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ABSTRACT

A wide variety of real-world applications generate massive high di-
mensional categorical datasets. These datasets contain categorical
variables whose values comprise a set of discrete categories. Visu-
ally exploring these datasets for insights is of great interest and im-
portance. However, their discrete nature often confounds the direct
application of existing multidimensional visualization techniques.
We use measures of entropy, mutual information, and joint entropy
as a means of harnessing this discreteness to generate more effec-
tive visualizations. We conduct user studies to assess the benefits in
visual knowledge discovery.

Keywords: Categorical data visualization, Dimension Manage-
ment, Entropy, Mutual Information, Parallel Sets

1 INTRODUCTION

Categorical datasets include survey results in health/social studies,
bank transactions, online shopping records, and taxonomy classi-
fications. Such data usually contain a series of categorical vari-
ables (i.e., dimensions) whose values comprise a set of discrete
categories, such as transaction types, county/town names, product
codes, species characters, etc. High dimensional categorical data
impose significant challenges for information visualization due to
their unique data discreteness. Although major advances have been
made on high dimensional data visualization, many successful vi-
sualization methods are often undermined when directly applied to
categorical datasets.

Categorical multivariate visualization faces two major chal-
lenges: (1) the limited number of categories creates overlapping
elements and visual clutter. (2) the lack of an inherent order (in
contrast to numeric variables) of discrete categories confounds the
visualization design. Therefore, good metrics are needed in manag-
ing high dimensional categorical data that can reduce clutter, opti-
mize information disclosure, and provide navigation guide as users
explore categorical data features. However, many statistic measures
used in previous works cannot be easily applied to categorical data.
For example, data correlation needs to compute deviation and co-
variance from the average, which is not defined over categorical
variables.

As suggested in [6], entropy can be employed in quantifying data
features for better visualization. However, that work does not ex-
plicitly study the use of entropy in categorical visualization. More-
over the use of entropy-derived measures, such as mutual informa-
tion, has not been well investigated. In this paper, we extensively
study the capacity of using the entropy-related measures in visual-
izing multidimensional categorical data.

The concept of entropy [9] is developed over the probabilistic
explanation of data distribution. Essentially, entropy quantifies the
variation, or diversity, of a discrete variable. Derivative measures
address relationships over multiple variables such as joint entropy
that describes associated uncertainty and mutual information that il-
lustrates mutual dependence. These measures are naturally defined
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over categorical data. They can be computed straightforwardly and
efficiently, leading to good tools in manipulating categorical visu-
alization.

Our contribution in the paper is multi-fold: First, we show how
entropy-related measures can help users understand and navigate
categorical data. In particular, we show probability distribution
of categories over word clouds to reflect data features. We color
2D projects according to their joint entropy and mutual information
to indicate significant pairwise dimension relationship over scatter
plot matrices [7]. Second, we employ these measures in manag-
ing and ordering dimensions within the parallel set visualization of
categorical data. In particular, we perform a global optimization of
the sum of mutual information over all pairs of dimensions. We
also present a sorting method that uses joint entropy to find an op-
timal sequence of categories over neighboring axes. This reduces
visual clutter and helps users discover new insights. Third, we con-
ducted user studies on real-world data to evaluate multiple parallel
sets layouts using different ordering methods. The results indicate
that there are benefits of using entropy-related measures in parallel
sets optimization. Statistical tests showed that the user study results
were significant.

2 RELATED WORK

Categorical data visualization: Categorical data visualization has
been addressed in many previous approaches. Sieve Diagram [28]
visualizes two dimensional categorical data using a two-way con-
tingency table of frequency values between all category pairs. Mo-
saic Display [15] extends Sieve Diagram to three-way and four-way
contingency tables by representing categories as tiles whose area is
proportional to frequency. Tablelens [27] combines graphical and
symbolic visualizations inside a tabular view of multidimensional
data which may include categorical variables. Contingency Wheel
[2] presents an interactive visualization technique for analyzing as-
sociations in large 2-way contingency tables. However, these meth-
ods visualize datasets with only a few categorical dimensions. To
overcome this limitation, CateRank [13] ranks the relationship be-
tween pairwise dimensions and uses the score to guide the selection
of two variables. The ranking is achieved by variance, crossover,
and uniformity of distribution. A rank-by-feature framework [31]
helps find important 1D or 2D relationships. Entropy is used for
1D uniformity test and for 2D grid cell ranking. Even so this ap-
proach is not designed for categorical data. In comparison to these
approaches, our work investigates broader use of entropy measures
to manipulate visual layouts and guide navigation in multiple visu-
alizations of categorical data including scatter plots, parallel sets,
etc. Our work is mostly focused on joint entropy and mutual infor-
mation in multidimensional categorical visualizations, which has
not been well studied.

