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ABSTRACT

Text streams demand an effective, interactive, and on-the-fly
method to explore the dynamic and massive data sets, and mean-
while extract valuable information for visual analysis. In this pa-
per, we propose such an interactive visualization system that en-
ables users to explore streaming-in text documents without prior
knowledge of the data. The system can constantly incorporate in-
coming documents from a continuous source into existing visual-
ization context, which is “physically” achieved by minimizing a
potential energy defined from similarities between documents. Un-
like most existing methods, our system uses dynamic keyword vec-
tors to incorporate newly-introduced keywords from data streams.
Furthermore, we propose a special keyword importance that makes
it possible for users to adjust the similarity on-the-fly, and hence
achieve their preferred visual effects in accordance to varying inter-
ests, which also helps to identify hot spots and outliers. We opti-
mize the system performance through a similarity grid and with par-
allel implementation on graphics hardware (GPU), which achieves
instantaneous animated visualization even for a very large data col-
lection. Moreover, our system implements a powerful user interface
enabling various user interactions for in-depth data analysis. Ex-
periments and case studies are presented to illustrate our dynamic
system for text stream exploration.

1 INTRODUCTION

Over the past decades, advanced technologies (e.g. cable TV, mo-
bile phone, and internet) in data generation, storage, and communi-
cation have greatly increased the quantity and accessibility of text
documents in various areas of human society. Massive documents
are generated and published at a significant speed, e.g., from daily,
hourly, or minutely emails, messages, webs, broadcasts, and TVs.
They have introduced an urgent need for efficient storage, process-
ing, retrieval, and analysis of the explosive text collections. Un-
doubtedly, computer-based visualization tools are among the most
effective approaches.

A stream text collection constantly evolves as new documents
are continuously generated and published, e.g., the news items from
a daily newspaper or an hourly TV broadcast, as more news being
released on hourly basis. These sources differ from the traditional
text database in which the quantity and the representation (e.g. key-
words or topics) of documents are known in advance. Visual explo-
ration of real text streams is a challenging task. First, text streams
continuously evolve. Visualization aids should be provided to users
to allow them to trace the temporal evolution of existing topics,
monitor emerging new topics, as well as examine the relationships
between new topics and existing topics. Second, as in other stream
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processing approaches, a visualization system should process a text
stream on-the-fly without pre-scanning the whole stream or assum-
ing a priori knowledge of it. Third, a visualization system should
allow users to interactively change their information seeking focus
and preference at any time, which will be immediately reflected
in pertinent visual effects. Such interactivity is a decisive factor
for a visual analytic system in real applications, since the domain
users might not have a priori knowledge of the text streams they are
working on. Fourth, a visualization system should scale to the large
volumes of text streams and respond to evolution of the streams in
real time.

In this paper, we propose a novel text stream visualization sys-
tem. It is based on a dynamic force-directed simulation into which
documents are continuously inserted. Each document is repre-
sented as a mass particle that moves inside a 2D visualization do-
main. A potential energy is defined by pairwise text similarity be-
tween documents. Minimizing the total potential energy of the sys-
tem moves similar document particles closer and drives away dis-
similar ones, which are achieved by attractive and repulsive forces
between particles. Consequently, an equilibrium state of the par-
ticles visually depicts the data clusters and outliers at a particular
moment. The system automatically adjusts its visual output with
newly injected document particles. The dynamic procedure of this
change is critical for reducing change blindness when new patterns
emerge. This approach has the following features that addresses the
above text stream visualization challenges:

Continual evolvement: This physical model is well-suited to vi-
sualize text streams for continuous depiction and analysis of grow-
ing document collections, where the dynamic nature is simulated
through the live behavior of particles. Text documents enter the
system at any time and automatically join clusters of related col-
lections. In the meantime, the particles already inside the system
travel continuously under the impact of new particles. The visual
structures hence gradually evolve as new documents enter the col-
lections without abrupt changes that break the mental picture users
already form with existing documents. Erratic motion of particular
particles (e.g., moving from one cluster to another cluster) can be
used to identify outliers or significant new trends in text streams.
This is advantageous to existing static or time-window based visu-
alization approaches, which depict only stationary data patterns or
the sporadic transitions between these patterns.

Dynamic processing: Text documents are typically represented
and manipulated through the vector of keywords. Existing meth-
ods usually calculate similarity between documents from their con-
stituent keywords. The keyword list is predefined and the similarity
is statically computed from them. Instead, to make our system suit-
able for real world applications dealing with unplanned flowing-in
data, we develop dynamic keyword vectors that upgrade adaptively
from the incoming documents. Essentially, our system does not re-
quire a scan of the whole collection of a prerecorded stream before
visualization. The visualization parameters and functions can also
be managed with respect to the temporal context.

