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Abstract 
We present a new ray-tracing algorithm for volume 

rendering which is designed to work efficiently when the 
data of interest is distributed sparsely through the vol- 
ume. A simple preprocessing step identifies the voxels 
representing features of interest. Frequently this set of 
voxels, arbitrarily distributed in three dimensional space, 
is a small fraction of the original voxel grid. A median- 
cut space partitioning scheme, combined with bound- 
ing volumes to prune void spaces in the resulting search 
structure, is used to store the voxels of interest in a k- 
d tree. The tree is then efficiently ray-traced to render 
the voxel data. The k-d tree is view independent and 
can be used for animation sequences involving changes 
in positions of the viewer or positions of lights. We have 
applied this search structure to render voxel data from 
MRI, CAT Scan and electron density distributions. 

1 Introduction 

An increasingly important application of computer 
graphics technology is in providing visualization 
tools to help scientists in a number of fields un- 
derstand massive amounts of data. Some of these 
fields include medical imaging, molecular modeling, 
computational fluid dynamics, seismology, weather 
models and oceanography. In most of these appli- 
cations, the data generated are usually too large to 

interpret directly in their raw form. Also, the data 
models usually contain a large number of features 
which are difficult to study all at once. A visual 
representation of these features, either individually 
or in some reasonable combination, is desirable for a 
better understanding of the underlying phenomena. 

Many of these data-sets are scalar or vector fields 
of functions sampled in three spatial dimensions. 
For example, medical imaging data consists of scalar 
density values at each vertex of a three dimensional 
grid. These ‘voxel’ data are either input directly to 
a rendering program, in which case the visualization 
procedure is termed ‘volume rendering’, or converted 
to an intermediate representation, for example a sur- 
face model, before rendering. 

One advantage of creating a surface model from a 
volumetric representation is that it is often a com- 
pact encoding of the characteristic that is being vi- 
sualized. A surface model, built of polygonal prim- 
itives, for instance, can be rendered efficiently with 
special purpose graphics hardware. The model needs 
to be created only once and can be viewed from any 
direction. If the number of surface primitives is not 
too large, rendering can often be performed in real 
time, a very useful feature in scientific visualization. 
A popular method for creating surface models from 
voxel data is the Marching Cubes method [21]. 
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Most often, creating a surface model involves mak- 
ing a binary classification decision of whether a sur- 
face passes through a voxel or not. This can lead to 
aliasing problems. Also, it may not make sense to 
create surfaces for certain kinds of volume data. In 
these cases, alternate solutions involving the direct 
rendering of volumetric data  are preferred. Direct 
volume rendering techniques are generally based ei- 
ther on a ray-casting approach [7][15][16][17] [5] or 
on the projection and compositing of preprocessed 
voxels onto the image plane [5][6]. 

Ray-casting techniques sample points along the 
path of each ray (as often as needed) that is cast 
into the volume. A weighted sum of the contribu- 
tions of all these points is projected onto the view 
plane. The images obtained using this method typi- 
cally have fewer aliasing artifacts than surface mod- 
eling methods because no binary classifications need 
to be made,although the point sampling involved can 
also be a source of aliasing. Also the grid is sampled 
at a greater level of detail, thus providing a more 
accurate picture of the volume data. Similar advan- 
tages can be obtained with projection and composit- 
ing methods. 

Unfortunately, direct volume rendering is gener- 
ally frequently more time consuming than surface 
rendering. Such methods, in general, do not take 
advantage of standard graphics hardware. Though 
the images produced are of higher quality than those 
generated from surface models, each image is more 
expensive to compute. It can be quite expensive to 
generate animation sequences, which are often a key 
to understanding scientific phenomena. 

Surface modeling approaches to visualizing vol- 
umetric data take advantage of the fact that very 
often the features of interest to a scientist are con- 
tained in only a small portion of the original voxel 
data. By suitably identifying this subset of voxels 
and representing them as a set of surfaces, consid- 
erable savings in computation and space can some- 
times be obtained. A surface may be an effective 
way to visualize data in cases in which a single type 
of real surface is being identified in the volume data. 
Frequently, however, either many different surfaces 
are of interest or the data actually contains no real 

surfaces. In these situations, direct volume render- 
ing may provide a more useful way for investigators 
to understand the information of interest in the data. 