Parallel sets plot [20] improves classic parallel coordinates [18]
for categorical data by substituting polylines for frequency based
ribbons across dimensions. It greatly reduces clutter and helps in
understanding categorical data. We adopt this visualization and en-
hance it with entropy-related information. Another approach [30]
uses correspondence analysis to define the distance between cate-
gorical variables, which is then used to assign order and space in
classic parallel coordinates visualization. Instead, we adopt the in-
formation theory measures related to variable diversity, joint dis-
tribution, and mutual relation in visual representations and visual
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analysis.

Dimension management: Our approach supports visual discovery
with ordering, spacing, and filtering by integrating entropy related
measures into visualizations. Dimension management is important
for order-sensitive multidimensional visualization techniques [3].
Clutter reduction has been studied through dimension reordering in
multidimensional visualization techniques, including parallel coor-
dinates, star glyphs, and scatter plot matrix [26], where pertinent
metrics, such as minimizing the outliers between neighboring par-
allel axes, are developed. Interactive ordering, spacing, and filtering
has been proposed for high dimensional data based on dimension
hierarchies derived from similarities among dimensions [33]. Re-
ordering and filtering methods are also developed based on finding
relevant subspaces for clustering [12]. These approaches are not
designed in particular for categorical data and do not involve the
information theory measures used in our approach.

Pargnostics [10] uses screen-space metrics for parallel coordi-
nates. Together with line crossings, the pixel-based entropy is com-
puted on the regions between a pair of coordinates for order opti-
mization. They also use mutual information as a metric after apply-
ing bins to discretize numerical dimensions. Pargnostics is closely
related to one important part of our study: parallel sets visualization
of categorical data. However, the approach based on screen pixels
is not directly applicable to categorical data. In contrast, our work
uses entropy-related measures on original data records and applies
optimizations over categorical parallel sets.

Some metrics have been proposed to steer data exploration dur-
ing the knowledge discovery process. Johansson et al. [19] re-
duced dimensionality through user-defined quality measures. Albu-
querque et al. [1] employed distance measures with an importance-
aware sorting to reduce dimensions in scatter plot and parallel co-
ordinates matrices. Recently, Lehmann et al. [22] presented an
interactive framework to order plots in a scatter plot matrix. Their
approach uses relevance visualization measures within a neighbor-
hood and performs permutation to group relevant plots. Bertini et
al. [4] conducted a systematic analysis of quality metrics to support
the exploration of high-dimensional data. These approaches are
not well suitable for discrete categorical data. Several experiments
have also been conducted on assessing the tag cloud presentation
techniques for various tasks [17, 29]. Our study of entropy-related
measures presents a new metric, which facilitates the extension of
these techniques to categorical data exploration.

Chen et al. [6] conducted a study on how information theory can
explain events and phenomena in information visualization, with
the goal of establishing a theoretic framework. However, the dis-
cussion does not consider categorical visualization characteristics,
which we deal with here.

3 CATEGORICAL DATA AND MEASURES

3.1 Data Features

Categorical datasets contain multiple variables (i.e. dimensions)
whose values comprise a set of discrete categories. Each data record
belongs to one of the categories in the corresponding dimension.
We use two categorical datasets from the UC Irvine Machine Learn-
ing Repository [14] in our study. The first dataset contains 435 data
items on congressional voting for congressmen in the U.S. House
of Representatives. It includes votes for each of the congressmen
on 16 key votes, and 1 classification variable of their party (Demo-
crat or Republican). Each dimension refers to one voting record of
a bill (e.g. education-spending) with three possible categories: y
(yea), n (nay), or u (unknown).

The second dataset describes the physical characteristics of var-
ious mushroom species. The mushroom dataset includes 8,124
records and 23 categorical dimensions. The category values of each
dimension are given in single indexing letters. Fig. 1 displays part
of its categorical data table. The tabular view does not promote

Figure 1: Mushroom data table shown in part.

direct sense-making for analyzers. Users have to check their mean-
ings in associated text files outside the table. To support sense-
making activities, a visualization must orchestrate high dimension-
ality and tackle categorical discreteness. Entropy-related measures
can provide important clues of data facts and effective instruments
towards good designs in visualization and analytics.