Interactive exploration: We propose a Dynamic Keyword Impor-



tance that presents the significance of a keyword at a certain time.
It reflects user demand or interest so that similarity is updated on-
the-fly, and consequently the visualization artifacts. For instance,
keywords with increasing importance will make documents having
those keywords aggregate closer. In addition, our system includes
a highly interactive user interface for effective exploration.

Scalable optimization: We optimize our method by introducing a
similarity grid that spatially divides the visualization domain into
rectangular cells. When a new document enters the system, it is
placed in a cell with the most similar documents so that it will
quickly reach its preferred location during simulation. This ar-
rangement greatly increases the computational speed of the system
and thus the visual response time. Moreover, our particle system is
inherently parallel, similar to an N-body problem. By accelerating
the computation on graphics hardware (GPU), our system has very
good scalability to accommodate a very large number of particles
(documents).

A fully working prototype that visualizes live text streams in
real time, named STREAMIT, has been built up upon the force-
directed dynamic system. It has the following features:

Dynamic visualization and animation: Continuously incoming
text documents are visually presented to users in a dynamic 2D dis-
play driven by the force-directed model. The evolution of the vi-
sual structures and labels reveals the semantic evolution of the text
stream being represented. Users can discover emerging patterns on-
line by monitoring the real-time evolution. They can also examine
the temporal evolution of historical data through animations that
playback the stream evolvement over time.

Interactions: A set of interactions are provided in STREAMIT.
First, users can change the visual structure of the display on-the-fly
to emphasize the topics of current interest by manipulating keyword
importance. They can also highlight documents or keywords of in-
terest in the dynamic visualization to track the semantic evolution
around these documents or keywords. Users can also control the
maximum age of documents and the maximum number of docu-
ments in the visualization. Second, users can retrieve documents of
interest through a variety of interactions, such as rubber band se-
lection, search by example, and search by keywords. The selected
documents can be sent to a shoebox through which users can inves-
tigate them in full detail when they have time.

Since the similarity grid and hardware acceleration are used,
STREAMIT can respond to data evolution and user interactions
with immediate visual feedbacks for large text collections.

2 RELATED WORK

Many text visualization systems use similarity-based projection
to help users get insights from large text collections. For ex-
ample, IN-SPIRE [23] uses multidimensional scaling (MDS) to
map documents with similar contents close to each other, and thus
form ”galaxies” or ”mountains” in the displays. Later, InfoSky
[2] exploits hierarchically structured documents at each level with
Voronoi diagrams. A point placement approach is proposed in
[19] to build a hierarchy of the documents and project them as
circles, where a circle size is proportional to the number of chil-
dren. Examplar-based visualization [5] visualizes extremely large
text corpus by probabilistic multidimensional projection with ap-
proximation and decomposition. Our approach is different from the
above approaches in that it uses a dynamic similarity-based projec-
tion system to depict text streams.

There exist many approaches to exploring the temporal trends in
archives of text with time stamps. For example, ThemeRiver [10]
and LensRiver [8] depict the strength changes of individual key-
words in a text collection as currents within a river flowing along
a time axis. T-scroll [12] employs a novelty-based clustering al-
gorithm on time-series documents, and the transition of the topics
is simply visualized as a screen scroll. Meme-tracking [13] ex-

tracts keywords from news corpus to generate themes, and then vi-
sualizes these themes at different time steps to indicate the flow
of stories. Email archives are visualized to explore conversational
relationships among individuals by Themail [22] using interaction
histories. Interactive, topic-based analysis tool is provided for gen-
erating time-based, visual text summary along time axis [14]. Our
approach targets at live text streams rather than time-stamped exist-
ing archives.

Related to our aim to handle continuous incoming text streams,
TextPool [1] produces a visual summary that clusters related terms
as a dynamic textual collage. Unlike our method, it visualizes very
recent stream content as a partially connected graph, which is “not
for analyzing any significant portion of stream history”. Besides,
the graph represents salient terms of the stream instead of the docu-
ments which limits the visual connections to those terms. Wong et
al. [24] dynamically visualize stream data in a moving time window
using incremental data fusion. Newly arrived data items are directly
inserted into a multidimensional scaling layout of existing data in
the moving window when the error of the similarity placement is
smaller than a given threshold. Once the threshold is exceeded,
the whole layout is recalculated. Interactive exploration and user
control are not addressed in [24]. Eventriver [15] processes incom-
ing documents of text streams on the fly using a dynamic keyword
processing procedure and an incremental text stream clustering al-
gorithm. Temporal clusters of documents are visually depicted as
bubbles floating in a time river and individual documents are not
visible from the overview of the stream. This is different from our
approach where individual documents can be examined within the
global temporal and similarity context. Hetzler et al. [11] visual-
ize text collections in a 2D projection space with fresh and stale
documents visually distinguished. They apply IN-SPIRE [23] to a
dynamic document flow. When new documents are added, the ex-
isting vocabulary content is adjusted and the visual result is regen-
erated. However, the method does not show the animated transition
of the view when new documents enter the system. In comparison,
our system reveals the evolvement of the stream in fine details with
controllable transient animations.

