
Applying Space Subdivision Techniques
to Volume Rendering

K. R. Subramanian t$ Donald S. Fussell $

tCenter for High Performance Computing
The University of Texas at Austin

10100 Burnet Road, Austin, Tx-78758

$Department of Computer Sciences
The University of Texas at Austin

Austin, Tx-78712

Abstract
We present a new ray-tracing algorithm for volume

rendering which is designed to work efficiently when the
data of interest is distributed sparsely through the vol-
ume. A simple preprocessing step identifies the voxels
representing features of interest. Frequently this set of
voxels, arbitrarily distributed in three dimensional space,
is a small fraction of the original voxel grid. A median-
cut space partitioning scheme, combined with bound-
ing volumes to prune void spaces in the resulting search
structure, is used to store the voxels of interest in a k-
d tree. The tree is then efficiently ray-traced to render
the voxel data. The k-d tree is view independent and
can be used for animation sequences involving changes
in positions of the viewer or positions of lights. We have
applied this search structure to render voxel data from
MRI, CAT Scan and electron density distributions.

1 Introduction

An increasingly important application of computer
graphics technology is in providing visualization
tools to help scientists in a number of fields un-
derstand massive amounts of data. Some of these
fields include medical imaging, molecular modeling,
computational fluid dynamics, seismology, weather
models and oceanography. In most of these appli-
cations, the data generated are usually too large to

interpret directly in their raw form. Also, the data
models usually contain a large number of features
which are difficult to study all at once. A visual
representation of these features, either individually
or in some reasonable combination, is desirable for a
better understanding of the underlying phenomena.

Many of these data-sets are scalar or vector fields
of functions sampled in three spatial dimensions.
For example, medical imaging data consists of scalar
density values at each vertex of a three dimensional
grid. These ‘voxel’ data are either input directly to
a rendering program, in which case the visualization
procedure is termed ‘volume rendering’, or converted
to an intermediate representation, for example a sur-
face model, before rendering.

One advantage of creating a surface model from a
volumetric representation is that it is often a com-
pact encoding of the characteristic that is being vi-
sualized. A surface model, built of polygonal prim-
itives, for instance, can be rendered efficiently with
special purpose graphics hardware. The model needs
to be created only once and can be viewed from any
direction. If the number of surface primitives is not
too large, rendering can often be performed in real
time, a very useful feature in scientific visualization.
A popular method for creating surface models from
voxel data is the Marching Cubes method [21].

CH2913-2/90/0000/0150/$01 .OO - 1990 IEEE 150

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

Most often, creating a surface model involves mak-
ing a binary classification decision of whether a sur-
face passes through a voxel or not. This can lead to
aliasing problems. Also, it may not make sense to
create surfaces for certain kinds of volume data. In
these cases, alternate solutions involving the direct
rendering of volumetric data are preferred. Direct
volume rendering techniques are generally based ei-
ther on a ray-casting approach [7][15][16][17] [5] or
on the projection and compositing of preprocessed
voxels onto the image plane [5][6].

Ray-casting techniques sample points along the
path of each ray (as often as needed) that is cast
into the volume. A weighted sum of the contribu-
tions of all these points is projected onto the view
plane. The images obtained using this method typi-
cally have fewer aliasing artifacts than surface mod-
eling methods because no binary classifications need
to be made,although the point sampling involved can
also be a source of aliasing. Also the grid is sampled
at a greater level of detail, thus providing a more
accurate picture of the volume data. Similar advan-
tages can be obtained with projection and composit-
ing methods.

Unfortunately, direct volume rendering is gener-
ally frequently more time consuming than surface
rendering. Such methods, in general, do not take
advantage of standard graphics hardware. Though
the images produced are of higher quality than those
generated from surface models, each image is more
expensive to compute. It can be quite expensive to
generate animation sequences, which are often a key
to understanding scientific phenomena.