3.2 Entropy-related Measures

Probability Distribution Considering a categorical variable as a
discrete random variable X, the probability mass function p(x) de-
fines the probability that X is exactly equal to a categorical value,
x. The functions for all possible categorical values thus define the
frequency distribution of all the data records within this dimension:

p(x) =
count(x)

count(X)
, (1)

where count(x) is the number of records has the value x and
count(X) is the number of all records of X.
Entropy The entropy is computed as

H(X) = ∑
x∈X

p(x) log p(x), (2)

which provides a measure of uncertainty (in the context of infor-
mation theory) of X. It provides information about the variation, or
diversity, of the information contained in one data dimension.
Joint Entropy Joint entropy is defined over two variables X and Y
as

H(X,Y) =− ∑
x∈X

∑
y∈Y

p(x,y) log p(x,y), (3)

where x and y are particular values of X and Y, respectively. p(x,y)
is the probability of these values occurring together. Joint entropy
measures data diversity associated with two variables.
Mutual Information Mutual information measures the reduction
of uncertainty of one dimension due to the knowledge of another
dimension. It defines a quantity that quantifies the mutual depen-
dence of two random variables. The mutual information is defined
as

I(X;Y) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)
. (4)

The highest mutual information indicates that if we know those data
records having a category value in D1, we will have more knowl-
edge about their values in D2. The lowest mutual information im-
plies that the data records belonging to a category value in D1 can
be of any values in D2.

3.3 Discussion

These measures are good metrics for representing categorical data
features. They are naturally defined over discrete sets of categories,
while many measures used in visualizations are not directly appli-
cable to categorical variables. For example, the Pearson’s corre-
lation (e.g. used in scatter plots and parallel coordinates [23]) is
computed from data deviation and covariance. Such computation
relies on data average which however cannot be directly computed
for categorical variables. We will study more advanced statistic
measures to be used in categorical visualizations. For example, the
covariance can be generalized for categorical data through Gini’s



Figure 2: Using word cloud (SparkClouds) to depict categorical
data feature of the mushroom data. For each dimension, the font
size reflects the number of categories and the color represents the
entropy of the dimension. The graph line of each word shows the
data frequency of each category.

definition [25]. Moreover, Lambda is a measure of association suit-
able to show the strength of correlation (usually referred as asso-
ciation when dealing with nominal data) [16]. Similar to mutual
information, it quantifies the proportional reduction of error when
predicting the values of one variable from the known values of the
other.

4 CATEGORICAL DATA VISUALIZATIONS

In this section, we delineate the use of these measures to develop
effective visualizations for large categorical datasets.

4.1 Navigation Guide for Categorical Data

Visualizing the frequency function, p(x), of data records distributed
over categories, and the entropy, H(X), of dimensional uncertainty
could give users an intuitive understanding of categorical datasets.
High entropies reveal which dimensions have a highly diversified
distribution of data records. Inversely, small entropies indicate
which dimensions have more concentrated distributions. This in-
formation helps users rapidly identify critical characteristics of the
categorical data they are exploring. Next we show two examples.

Fig. 2 shows a word cloud of mushroom dimension names. We
use the SparkClouds representation to show information over words
[21]. The font size shows the number of categories in the dimen-
sion. The font color reveals the entropy, where high entropy values
are mapped to highly saturated colors. Here we follow Brewer’s ap-
proach [5] of color design where saturation is used to show ordered
difference within the same hue (also applied to scatter plot matrices
below). Other color schemes can also be adopted. It is easy to rec-
ognize that “gill-color” has the largest entropy value, i.e., the color
of the platelike structures on the underside of the mushroom cap
has the most diverse distribution. Moreover, the categorical values
are shown under the word, such as the color letters “b, e, g, h, · · ·”
under “gill-color”. The frequencies of data records distributed over
those categories are drawn as a graph line and overlaid on the lower
part of the word. We can see that mushroom gills have more “b”
buff and “p” pink colors.

Displaying the relationship between a pair of dimensions is a pri-
mary visualization task. Scatter plots are a common example. For
a high-dimensional dataset, a matrix of scatter plots over all pairs
of variables reveals pairwise relations. Finding the important pairs

among all pairs (theoretically C(N,2) = N!
2(N−2)!

pairs for N dimen-

sions) usually requires careful investigation from users. Further-
more, categorical dimensions with discrete values tend to increase
clutter due to excessive point overlaps. Joint entropy and mutual in-
formation can be used to find potentially salient pairs of dimensions
for categorical data.