In this paper, we present a volume rendering al- 
gorithm which takes advantage of the lack of inter- 
esting information in a large fraction of voxel data 
in many applications without representing the inter- 
esting voxels as surfaces. Our goal is to achieve the 
benefits of the relatively fast rendering and compact 
representations of surface models while retaining the 
ability to effectively represent data which are poorly 
suited to surface modeling. 

Our strategy is to first identify the voxels which 
do not contain interesting data and remove them, 
rather than attempting to identify a set of interest- 
ing voxels which can constitute a surface. After this 
initial step, we are left with clumps of interesting 
voxels distributed throughout the original volume. 
We incorporate this data into a k-d tree, which we 
build using a median-cut space partitioning scheme 
[10][19] with bounding volumes in the interior nodes 
of the hierarchy. Interesting voxels are recursively 
partitioned by axisaligned planes along their medi- 
ans, resulting in a balanced binary tree. Bounding 
volumes are computed a t  nodes of the hierarchy to 
help in reducing void space created by the partition- 
ing. Ray tracing method is used to render the data 
contained in the k-d tree. 

The motivation for applying space subdivision 
techniques to volumetric rendering comes their suc- 
cess in accelerating the ray tracing of surface mod- 
els [11][13][18][12][1][8]. Levoy [16] and Meagher [14] 
have used octrees for rendering volume models. Our 
own studies of different characteristics of ray tracing 
hierarchies [20] have shown that for surface models, 
the kd tree is a more adaptive and flexible data struc- 
ture, principally because it combines the advantages 
of pure space partitioning structures such as the oc- 
tree and of bounding volume hierarchies. 

An important advantage of the k - d tree is its 
view independence. Animation sequences involving 
changes in viewer locations or positions of lights re- 
quire no change in the search structure. Slicing the 
volume data to  look at the internals of a feature 
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also can use the same search structure with a mi- 
nor modification in the preprocessing step. We have 
used this structure to efficiently render animation 
sequences of a human heart (from an MRI data-set) 
and scalar fields of electron density distributions. 

The remainder of the paper is organized as follows. 
First, we survey some major existing surface render- 
ing and ray-tracing techniques for volume data in 
order to identify techniques for identifying and pro- 
cessing interesting voxels which we will also make 
use of. We then describe some important search 
structures used to ray-trace surface models. Sub- 
sequently, we present a detailed description of our 
algorithm, and then examine implementation results 
on the data  mentioned above. 

2 Visualizing Volumetric Data 

Among the different methods of visualizing volumet- 
ric data, two techniques are commonly used in med- 
ical imaging and molecular modeling applications. 
The first is the marching cubes method, which out- 
puts polygonal surfaces of a certain density thresh- 
old value. The second method is based on ray trac- 
ing and directly samples the voxel grid. 

The marching cubes method builds triangle mod- 
els of constant data value surfaces from 3D scalar 
fields. A threshold density value (or surface con- 
stant) is first selected. This value is compared with 
the density values at the eight corners of each voxel. 
If it falls within the density range of any of the edges 
of the voxel, then the surface intersects that edge. 
The intersection points, determined by linear inter- 
polation from the edge densities define one or more 
planar surfaces. These surfaces are then triangu- 
lated. Before rendering, a unit normal is computed 
for each triangle vertex. For a constant data value 
surface, the gradient vector is normal to the sur- 
face. The gradient at each vertex ( i ,  j ,  k) of the grid 
is computed using central differences. Let this be 
vf(z7). The unit normal is given by 

Normals a t  the vertices of the triangles are calcu- 

lated by linear interpolation from the corner gradi- 
ents. Once the normals for the vertices of all the tri- 
angles are computed, the triangles can be rendered 
on any standard graphics workstation. 

