecting EA,C in GT . Two thresholds, time difference ξt
and spatial distance ξd , are introduced in Step 6 and 7, respectively.
We have tested different values of ξt and ξd . If they are set too small,
neighboring road segments are not connected by edges, while using
larger values of them will connect many faraway road segments. In
our experiments, we found setting ξt = 90 seconds (the normal device
sampling interval is 20 seconds) and ξd = 900 meters (roughly the
distance a car travels with a low city speed 36km/h in 90 seconds) can
create satisfying noise removal results. These values are then used in
the examples of this paper.

4.1.2 Graph Types

Different types of graphs can be created by defining different vertex
weights in Step 11 of the aforementioned algorithm. They include but
are not limited to:
• VW1: Define vertex weight as the length of streets;

This setting is used when streets’ lengths are to be used in analysis.
GT then represents the urban network’s original geometric structure.

• VW2: Define vertex weight as the number of taxis;
The weight of a vertex reflects the number of taxis passing this street
in both directions during T . GT stores the taxi flow information of
all streets.

• VW3: Define vertex weight as the average travel time;
Average travel time on a street can be calculated using the street
length and the average travel speed during T . GT stores moving
time information over streets during T .

• VW4: Define vertex weight as the average speed;
Average speed computed from taxis reflects the traffic situation of a
street during T . GT then stores traffic movement information during
T .

Applying graph algorithms using different settings can identify dif-
ferent transportation patterns (See Sec. 4.3). We use 1 as a uniform
edge weight, which gives clear meaning of graph centralities than us-
ing both vertex and edge weights.

4.2 Creating a Multilevel Graph
Generating a graph by assigning each street segment to a vertex leads
to a large graph. This is because the city scale is large and a long
road is divided into multiple segments to be accurately identified in
GIS systems. For example, Shenzhen’s street-level graph has nearly
37,634 vertices and 1,512,691 edges. Although this scale is not con-
sidered large in graph data mining, it is not tractable in a visual analyt-
ical system to compute betweenness and closeness centralities, which
requires computing the shortest path between each pair of vertices.
Moreover, it is not feasible for users to explore the importance of such
a large number of streets in a map view or a graph view due to the
clutter problem.

In an effective reasoning process, users typically study multiple re-
gions of a city for their roles and performance in transportation. Then
they explore regions of interest to study detail information of their lo-
cal streets. To support such a multilevel visual analytics process, we
generate a multilevel graph. A street-level graph can be simplified by
aggregating vertices into groups and replacing each group as a new

upper level vertex. The edges between the groups are combined fol-
lowing specific rules. Therefore, a region-level graph is created, where
a “region” is defined by a connected cluster of street segments. This
is different from a spatial region in the city. The region in our graph
is computed naturally from trajectory data and reflects traffic patterns
over streets. This simplification process can be repeated to construct
a hierarchical graph if necessary. In particular, a graph partitioning
algorithm is applied to implement the process.

4.2.1 Graph Partitioning
Graph partitioning is used to divide a graph into several chunks while
satisfying certain constraints and objectives [19]. The most common
constraint is to produce partitions having similar chunk sizes, while the
most common objective is to minimize the number of edges between
the divided chunks. We use a multilevel k-way approach in the well-
known METIS partition [19]. Here k is a given number of partitions
to achieve. For TrajGraph, we set the aim to equalizing the sums of
vertex weights among all chunks, while minimizing the sum of edge
weights between these chunks.

Fig. 2 illustrates two different ways to partitioning a street-level
graph of Shenzhen, where the colors are selected to show different
regions on the map. The first one does not include the real traffic
information sampled by taxis, and the second one introduces such real
traffic information. For the first one, a region-level graph is created by
setting k = 100 while using VW1. Fig. 2a displays the regions (i.e.,
aggregated streets) in different colors over the city map. Fig. 2b is the
corresponding node-link graph view. Here the sizes of the regions are
optimized by equalizing the sum of street lengths in each region. In
general a node covers a larger area in suburbs than a node in downtown
areas. Therefore, the graph shows the structural features of the city due
to the geographical street distribution. However, it does not consider
traffic information. Many small streets in a condensed downtown area
suffering heavy traffic flows may be grouped into one region node.
In such a case, it is preferred that they can be further studied in finer
scales, i.e., by dividing them into more regions.