Joint entropy matrix: The pairwise joint entropies are visual-
ized as salient cues by colors from low saturation to high saturation

over the matrix as shown in Fig. 3(a). High joint entropy indi-
cates diversely distributed data records in a scatter plot, and low
joint entropy reveals that the records have lots of overlaps. In Fig.
3(a-1), we show the scatter plot linked to the highest joint entropy
among all dimensional pairs. The particular pair refers to the two
dimensions “cap-color” and “gill-color” and the plot shows diverse
point distribution. Fig. 3(a-2) displays the plot between the dimen-
sions “gill-attachment” and “veil-type” which has the lowest joint
entropy. It shows that all mushrooms in the dataset have partial veil
and most are gill-attached.

Mutual information matrix: Fig. 3(b) further utilizes the mu-
tual information for visualization enhancement. Mutual informa-
tion defines the reduction of uncertainty of one dimension due to
the knowledge of another dimension. The highest mutual informa-
tion is given a saturated color and the lowest is assigned with less
saturation. Users can analyze one variable by comparing the row
on its right and the column above it, so as to find dependency infor-
mation between the dimension and others.

In Fig. 3(b), the first row is the mutual information between
mushroom “class” (edible or poisonous) and any other dimension.
Fig. 3(b-1) shows the scatter plot with the highest mutual infor-
mation. It is between “class” and “odor”. By clicking to view the
scatter plots of dimension pairs with saliency, analyzers can eas-
ily find that poisonous mushrooms mostly have odors like creosote,
foul, pungent, spicy and fishy. In contrast, most edible mushrooms
have no odor, though some smell like almond or anise. Fig. 3(b-2)
is the scatter plot with the lowest mutual information. It shows that
whether a mushroom class is edible or poisonous it has no obvious
relation with veil-type.

4.2 Dimension Management on Parallel Sets

Parallel coordinates plots have been widely used in visualizing mul-
tivariate data and perceiving their patterns. However, visual clutter
in these plots increases along with data size. More data means it
is more difficult for users to perceive patterns in the visualization.
The situation deteriorates even further when many categorical di-
mensions are involved since a large number of polylines converge
on individual categories. Parallel sets [20] is a parallel coordinates
technique designed for categorical data. In this section, we use the
entropy related measures to show how they can help users manage
dimension spacing, ordering and filtering. Such application also
leads to more tractable interaction.

Fig. 4(b) displays a parallel sets visualization of the mushroom
dataset over 23 dimensions. The entropy values are also shown in
Fig. 4(a). The order of coordinates is drawn as the reading or-
der from the downloaded dataset. Between adjacent coordinates,
those data records having two categories, x and y, are visualized as
a ribbon. The ribbon connects two bars representing x and y over
the coordinates respectively. The sequence of categories over each
dimensional axis is plotted in alphabetical order. The category in-
dexing letters are shown in the bars. Users can find their meanings
from word clouds, such as those shown in Fig. 2. The ribbon width
(size) is set proportional to the joint probability distribution p(x,y)
of the two categories. Here the ribbon colors are defined accord-
ing to the leftmost dimension “class”: green for edible and blue for
poisonous. This allows users to quickly identify whether a mush-
room is edible or poisonous given one characteristic (i.e., categories
over data dimensions). Next, we show how the visualization can be
improved by entropy related measures.

4.2.1 Sorting categories over coordinates

For numerical dimensions, the line endpoints are drawn on
the corresponding axes from bottom to top with an incremen-
tal/decremental order of their numeric values. For categorical di-
mensions, the reading order, or alphabetical order, are usually used.
Multiple ribbons starting from one category on the left axis are



(a) Joint entropy matrix and scatter plots (b) Mutual information matrix and scatter plots

Figure 3: Using joint entropy and mutual information in navigating scatter plot matrix.

drawn with respect to the corresponding categories on the right
from top to bottom, so as to reduce possible self-intersections. The
empirical reading/alphabetical method can be improved by taking
into account the relationship between neighbor axes. An optimal
sequence of categories over axes can lead to clearer results. A very
early work by Ma et al. [24] presents a method by minimizing order
conflict between pre-clustered category values, which is achieved
by a greedy algorithm. This solution is designed only for optimiz-
ing one pair of dimensions simultaneously and requires clustering.
It is not easily extended to our problem, which aims to sort cate-
gories on all coordinates. .