Other than text data, a few visualization systems have been in-
troduced to visually show the evolution of streams in different do-
mains, for instance, in graphs [6], in networks [3], and in stream
videos [8][25].

Our algorithm employs Force-Directed Placement (FDP) for vi-
sualizing dynamic documents. FDP [7] has O(N3) complexity
which urges researchers to improve its efficiency in order to achieve
better computational performance. Intuitively, those improvements
come at a price, restrictions are imposed on the force calculations
to a subset of the entire data, which could possibly lead to mislead-
ing approximated results [4, 17]. Unlike these methods working
on static high-dimensional data, our approach is among the first ef-
forts to visualize live text streams using force-directed placement.
Furthermore, to make correct dynamic behavior, we avoid applying
direct approximation with the reduced force computation scope on
only a portion of the particles. Instead, we innovate using a spatial
division of the visualization domain (i.e., the similarity grid) for fast
locating the appropriate initial position of particles before perform-
ing the force computing. This arrangement reduces the simulation
time and maintains the accuracy of visualization results. More im-
portantly, we fully utilize the parallel nature of the simulation algo-
rithm by GPU acceleration which achieves a dramatic speedup.

3 SYSTEM OVERVIEW

The infrastructure of STREAMIT is illustrated in Figure 1. Incom-
ing documents of a text stream are continuously fed into a force-
based dynamic system, where the documents are represented as
dynamically-moving particles in a 2D domain. In this paper, we
assume that each document has been characterized by a set of key-



Figure 1: STREAMIT system overview.

words, which are either provided by the text source or automatically
generated by approaches that characterize incoming text on-the-fly,
such as the technique presented in [16]. The keywords are used to
compute pairwise similarity between particles. We then map the
similarity into a physical force between each pair of document par-
ticles, which drives the motion of particles inside the dynamic sys-
tem. Upon the arrival of new documents, the particles move until an
equilibrium state is reached. The dynamic system is optimized to
achieve real time computation for live text streams with moderate
scale, through GPU acceleration and utilizing a spatial similarity
grid.

The movement of the particles in the dynamic system is visually
presented to users. Users can interactively explore the visualization
to control browsing, retrieving, and examining documents. More-
over, they can dynamically set keyword importance to influence the
computation of similarity and force, and consequently to manipu-
late the structures and dynamics of the system in particular related
to varying user focus and interest.

4 FORCE-BASED DYNAMIC SYSTEM

4.1 Particle Potential

Documents are presented as mass particles inside the 2D domain
with their velocity and acceleration following Newton’s law of mo-
tion. Each pair of particles has a potential energy Φi j:

Φi j = α(|li − l j|− li j)
2, (1)

where α is a control constant, and li and l j are the positions of two
document particles pi and p j , respectively. While |li− l j| represents
the Euclidian distance of the two particles, and li j is their ideal dis-
tance computed from similarity. Hence, this pair potential function
models the deviation of the two particles from their ideal locations,
which is achieved at zero potential. In numerical computing, the
width and height of the 2D domain are set to 1.0.

4.2 Particle Similarity

An optimal layout is determined by the definition of li j . For text
document usually represented as keywords, li j is obtained from the
pairwise similarity computed from their keywords as:

li j = 1−δ (pi, p j), (2)

where δ (pi, p j) ∈ [0,1] is the cosine similarity between document
particles pi and p j [9]. With this formula, those documents with
large similarity will have a smaller ideal distance, li j, and move
closer for clustering in the visualization.