Therefore, we further apply the partitioning in the second way
where VW2 is used in weights. VW2 introduces the traffic flow infor-
mation and then the created regions cover a large area with calm traffic.
In downtown areas, heavily used streets are grouped into fine regions.
Fig. 2c-d display the aggregated streets and the node-link graph gener-
ated using this method. Compared to Fig. 2a-b, the new results create
more nodes (i.e., regions) in the downtown areas of Shenzhen. For ex-
ample, in the arrowed area there are more refined regions. Therefore,
users can study these regions in more detail.

k is a heuristic number which users can choose to study the city
transportation in different granularities. A very large k may introduce
too many small regions that are hard for interactive visual exploration,
while a very small k cannot reflect enough details of regional traffic
information. Our system allows users to change k on the fly. In the
following sections, we use a medium number k = 100 in the discussion
of centrality computing and visual exploration.

4.2.2 Partition Refinement
The quality of graph partitioning results is highly affected by noise in
taxi trajectory data. We have discussed the graph generation method
which handles sample errors (Sec. 4.1.1). However, after graph gen-
eration there may still exist incorrect edges between road segments



(a) Original partition (b) Refined partition
Fig. 3. Partition refinement to overcome problems caused by erroneous data.

Table 1. Using centralities on different graph types.
Type Reflected High Pagerank High betweenness

feature refers to refers to
VW1 road structure hubs from backbones from

and topology road structures road structures
VW2 real traffic hubs used roads less

flow by taxis used by taxis
VW3 real travel congestion backbones on

time roads fast paths
VW4 real vehicle fluent traffic backbones on

speed roads congested paths

that are not physical neighbors. For example, Fig. 3a shows one
aggregated region of streets with separated segments. We propose a
refinement approach on the partitions to overcome the problem. DB-
SCAN is a popular clustering method based on density reachability
[11]. We utilize it on each partition to remove noisy segments. Start-
ing from a center street segment in a partition, DBSCAN performs a
ε-neighborhood search, where a given minimum number n is used to
imply a dense region of segments. DBSCAN returns density-reachable
clusters of the street segments where the largest one is used as the re-
fined result to replace the original partition. The leftover segments are
discarded as they represent isolated small segments from inaccurate
raw data. Fig. 3b shows the refined partition. The DBSCAN param-
eters can be adjusted for different levels of clustering. A smaller n or
larger ε may not effectively remove the separated segments, while a
larger n or smaller ε can lead to the discard of too many street seg-
ments. Here we set ε = ξd = 900 meters which is consistent with
the threshold used in graph generation. We also set n = 5 which can
provide a good refinement result in our tests.

4.3 Revealing Transportation Patterns by Graph Centrali-
ties

To investigate the roles of streets in transportation, centralities are cal-
culated for graph vertices. In particular, we compute Pagerank [20]
and betweenness, which are widely used indicators in graph analysis,
to characterize hub and backbone streets/regions. Pagerank originally
determines the importance of a web page in internet. Using it in Tra-
jGraph, the importance of a street segment is scored according to the
concept that links to high scoring street segments increase the score
more than links to low scoring street segments. The streets with high
Pagerank scores are preferred hub streets. Betweenness centrality de-
fines that a vertex is important if it lies on many of the shortest paths
between two vertices. It can measure whether a street/region is a back-
bone in the urban network.

Fig. 4 shows two examples of how the centralities reveal transporta-
tion patterns of Shenzhen. The region-level graph with 100 vertices,
G1D, is created from one day’s trajectory data. Fig. 4a shows sev-
eral regions in Shenzhen’s downtown area. They are colored by the
Pagerank score of each region vertex. Here the vertex weight is set
by VW2 which is the amount of taxis passing a region. Red color is
used for high Pagerank scores and blue is used for low scores, while
yellow and green are in between, according to a divergence color spec-
trum from ColorBrewer [16]. A high score infers a hub region that is

