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Abstract

The knowledge gained from biology datasets can streamline and speed-up pharmaceutical development. How-

ever, computational models generate so much information regarding protein behavior that large-scale analysis by

traditional methods is almost impossible. The volume of data produced makes the transition from data to knowl-

edge difficult and hinders biomedical advances. In this work, we present a novel visual analytics approach named

WaveMap for exploring data generated by a protein flexibility model. WaveMap integrates wavelet analysis, visu-

alizations, and interactions to facilitate the browsing, feature identification, and comparison of protein attributes

represented by two-dimensional plots. We have implemented a fully working prototype of WaveMap and illustrate

its usefulness through expert evaluation and an example scenario.

Categories and Subject Descriptors (according to ACM CCS): I.5.5 [Pattern Recognition]: Implementation—

Interactive Systems

1. Introduction

Understanding the physical characteristics of protein struc-

tures is of great importance in developing new pharmaceu-

ticals. Knowing how a protein will react under given cir-

cumstances will allow scientists to more finely tune drugs

to specific diseases and genetic therapies to individuals. As

many other fields in the biological sciences, researchers in

this area increasingly rely on computational models to de-

scribe and predict physical phenomena. For example, protein

prediction models have been used to understand the physical

flexibility of local or regional subunits (residues) which alter

overall protein structure. Since structure is the most impor-

tant factor influencing protein behavior, insights from these

models are crucial in predicting a protein’s function.

Computational models can be quickly changed based on

new domain knowledge or used to examine the effect of

varying parameters. The large number of possible outputs

often obscures important differences in model settings. It is

these subtle and unexpected variations which can be the most

important in relating model construction to a desired phys-

ical behavior. The number of different model outcomes is

only limited by the number of variables encoded as model

parameters. A single model output often reflects the behav-

ior of several hundred residues per parameter set where each

residue may be responsible for influencing overall struc-

ture and function. Clearly defining the relationships among

residues for one model output in the midst of perhaps hun-

dreds of different parameter set combinations is a challeng-

ing problem. Methods that aid in clearly defining the rela-

tionship between residue flexibility parameters and model

outputs will greatly advance biomedical knowledge.

In this paper, we present a novel approach in applying vi-

sual analytics in an effort to aid scientists in the browsing

and understanding of large-scale two-dimensional flexibil-

ity data resulting from a protein prediction model. Our work

integrates automatic analysis and coordinated visualizations

to help guide domain analysts to important features hidden

in the data. In the following sections, we first provide back-

ground knowledge in protein structure and function. Second,

we describe a currently used protein prediction model and

list the necessary high-level visualization tasks for effective

model usage. Third, we present related work from the im-

age analysis and the visualization communities. Fourth, we

present our visual analytics approach that connects feature

extraction techniques with a highly interactive interface to

address the identified high-level tasks. Finally, we show the
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Figure 1: (a) A typical flexibility-response plot showing allosteric response for the CheY protein [MJL10]. A color index at i, j

is the response of residue j occurring due to a perturbation at residue i. (b) Analyzing subtle patterns within flexibility measures

for a single plot are difficult and placing them in context makes the problem worse. The plot to the left is highlighted in green.

effectiveness of our approach through expert evaluation and

an example scenario.

2. Protein Structure and Function

Proteins are composed of linear chains of amino acid build-

ing blocks connected by chemical bonds [PSW∗06]. These

polymers can consist of 20 different possible amino acids

(residues) and vary greatly in length and sequence across

different proteins. The spatial arrangement of these residues

determines the biological function of the protein. Although

understanding the relationship between molecular structure

and function is important, there are few global scale con-

nections that correlate specific structural changes to function

[KJB00].

One of the main obstacles in understanding changes in

proteins is the vast number of possible spatial configurations

that may occur under numerous environmental conditions.