4.3 Force-Directed Model

For the whole system, it is obvious that not all the particles can be
located at ideal locations. A global potential function is the sum of
the pairwise energy:

V (l1, ..., lN) = ∑
i

∑
j>i

Φi j, (3)

where N is the particle number, and l1, ..., lN represent the current
locations of these particles. The potential of the system is min-
imized to an equilibrium state that provides a global optimized
placement of these particles. A numerical simulation is performed
to achieve the optimization by minimizing the global potential with
a sequence of simulation time steps. At each time step, the mini-
mization leads to forces acting on each particle:

Fi = −∇li
V (l1, ..., lN), (4)

which attracts or repulses particles from each other. From Newton’s
law:

Fi = miai (5)

where mi is the mass. We compute the particle acceleration as:

ai =
2∑ j α(|li − l j|− li j)

mi
, (6)

which is used to update the location of the particle, pi, at each sim-
ulation time step. While every particle no longer moves (in numer-
ical computing, the displacement smaller than a threshold ξ ), the
system is optimized to its best visual layout. The whole process
can be considered as a simplified version of the molecular dynam-
ics simulation with a simple quadratic energy function [20].

Algorithm 1 Dynamic Simulation Algorithm

Set the maximum displacement D as a large value
while D > ξ do

for i = 0 to N - 1 do
for j = i+1 to N do

Fi+ = 2∗α(|li − l j|− li j)
end for

end for
for i = 0 to N - 1 do

ai = Fi/mi

update the position of this particle
update maximum displacement D of all particles

end for
end while

Algorithm 1 describes the basic computing procedure of the dy-
namic system, where we assume every particle has the same unit
mass. The constant α is set to an appropriate value (usually 0.01),
so that the numerical simulation is stable, i.e., all the particles will
not totally move out of the 2D domain or be squeezed to the center
of this domain.

5 DYNAMIC KEYWORD IMPORTANCE

Keywords are vital words that highly occur in a document which
represent a brief summary as a vector that conveys the topic of that
document. The similarity δ (pi, p j) is typically computed by pre-
defined formula, e.g. cosine similarity, from the keyword vector
of documents pi and p j . However, stream text collections usually
span a long period of time. For a real world stream data set, one
keyword might excessively appear for a period of time and then
fade out, while another one might frequently pop up during the en-
tire period of time. While users typically do not have knowledge



about the topics for the incoming documents, they will change their
focus of interests along the stream evolving. Consequently, the def-
inition and computation of similarity should instead be a function
of time and adjusted by user input.

To address the challenge, we propose Dynamic Keyword Impor-
tance in addition to the computation of δ (pi, p j), which interac-
tively enables the users to manipulate the significance of keywords
at any time. The original cosine similarity can be improved as:

δ (pi, p j) =
∑K

k=1(wikIk)(w jkIk)
√

∑K
k=1(wikIk)2.∑n

k=1(w jkIk)2
(7)

where Ik is the importance of keyword k, K is the number of key-
words, and wik is the weight of keyword k in the document pi. The
classic cosine similarity can be considered as a special case where
Ik = 1. All the K weights form the keyword vector of this doc-
ument. The length of the current vector is dynamically updated,
so that our system can handle data streams not prerecorded. The
weight of keywords is calculated as:

wik = Oik ∗ log2

N

nk

(8)

where Oik is the occurrence of keyword k inside the document i, N
is the total number of documents, nk is the number of documents
that contain the keyword k inside N. The inverse document fre-

quency factor N
nk

favors keywords concentrated in a few documents

of a collection, in comparison to the similar high frequency key-
words, which are not concentrated in a few particular documents,
but instead are prevalent in the whole collection. Please refer to
[21] for details of the keyword weight computation.

Users can freely modify the keyword importance through the vi-
sual interface, where frequent keywords are presented in an ordered
list. Furthermore, the importance can also be determined automati-
cally by the system as follows:

Ik = a∗Ok +b∗ (tek − tsk)+c∗nk . (9)

Here, Ok is the occurrence of keyword k in the current existing
documents. tek is the last time it appears, and tsk is the first time it
appears. (tek − tsk) makes the importance larger for aged keyword.
nk makes the importance larger for the keywords appearing in a
large number of different documents. Here, a, b, and c are positive
constants satisfying a + b + c = 1. They are selected to determine
how the three factors are preferred. In our experiments, we use a =
0.3, b = 0.3, and c = 0.4. Users indeed can define their preferred
keyword importance in a variety of functions for different purposes.

6 VISUALIZATION AND INTERACTION

6.1 Visualization

STREAMIT has a main window, an animation control panel, a key-
word table, and a set of document tables (see Figure 2):

Main Window: The main window (top left of Figure 2) visually
presents the movement of the particles in the 2D domain of the
dynamic system through an animated 2D display. Each document
particle is represented by a circle. The positions of the circles are
decided by the force-directed model so that the similarities among
the documents are reflected by the closeness of the positions. As
the simulation goes on, the circle positions dynamically changes to
reveal the temporal evolution of the stream. A grey scale is used to
indicate the age of the documents, namely the older a document is,
the darker is its color (see Figure 2 for an example). The sizes of the
circles can be mapped to an attribute of the documents. A minimum
distance between two particles can be defined in the force-directed
model to reduce/eliminate overlaps among the particles.