highly used by taxis to reach other locations. Fig. 4a reveals three
regions with high scores: A (including Shenzhen Library), B (includ-
ing a very large Caitian shopping center), and C (including the famous
Huaqiang North Commercial District). They are the most prominent
city centers of Shenzhen. Interestingly, another region (D), which is
partly surrounded by them, does not have a comparable high Pager-
ank. D includes the major intersections connecting to highways in the
north, but it is not as popular as A,B,C to be used by taxis. In Fig.
4b, we compute the betweenness with VW3, where the average travel
time over streets is used to compute the shortest paths. Therefore, the
betweenness of G1D quantifies to what extent a region acting as a nec-
essary “backbone” on the fastest pathes among regions. A high score
reflects that a region is highly preferred to be used as a fast access path
to many city areas. It is not surprising that another region (E) has the
largest betweenness in Fig. 4b, since it includes a major highway from
the downtown area to many northern suburban areas through a tunnel.
A, B, and C do not have very high betweenness values since taxis can
travel to other regions easily in the downtown area without using them.

In TrajGraph, the default setting is using VW2 for Pagerank and
VW3 for betweenness, which generate the most frequently used and
meaningful importance for city roads. We use this setting in the ex-
amples of the following sections. Indeed, users can also use the cen-
tralities over different graph weight types which can manifest vari-
ous transportation features, as illustrated in Table 1. Moreover, other
graph measures such as closeness can also be applied. In general, these
parameters can be steered to support different analysis tasks without
much change to the visual analytics framework.

5 VISUALIZATION

5.1 Visualization Interface
An interactive visualization interface is provided in our prototype so
that domain users can conduct exploratory analysis. Fig. 5 shows the
three coordinated views of the interface: (1)(2) the node-link graph
view; (3)(5) the temporal information view; and (4)(6) the map view.
When users click the mouse on a region in one of the first two views,
the visual representations of this region in all the views will be high-
lighted. A set of buttons and list boxes are provided for the selection
of time periods, centralities, and traffic information (e.g., travel speed
or time). Users can load files that represent different numbers of parti-
tions, which can be pre-generated or created on the fly during analysis.
Node-link graph view: To allow users to explore important regions
effectively, a node-link diagram (Fig. 5(1)(2)) visualizes the region-
level graph with centrality or traffic information. The position of ver-
tices is the geographical center of a region, so the view reflects the
geographical distribution of the urban network. Therefore, users can
intuitively associate the vertices in this view with the regions on the
map. The graph is a directed graph. In order to reduce clutter, only
one edge between neighboring nodes is shown to reflect their link-
age. The IDs of the region vertices are shown as the labels. To reduce
clutter in dense downtown areas, a force-directed method is applied
to avoid node overlapping while keeping the relative positions of the
vertices as much as possible.

The normalized scores of the centrality under investigation are vi-
sually presented to users by the colors of the vertices. The same diver-
gence color spectrum from ColorBrewer [16] used in Fig. 4 is applied,
where vertices with high centralities are shown in red to yellow and
vertices with low centralities are shown in green to blue. This color
scale is chosen as the default color scheme since vertices with high
centralities and low centralities stand out with it, which are often the
most interesting regions in an urban network. Other color scales, such
as monochrome schemes and other divergence spectrums, are also pro-
vided in the prototype and users can interactively change the color
scheme according to their tasks and preference.

A key feature of our visual analytics system is that the graph view
serves as a control panel for the other views. Users can browse the
graph view for vertices with interesting centralities and click (select)
them to investigate the regions in the map view. They can also compare
the temporal patterns of selected regions in the temporal information
view. Zooming and panning are provided in this view for interactive



(a) Pagerank using VW2 (b) Betweenness using VW3
Fig. 4. Urban network centralities shown on a part of ShenZhen, China.