This set of possible configurations is referred to as a pro-

tein’s conformation space [NHL07]. Most prediction meth-

ods search this space for the structure having the lowest en-

ergy (an indicator of structural stability), making energy one

of the primary variables to be examined. Although impor-

tant in protein changes, the energy function is often diffi-

cult to explore. Exploration is complicated by multiple local

minima and an energy function’s dependence on many in-

terrelated terms. Furthermore, differences in the underlying

chemical structures complicate analysis.

3. The Distance Constraint Model and Allostery

Because of the complexities associated with exploring a pro-

tein’s conformation space, researchers rely on models to un-

derstand and predict changes in protein structure. The Dis-

tance Constraint Model [JD05], [LDWJ04] is an example

of a model that has proved helpful in understanding protein

function. The Distance Constraint Model (DCM) is based on

free energy decomposition and mechanical constraints. The

premise of the DCM is to relate free energy and mechani-

cal constraints with a graph topology which can be calcu-

lated in linear time. Like any model that retains relevance,

the DCM is constantly evolving and the need to quickly ex-

amine changes in parameters is crucial for efficient model

development. The DCM outputs a large set of mechanical

and thermodynamic descriptions of the target protein.

The data resulting from the Distance Constraint Model

[JD05], [LDWJ04] are flexibility indices which quantify the

ability of a residue to change its structure and, as a re-

sult, its function. One example use of flexibility indices is

the measurement of allosteric response. Allosteric response

measures how a change (perturbation) in one residue may

induce flexibility changes in other residues [MJL10]. In

many cases, the perturbed residue may not be spatially ad-

jacent to the responding residue. Furthermore, the result-

ing change may require a coordinated effort among multiple

residues spanning the entire protein. Being able to investi-

gate and compare the different allosteric responses for many

parameter sets will allow scientists to more speedily recog-

nize biochemical mechanisms necessary to achieve a desired

biomedical result.

Flexibility changes for allosteric response can be pre-
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sented as an n x n asymmetric color plot where n is the

number of residues that make up a protein. The residues

that comprise the protein are ordered according to the

three-dimensional residue sequence giving significance to

both local and regional characteristics. A typical flexibility-

response plot [MJL10] is shown in Figure 1(a) for the

128-residue CheY protein, revealing the protein’s change in

flexibility for a given set of model parameters for the DCM

[JD05], [LDWJ04]. In this plot, a color index at i, j is the

expected flexibility change of residue j occurring with a per-

turbation at residue i. Values are normalized between -1 and

+1. Values less than zero result in increasingly darker shades

of blue and indicate increased rigidity. Values greater than

zero result in increasingly darker shades of red and indicate

increased flexibility. White areas indicate no change.

Figure 1(b) shows the flexibility-response plots of the

CheY protein for different sets of model parameters. Exam-

ining just a few plots is difficult and comparing hundreds of

them proves to be a daunting challenge. In this case, there are

over 6 million data points (128 residues x 128 residues x 75

parameter sets) of often small, subtle changes that need to be

analyzed. Patterns that emerge within and among flexibility

plots give insight into the mechanisms important for biolog-

ical function. Interesting patterns include the size and loca-

tion of similar or dissimilar regions, and any outliers where

a certain residue may unexpectedly differ from its neighbors

or from a consensus over the parameter space. The various

types of DCM outputs, when taken together, provide both

local and global descriptions of protein dynamics.

4. Tasks

The work presented in this paper has been motivated by

the data analysis needs of the BioMolecular Physics Group

(BMPG) in the Department of Bioinformatics and Genomics

at UNC-Charlotte. The researchers in this group have been

conducting extensive research in protein prediction mod-

els, primarily the design, development, and evaluation of the

DCM [JD05], [LDWJ04]. Although the DCM has proven to

be a powerful computational model, only a very small por-

tion of the DCM can be used at once because of the limited

capability of analyzing the flexibility plots. Usually, analysis

consists of manually examining one plot at a time. The re-

searchers expect that a visual analytics tool that allows them

to effectively conduct the tasks on a much larger scale will

greatly advance their understanding of how the DCM pre-

dicts protein flexibility.