In the ray tracing approach, rays are cast into the 
voxel grid, through an imaginary projection plane. 
Each of these rays is sampled a t  equal intervals along 
its path through the grid. This can exploit the use of 
incremental techniques [9][4]. At each sample loca- 
tion, the voxel density, opacity and local gradient is 
determined. The voxel density is usually obtained by 
linear interpolation from the corner density values. 
The opacity can be a made a function of the den- 
sity, although this is not necessary. Theoretically, 
the opacity can be any meaningful function. For in- 
stance, if it were a step function peaking at a certain 
density value, then we end up with iso-surfaces, as 
in the marching cubes method. A method proposed 
by Levoy [15] to compute opacity is as follows: 

where 

z; = i th sample location 
f, = surface threshold constant. 
a, = opacity of voxels having density of f v .  

f(z7) = density a t  sample z:. 
~ f ( z 7 )  = local gradient vector. 

a(.;.) = opacity at sample 4. 
r = voxel thickness of the transition region. 

What the above equation does is make the opac- 
ity maximum when the density value is the selected 
threshold. At nearby density values, the opacity falls 
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off a t  a rate inversely proportional to the local gra- 
dient vector. 

A unit normal is computed as in the marching 
cubes method. A lighting model is then applied at 
this sample location to compute a color. A running 
sum of the accumulated opacity is maintained and 
used to weight the color of each sample location. 
Processing terminates when the accumulated opac- 
ity reaches unity or there are no more voxels left to 
process. The sum of all the weighted sample colors 
is the final color for the ray. 

The total intensity for each ray cast into the grid 
is given by 

k - 1  i-1 

z = Z(6)a(6) n(1- a(.?)) (2) 
i = O  j =O 

where 

IC: = i th sample. 

Z ( 6 )  = Intensity at sample 6 .  
a ( 6 )  = opacity at sample 2;. 

IC = total number of samples along the ray. 

3 Building the k-d Tree 

As indicated in the introduction, our goal is to create 
a data structure which represents interesting volume 
data in a way that supports fast ray tracing. We do 
this in two steps. 

In the first step, we design a culling function that 
identifies voxels that can be eliminated from any 
consideration since they do not contribute to the 
current view. This step depends on the opacity func- 
tion used. We demonstrate a culling function to be 
used when equation 1 computes the opacity. The 
output of this step is a list of voxels representing the 
characteristic that will be visualized. 

Next we build the IF-d tree using the median-cut 
scheme The partitioning is highly flexible in adapt- 
ing the partitioning planes to the distribution of the 
voxels in the hierarchy. For early detection of rays 

that do not intersect any interesting voxels, bound- 
ing volumes are stored at nodes of the hierarchy to 
make the data structure even more compact. 

The k-d tree will be used to efficiently access the 
voxels of interest during ray tracing. The remainder 
of this section is devoted to a detailed description of 
the building of the data structure. The next section 
describes its use in ray tracing. 

3.1 Identifying 'Relevant' Voxels 

The inequalities at the right of equation 1 are the 
key to determining a culling function for identifying 
voxels of zero opacity. The culling function is given 
by 

{ ( fmar(uOzi , j ,k)  -k PI v fmaz(vO2i , j ,k) l )  < f v }  

OR 

{( fmin(voz i , j ,k )  - 7'1 v fmar(vo+i , j ,k ) l )  > f u }  

where 

fmin(vozi , j ,k)  = min. voxel density at ( i , j ,  k). 
fmoz(vozi , j ,k)  = max. voxel density at (i, j, k ) .  

Vfmaz(VOli , j ,k)  = max. voxel gradient at ( i , j ,  k )  

If the above function is TRUE for a voxel at (i, j ,  k ) ,  
it is discarded; otherwise, it is added to the list of 
relevant voxels. 

Since linear interpolations are used for determin- 
ing densities as well as gradients within each voxel, 
the range of densities within each voxel as well as the 
maximum density gradient of each voxel can be de- 
termined. This immediately lets us design a culling 
function which checks to see if any density in a voxel 
is within the range of density values that could pos- 
sibly contribute to the final image. That is exactly 
what the inequalities in the above function test for. 
A voxel is irrelevant if its range of densities does not 
contain the surface threshold density and its density 
and gradients are such that the opacity function lies 
completely outside its range. The two parts to the 
function (on either side of the OR operator) consider 
the density ranges on either side of f u ,  the selected 
threshold. 
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a b 

Figure 1: A median-cut subdivision 

This process is repeated for each voxel in the grid 
and a list of 'relevant' voxels is recorded. All other 
voxels are not of interest until a different feature or 
characteristic needs to be studied. The output from 
the preprocessing step is a list of voxels representing 
the characteristic of interest. 