exploration. A user study (Sec. 6.3) showed that this view promotes a
more effective visual analytics process than only using the map view.
Temporal information view: Once vertices are selected from the
node-link graph view, the temporal information of the selected regions
is visualized in the temporal information view (Fig. 5(3)(5)). A line
chart is used to display temporal changes of the centrality scores and
general traffic information (average speed, average travel time, and
traffic flow). It is effective for comparing the changing values of one
region or among multiple regions. The polylines representing the re-
gions have the same color as the corresponding vertices. The detail
information is also visualized in a text box.
Map view: The map view is the major instrument to visualize roads
and regions with traffic information and centralities (Fig. 5(4)(6)).
Users can choose from a variety of background maps such as the to-
pographical, satellite, and transportation maps, to provide visual cues
and geographical context. Corresponding to the selection in the node-
link graph view, the streets in the selected regions are drawn over the
background map. They can be colored to represent the centralities or
to show traffic information such as average speed, average travel time,
and flow. Moreover, a rose chart can be turned on to visualize the
temporal changes of the information on a region. Using each arc of
the rose chart to represent a two-hour window, one day is shown in
12 arcs in the circle. The chart helps users examine the time varying
information and find a time period of interest to conduct further study.

5.2 Multiscale Visualization
The transportation patterns can be examined at different levels of detail
in two ways. First, starting from a city-wide graph where the vertices
represent regions, users can select a region from the node-link view
to examine its details. In the map view, users can study the centrali-
ties and traffic information at the street level, which is shown in Fig.
5(6). This visual analytics process is further discussed in Sec. 8. Sec-
ond, users can select an arbitrary area on the map (currently rectangle
selection is supported). Then a local graph is constructed from the
trajectories, which only includes the streets inside the selected area.
Users can then perform visual analyses to investigate the centralities
of these streets, which tell the local importance of these streets in the
area. Note that the centralities are not the same as those computed
from the city-wide graph. For example, a street in the area may have
a small betweenness in the whole city, but locally, it has a high be-
tweenness indicating that it is a backbone street inside the area. Sec.
5.4 provides an example of exploring a local area. These functions
help users flexibly conduct visual exploration tasks.

5.3 Example: Investigating Time Varying Centralities
It is of great importance to compare and analyze the temporal dif-
ferences and changes of centralities in a region and among different
regions. The centralities can be computed for a small (e.g., two hours)
time window. Then, each day a region has 12 Pagerank or between-
ness scores. Fig. 6b-c shows the temporal changes of the centralities

of three neighboring regions, ID90, ID91, and ID92 in Fig. 6a, where
the rose charts show their Pagerank values at different time periods.
It demonstrates that ID91 has the highest Pagerank and the lowest be-
tweenness most of the time. It indicates that ID91 is a popular region
visited very often by taxi drivers, but it is not a backbone region used
to reach many other regions. ID90 generally has a higher betweenness
that is drastically changing over time. A very high betweenness value
at 16:00 shows the region is used as a fast bypass route (to reach north
suburbs through the tunnel). But its score drops at 18:00 which means
it loses its function. A possible reason may be that the experienced
taxi drivers avoid using the streets in this region during the rush hours.
That may also be the reason of why both betweenness and Pagerank
of ID92 increase at 18:00. This region neighboring to ID90 is used as
an alternative route to avoid ID90. The size of the time window can be
changed to a longer (half day) or shorter (one hour or half hour) period
for different analysis granularities.

5.4 Example: Exploring Centralities in a Local Area
In this example, users select an area of interest and analyze the central-
ities computed from the corresponding local graph (Fig. 7a). Fig. 7b-c
show the streets colored by their Pagerank and betweenness, respec-
tively. Moreover, Fig. 7d displays the streets colored by the density of
taxi flows where red refers to highly occupied streets. A (i.e., Node 6)
includes the most important roads of this local area since it has high
scores in both Pagerank and betweenness. It shows that this road is a
fast path and used by many drivers to reach other streets. In compari-
son, B has a high Pagerank but its betweenness is low. It indicates B is
used by many taxis but it is not the fastest path possibly due to traffic
jams. This is confirmed by Fig. 7d which reveals that B has a large
traffic flow.

6 EVALUATION

6.1 Analytical Utility: Study with Drivers of Shenzhen
We conducted a study with a group of drivers of Shenzhen to evaluate
the assumption in our approach that Pagerank and betweenness cen-
tralities reflect the importance of city streets. Drivers have the most
direct observations of real traffic situations. Their opinions are close
to the ground truth which is hard to be discovered using other means.
We recruited 20 volunteer residents of Shenzhen with different back-
grounds and occupations, most of whom drive their cars everyday in
Shenzhen. Their driving experience ranged from 1 to 15 years. Fif-
teen of them claimed that they were very familiar with Shenzhen’s
roads and another five claimed familiar.