Animation Control Panel: STREAMIT buffers recent documents
falling into a moving time window (named the buffer window) that
is larger than the moving window of currently displayed documents.
Users can playback the animation within the buffer window to ex-
amine the temporal and semantic evolution of the buffered stream
in detail. An animation control panel is used to control the play-
back (see Figure 2(3)). It is similar to the control panels of most
movie players and has play and stop buttons and a progress bar.
The progress bar maps to the buffer window and the users can move
the slider to start the animation from any moment within the buffer
window. During any time of the animation, the users can pause
the display to examine a moment of the stream in more details or
change parameters such as keyword importance. The animation can
be resumed after the parameters are changed.

Keyword Table: STREAMIT provides keyword information in a
keyword table (see Figure 2(1)). It lists all the keywords charac-
terizing the documents currently displayed, their frequencies in the
displayed documents, importance, and colors. The keyword table is
updated whenever a new document arrives. Users can interactively
sort this table to find frequent keywords and important keywords.
They can also interactively change the keyword importance or col-
ors, which will be further discussed in Section 6.3.

Document Tables: Users can click a tab to show one of four doc-
ument tables (see Figure 2(2)). They display the titles, authors,
and timestamps of the following documents respectively: (1) all
buffered documents; (2) all documents that are displayed in the
main window; (3) documents selected by users; and (4) document
groups created by users. The users can sort the documents by their
authors or timestamps. They can also click a title to reach the full
text of a document.

6.2 Labeling

Labels revealing semantic contents of a collection are desired in
text visualization systems. In text streams such as news collections,
titles of the documents contain rich semantic information in a con-
densed manner and thus STREAMIT uses titles as labels of the
documents. Since the 2D layout drives similar documents together,
severe clutter can be generated if titles of all documents are dis-
played. We develop a novel labeling algorithm to provide the most
recent semantic information to users with user-controllable clutter
levels. In particular, documents are divided into groups according
to a dissimilarity threshold. Within each group, the dissimilarities
among the documents are less than the threshold. Only one docu-
ment, namely the most recently arrived document, is labeled in each
group. A newly arrived document can either be assigned to an exist-
ing group or form a new group if it is dissimilar to any existing doc-
uments. By interactively changing the dissimilarity threshold and
thus changing the grouping, the users can control the clutter caused
by labels. In addition, the above algorithm has the benefit that af-
ter a document is inserted into the display, existing labels won’t
be changed except that one label may be removed (the label of the
representative document of the group to which the new document
is assigned). This is an important feature since we want to keep
the consistency among the adjacent displays. The newest injected
document will always be labeled according to the algorithm, which
is usually desired in text stream visualization. Figure 2 shows the
automatic labeling results. In this figure, the newest injected docu-
ment and its label are highlighted by red (see Figure2(4)) while the
selected documents and their labels are highlighted by orange (see
Figure2(5)).

Labels and particles may overlap when a large number of doc-
uments are displayed. STREAMIT displays labels on the top of
particles and allows users to interactively change the transparency
of their background. An opaque background makes the labels easy
to read and semi-transparent background allows users to examine
particles hidden by the labels. In Figure 2, a semi-transparent back-



Figure 2: STREAMIT interface. The left part is the visualization view of text streams, and the right part includes keyword table, document tables
and parameter controls.

ground is used. Users can turn off all the labels to focus on the
colors and layout of the particles. They can also turn on/off the
label of an individual particle by clicking it.

6.3 Interaction

STREAMIT allows users to interactively change the display ac-
cording to their interest. It also allows users to interactively search,
track, and examine documents.

6.3.1 2D Display Manipulation

Adjusting Keyword Importance: Users can adjust the keyword
importance to emphasize particular topics of current interest. The
visualization will immediately respond by representing the move-
ment of the particles after the changes (see Figure 3 for an exam-
ple).

Grouping and Tracking Documents: When users find a group of
interesting documents, they can form a group for them. Documents
within a group are highlighted by halos of a color assigned to the
group by the users. The halos help to track topics of interest in
the animations. Multiple groups can be traced at the same time.
Figure 2(5) and (6) show two groups highlighted in orange and pink
respectively.