Here we seek an optimization solution of sorting categories by
utilizing joint probability distribution, p(x,y), which is used in
computing joint entropy in Eq. 3. It indeed measures the co-
occurrence possibility of data records having both categories x and
y. In practice, between a pair of adjacent coordinates d1 and d2, we
first assume that the left coordinate d1 has drawn its categories in a
fixed sequence. This sequence might have been determined by the
sorting executed between d1 and its left dimension. A category Y
of d2 is assigned to an optimal position with regard to the values of
all pairs p(x,Y ) for any x of d1. The optimal position is computed
by a linearly interpolated location using ∑x∈d1

p(x,Y )L(x) where
L(x) is the vertical location of one category x over d1 axis. When
two categories in d2 are located at the same position, we put the
one with the larger p(TOPd1

,Y ) value above the another one. Here
TOPd1

is the category on the highest position of d1 axis. Fig. 5 il-
lustrates the change of category sequence between two dimensions.
After applying the algorithm, Fig. 5(right) improves the result of
Fig. 5(left) with less intersections.

Fig. 4(c) shows the reorganization result for the mushroom
dataset. When compared with the original result in Fig. 4(b), it
has less clutter between many coordinate pairs. For example, com-
pare the red circled areas in Fig. 4(c) with the corresponding areas
in Fig. 4(b). Here the order of parallel coordinates is not changed
for comparison.

4.2.2 Assessing crossings of categorical visualization

Reducing line crossings has been used to improve parallel coordi-
nates results [11, 10, 32]. One line crossing is counted as one inter-
action of lines. For a quantitative measure, we extend the crossing
computation to ribbons in parallel sets of categorical data. Here
we need to distinguish ribbons with different sizes since the in-
tersection of two big ribbons is more prominent than two small
ones. So the crossing count is no longer an integer but computed as
p(x,y) · p(z,w), where p(x,y) and p(z,w) are the joint probability
distributions defining the sizes of the two interacted ribbons.

As a result, Fig. 4(c) has the ribbon crossing as 0.78, which

is less than the crossing of 1.22 from Fig. 4(b). This provides a
quantitative justification of the optimal sequence of categories.

4.2.3 Arranging space between neighboring coordinates

Giving more space to two adjacent coordinates with more interests
can help users better perceive data relationships [33]. Fig. 4(c)
can be further improved through an uneven distribution of space
between coordinates. High joint entropy means the diversity of
data records between the coordinate pair is high, which will usu-
ally produce a complex layout of lines. Thus without changing the
coordinate order, we can compute the joint entropies of all neigh-
boring pairs and use them to arrange the horizontal spacing. Fig.
4(d) shows the result after adjusting the spacing based on the result
of Fig. 4(c). Many neighborhoods, such as the space between the
two rightmost coordinates, are enlarged to depict their pairwise re-
lations more clearly. The examples in this paper compute horizontal
spaces linearly proportional to the joint entropies. This computation
can also be implemented by other algorithms.

4.2.4 Dimension filtering with user interaction

Entropy-related measures can be very helpful in the visual sense
making process. Fig. 6 shows a filtered visualization after users set
an entropy threshold of 1.0 to remove low entropy dimensions. This
provides more space to analyze dimensions with complex relations.
Moreover, users can use their domain knowledge, along with the
information depicted by the aforementioned entropy curve, word
cloud, and treemap visualizations, to select, remove, and exchange
dimensions.

4.2.5 Optimal ordering of multiple coordinates

A long-standing problem of multivariate visualization techniques is
how to arrange the order of dimensions in visual layouts. A good
example is the order of axes in parallel coordinates plots, which de-
termines what information is directly manifested between neighbor-
ing coordinates. While users might be given the capability to adjust
the order interactively, the initial order inarguably plays a critical
role in understanding data and guiding user exploration. Moreover,
users may only interactively adjust the order of a few dimensions
for a large amount of dimensions. For example, it is unlikely that
users would manually adjust the order of all 23 dimensions in the
mushroom dataset. Consequently, there remains a need for auto-
matic order arrangement for the dimensions that are not adjusted.
In many cases, the success of knowledge discovery will rely, in
large part, on this ordering. Entropy-related measures provide an
important metric, contributing to the orchestration of dimensions
for optimal categorical visualization.



(a) Dimensional entropies.

(b) Using the reading orders of coordinates and categories over them.

(c) Sorting categories of neighboring coordinates according to joint proba-

bility distribution improves the visualization of Fig. 4(b).

(d) Arranging space between neighboring coordinates with joint entropy im-

proves the visualization of Fig. 4(c).

Figure 4: Visualizations of the mushroom dataset with parallel sets.