We conducted the study with the participants one by one using an
image based comparison approach. Fig. 8(a) shows an example image
where two regions, A and B, in Shenzhen are circled on the map in red
and blue. They are neighboring regions and connected vertices in our
graph. During 6-8am A had higher Pagerank than B. In the study each
participant was asked to look at the image and answer “Which region is
more like a hub region during 6-8am? A hub region is used more often
by drivers to communicate between different city areas.”. The partici-
pant selected A or B to answer the question. Two pairs of such regions
during 6-8am and two pairs of regions during 4-6pm were chosen, so
that 4 Pagerank questions were answered by each participant. In a sim-
ilar process, two pairs of regions during 6-8am and two pairs during
4-6pm were used to create 4 betweenness questions. Each participant
was asked to choose “Which region is more like a backbone region
during 6-8am? A backbone region contains important roads which
may cause big traffic problem if broken.”. Each participant answered 8
questions in total. The 8 pairs of regions were selected randomly from
Shenzhen’s graph by a nonresident person.

We compared the answers of all questions to the computed central-
ities. For example, if a participant selected A to answer the Pagerank
question for Fig. 8(a), then we said the answer agreed with our Pager-
ank, otherwise it was a miss. The result is shown in Fig. 8(b). The
total agreement rate of all questions was 63.75% (66.25% for Pager-
ank and 61.25% for betweenness). Fig. 8(b) also shows the rates for
the drivers with different lengths of driving experience (1-6 years and
7+ years). There were no significant differences between the groups.
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Fig. 5. A case study (see details in Sec. 8). The interface includes three coordinated views: (1)(2) a node-link graph view where users can zoom and select
interesting nodes; (3)(5) a temporal information view where users can examine the temporal changes of centralities and traffic information of selected regions;
and (4)(6) a map view with rose charts where users can study centralities and traffic information on the city map. A set of buttons and list boxes (shown in purple
rectangles) are provided for the selection of time period, centralities, and traffic information.

(a) Three neighboring regions (b) Temporal Pagerank (c) Temporal betweenness
Fig. 6. Temporal changes of centralities of three regions.



(a) A local graph (b) Pagerank of (a) (c) Betweeneness of (a) (d) Taxi flow of (a)
Fig. 7. Computing and visualizing temporal centralities of a local selected region of Shenzhen.

(a) (b)
Fig. 8. Study with Shenzhen drivers. (a) Two neighboring regions with Pager-
ank A > Pagerank B. (b) The agreement rate of our computation with the sub-
jective evaluation of the drivers.

In this study, the agreement of our computation with the drivers’
subjective evaluation of the city’s traffic features was more than 60%.
It indicated that the metrics of Pagerank and betweenness can pro-
vide meaningful knowledge of urban transportation features. The rates
were not extremely high possibly because the drivers may not be fa-
miliar with all regions of the city. Feedback from the drivers was that
they sometimes were confused about why some streets form one re-
gion while others form another. This is because the automatically gen-
erated regions may not match people’s mental image of city networks
and functional sections. This question deserves future work together
with urban transportation researchers.

6.2 Domain Expert Testimonial Feedback

To learn whether TrajGraph is valuable to domain users, we inter-
viewed an urban geographer with a PhD degree, who is a former ur-
ban transportation planner. We sent him a written document of our
approach and he read it. We then met him in person and discussed the
model, the centralities, and the visualization process. We installed our
prototype on his personal computer, and taught him how to use it. He
spent two hours using the system and provided us a written document
of his feedback.

First, he evaluated our approach of studying city structures with
trajectories: “Policy-makers and transportation scientists realize that
many cities have been characterized by a polycentric urban develop-
ment model and the associated traffic jam. However, very few tools
exist for visual inspection of the pulse of a city at various spatial and
temporal scales. Taxi trajectory data involves interdependent entities
connected and intersected to form network topologies. Urban traffic
flow can be viewed as transportation demands aggregately distributed
in street networks. Hierarchy is an important property of street net-
work which suggests that only a small number of streets are promi-
nent. In other words, a small percent of top streets accommodate
about a majority percent of traffic flow. However, it is a data-intensive
computation to identify such structure and importance. At the same
time, the visualization component is usually abandoned due to the data
size burn. This new tool addresses an emerging need to provide non-
technical users to evaluate city’s hierarchy and traffic patterns.”