Browsing and Tracking Keywords: Users can assign colors to
keywords of interest to track them in the text stream. A document
with any traced keywords, no matter if it is an existing document
or incoming document, is represented by circular pies where each
pie conveys the color of a traced keyword. The size of a pie is
proportional to the weight of the keyword in the document. Users
can investigate keyword and document relations and track the evo-
lution of relevant topics in this way (see Figure 3 for an example).
When the sizes of the pies are small, this approach loses its effec-
tiveness and an alternative approach can be used. In the alternative
approach, the users click a keyword of interest in the keyword table.
All documents containing the clicked keywords are highlighted by

halos so that the users can examine the distribution of these docu-
ments in the whole stream segment displayed. The users can sweep
the keyword table in this way to find keywords of interest. This
approach works well even when the particles are small.
Setting Moving Windows: Users can interactively change the
length of the moving window, i.e., investigating period, of currently
displayed documents.

6.3.2 Document Selection

Manual Selection: Users can manually select documents from the
document tables. They can also use mouse dragging or rubber band
to select documents in the 2D display. The selected documents will
be highlighted in the main window by halos around the document
particles, as shown in Figure 2. Their information will also be dis-
played in the selected document table (see Figure 2(2)).
Example-based Selection: Users can use the current selection as
examples and select documents that are within a distance range to
them. The threshold is easily controlled through the keyboard. In
this way, users can select a group of similar documents.
Keyword-based Selection: Users can select multiple keywords
from the keyword table (see Figure 2(1)), and then the documents
that contain the keywords are automatically selected and high-
lighted (see Figure 2(5)).
Shoebox: In the highly dynamic environment of STREAMIT, users
may want to focus on the temporal evolution and examine the se-
lected documents later. They can do it easily by sending the selected
documents into a shoebox. The current selection will be cleared so
that users can start a new circle of exploration. Later on when the
users have time, they can open the shoebox to examine the saved
documents in details. Clicking a document in the shoebox will open
a new window that contains the full-text of the document.

7 CASE STUDIES

We present two case studies in this section to illustrate how
STREAMIT can be used. In the case studies, documents in pre-



Figure 3: Barack Obama news. (A) Aug. 13, 2010, 136 news articles; (B) after increasing importance of “International Relations”; (C) Sep. 18,
2010, 230 news articles. Keyword colors: “Politics” - green, “International Relations” - red, “Terrorism” - yellow, and “Defense and Military” - blue.

recorded text collections are sorted by their time stamps and fed
into STREMIT one by one with an interval of a few seconds to
simulate a fast evolving live text stream.

7.1 Case Study 1: Barack Obama News

We use STREAMIT to explore a small text stream simulated us-
ing 230 New York Times news (www.nytimes.com) about Barack
Obama reported between Jul. 19 and Sep. 18, 2010. The keywords
used to characterize the news are tags that come with the news. In
each document, the occurrences of the characterizing keywords are
assigned to a value of one. The moving window covers the whole
stream. Keyword importance is automatically assigned by the al-
gorithm described in Equation 9. As the articles are continuously
injected, new keywords are added to the keyword table and their
frequencies in the moving window are updated on-the-fly.

Figure 3(A) shows the display on Aug.13, 2010, where 136 news
articles are represented. On Aug.13, 2010 (time in the stream), we
notice that keywords such as “Politics and Government”, “Interna-
tional Relations”, “Defences Military”, and “Terrorism” have high
frequency values according to the keyword table. We consider them
as hot topics in the stream and assign them distinct colors to track
the news articles characterized by them in the display, as shown in
Figure 3(A)..

To emphasize our interest in news about “International Rela-
tions” (they are in red), we manually increase the importance of the
keyword “International Relations”. The resulting display is shown
in Figure 3(B). Now news articles containing the keyword “Inter-
national Relations” are attracted closer to each other than in Fig-
ure 3(A). We easily select them using a rubber band selection and
find that they contain sub-topics such as “China”, “Terrorism” and
“Afghanistan War” from the shoebox.

Among the above sub-topics, we want to focus on the topic of
“Afghanistan War” and “Terrorism” since most of these news arti-
cles recently happened (with lighter darkness). To track the sub-
topic of “Afghanistan War”, we click the keyword “Afghanistan
War” to select the related articles and create a new group named
“war” for them. We also highlight the group in pink halos (see Fig-
ure 3(B-2)). We create another group for the topic “Terrorism” in
the same way and highlight them in orange halos (see Figure 3(B-
3)). Then we continue to play the animation and track the evolution
of these groups. Figure 3(C) shows the visualization when all the
news articles are displayed. In the visualization, we notice that the
cluster shown in Figure 3(C-3) gets much bigger. We also notice
that there is a recent news article (Figure 3(C-4)) that stands in-
between it and the cluster shown in Figure 3(C-2). It is related to
both “Afghanistan War” and “Terrorism” (see Figure 3(C-4)). We
select this article and read it in full detail by clicking the circle.