Surface modeling approaches to visualizing vol-
umetric data take advantage of the fact that very
often the features of interest to a scientist are con-
tained in only a small portion of the original voxel
data. By suitably identifying this subset of voxels
and representing them as a set of surfaces, consid-
erable savings in computation and space can some-
times be obtained. A surface may be an effective
way to visualize data in cases in which a single type
of real surface is being identified in the volume data.
Frequently, however, either many different surfaces
are of interest or the data actually contains no real

surfaces. In these situations, direct volume render-
ing may provide a more useful way for investigators
to understand the information of interest in the data.

In this paper, we present a volume rendering al-
gorithm which takes advantage of the lack of inter-
esting information in a large fraction of voxel data
in many applications without representing the inter-
esting voxels as surfaces. Our goal is to achieve the
benefits of the relatively fast rendering and compact
representations of surface models while retaining the
ability to effectively represent data which are poorly
suited to surface modeling.

Our strategy is to first identify the voxels which
do not contain interesting data and remove them,
rather than attempting to identify a set of interest-
ing voxels which can constitute a surface. After this
initial step, we are left with clumps of interesting
voxels distributed throughout the original volume.
We incorporate this data into a k-d tree, which we
build using a median-cut space partitioning scheme
[10][19] with bounding volumes in the interior nodes
of the hierarchy. Interesting voxels are recursively
partitioned by axisaligned planes along their medi-
ans, resulting in a balanced binary tree. Bounding
volumes are computed a t nodes of the hierarchy to
help in reducing void space created by the partition-
ing. Ray tracing method is used to render the data
contained in the k-d tree.

The motivation for applying space subdivision
techniques to volumetric rendering comes their suc-
cess in accelerating the ray tracing of surface mod-
els [11][13][18][12][1][8]. Levoy [16] and Meagher [14]
have used octrees for rendering volume models. Our
own studies of different characteristics of ray tracing
hierarchies [20] have shown that for surface models,
the kd tree is a more adaptive and flexible data struc-
ture, principally because it combines the advantages
of pure space partitioning structures such as the oc-
tree and of bounding volume hierarchies.

An important advantage of the k - d tree is its
view independence. Animation sequences involving
changes in viewer locations or positions of lights re-
quire no change in the search structure. Slicing the
volume data to look at the internals of a feature

151

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

also can use the same search structure with a mi-
nor modification in the preprocessing step. We have
used this structure to efficiently render animation
sequences of a human heart (from an MRI data-set)
and scalar fields of electron density distributions.

The remainder of the paper is organized as follows.
First, we survey some major existing surface render-
ing and ray-tracing techniques for volume data in
order to identify techniques for identifying and pro-
cessing interesting voxels which we will also make
use of. We then describe some important search
structures used to ray-trace surface models. Sub-
sequently, we present a detailed description of our
algorithm, and then examine implementation results
on the data mentioned above.

2 Visualizing Volumetric Data

Among the different methods of visualizing volumet-
ric data, two techniques are commonly used in med-
ical imaging and molecular modeling applications.
The first is the marching cubes method, which out-
puts polygonal surfaces of a certain density thresh-
old value. The second method is based on ray trac-
ing and directly samples the voxel grid.

The marching cubes method builds triangle mod-
els of constant data value surfaces from 3D scalar
fields. A threshold density value (or surface con-
stant) is first selected. This value is compared with
the density values at the eight corners of each voxel.
If it falls within the density range of any of the edges
of the voxel, then the surface intersects that edge.
The intersection points, determined by linear inter-
polation from the edge densities define one or more
planar surfaces. These surfaces are then triangu-
lated. Before rendering, a unit normal is computed
for each triangle vertex. For a constant data value
surface, the gradient vector is normal to the sur-
face. The gradient at each vertex (i , j , k) of the grid
is computed using central differences. Let this be
vf(z7). The unit normal is given by

Normals a t the vertices of the triangles are calcu-

lated by linear interpolation from the corner gradi-
ents. Once the normals for the vertices of all the tri-
angles are computed, the triangles can be rendered
on any standard graphics workstation.