Then he stated “This platform develops a powerful visualization
tool to address such complexity. Using taxi trajectories helps under-

stand the urban spatial structure and can shed lights on the mechanism
of urban development. The interface is easy to navigate over a map to
find city-wide critical areas. This tool allows for understanding both
urban structures and human behavior in shaping urban transportation
demand using a graph-based approach. The tools may need to be fur-
ther adjusted in collaboration with real users.”

He pointed out that “The regions in this system currently are purely
from graph computing which may need to consider the functional and
traditional definition of city areas. ” He also suggested “The design
characteristics of streets (such as number of lanes, length, and speed
limit) can also be incorporated, as well as other city data.” We will
improve our approach according to these comments.

6.3 User Study of Node-Link Graph View

Since map views and temporal information views have been well stud-
ied in traffic visual analytics, we focused on evaluating the usefulness
of the node-link graph view in the visual analytics process. Our hy-
pothesis was that the high level visual abstraction and interactions pro-
vided by the node-link graph view can help users examine centralities
more effectively. To test this hypothesis, we conducted a preliminary
user study by using (V1) the map view coordinated with the node-link
graph view; (V2) the map view only without the node-link graph view.
Participants, Tasks and Procedure: Fourteen participants (4 females
and 10 males) aged from 22 to 35 were graduate students majoring in
computer science. Four tasks were used in the study: (T1) find five
regions with the highest Pagerank with V1; (T2) find five regions with
the highest Pagerank with V2; (T3) find five regions with the highest
betweenness with V1; (T4) find five regions with the highest between-
ness with V2. Two different graphs (PK1 and PK2) were used for T1
and T2, and another two (BW1 and BW2) were used for T3 and T4.
The study began with an introductory briefing of the concepts of Pager-
ank and betweenness to a participant. Then both the map view and the
graph view were introduced to the participant and she/he explored the
views freely for a few minutes. The participant then conducted the
tasks one by one in a random order and was given 90 seconds for each
task. PK1 and PK2 were randomly assigned for T1 and T2, and BW1
and BW2 were randomly assigned for T3 and T4.
Result: The answers of each participant were recorded and compared
with the ground truth to compute the accuracy. For all participants,
more correct regions were found with V1 (average accuracy 90% for
T1 and 88% for T3) than with V2 (average accuracy 75% for T2 and
74% for T4). We then performed a statistical test on the result. First,
we did an F-Test to determine if the variances of accuracy when using
the two visual interfaces (V1 and V2) were equal. We got 1.916(F) <
2.576 (F critical one-tail), p-value=0.126, so we did not reject the null
hypothesis. The variances of accuracy using the two interfaces were
equal. Then, we did a two-tail test to test if the means of using the two
visual interfaces (V1 and V2) are equal. We got 4.84(t stat) > 2.06(t
critical two-tail), p-value=6.3e-5, and therefore, we rejected the null
hypothesis. We concluded that the means of accuracy when using V1
and V2 differed significantly. This study showed that the graph view
can help users examine centralities more effectively than only using
the map view.



Table 2. Size of the street-level graph and region-level graphs.
Origin Graph 3000 partitions 1000 partitions 100 partitions

Vertex No. 37,634 3,000 1,000 100
Edge No. 1,512,691 32,516 10,214 628

Table 3. Computing time for the region-level graphs
Graphs Pagerank Betweenness Closeness