A variety of approaches have proposed empirical or optimal or-
dering algorithms to provide clear visualization layouts. For ex-
ample, reducing line crossings between neighboring coordinates to
reduce visual clutter. However, most methods are not designed for
the unique characteristics of categorical data. For instance, a graph-
theory based method [32] achieves an optimal order of parallel co-
ordinates by extending the ordering problem to a complete graph
in metric space, whose solution is associated to the metric Hamil-
tonian path of the Traveling Salesman Problem. The cost values
between every pair of dimensions are used in the optimization al-
gorithm for global cost minimization. In this approach [32], the
“cost” is defined as the number of line crossings. Reducing line
crossings creates less tangled layouts. However, reducing crossings
does not necessarily lead to more effective insight discovery.

In our study, mutual information is employed as the “cost” func-
tion in the global optimization algorithm. For two axes, given a
categorical dimension (X) on the left, selecting a right dimension
(Yl) with larger mutual information can accommodate more defi-
nite relationships of data records than using a dimension (Ys) with
smaller mutual information. Thus, with I(X ;Yl)> I(X ;Ys), the two-
coordinates visualization leads to more insights of data dependency
over categories for user’s investigation. Globally maximizing the
sum of mutual information of a series of dimensions tends to cre-

Figure 5: Sorting categories between two categorical dimensions

Figure 6: Visualization of the mushroom data filtered by setting an
entropy threshold of 1.0 to remove low diversity dimensions.

ate visualization results that promote better knowledge discovery.
We modify the minimization optimization [32] to a maximization
solution of the sum of mutual information with respect to all dif-
ferent orders of categorical dimensions. This implementation uses
Hamiltonian path algorithms and creates optimal ordering.

Mutual information based ordering has an explicit benefit: the
cost is not related to the sequences of categories over axes. In con-
trast, the computation of ribbon crossings relies on such sequences,
which does not have a predisposed solution for categorical data. In
other words, the crossing based optimization is not as definite as the
mutual information based one. This makes the latter method more
appropriate for categorical data visualization.

Visualization results with different ordering methods of the
mushroom dataset are shown in Fig. 7. They improve the original
visualization of Fig. 4(b) which uses the reading order of dimen-
sions and the alphabetical sequence of categories on axes. Fig. 7(a)
is optimized by ribbon crossings while using the alphabetical cate-
gory sequence. Fig. 7(b) is optimized by mutual information while
using the alphabetical category sequence. Fig. 7(c) is optimized
by mutual information and also sorts the sequence of categories on
axes as described in Sec. 4.2.1.

We also perform the order optimization over the congressional
voting dataset. Fig. 8(a) shows the visualization of the congres-
sional voting dataset using the reading order of dimensions and the
alphabetical sequence of categories. Then the optimized ordering
is applied by using mutual information for dimension and sorting
categories on axes, as shown in Fig. 8(b). Classification of the con-
gressmen is the leftmost dimension. Green represents Democrats
and red represents Republicans. Our system supports users to in-
teractively select the observed dimension. Fig. 9 shows the results
of selecting one voting dimension, education-spending, as the left-
most dimension. Fig. 9(a) and (b) are results of using reading order
and after optimization, respectively. Here, blue represents voting
for nay, red represents voting for yea, and gray is for unknown.
Users can visually identify the votes of congressmen for other bills,
when they vote for education spending with yea, nay and unknown.
It is shown in both Fig. 8 and Fig. 9 that the optimization separates
green and red ribbons automatically, which reduces the clutter and
helps users to quickly identify insights. In next section we present
user studies to support the benefit of using the optimized visualiza-
tion.

5 USER STUDIES

We conducted user studies of using entropy-related measures for
categorical data visualization. More specifically, the studies were
on the ordering of parallel coordinates, which has long been a key
problem in multidimensional visualizations, especially when cate-



(a) Optimized by ribbon crossings with alphabetical category sequence.

(b) Optimized by mutual information with alphabetical category sequence.

(c) Optimized by mutual information with optimized category sequence.

Figure 7: Visualizations with different ordering methods of multiple
coordinates, improving the original visualization of Fig. 4(b) which
uses the reading order of dimensions and the alphabetical sequence
of categories on axes.

gorical data are involved.

5.1 User Study of the Mushroom Dataset

The user study assessed user performance on insight discovery with
four parallel sets visualizations of the mushroom data, each using a
distinct ordering approach:

• C1: original reading order, with alphabetical sequence of cate-
gories over axes, as shown in Fig. 4(b);

• C2: ribbon-crossings minimized order, with alphabetical se-
quence of categories over axes, as shown in Fig. 7(a);

• C3: mutual information maximized order, with alphabetical se-
quence of categories over axes, as shown in Fig. 7(b);

• C4: mutual information maximized order, with optimized se-
quence of categories on coordinates, as shown in Fig. 7(c).