In the ray tracing approach, rays are cast into the
voxel grid, through an imaginary projection plane.
Each of these rays is sampled a t equal intervals along
its path through the grid. This can exploit the use of
incremental techniques [9][4]. At each sample loca-
tion, the voxel density, opacity and local gradient is
determined. The voxel density is usually obtained by
linear interpolation from the corner density values.
The opacity can be a made a function of the den-
sity, although this is not necessary. Theoretically,
the opacity can be any meaningful function. For in-
stance, if it were a step function peaking at a certain
density value, then we end up with iso-surfaces, as
in the marching cubes method. A method proposed
by Levoy [15] to compute opacity is as follows:

where

z; = i th sample location
f, = surface threshold constant.
a, = opacity of voxels having density of f v .

f(z7) = density a t sample z:.
~ f (z 7) = local gradient vector.

a(.;.) = opacity at sample 4.
r = voxel thickness of the transition region.

What the above equation does is make the opac-
ity maximum when the density value is the selected
threshold. At nearby density values, the opacity falls

152

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

off a t a rate inversely proportional to the local gra-
dient vector.

A unit normal is computed as in the marching
cubes method. A lighting model is then applied at
this sample location to compute a color. A running
sum of the accumulated opacity is maintained and
used to weight the color of each sample location.
Processing terminates when the accumulated opac-
ity reaches unity or there are no more voxels left to
process. The sum of all the weighted sample colors
is the final color for the ray.

The total intensity for each ray cast into the grid
is given by

k - 1 i-1

z = Z(6)a(6) n(1- a(.?)) (2)
i = O j =O

where

IC: = i th sample.

Z (6) = Intensity at sample 6 .
a (6) = opacity at sample 2;.

IC = total number of samples along the ray.

3 Building the k-d Tree

As indicated in the introduction, our goal is to create
a data structure which represents interesting volume
data in a way that supports fast ray tracing. We do
this in two steps.

In the first step, we design a culling function that
identifies voxels that can be eliminated from any
consideration since they do not contribute to the
current view. This step depends on the opacity func-
tion used. We demonstrate a culling function to be
used when equation 1 computes the opacity. The
output of this step is a list of voxels representing the
characteristic that will be visualized.

Next we build the IF-d tree using the median-cut
scheme The partitioning is highly flexible in adapt-
ing the partitioning planes to the distribution of the
voxels in the hierarchy. For early detection of rays

that do not intersect any interesting voxels, bound-
ing volumes are stored at nodes of the hierarchy to
make the data structure even more compact.

The k-d tree will be used to efficiently access the
voxels of interest during ray tracing. The remainder
of this section is devoted to a detailed description of
the building of the data structure. The next section
describes its use in ray tracing.

3.1 Identifying 'Relevant' Voxels

The inequalities at the right of equation 1 are the
key to determining a culling function for identifying
voxels of zero opacity. The culling function is given
by

{ (fmar(uOzi , j ,k) -k PI v fmaz(vO2i , j ,k) l) < f v }

OR

{(fmin(voz i , j ,k) - 7'1 v fmar(vo+i , j ,k) l) > f u }

where

fmin(vozi , j ,k) = min. voxel density at (i , j , k).
fmoz(vozi , j ,k) = max. voxel density at (i, j, k) .

Vfmaz(VOli , j ,k) = max. voxel gradient at (i , j , k)

If the above function is TRUE for a voxel at (i, j , k) ,
it is discarded; otherwise, it is added to the list of
relevant voxels.

Since linear interpolations are used for determin-
ing densities as well as gradients within each voxel,
the range of densities within each voxel as well as the
maximum density gradient of each voxel can be de-
termined. This immediately lets us design a culling
function which checks to see if any density in a voxel
is within the range of density values that could pos-
sibly contribute to the final image. That is exactly
what the inequalities in the above function test for.
A voxel is irrelevant if its range of densities does not
contain the surface threshold density and its density
and gradients are such that the opacity function lies
completely outside its range. The two parts to the
function (on either side of the OR operator) consider
the density ranges on either side of f u , the selected
threshold.