3.2 Building the Median-cut Hierarchy 

Having identified the voxels of interest, the next step 
is to build a hierarchy to store them. The process be- 
gins by determining the three dimensional extent of 
the voxels. This is easily computed from the knowl- 
edge of the locations of all the voxels. A binary 
search is conducted next to determine the plane that 
best balances the number of voxels on both sides of 
the partition. This is done in all three dimensions. 
The criterion or figure of merit (fom) for the plane 
choice is simply 

fom = llcnt - rcntl  

where lcnt and rcnt are the voxel counts on either 
side of the plane. Once the plane is determined, the 
voxels are partitioned into two subsets, on either side 
of the plane. These subsets of voxels are recursively 
partitioned in a similar fashion until each region con- 
tains exactly one voxel. An example is shown in Fig. 
1 with five levels of partitioning. The dotted lines 
are partitioning planes and the rectangles represent 
voxels. 

Each time we partition a set of voxels, we need 
to determine if bounding volumes are required to 

C 

Figure 2: Using Bounding Volumes 

-X  Is(' x-cl 

Figure 3: Optimizing the preprocess 

cull void space. A 2D example is shown in Fig. 2. 
In 2a, bounding volumes are required on both sides 
of the plane. In 2b, no bounding volumes are re- 
quired as this results in no reduction in void space, 
whereas in 2c only the left side needs it. The reason- 
ing behind using bounding volumes is that a lot of 
the rays will intersect the void areas without inter- 
secting the surface areas, in which case they can be 
quickly eliminated from further consideration with 
a simple bounding volume intersection test. 

Some important optimizations in this preprocess- 
ing step include the following: 

When we are dealing with regular grids (common 
in medical imaging and molecular modeling applica- 
tions), partitioning planes need be located only on 
voxel boundaries, which means the entire search can 
be performed using integer arithmetic. 

Since the partitioning planes are axis-aligned and 
there are only a finite number of locations for each 
of them, voxels that fall in each of these locations 
can be summed up. These partial sums can be used 
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to determine the best plane choice. Thus, when we 
need to determine a plane that best balances the 
voxels in a region, the partial sums are first com- 
puted parallel to the orientation of the plane. These 
sums can be used to determine the best plane as 
the binary search is conducted. In Fig. 3, vertical 
columns of voxels are added up when we are deter- 
mining a plane orthogonal to the horizontal axis. In 
3D, if we are searching along the X axis, voxel counts 
in YZ plane will be summed up a t  each possible lo- 
cation of the partitioning plane. 

During the binary search, when we move the plane 
towards a location that tends to give a better balance 
of voxels, the side we are moving away from need 
not have its voxels examined any further. Thus the 
total number of voxels in this region just needs to be 
remembered and taken into consideration when the 
figure of merit is computed. This is explained with 
an example in Fig. 3. Here the plane I = c1 results 
in a partition with more voxels to its left (Icn* > 
T , , ~ ) .  The next plane choice is at z = c i ,  midway 
between c1 and the left bound. To determine the 
number of voxels on either side of 2 = ci , its enough 
to examine the voxels between the left bound and c l .  
The number of voxels to the right of c1 is rcnt and 
just needs to be remembered. A similar argument 
holds if lent < rcnf. 

The median-cut hierarchy built is a binary tree, 
also called a k-d tree [2][3]. Each node in this tree 
represents a set of voxels, stored in its subtree. One 
advantage of such a structure is that its height is 
smaller than an unbalanced tree, making it less ex- 
pensive to reach the leaf nodes where the voxels are 
stored. Secondly, our studies have shown that using 
bounding volumes in the internal nodes of the hier- 
archy is critical to its success. In this configuration, 
it is a very compact encoding of the original data for 
rendering purposes. 

4 Ray-tracing the k-d Tree 

A ray with arbitrary origin and direction can be 
traced efficiently using the k-d tree. The partition- 
ing planes and the bounding volumes in the hierar- 
chy help determine a set of voxels ordered along the 

path of the ray. More important, only voxels close 
to the path of the ray are identified, thus ignoring 
the bulk of the voxels in the tree. This is done with 
the help of bounding volume and partitioning plane 
intersections described as follows. 