Tasks: We designed four tasks based on a question people are likely
to have about mushrooms: how do different mushroom character-
istics, such as odor or gill color, relate to mushroom edibility? In
other words, do certain characteristics indicate that a mushroom is
likely to be edible or poisonous? We studied how the four visualiza-
tion cases can help users discover such insights. Users were asked
to use the visualizations to find characteristics which are: (T1)
All-edible; (T2) All-poisonous; (T3) Mostly-edible; (T4) Mostly-
poisonous. For example, if the data records of category “red” in the
dimension “cap-color” are all “poisonous” in dimension “class”,
this means that a red cap-color is an all-poisonous characteristic.
Here mostly-edible means that for a given characteristic, the num-
ber of edible mushrooms is greater than the number of poisonous
ones. Mostly-poisonous is defined in the same manner.

(a) Using the reading orders.

(b) After optimized ordering.

Figure 8: Visualizations of the congressional voting dataset. The
optimization is applied by using mutual information for dimen-
sion ordering and sorting categories over axes. Classification of
the congressmen is the leftmost dimension where green represents
Democracy and reed represents Republican.

Each participant was given 90 seconds to find characteristics be-
longing to one of the tasks T1 to T4, based on a given visualiza-
tion among case C1 to C4. We gave a score for each task of each
participant. Once a participant found one mushroom characteristic
belonging to the current task, he/she wrote down the index letter of
this character. If the finding was correct compared to the ground
truth, the participant’s score of this task was increased by one. Note
that each participant worked on visualization cases C1 to C4 in a
random order, so as to remove possible bias created by task se-
quence.
Participants and training: The participants were mostly gradu-
ate students in the computer science department with two professor
participants. We had a total of 11 participants (2 female and 9 male)
aged from twenties to fifties. All reported spending more than 20
hours per week using computers. Most of them had a basic under-
standing of statistics and information visualization, but they did not
have previous experience with, or knowledge of, parallel sets visu-
alizations and the proposed research work. We spent about 15 to 20
minutes to brief the participants about the user study. This involved
explaining the tasks, introducing the mushroom data, describing the
parallel set visualization results, and the meaning of T1 to T4. Prior
to starting the study, each participant was given 10 minutes to prac-
tice with similar visualization results from different datasets. This
was to familiarize them with the procedure. After this introduc-
tory briefing and practice session, participants reported confidence
to conduct the tasks.

Results: The ground truth of the mushroom data is directly
computed from the dataset (not from visualizations): (T1) All-
edible, 9 characteristics; (T2) All-poisonous, 25 characteristics;
(T3) Mostly-edible, 51 characteristics; (T4) Mostly-poisonous, 13
characteristics. These are the maximum number of characteristics
people can find, which are directly computed from the dataset.

Fig. 10(a) illustrates the results of average scores achieved for
T1 to T4, using visualizations C1 to C4, respectively. Each bar rep-
resents a percentage of the average score of each task from all par-
ticipants over the corresponding ground truth value. The variance
is shown on the bar as a line segment. Given the limited time, users
achieved the highest scores in all tasks when using the visualization
C4 (shown in purples bars), which employs our approach of coordi-



(a) Using the reading orders.

(b) After optimized ordering.

Figure 9: Visualizations of the congressional voting dataset. The
optimization is applied by using mutual information for dimension
ordering and sorting categories over axes. The leftmost dimension
is the votes of education-spending. Here, blue represents voting for
nay, red represents voting for yea, and gray is for unknown.

nate ordering and category sequence optimization. Without optimal
category sorting on axes, mutual information based ordering (green
bars) also achieved good results. These results indicate that by us-
ing entropy-based measures users can identify more insights in a
limited time. In contrast, the crossing based optimization (red bars)
does not provide better results in T2/T3 than original visualization
(blue bars).

We further computed the average performance of C1 to C4 over
the four tasks. In Fig. 10(b): using C4, users found approximately
47% of all answers on average, while the best performance reached
more than 60%. C3 provided the second best average performance.
On average, C2 provided no difference from the original visualiza-
tion C1. Note that these measures were acquired when users were
given the limited 90 seconds for each task. Participants made er-
rors when they incorrectly identified the characteristics for the given
tasks. These errors are an important indicator of the visualization’s
quality. In Fig. 10(c), it clearly shows C3 and C4 reduced users
error rate to around 11% and 10.5% in all their reports, compared
with 16% and 15% in C1 and C2.