153

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

a b

Figure 1: A median-cut subdivision

This process is repeated for each voxel in the grid
and a list of 'relevant' voxels is recorded. All other
voxels are not of interest until a different feature or
characteristic needs to be studied. The output from
the preprocessing step is a list of voxels representing
the characteristic of interest.

3.2 Building the Median-cut Hierarchy

Having identified the voxels of interest, the next step
is to build a hierarchy to store them. The process be-
gins by determining the three dimensional extent of
the voxels. This is easily computed from the knowl-
edge of the locations of all the voxels. A binary
search is conducted next to determine the plane that
best balances the number of voxels on both sides of
the partition. This is done in all three dimensions.
The criterion or figure of merit (fom) for the plane
choice is simply

fom = llcnt - rcntl

where lcnt and rcnt are the voxel counts on either
side of the plane. Once the plane is determined, the
voxels are partitioned into two subsets, on either side
of the plane. These subsets of voxels are recursively
partitioned in a similar fashion until each region con-
tains exactly one voxel. An example is shown in Fig.
1 with five levels of partitioning. The dotted lines
are partitioning planes and the rectangles represent
voxels.

Each time we partition a set of voxels, we need
to determine if bounding volumes are required to

C

Figure 2: Using Bounding Volumes

-X Is(' x-cl

Figure 3: Optimizing the preprocess

cull void space. A 2D example is shown in Fig. 2.
In 2a, bounding volumes are required on both sides
of the plane. In 2b, no bounding volumes are re-
quired as this results in no reduction in void space,
whereas in 2c only the left side needs it. The reason-
ing behind using bounding volumes is that a lot of
the rays will intersect the void areas without inter-
secting the surface areas, in which case they can be
quickly eliminated from further consideration with
a simple bounding volume intersection test.

Some important optimizations in this preprocess-
ing step include the following:

When we are dealing with regular grids (common
in medical imaging and molecular modeling applica-
tions), partitioning planes need be located only on
voxel boundaries, which means the entire search can
be performed using integer arithmetic.

Since the partitioning planes are axis-aligned and
there are only a finite number of locations for each
of them, voxels that fall in each of these locations
can be summed up. These partial sums can be used

154

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

to determine the best plane choice. Thus, when we
need to determine a plane that best balances the
voxels in a region, the partial sums are first com-
puted parallel to the orientation of the plane. These
sums can be used to determine the best plane as
the binary search is conducted. In Fig. 3, vertical
columns of voxels are added up when we are deter-
mining a plane orthogonal to the horizontal axis. In
3D, if we are searching along the X axis, voxel counts
in YZ plane will be summed up a t each possible lo-
cation of the partitioning plane.

During the binary search, when we move the plane
towards a location that tends to give a better balance
of voxels, the side we are moving away from need
not have its voxels examined any further. Thus the
total number of voxels in this region just needs to be
remembered and taken into consideration when the
figure of merit is computed. This is explained with
an example in Fig. 3. Here the plane I = c1 results
in a partition with more voxels to its left (Icn* >
T , , ~) . The next plane choice is at z = c i , midway
between c1 and the left bound. To determine the
number of voxels on either side of 2 = ci , its enough
to examine the voxels between the left bound and c l .
The number of voxels to the right of c1 is rcnt and
just needs to be remembered. A similar argument
holds if lent < rcnf.

The median-cut hierarchy built is a binary tree,
also called a k-d tree [2][3]. Each node in this tree
represents a set of voxels, stored in its subtree. One
advantage of such a structure is that its height is
smaller than an unbalanced tree, making it less ex-
pensive to reach the leaf nodes where the voxels are
stored. Secondly, our studies have shown that using
bounding volumes in the internal nodes of the hier-
archy is critical to its success. In this configuration,
it is a very compact encoding of the original data for
rendering purposes.