To identify the visualization needs, the visualization ex-

perts have observed the weekly BMPG meetings on a regular

basis for over two years. During this time span, the visual-

ization experts and the BMPG researchers also conducted

more than 25 face to face meetings to discuss the visualiza-

tion needs of DCM scientists and to provide feedback for the

visualizations developed. According to the long-term obser-

vation and continued collaboration, several high-level visu-

alization tasks of DCM researchers when using flexibility

plots have been identified. The tasks are presented below to

explain the motivation for the design of our visual analytics

tool.

• Analyzing spatial relationships and numeric trends of

flexibility measures within proteins. Protein dynamics

can be altered by either a local group of residues, larger

regional groups, or the concerted effort of multiple areas

of varying sizes. Locating and identifying those regions

of interest which contribute to change is necessary before

the roles of individual subunits can be identified. For ex-

ample, a region with an isolated change in flexibility is

highlighted in the example scenario (Figure 2). This area

can be studied in greater detail so that it can be compared

to other regions within the same protein. Any differences

within a single protein can explain why certain areas have

a greater propensity for change and result in a given over-

all structure.

• Studying parameter influence and grouping parame-

ter sets. Parameter refinement within a model is a reflec-

tion of evolving expert knowledge for a specific protein

and environmental condition. For a fixed parameter set,

a comparative analysis between different proteins and/or

environmental conditions can help discover new spatial

relationships and numerical trends. Grouping model out-

puts by parameter sets will allow scientists to understand

what combination of parameter settings result in the great-

est or most unexpected change for a single or group of

residues. From this knowledge, domain experts can refine

the model or investigate ways to take advantage of these

differences.

• Pruning parameter sets and residues Clearly defining

relationships among residues and parameters of interest is

best accomplished if redundant or uninteresting data items

are excluded from consideration. This can take the form

of excluding entire parameter sets, entire proteins, or indi-

vidual residues based on domain knowledge or threshold-

ing. Additionally, scientists need to be able to start with

a well-studied individual residue, group of residues, or

overall structure that is accurately reflected by model out-

puts and then eliminate parameter sets based on similarity

(or dissimilarity) from the established item.

According to BMPG members, the above tasks are sig-

nificant and frequently encountered. For example, clamping

is an application where these tasks are needed. Clamping is

the restriction of a single residue’s flexibility. As the clamp

is moved systematically along the protein’s structure, flexi-

bility is recalculated. The scientists must compare the flexi-

bility trends for specific regions before and after each clamp.

Researchers would then like to see how similar the responses

are at different clamp positions, and for different model pa-

rameters. Unexpected clamp responses among multiple plots

will be isolated for further analysis.
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Figure 2: (a) A section of the Jigsaw layout is identified for further analysis based on similar global features (2 decompositions).

A known plot is highlighted in green. (b) Closer examination of features reveals noticeable differences. Circled regions indicate

a point of difference in one parameter set (lower right). (c) The coordinated lens reveals the pattern that the features emphasize.

(d) A larger view of the lens shown for clarity. (e) Plot coordinates for the region of interest are found during reconstruction. (f)

Detailed analysis allows further mapping of flexibility values to residue numbers among multiple plots.

5. Related Work

5.1. Visualization

Currently, scientists lack effective tools to conduct the above

tasks for large flexibility data sets. Existing methods heav-

ily depend on manual inspection of enlarged flexibility plots

using Heatmaps [MXJL09], [MJL10]. Subtle but impor-

tant relationships and patterns may remain hidden even with

zooming and distortion interactions. The large number of

plots and the subtle differences both within each plot and

among parameter sets are almost impossible to distinguish.

These obstacles greatly hinder knowledge discovery. To the

best of our knowledge, our work is among the first efforts

from the visualization community addressing entire flexibil-

ity data sets and automatically guiding users to potential ar-

eas of interest. Note that we chose to keep the current color
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and arrangement scheme for visualizing the original flexi-

bility values since they are ingrained into current workflows

and convey important spatial information.