Statistical test: Since the collected user data did not form a nor-
mal distribution for most cases, we applied the Friedman test of
variance by ranks, a non-parametric statistical test [8], to determine
statistical significance among the visualizations C1-C4. Statistical
significant differences are discovered between C1 and C4 (p-value
= 0.011), between C2 and C4 (p-value = 0.035), as well as between
C3 and c4 (p-value = 0.007). Such results indicate that, from the
user study, the optimized visualization C4 has a significant effect at
the level of p-value < 0.05.

5.2 User Study of the Voting dataset

This user study assessed user performance on the congressional vot-
ing dataset with the four visualizations:

Fig. 8: Classification as the leftmost dimension:

• C1: original reading order, with alphabetical sequence of cate-
gories over axes, as shown in Fig. 8(a).

• C2: mutual information maximized order, with optimized se-
quence of categories on axes, as shown in Fig. 8(b).

Fig. 9: Eduction-spending vote as the leftmost dimension:

• C3: original reading order, with alphabetical sequence of cate-
gories over axes, as shown in Fig. 9(a).

• C4: mutual information maximized order, with optimized se-
quence of categories on axes, as shown in Fig. 9(b).

The two comparable groups of visualizations, (1) C1 and C2 and
(2) C3 and C4, are studied to find the benefits of our optimization
approach.

Task: With the visualizations of C1 and C2, we designed tasks to
determine how Democrat and Republican congressmen voted for
different bills, such as immigration and export. For each dimension
(i.e. each bill), the participants were asked to identify: (T1) which
party vote more for yea? (T2) which party vote more for nay? For
both tasks, the participants chose from three options: Democrat,
Republican, or hard to identify.

With the visualizations of C3 and C4, for each dimension, the
participants were asked to identify: (T3) which congressmen group
vote more for yea? (T4) which congressmen group vote more for
nay? For both tasks, the participants chose from three options:
those voting yea for education bill, those voting nay for education
bill, or hard to identify. In our study, each participant was given 120
seconds to work on tasks (T1) to (T4). As before, the task sequence
was randomized.

Participants and training: We recruited 35 participants (5 female
and 30 male) aged from 22 to 30. They are all graduate students
in computer science having little experience with information vi-
sualization. We gave an introductory briefing and allowed them to
practice for 5 minutes on similar visualizations other than the ex-
periment cases.

Results: We computed the ground truth of the tasks directly from
the dataset. Then we graded each participant by giving 1 point if
the answer was correct, -1 point if the answer was incorrect, and 0
points if they said it was hard to identify. The average score of using
C1 is 11.5, while the average score of using C2 with optimization
was 20.1. When education was on the left, the average score of us-
ing C3 was 13.2, and the average score of using C4 with optimiza-
tion was 18.0. The results show that the participants found more
correct information within 120 seconds by using our optimization
approach.

Statistical test: One-way analysis of variance (ANOVA) [8] was
conducted to compare the effect of using different visualizations
for insight discovery. One test was performed with the user scores
of C1 and C2. In the ANOVA F-test, we have F = 17.1 and p-value
= 0.0001. Another test is conducted based on the user scores of C3
and C4. Here the ANOVA F-test has F = 5.64 and p-value = 0.02.
Such results show that there was a significant effect of using the
optimization method at the level of p-value < 0.05. This indicates
the significance of our user study results.

6 CONCLUSION

Categorical data visualization is particularly challenging due to the
discrete nature of the data. In this work, we utilize measures from
information theory to enhance the visualization of high dimensional
categorical data and to support exploratory visual reasoning. In par-
ticular, entropy, joint entropy and mutual information are employed
for categorical visualization enhancement. In the future, we will
study more measures from information theory in visualization en-
hancement. We will also extend the use of information measures to
numeric and hybrid datasets.

The measures can support users to browse data facts among di-
mensions, to determine starting points of data analysis, and to test-
and-tune parameters for visual reasoning. In the paper, we briefly
introduce possible user interactions to find interesting dimensions
through word clouds, to find 2D projects through scatter plots, and
to change ordering, spacing, and filtering in parallel sets. Further
investigation and user studies of such interactive approaches are
needed and will be an important topic in our future work.



(a) (b) (c)

Figure 10: User study results of the mushroom dataset. (a) Average percentage of user findings over ground truth on each task, attained
with different visual representations. (b) Total performance of user findings using different visualizations. (c) Total error rate of user findings
using different visualizations.
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