4 Ray-tracing the k-d Tree

A ray with arbitrary origin and direction can be
traced efficiently using the k-d tree. The partition-
ing planes and the bounding volumes in the hierar-
chy help determine a set of voxels ordered along the

path of the ray. More important, only voxels close
to the path of the ray are identified, thus ignoring
the bulk of the voxels in the tree. This is done with
the help of bounding volume and partitioning plane
intersections described as follows.

Given a ray and the root of the tree, the ray is
intersected with the bounding volume stored at the
root node. If there is an intersection, then we need
to determine if this is an internal node or a leaf node.
If it is a leaf node, then the voxel at this node needs
to be sampled and its contribution to the color of
the ray is computed as described in section 2. On
the other hand, if it is an internal node, we have two
different cases:

1. The ray lies entirely on one side of the parti-
tioning plane.

The ray crosses the partitioning plane. 2.

These two cases can be easily determined by inter-
secting the ray against the partitioning plane and
comparing its parametric intersection value with
those obtained from intersecting the region’s bound-
ing volume. For case 2, the direction of the ray helps
define the order in which the two regions need to be
processed. It must be pointed out that no coordi-
nates need be computed during this process.

For case 1 we need to search the region contain-
ing the ray segment (the ray has been clipped to the
bounding volume of this node). For case 2, we need
to potentially examine both regions. However the re-
gion closer to the ray origin is processed first, since
the accumulated opacity might reach unity while ex-
amining this region. This would make it unnecessary
to examine the farther region. This process is recur-
sively applied, until either the opacity accumulates
to unity or there are no more regions (and hence,
voxels) to examine. Figure 4 illustrates this. Here
r l (t) , r2 (t) and r3(t) are three different rays. t l
and t 2 are the parametric intersection points with
the region, and t , the intersection with the parti-
tioning plane z = c1. The top ray visits only one of
the 2 regions, which is recognized by the fact that
t l < t and t 2 < t . The actual region visited by
the ray is determined by the 3: component of the

155

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

Scene
Voxels Voxels

Heart 2097152 94874 95.50
Heart(s1iced) 2097152 51713 97.53
SOD at 80 1091444 63533 94.17
SOD at 100 1091444 27427 97.48

X-cl

Figure 4: Ray Traversal.

ray direction. For the top ray, direction along the
z axis is positive, i.e. z increases along the path of
the ray, thus identifying region 1. Otherwise, the re-
gion 2 will be visited. The middle and bottom rays
visit both regions, indicated by t l < t and t2 > t .
The z component of the ray direction determines the
traversal order. For the middle ray, the direction is
positive, so the order is region 1 followed by 2, while
it is 2 followed by 1 for the bottom ray because its
z direction is negative. A similar strategy holds for
identifying the traversal order when the partitioning
dimension is y or z .

5 Implementation and Results

We have implemented our algorithm in C on an Ar-
dent Titan 1500 running Ardent UNIX’ 2.1.1 and
tested the implementation on three different test
cases. The first case is an MRI data-set of a ca-
daver heart that has been autopsied; during autopsy,
cuts were made into the ventricles. The heart was
in a bucket of preservative and was imaged from
three orthogonal directions, 24 slices in XY, 20 slices
in YZ and 16 slices in XZ plane. The slices were
assembled and tri-linearly interpolated to obtain a
128x128~128 data cube. Color plate 1 shows two
different views of the heart. Next the heart is sliced

UNIX is a trademark of AT&T Bell Laboratories

I HIPIP I 262144 I 24628 I 90.61 I
I 1 Timefmin.) I Memory

Scene

Heart (sliced)
3.0
1.3 1 HIPIP I 0.40 I 0.12 I 4.78 I 1.2

Table 1: Experimental Results

vertically (by a plane) and the voxels in front of the
slicing plane are removed so as to get a better view
of the heart chambers. Plate 2 shows two views after
slicing.

The next example is an electron density map of
the active site of superoxide dismutase (SOD) en-
zyme as determined by x-ray crystallography at 1.8
angstrom resolution. The data-set consists of 116
slices, each of size 97x97. Plate 3 shows one frame
of an animation sequence when centered around a
threshold of 80. At this level, teardrop shapes and
clumps of atomic density are seen. At a level of 100,
we start seeing individual atoms.