Heatmaps are widely used in bioinformatics besides

protein flexibility data visualization. Specifically, they are

the most common representation for gene expression data

[GOB∗10]. Many of them can guide users to patterns such

as clusters and outliers within the data. For example, HCE

[SS02] and Java Treeview [Sal04] enable users to identify

clusters in microarray experiment data sets using hierarchi-

cal clustering algorithms and interactive visual exploration.

Visualization methods developed for matrix data [TLKT09],

[SM07] also allow users to find patterns through interactive

visual exploration. However, the above techniques would

not work for protein flexibility data visualization because of

their heavy reliance on similarity grouping. Not only does

each i,j value have a color-coded flexibility measure but also

carries spatial significance reflecting residue ordering along

the three dimensional protein structure. Any reordering or

rearranging of rows, columns, or individual measures would

disrupt the spatial context in which any flexibility measure

occurs. Moreover, a large number of plots need to be ex-

amined simultaneously in our application while most of the

above techniques only consider one matrix or array at a time.

5.2. Image Analysis

Many image analysis techniques for extracting features can

be applied to flexibility plots so that difficult to detect pat-

terns can be identified. For example, Principal Component

Analysis (PCA) [Jol02], [Dun89] can be used to sum-

marize features by finding the linear combinations of vari-

ables and then ordering the resulting components by vari-

ance [YR01]. It has been used in many image processing ap-

plications such as face recognition [PKP10] and edge detec-

tion [QPA08] but can be computationally taxing [VRP09],

[EYND10]. Additionally, the results can be difficult to inter-

pret [ZHT06]. Fourier analysis [GW01] is another popular

image analysis technique applied to many areas including

feature extraction and dimension reduction [JH07]. Fourier

frequencies can be linked to pixel value changes where

low frequencies are associated with slowly varying pixel

changes and high frequencies are associated with abrupt

pixel changes [GW01]. A major drawback to this type of

analysis is that frequency and spatial information cannot be

conveyed at the same time.

Our approach uses wavelet lifting [Swe96] for auto-

matic feature extraction. Wavelet analysis is based on small

signals (waves) of limited duration and varying frequency

[GW01]. This type of transform allows the same frequency-

based processing of pixel values as Fourier analysis. How-

ever, wavelets provide simultaneous frequency and spatial

information with a multi-resolution approach that allows

normally hidden features to be revealed. Wavelet lifting

[Swe96] is an improvement to traditional wavelet analysis.

An iterative process which uses no more memory than re-

quired for the original data matrix improves computational

efficiency. Additionally, the results of lifting can be reversed

by simply reversing the discrete steps used in transformation

[JCH01]. This property enables the original data to be di-

rectly and quickly accessed from any level of decomposition.

Wavelets have been integrated into visualization tools for

brushing applications [WB96], text analysis [MWBF98],

and many scientific applications [FHH03], [Bon97].

We chose wavelet lifting because of its capability to pro-

vide simultaneous frequency and spatial information in a

multi-resolution approach, the ease of reversing the trans-

form, and efficient implementation. Other approaches are

possible and we plan to explore them in the future.

6. WaveMap

We propose WaveMap (Figure 2), a visual analytics ap-

proach that integrates wavelet lifting [Swe96] with visu-

alization to address the needs mentioned in section 4. It

consists of an overview to display the entire data set, a fea-

ture window to examine selected plots, and a detailed anal-

ysis window to perform closer examination. In the overview

(Figure 2(a)), features extracted by wavelet lifting are visu-

ally presented to users to help them locate global trends or

local areas where trends are interrupted. Subtle trends that

are hard to discover in the original data become visible in

the feature space. To study parameter influence, a set of plots

in the original data or extracted features can be viewed in

a clustering or sorting layout from which the global trends

across parameter sets, as well as clusters and outliers of plots

can be observed. Users can interactively retrieve groups of

interesting plots so that further examination and compari-

son can reveal the relationships among residues and param-

eters (Figure 2(b)). Features can be filtered based on their

type and magnitude and are intuitively mapped to the origi-

nal data (Figures 2(c) and (d)). The feature window allows

examination of interesting regions for a subset of interest-

ing plots (Figure 2(e)). The detail window facilitates coor-

dinated, residue-level analysis among multiple plots (Figure

2(f)). In every view, specific regions for given parameter sets

can be exported for insight management and exchange.