7.2 Case Study 2: NSF Award Abstracts

In this case, we explore a stream simulated using 1000 National
Science Foundation (NSF) IIS award abstracts that were funded be-
tween Mar. 2000 and Aug. 2003. Each document was automati-
cally characterized by a set of keywords. The size of a document
circle in the display is mapped to the funding amount of the project.

Figure 4 shows several snapshots of the animated visualization.
Figures 4(A) and (B) show the stream in two adjacent days. We no-
tice that many large projects (in funding amounts) started from the
second day. We pause the animation and select and examine them
in detail. From the shoebox, we observe that the keywords “Man-
agement” and “Database” appear in many of these project abstracts.
It evokes our interest. Therefore, we highlight the keyword “Man-
agement” in red and the keyword “Database” in green. We also
increase their importance values so that we can observe the rele-
vant abstracts easier (see Figure 4(B)). It can be seen that although
some abstracts contain both keywords (see Figure 4(B-1)), there are
many other abstracts that contain only one of them. We pull back
the animation to the previous day in the same setting (see Figure
4(A)) to examine the temporal evolution of these topics. When the
stream further evolves, we observe that IIS continuously supported
projects with these keywords (see Figure 4(C)).

Figure 4(C) also illustrates how to discover transformative pro-
posals in a temporal context using STREAMIT. We highlight all
projects containing the keyword “sensor” by halos. The node with
a halo indicated by the arrow (see Figure 4(C-2)) is a potential trans-
formative proposal since it is far away from the other projects with
halos. We select and examine this abstract in detail and learn that
it is a project about just-in-time information retrieval on wearable
computers.

8 PERFORMANCE OPTIMIZATION

Algorithm 1 is a O(N2) approach. We do not introduce an ap-
proximated processing that applies the force computation only in
a portion of particles (e.g., in a neighborhood), in order to avoid in-
troducing possible errors. Instead, we seek to optimize the perfor-
mance of our system by applying parallel computing and similarity
grid to improve its scalability for large data sets.

8.1 GPU Acceleration

Our computational algorithm is inherently parallel at each simu-
lation step. Hence, we pleasantly accelerate the computation on
graphics hardware with CUDA implementation. N particles execute
their kernel program (i.e. the force-placement algorithm) simulta-
neously as individual threads distributed to a grid of CUDA blocks.
Each thread accesses and updates the particle’s position from the
information of last step which is loaded into the shared memory of



Figure 4: NSF research collections. (A) Aug. 1, 2000, 95 research projects; (B) Sep. 1, 2000, 172 research projects; (C) Mar. 15, 2002, 672
research projects. Keyword colors: “Management” - green, “Database” - red.

Table 1: STREMIT performance on CPU and GPU (in milliseconds) with selected text streams of New York Times news
Document Number of Documents Number of Keywords Ave. Simulation Time Per Frame GPU/CPU Maximum Simulation Time Avg. of Simulation Steps

Time Period in System in System CPU (ms) GPU (ms) Speedup CPU (ms) GPU (ms) Per Frame

Feb.13 - Aug.18, 2010 6157 5057 540 34 17.9 4350 230 173

Aug.1 - Oct.31, 2006 7100 1059 620 41 15.1 9070 480 177

Jul.1 - Aug.31, 2010 10205 2036 986 53 15.9 11030 610 200

Synthetic Data set 15000 2000 1020 65 15.7 13070 682 196

the blocks. The solution is similar to an N-body problem which was
accelerated on GPU [18].

With the parallel acceleration, we achieved very good perfor-
mance on consumer graphics cards and PCs for large scale data sets.
Table 1 shows the performance evaluated on an NVidia Quadro
NVS 295 GPU with 2GB texture memory. In comparison, we
also ran the programs on an Intel Core2 1.8GHz CPU with 2GB
RAM. We conducted a few experiments using text streams contain-
ing news documents from the New York Times news. Incoming
documents were inserted into STREAMIT in sequence according
to their generation time. Each time when a document was added,
the system performed simulation and updated the visualization re-
sult accordingly, which formed a frame of the dynamic animation
for exploring the text stream. For each frame, the simulation ran
multiple steps with the preset minimum threshold ξ , which was set
to a very small value, 10−4. We report the number of documents for
the experiments, the average simulation time per frame on the CPU
and GPU respectively, and the speedup factor. Meanwhile, the max-
imum simulation time in all frames is reported, which was the max-
imum waiting time for one visualization update. For each frame,
we also recorded the number of computational steps of the simula-
tion. On average, real time running performance was achieved by
the GPU acceleration where our system simulated and visualized
the text stream at a frame rate around 25-30 frames per second.
It was above 15 times faster than the CPU version. Furthermore,
the maximum simulation time after document insertion on the GPU
was less than a second, which was sufficiently fast considering the
relatively slower response time for human perception and analysis
of the visualization update. In addition, we tested STREAMIT on
a synthetic data set with around 15,000 documents and 2,000 key-
words. The results showed that our system worked well for such a
large text stream on the GPU.