The last example is a quantum mechanical cal-
culation of one electron orbital of a four-iron, eight-
sulphur cluster found in many natural proteins. This
particular data-set is a high potential iron protein
(HIPIP). The data represents the scalar field of the
wave-function at each point. The resolution of the
data is 64x64~64. Scientists are interested in seeing
‘nodal’ surfaces, where the data value crosses zero.
Plate 4 attempts to demonstrates this.

Table 1 illustrates the reduction in voxel data af-
ter the preprocess. In all cases, less than 10% of the
total voxels are relevant to the final image. This
demonstrates the importance of culling irrelevant
voxels and working with only voxels of interest. In

156

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

the heart images, slicing cause8 further culling of the
data. All timings are for a resolution of 640x480,
with one ray cast per pixel. In this implementation,
we have not taken advantage of either vectorization
or parallelization to optimize performance.

We are presently adapting this technique to be
useful for supercomputer users located remote from
our center. Our strategy is to preprocess the data,
whereby the voxels representing a given characteris-
tic is identified. This set of voxels is then transmit-
ted over the network to the researcher’s workstation
for rendering. In filtering the voxels of interest from
the original three-dimensional grid, a large reduction
in the number of voxels transmitted over the network
will result a natural compression of the original d a t a
set. Since building the k-d tree search structure usu-
ally takes a fraction of the rendering time, it can be
performed remote from the supercomputer center,
thus making it unnecessary to transmit the search
structure over the network.

6 Conclusions

We have presented an algorithm which uses space
partitioning techniques to support efficient volume
rendering. A cull function prunes voxels from the
original data that are irrelevant to the character-
istic being studied. A k-d tree based on median-
cut space partitioning with bounding volumes at
selected nodes of the hierarchy is used as a data
structure for storing the relevant voxels so that they
may be accessed efficiently during rendering. This
data structure has important advantages for render-
ing volumetric data:

1. It provides a compact representation of vox-
els. The partitioning planes in the hierar-
chy help in determining a traversal order that
identifies only voxels close to the path of each
ray. The bounding volumes used in the inter-
nal nodes of the hierarchy help in identifying
rays that do not intersect any relevant voxel
by simple bounding volume intersection tests.
Since the tree can be traversed along the path
of a ray, the ray trace can be terminated once
the accumulated opacity reaches unity.

2.

3. The search structure is view independent.
With the help of the partitioning planes, a
traversal order can be determined for any ray
with arbitrary origin and direction. Changes
in viewing or lighting parameters require no
change in the search structure.

The choice and location of the partitioning
planes is flexible. The plane that best bal-
ances the voxel counts on either side of the
partition is chosen. The plane can be aligned
with any of the three dimensions.

Since partitioning planes need to be located
only on voxel boundaries, the entire plane
search can be performed using integer arith-
metic.

4.

5 .

Surface modeling approaches to visualizing vol-
umetric data work best when few surfaces are in-
volved. Existing direct volume rendering approaches
exploit the regular nature of three-dimensional grids
through the use of incremental techniques for vol-
ume traversal. These techniques are most efficient
when the voxels of interest are distributed suffi-
ciently densely through the volume. In the data that
we have worked with, this has not been the case.
Visualizing multiple features increases the number
of voxels participating in the view, but there is a
point beyond which visualizing multiple characteris-
tics (thereby increasing the number of relevant vox-
els) only makes it increasingly difficult to interpret
the data. Our approach is targeted at producing
images of intermediate complexity, i.e. those which
may contain more than one type of surface but not
so much relevant data that the majority of the vol-
ume is involved. The technique should thus be com-
plementary to existing direct volume rendering ap-
proaches which work best on very dense data and
surface modeling techniques which work best on data
with few surfaces of interest.