6.1. Feature Extraction

Wavelet lifting is first applied to extract varying plot fea-

tures at many resolutions. During each application to a dis-

crete, two dimensional signal (or decomposition), the data

is separated into the high and low frequency components.

The result is a series of four data matrices each of which is

one-quarter the size of the original data matrix. The results

include the high frequency components in both directions

(HH), low frequency components in both directions (LL),

low frequency along rows and high frequency along columns

(LH), and high frequency along the rows and low frequency
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Figure 3: Three cooperativity correlation plots

[LJ06], [MXJL09] depicting the correlation of flexibil-

ity changes. Original correlation values are shown on the

top row. Blue indicates co-rigid regions and red indicates

co-flexible regions. The data after wavelet transformation (3

decompositions) are on the bottom row and corresponding

regions are bounded in red. Orange highlights positive cor-

relation changes and green highlights negative correlation

changes in all except the last pair. (a) Row patterns are

preserved while indicating changes along columns. Because

this data set is symmetric, the LH and HL subbands are

redundant. Only the LH subband is shown here. (b) Areas

of change along both rows and columns are detected. (c)

Coarse-grain characteristics are preserved for the entire

data set.

along columns (HL). One of the components is chosen to be

fed to the input of the next stage and the process repeats.

Wavelets come in varying families and can be designed to

extract desired features. We use a lifting implementation of

the widely-applied Debauchies 4 wavelet [JCH01] but other

wavelets can also be used. Because the data is halved along

the rows and columns during each application, we linearly

interpolate the original data set so that each row and col-

umn is a power of two. The interpolated data is only used

in application of the wavelet algorithm and is never visi-

ble to the user. After each decomposition, any given feature

represents a larger neighborhood in the original data. Fea-

ture magnitude can be mapped to color so that the degree

of change between adjacent locations can be visually repre-

sented. The components, or subbands, and the characteris-

tics emphasized in the data that are important for our work

include

• LL: Averages along rows and columns preserve regional

residue responses.

• LH: Averages along rows and change detection between

adjacent columns preserve residue behavior along rows

while revealing differences among neighboring residues

along columns.

• HL: Averages along columns and change detection be-

tween rows preserve residue behavior along columns

while revealing differences among neighboring residues

along rows.

• HH: Change detection along rows and columns reveal

differences in residue response along both rows and

columns.

It may seem that the total amount of data has been sig-

nificantly increased because each original data plot is now

represented by four different subbands. However, each de-

composition results in each subband being only one-quarter

of the input data size. Additionally, the subbands and multi-

ple levels of resolution produced are different perspectives of

the original data. This allows experts to choose the appropri-

ate prism through which domain knowledge can be applied.

Figure 3 illustrates how features for each subband em-

phasize various characteristics present in cooperativity cor-

relation flexibility plots for a TRX protein [MXJL09]. The

data is slightly different from the allosteric response in that

each index is a correlation measure between two flexibil-

ity measures. The top row is the original data and the bot-

tom row is the transformed data after wavelet analysis and

filtering. Original plot values (top row) are displayed with

the red-white-blue scheme currently in use by domain sci-

entists. The features for all subbands except for the aver-

aging features (LL), use a different color scheme because

features capture the change occurring between plot regions

and not the original plot values. We chose a feature color

scheme ranging from green (negative changes) to white (no

change or below a threshold) to orange (positive changes).

The red-white-blue scheme was kept for the averaging fea-

tures because they visually relate original data information

at varying resolutions (Figure 3(c)). In Figure 3(a) coarse-

grain behavior along rows is preserved and differences along

each column are detected so that general residue behavior is

preserved along the rows but changes in residue behavior be-

tween adjacent column are detected. Figure 3(b) shows the

detection of changes along both rows and columns reveal-

ing where residue behavior changes from adjacent residues

in both the row and column direction. Figure 3(c) preserves

course-grain behavior in both directions. Although the fea-

tures highlighted in the top row are easily detected and rep-

resent symmetric data, such features can be much harder to

detect in other datasets without the help of the transformed

data. We will show in Figure 2 how the transformation ap-

plied to the asymmetric and much more subtle allosteric re-

sponse data can ease analysis.