8.2 Similarity Grid

The initial positions of document particles significantly affect the
computational steps and cost of the simulation system. When new

Table 2: Performance optimization obtained by employing similarity
grids on a data set of 7100 documents

Similarity Grid Size Average Number of Simulation Steps

None 225

20×20 207

50×50 177

100×100 182

200×200 186

particles are inserted into the system, randomly assigning their po-
sitions may take many steps for them to move to optimal locations.
To address this issue, we employ a similarity grid to ensure that
new documents are roughly inserted within the proximity of simi-
lar documents. The grid spatially divides the 2D visualization do-
main into rectangular cells with a given resolution. Each cell has a
special keyword vector consisting of the average keyword weights
computed from the documents inside the cell. For a new document,
we first compute its similarity with this special keyword vector of
the grid cells to find the most similar one, and then place this docu-
ment at the center of that cell. When the system starts, all the cells
are empty. The first document is randomly placed, and afterwards,
the similarity grid is actively updated. The appropriate resolution
of the grid will provide a good acceleration while it cannot be too
large due to the extra overhead from the grid maintenance.

Table 2 shows the average number of simulation steps required
on a data set of 7100 documents with different similarity grid sizes.
A 50 × 50 grid decreased the simulation steps per frame to 78%
of the steps needed if not using the grid. Meanwhile, the execu-
tion time was reduced with the same ratio. This grid resolution is a
good choice reducing the simulation steps while keeping the man-
agement overhead relatively minimal. Based on the analysis, we
used a 50×50 grid for our experiments reported in Table 1.

8.3 Discussion

The performance optimization promotes our system and makes it
applicable in a monitoring setting for live streams. In the New



York Times case, news items are produced and arrive in our sys-
tem continuously, with an averaging 3 documents per hour and a
maximum 8 documents per hour at the peak time. The minimum
interval between consecutive arrival is around 1 minutes. A capa-
ble realtime visualization system should be able to handle newly
inserted items faster than this minimum interval. From Table 1,
the maximum simulation time of the CPU computing is a few sec-
onds. With GPU acceleration, the handling time is further reduced
to less than one second. Therefore, our system can be effectively
employed for this live news stream with many thousands of docu-
ments accommodated in the display for analysis. It has the ability
to directly handle live text streams with document arrival interval
around 1 second. Note that the capability is provided with ordinary
consumer PC and graphic card.

To further increase the scalability, our system is being actively
upgraded, in order to handle real-world text streams with a greater
amount of documents and with a smaller arrival interval. We plan to
improve the simulation speed by (1) adopting hardware with more
computational power, e.g. advanced GPU cards or cluster; (2) ex-
ploring hierarchical or multiple-resolution simulation. Meanwhile,
we will utilize the unbalanced text streaming speed to provide a
management module, which buffers document items during peak
times and handle them in idling periods. A very large number
of documents inside the system will undoubtedly introduce visual
clutters and hinder the ingestion of analyzers. We will also study
efficient methods to alleviate cluttering and provide useful abstrac-
tion and simplification in visualization.

9 CONCLUSION

We have presented a new visual exploration system, STREAMIT,
for text streams and applied it to visualize collections of news doc-
uments. The system employs a physical framework based on inter-
particle potentials to cluster and analyze incoming document in a
dynamic nature. Morerover, we have introduced a new Dynamic
Keywords Importance that helps users interactively manipulate the
importance of keywords for different visualization results. Further-
more, the system is equipped with powerful interactive tools and
accelerated on consumer GPUs, consequently providing fast simu-
lation, immediate response and convenient control, which lend it-
self a good exploratory tool for text stream analysis.

Our STREAMIT system is subject for further research and ex-
tension. For instance, we plan to further investigate the mechanism
of utilizing keyword importance. We will also develop visualization
and simulation schemes suitable for even larger data sets. More-
over, we will extend the system for concurrent visualization with
multiple users. In addition, we plan to apply STREAMIT to a vari-
ety of real life applications, such as to help research funding man-
agers to explore their document collections and to allow people to
explore large news collections through touchable mobile devices.
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