original graph 23.7sec 8.2hr 2.3hr
100 partitions 0.03sec 0.02sec 0.08sec

1000 partitions 0.3sec 2.0sec 0.5sec
3000 partitions 1.1sec 15.4sec 4.3sec

7 IMPLEMENTATION AND COMPUTATIONAL FEASIBILITY

In our implementation, Pagerank is computed following the widely
used approach [20]. The computation of betweenness is executed by
a fast algorithm [4]. We report the computation performance on a
desktop workstation (Intel Xeon E5520 with 4 cores at 2.27GHz and
16GB memory). Created from the raw data of 15,206 taxi trajecto-
ries (around 60 million sample points) with T as one day, the orig-
inal street-level graph is created in 35.3 seconds. The partitions are
computed very fast in less than 1 second. Table 2 shows the size of
the original graph and a few region-level graphs. Table 3 shows the
computation time of the centralities. The computation is slow on the
original street-level graph, especially for betweenness and closeness
centralities, since they need to compute shortest paths between each
pair of vertices, a well-known time-consuming problem. After graph
partitioning, the performance is greatly accelerated due to the small
size of region-level graphs. The 100-partition graph was computed in
milliseconds leading to interactive performance, which is critical for
our visual analytics system.

8 CASE STUDY

In this case study, we illustrate how an urban transportation expert,
named Zhang, used TrajGraph to find important regions which are
critical for Shenzhen’s traffic problems. Zhang opened our web-based
prototype system in his web browser. In Fig. 5(1), he looked at the
city-wide graph in the node-link graph view and selected to show the
betweenness centrality of the whole day. He found that node 95 was
red, which indicated a backbone region on fast reaching paths in Shen-
zhen. Zhang zoomed in the graph view (Fig. 5(2)) and clicked node
95 to display the region on the map (Fig. 5(4)).

From the map view he immediately realized that this region was on
one side of a mountain separating the city. He had general knowledge
of Shenzhen that this mountain was critical for the transportation. It
was of interest for him to study more pertinent details. Therefore he
started to study the neighboring region (node 36) on the other side
of the mountain by clicking the node in Fig. 5(2). What were the
different transportation features of these two regions connected by a
mountain tunnel? From Fig. 5(3) Zhang found that the two regions
had quite similar time variation in their betweenness values during this
day. The line charts revealed that both of them were very important
regions connecting north and south parts of Shenzhen. Zhang further
examined their Pagerank values in the temporal information view. As
shown in Fig. 5(5), the two time lines now became different. It was
obvious that at 6:00am region 36 had a higher score than region 95.
Zhang would like to find the reason. He zoomed into the two regions
on the map to study street level details. He associated the colors of
the streets to the average travel time on them at 6:00 am. In Fig. 5(6),
he identified that in the northern region (node 95), the major highway
junction had a long travel time (shown in red on roads), which implied
a traffic jam. Therefore, this region was not well used as a hub by
taxi vehicles as taxi drivers may avoid this junction. So its Pagerank
was low. On the other hand, the southern region (node 36) included
two major junctions where the travel time was not red. Therefore, they
were used for fast transportation to other areas which answered why
the region’s Pagerank was higher. Zhang reached a conclusion that
region 95 was an important urban bottleneck in the early morning at

that day. If this pattern was repeated for multiple days, it might be
worth to find a solution in urban design or traffic control.

This case study illustrates how TrajGraph effectively supports inter-
active visual reasoning of real traffic situations in a large city. Besides
intuitively conveying the knowledge derived from automatic compu-
tational analysis to users, it provides interactive visual exploration ca-
pabilities to allow users to have a comprehensive understanding of the
complex situations.

9 CONCLUSION

We have proposed a visual analytics system, TrajGraph, to study ur-
ban transportation patterns from taxi trajectories. TrajGraph uses a
new graph model to reflect urban network structures and incorporate
real traffic information carried by taxi trajectory data. The graph is ag-
gregated by graph partitioning to represent region-level information.
Graph centralities of Pagerank and betweenness are computed to re-
veal the importance of different city regions in transportation. A set
of visualizations and interactions allow users to investigate the impor-
tance in different levels of detail. Users can effectively conduct tasks
in analyzing the roles of city roads for improving urban planning and
amending city operations.

We will work further on the approach by (1) employing more graph
measures and algorithms, such as minimum spanning tree and com-
munity analysis, and studying their functions in urban studies; (2) pro-
moting its use by domain experts and analyzers. In the long run, we
will see more and more such data with the widespread use of recording
devices and systems. We hope our method can be further extended to
public transits, fleet, and human trajectories.
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