We briefly introduce a formal user study that confirmed

the effectiveness and efficiency of the feature displays in

guiding users to identify and compare subtle features in flex-

ibility plots. Eight student subjects (no domain knowledge

was required in the tasks) conducted the study one by one.

The task was a matching game that required the subjects to

find a flexibility plot in a set of 12 plots that had the most
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Figure 4: Clustering features for a section of the (a) MDS and (b) Jigsaw layouts. The HH subband after 2 decompositions

identifies places of change along both rows and columns while simultaneously reducing the number of data points. In both

configurations, the data is separated into areas with plots having many points of change (left side of each layout) and plots with

fewer points of change (right side of each layout).

similar patterns to a given plot in the highlighted sub-region.

The subjects conducted the task with and without the fea-

ture displays and the order was balanced. The results showed

that all the subjects conducted the task successfully with the

help of the feature displays while only one subject succeeded

without the feature displays, even when enlarged flexibility

plots were provided. The subject rating after the study re-

vealed that the perceived difficulty was much greater with-

out the feature displays and subject confidence that they had

chosen the correct plot was higher with the feature displays.

6.2. Overview

Wavemap allows users to explore a large number of original

or transformed plots in an overview. The positions of the

plots in the overview visually reveal their similarities. Users

can interactively set similarity measures, which can be the

covariance between the original plots or desired subbands

at the level of decomposition of interest. When clustering is

based on the covariance of features, plots sharing common

subband features are considered similar.

The overview provides three layouts to reveal the similar-

ities among the plots:

• Multi-Dimensional Scaling (MDS) layout: MDS allows

viewers to interpret overall plot similarity as visual dis-

tances [BG09], [CC00]. In the MDS layout, similar plots

are close to each other while dissimilar plots are far away

from each other (Figure 4(a)). When parameter set la-

bels are turned on, analysts can see if a relationship exists

between any parameter sets and if any parameter com-

binations result in outliers. Plot size can be interactively

reduced to minimize overlap.

• Jigsaw layout: The jigsaw layout [Wat05], [YHW∗07]

allows users to examine plot clusters and outliers without

overlap. It is a grid layout where similar plots are placed

close to each other and boundaries among clusters of sim-

ilar plots can be detected (Figure 4(b)).

• Sorting layout: The plots are ordered by their similarities

to a selected plot so that users can examine their similari-

ties in relation to the selected plot.

Users can display any subbands through a drop-down

box and any decomposition level through a slider. They can

also select similarity measures independent from how the

plots are displayed. This flexibility allows the user to ex-

plore many clustering and display configurations based on

desired characteristics. Users can manually select plots or

automatically select plots whose similarities to a given plot

are larger than a threshold the users set up. The selected plots

are placed on a clipboard and carried to other views for de-

tailed exploration.

6.3. Feature Exploration Window

Features can be examined in detail for plots placed on the

clipboard in the feature exploration window. WaveMap pro-

vides a coordinated lens so that users can associate fea-

tures with the corresponding original values without extra

eye movement. When users sweep the lens over the features,

the averages (LL) are displayed at the current decomposition

level in the lens to associate features to the underlying origi-

nal data (Figure 5(a)). Lenses are displayed on all plots under

exploration at the same position. Whenever users move the

lens over one of them, all the other lenses will also move to

the corresponding position in their plots to allow compari-

son. The users can interactively change the size of the lens.

Reconstruction further extends the effective and efficient

association of extracted features with the original values

(Figure 5(b)). We allow users to select a plot from the clip-

board as the focus of the feature exploration window and in-

spect its feature plot and original plot side by side. Users can

interactively navigate in the feature plot by moving a bound-

ing box using directional buttons or a snap function that au-

tomatically positions the box to the nearest feature with a

magnitude above a threshold. Once a feature is accessed,
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Figure 5: (a) A coordinated lens allows simultaneous examination of multiple plots while relating features to the original data.