7 Acknowledgements

The heart data was provided by Dr. Raleigh F.
Johnson, Jr . and Dr. Donald G. Brunder, Univer-
sity of Texas Medical Branch, Galveston. The SOD
data ww due to Duncan McRee, Scripps Clinic, La

1 57

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

Jolla, California. The electron orbital data was pro-
vided by Louis Noodleman and David Case, Scripps
Clinic, La Jolla, California. Our thanks to the
CHPC Visualization Laboratory staff for their help
and comments. Our thanks to Don Speray for his
useful insights on volume visualization. Lastly, our
thanks to Dr. James Almond and Dr. Matthew
Witten for making time available to perform this re-
search.

References

James Arvo and David Kirk. Fast ray trac-
ing by ray classification. Computer Graphics,

Jon Louis Bentley. Multidimensional binary
search trees used for associative searching.
Communications of the ACM, 18(9), Septem-
ber 1975.

Jon Louis Bentley. Data structures for range
searching. Computing Surveys, 11(4), Decem-
ber 1979.

John G. Cleary and Geoff Wyvill. Analysis of
an algorithm for fast ray tracing using uniform
space subdivision. Visual Computer, 4(2):65-
83, July 1988.

C.Upson and M.Keeler. Vbuffer:visible volume
rendering. Computer Graphics, 22(4), August
1988.

Robert A. Drebin, Loren Carpenter, and Pat
Hanrahan. Volume rendering. Computer
Graphics, 22(4), August 1988.

D.S.Shlusselberg and W.K.Smith. Three di-
mensional display of medical image volumes.
NCGA 86 Con) Proc. NCGA, Fairfaz, Vir-
ginia, 1986.

Henry Fuchs, Gregory D. Abram, and Eric D.
Grant. Near real-time shaded display of rigid
objects. Computer Graphics, 17(3):65-72, July
1983.

Akira Fujimoto, Takayuki Tanaka, and Kan-
sei Iwata. Arts: Accelerated ray-tracing sys-
tem. IEEE Computer Graphics and Applica-
tions, 6(4):16-26, April 1986.

21(4):269-278, July 1987.

[lo] Donald Fussell and K. R. Subramanian. Fast
ray tracing using k-d trees. Technical Report
TR-88-07, Department of Computer Sciences,
The University of Texas at Austin, March 1988.

[ll] Andrew S. Glassner. Space subdivision for fast
ray tracing. IEEE Computer Graphics and Ap-
plications, 4(10):15-22, October 1984.

[12] Jeff Goldsmith and John Salmon. Automatic
creation of object hierarchies for ray tracing.
IEEE Computer Graphics and Applications,
pages 14-20, May 1987.

[13] Michael R. Kaplan. The uses of spatial coher-
ence in ray tracing. ACM SIGGRAPH Course
Notes 11, July 1985.

[14] D. Meagher. Geometric modeling using octree
encoding. Computer Graphics and Image Pro-
cessing, 19(2):129-147, June 1982.

[15] M.Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applica-
tions, 8(3), May 1988.

[16] M.Levoy. Design for a real-time high-quality
volume rendering workstation. In Chapel Hill
Workshop on Volume Visualization, pages 85-
92. Computer Science Dept. of the University
of North Carolina, 1989.

A hybrid ray tracer for rendering
polygon and volume data. IEEE Computer
Graphics and Applications, l0(2), March 1990.

[18] Steven M. Rubin and Turner Whitted. A 3-
dimensional representation for fast rendering of
complex scenes. Computer Graphics, 14(3):110-
116, 1980.

[19] K. R. Subramanian. Fast ray tracing using k-d
trees. Master’s thesis, Department of Computer
Sciences, The University of Texas at Austin,
December 1987.

[20] K. R. Subramanian. Factors affecting perfor-
mance of ray tracing hierarchies. Technical Re-
port TR-90-21, Department of Computer Sci-
ences, The University of Texas a t Austin, July
1990.

[21] W.E.Lorensen and H.E.Cline. Marching cubes:
A high resolution 3d surface reconstruction al-
gorithm. Computer Graphics, 21(4), July 1987.

[17] M.Levoy.

158

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore. Restrictions apply.