Given a ray and the root of the tree, the ray is 
intersected with the bounding volume stored at the 
root node. If there is an intersection, then we need 
to determine if this is an internal node or a leaf node. 
If it is a leaf node, then the voxel at this node needs 
to be sampled and its contribution to the color of 
the ray is computed as described in section 2. On 
the other hand, if it is an internal node, we have two 
different cases: 

1. The ray lies entirely on one side of the parti- 
tioning plane. 

The ray crosses the partitioning plane. 2. 

These two cases can be easily determined by inter- 
secting the ray against the partitioning plane and 
comparing its parametric intersection value with 
those obtained from intersecting the region’s bound- 
ing volume. For case 2, the direction of the ray helps 
define the order in which the two regions need to be 
processed. It must be pointed out that no coordi- 
nates need be computed during this process. 

For case 1 we need to search the region contain- 
ing the ray segment (the ray has been clipped to the 
bounding volume of this node). For case 2,  we need 
to potentially examine both regions. However the re- 
gion closer to the ray origin is processed first, since 
the accumulated opacity might reach unity while ex- 
amining this region. This would make it unnecessary 
to examine the farther region. This process is recur- 
sively applied, until either the opacity accumulates 
to unity or there are no more regions (and hence, 
voxels) to examine. Figure 4 illustrates this. Here 
r l ( t ) ,  r2 ( t )  and r3(t) are three different rays. t l  
and t 2  are the parametric intersection points with 
the region, and t ,  the intersection with the parti- 
tioning plane z = c1. The top ray visits only one of 
the 2 regions, which is recognized by the fact that 
t l  < t and t 2  < t .  The actual region visited by 
the ray is determined by the 3: component of the 
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Scene 
Voxels Voxels 

Heart 2097152 94874 95.50 
Heart(s1iced) 2097152 51713 97.53 
SOD at 80 1091444 63533 94.17 
SOD at 100 1091444 27427 97.48 

X-cl 

Figure 4: Ray Traversal. 

ray direction. For the top ray, direction along the 
z axis is positive, i.e. z increases along the path of 
the ray, thus identifying region 1. Otherwise, the re- 
gion 2 will be visited. The middle and bottom rays 
visit both regions, indicated by t l  < t and t2 > t .  
The z component of the ray direction determines the 
traversal order. For the middle ray, the direction is 
positive, so the order is region 1 followed by 2, while 
it is 2 followed by 1 for the bottom ray because its 
z direction is negative. A similar strategy holds for 
identifying the traversal order when the partitioning 
dimension is y or z .  

5 Implementation and Results 

We have implemented our algorithm in C on an Ar- 
dent Titan 1500 running Ardent UNIX’ 2.1.1 and 
tested the implementation on three different test 
cases. The first case is an MRI data-set of a ca- 
daver heart that has been autopsied; during autopsy, 
cuts were made into the ventricles. The heart was 
in a bucket of preservative and was imaged from 
three orthogonal directions, 24 slices in XY, 20 slices 
in YZ and 16 slices in XZ plane. The slices were 
assembled and tri-linearly interpolated to obtain a 
128x128~128 data cube. Color plate 1 shows two 
different views of the heart. Next the heart is sliced 

UNIX is a trademark of AT&T Bell Laboratories 

I HIPIP I 262144 I 24628 I 90.61 I 
I 1 Timefmin.) I Memory 

Scene 

Heart (sliced) 
3.0 
1.3 1 HIPIP I 0.40 I 0.12 I 4.78 I 1.2 

Table 1: Experimental Results 

vertically (by a plane) and the voxels in front of the 
slicing plane are removed so as to get a better view 
of the heart chambers. Plate 2 shows two views after 
slicing. 

The next example is an electron density map of 
the active site of superoxide dismutase (SOD) en- 
zyme as determined by x-ray crystallography at 1.8 
angstrom resolution. The data-set consists of 116 
slices, each of size 97x97. Plate 3 shows one frame 
of an animation sequence when centered around a 
threshold of 80. At this level, teardrop shapes and 
clumps of atomic density are seen. At a level of 100, 
we start seeing individual atoms. 