(b) Reconstruction further bridges the feature and original data. Coordinates are marked in the large plot showing the original

data and in the context window. A bounding box marks where the features occur in the data before transformation. Coordinates

are propagated to the detail view. (c) Detailed analysis occurs for a column section across multiple plots. Left, right, up, and

down buttons facilitate navigation during reconstruction and detailed analysis.

the original data values responsible for that feature value are

bounded in the original plot and in a resizable zoom-in dis-

play of the original plot. Plot coordinates of the bounding

box are displayed at the corners of the zoom-in display. Con-

text of the feature being examined is maintained by a smaller

window showing the entire plot. Within the context window

a green rectangle shows the bounds of the visited features.

6.4. Detail Analysis Window

Plots on the clipboard are also available for detailed analy-

sis (Figure 5(c)). In this view, a column segment is shown

for each plot. Each segment is composed of color rectangles

that represent the changes in flexibility for residues in the

column. The residue number for the current column is shown

in the top left of the window and row numbers are shown to

the left of the series of cells. Exploration in this view can

begin at the plot origin or from the coordinates propagated

from the feature exploration window. As during feature ex-

ploration, a window showing an entire plot of interest ac-

companies the detailed analysis window. A green bar indi-

cates the current residue segment being displayed. Residue

columns are navigated by directional buttons or by entering

coordinates into text fields so that a detailed sweep across the

plots can be performed. Clicking in a column makes the cor-

responding plot the focus of the context window. Removing

an item from the clipboard removes it from the feature ex-

ploration and detail analysis windows and allocates the extra

space to the remaining plots. Normalization to the range be-

tween -1 and +1 occurs only for plots in the display so that

column segments can be more accurately compared. Users

can also display residue name abbreviations within the seg-

ments to further connect residue sequence information with

flexibility values. Users can save the residue segments un-

der exploration into an image file for records and insight ex-

change.

7. Evaluation by Experts

The BMPG researchers have taken an active part in this

work from the early requirement analysis stage to the de-

sign, development, and evaluation of Wavemap. Before any

significant visual analytics approaches, views, and interac-

tions were added into Wavemap, their potential usage was

discussed with the BMPG researchers to make sure that they

fit the high level needs of the domain experts. After a view

or a major interaction became live in the system, feature in-

spections were conducted. In an inspection, the new view

or interaction was demonstrated to the BMPG researchers

and they examined its usability and discussed scenarios in

which the features can be used in their applications. Features

were often refined according to feedback from the inspec-

tions. The BMPG researchers are quite excited by the cur-

rent features supported in Wavemap, especially the wavelet

analysis guided feature inspection, the overview that allows

them to evaluate their parameter set grouping hypothesis,

and the multi-resolution approach that allows them to effi-

ciently identify patterns of interest from a large data set and

quickly dive into fine details.

8. Scenario

We now present an example scenario that illustrates how

WaveMap can be utilized for better understanding of flexibil-

ity data. It specifically highlights the utility of our approach

in detecting a small but significant area among a set of sim-

ilar allostery response plots. A good reason for performing

such analysis is to find model parameter sets which result in

similar overall response but exhibit a small difference which

could explain subtle variations in behavior. The data set used

in the example represents flexibility response measures from

the CheY protein.

A protein scientist pre-selects a set of parameters (ie a
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plot) which exhibit a desired global behavior. The analyst

suspects that other parameter sets globally similar to the se-

lected plot have differences which may explain subtle vari-

ations in behavior. However, the values and residue region

resulting in this behavior are unknown. The analyst searches

for the known plot in the overview by entering the identifier

into a search box and it is highlighted in green. Places of

flexibility trend changes within this parameter set indicating

possible differences are difficult to locate in context of other

similar plots. The analyst moves the slider which changes the

level of decomposition and examines the resulting features

(Figure 2). When the wavelet features are displayed after two

levels of decomposition and after the elimination of features

having a small magnitude, the analyst sees a pattern of inter-

est within the known plot indicating the changes in flexibil-

ity. He/she uses the Jigsaw layout [Wat05], [YHW∗07] and

identifies several adjacent plots with similar features to the

known plot to ensure global similarity. The group of plots

are placed on the clipboard for further examination.

After pruning the parameter sets, the analyst proceeds to

the feature exploration window. In this window, the analyst

easily compares corresponding regions of the selected plots

with the help of the coordinated lens (Figures 2(b)-(d)). It is

confirmed that the feature plots are similar but have notice-

able differences. Of particular interest is the feature present

in all but the bottom, far-right plot in Fgure 2(b). The coor-

dinated lens (2(c) and 2(d)) reveals that the area of interest

highlights a sharp change in flexibility (a small blue section

in the middle of red) except for the one parameter set.

To more accurately define the region of difference, the

location is visited (Figure 2(e)) and the residue numbers

marking the area of change are revealed. The coordinates

are propagated to the detail analysis window (Figure 2(f))

and the differences in response can be mapped to the spe-

cific residue numbers. The analyst can now further examine

the physiochemical properties found in the plot lacking the

small blue area to see if this region is perhaps responsible for

variations in behavior or if the model should be modified.

9. Discussion

9.1. Extensions

The initial purpose of the proposed approach was to help

computational biologists investigate outputs from the Dis-

tance Constraint Model [JD05], [LDWJ04]. As the approach

was refined and the data set was better understood, we real-

ized that biologists often need to visually describe data in

context of spatial arrangement. Our approach helps locate,

identify, and evaluate both local and regional factors influ-

encing global behavior. However, any data set where the

items can be arranged in a row/column layout that remains

consistent across data items will benefit from our approach.

If the data is in matrix form where order has spatial or other

meaning, the interactions between variables can be revealed.

The index i, j would represent the value of an output i for

a parameter j. Each row (or column) is useful for evaluat-

ing many model or experimental responses for a single vari-

able and each column (or row) reflects a single result for

the combination of interdependent variables. Other domains

that would benefit include microarray analysis [Liu09], eco-

nomic forecasting, engineering simulations, and many more.

9.2. Limitations

During experimentation a couple of limitations were found.

First, the effectiveness of this approach is influenced by the

wavelet used. Each wavelet feature is the result of a corre-

lation between two signals (data signal and wavelet signal)

[LLZO02] and changing the wavelet alters its correlation to

the data signal. This means that, for a different wavelet, the

interpretation of the extracted features in relation to the un-

derlying data may be different. Our initial implementation

relied on a well-known wavelet technique and serves only as

an initial attempt. Refinement and study are needed to de-

velop custom wavelets so that more specific feature sets can

be targeted and better defined in terms of biological signifi-

cance. Second, our technique is meant for identifying local-

ized neighborhoods which cumulatively result in a feature

and not a precise data point. Finding a precise data point

of interest may take additional exploration because of shift-

ing during transformation and artifacts from noise. Bound-

ary conditions can also lead to inaccurate representation of

the underlying data near plot extremities and is an active area

of research in signal processing [CA04], [GS00].

10. Conclusion

We have introduced a novel approach designed to ease the

location and navigation of protein flexibility plots. WaveMap

leverages strengths from signal processing and visualization

in a single, coherent environment. Our initial evaluation with

domain experts suggest that Wavemap is promising in sup-

porting high level flexibility data exploration tasks such as

analyzing spatial relationships and numeric trends, investi-

gating parameter influence and the grouping of parameters,

as well as pruning parameter sets and residues. Long-term

user studies with domain experts are being planned to test

our approach in depth. In addition, we would like to ap-

ply our approach to entire protein families and to other do-

mains, both related and non-related to biological data. Ex-

perimentation with other feature extraction techniques, in-

cluding custom-designed wavelets, is also of great interest.
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