The last example is a quantum mechanical cal- 
culation of one electron orbital of a four-iron, eight- 
sulphur cluster found in many natural proteins. This 
particular data-set is a high potential iron protein 
(HIPIP). The data represents the scalar field of the 
wave-function at each point. The resolution of the 
data is 64x64~64. Scientists are interested in seeing 
‘nodal’ surfaces, where the data value crosses zero. 
Plate 4 attempts to demonstrates this. 

Table 1 illustrates the reduction in voxel data af- 
ter the preprocess. In all cases, less than 10% of the 
total voxels are relevant to the final image. This 
demonstrates the importance of culling irrelevant 
voxels and working with only voxels of interest. In 

156 

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 27,2023 at 22:42:09 UTC from IEEE Xplore.  Restrictions apply. 



the heart images, slicing cause8 further culling of the 
data. All timings are for a resolution of 640x480, 
with one ray cast per pixel. In this implementation, 
we have not taken advantage of either vectorization 
or parallelization to optimize performance. 

We are presently adapting this technique to be 
useful for supercomputer users located remote from 
our center. Our strategy is to preprocess the data, 
whereby the voxels representing a given characteris- 
tic is identified. This set of voxels is then transmit- 
ted over the network to  the researcher’s workstation 
for rendering. In filtering the voxels of interest from 
the original three-dimensional grid, a large reduction 
in the number of voxels transmitted over the network 
will result a natural compression of the original d a t a  
set. Since building the k-d tree search structure usu- 
ally takes a fraction of the rendering time, it can be 
performed remote from the supercomputer center, 
thus making it unnecessary to transmit the search 
structure over the network. 

6 Conclusions 

We have presented an algorithm which uses space 
partitioning techniques to  support efficient volume 
rendering. A cull function prunes voxels from the 
original data  that are irrelevant to the character- 
istic being studied. A k-d tree based on median- 
cut space partitioning with bounding volumes at 
selected nodes of the hierarchy is used as a data 
structure for storing the relevant voxels so that they 
may be accessed efficiently during rendering. This 
data structure has important advantages for render- 
ing volumetric data: 

1. It provides a compact representation of vox- 
els. The partitioning planes in the hierar- 
chy help in determining a traversal order that 
identifies only voxels close to the path of each 
ray. The bounding volumes used in the inter- 
nal nodes of the hierarchy help in identifying 
rays that do not intersect any relevant voxel 
by simple bounding volume intersection tests. 
Since the tree can be traversed along the path 
of a ray, the ray trace can be terminated once 
the accumulated opacity reaches unity. 

2. 

3. The search structure is view independent. 
With the help of the partitioning planes, a 
traversal order can be determined for any ray 
with arbitrary origin and direction. Changes 
in viewing or lighting parameters require no 
change in the search structure. 

The choice and location of the partitioning 
planes is flexible. The plane that best bal- 
ances the voxel counts on either side of the 
partition is chosen. The plane can be aligned 
with any of the three dimensions. 

Since partitioning planes need to be located 
only on voxel boundaries, the entire plane 
search can be performed using integer arith- 
metic. 

4. 

5 .  

Surface modeling approaches to visualizing vol- 
umetric data work best when few surfaces are in- 
volved. Existing direct volume rendering approaches 
exploit the regular nature of three-dimensional grids 
through the use of incremental techniques for vol- 
ume traversal. These techniques are most efficient 
when the voxels of interest are distributed suffi- 
ciently densely through the volume. In the data that 
we have worked with, this has not been the case. 
Visualizing multiple features increases the number 
of voxels participating in the view, but there is a 
point beyond which visualizing multiple characteris- 
tics (thereby increasing the number of relevant vox- 
els) only makes it increasingly difficult to interpret 
the data. Our approach is targeted at producing 
images of intermediate complexity, i.e. those which 
may contain more than one type of surface but not 
so much relevant data that the majority of the vol- 
ume is involved. The technique should thus be com- 
plementary to existing direct volume rendering ap- 
proaches which work best on very dense data and 
surface modeling techniques which work best on data 
with few surfaces of interest. 
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