Representing Medical

Images

with Partitioning Trees

K.R. Subramanian and Bruce Naylor

AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract

Discrete space representation of images arise as a
consequence of the transducers between the physical
and informational domains. While discrete
representations (arrays of pixels) are simple, they are
also verbose and structureless. We present a method
of converting between a discrete space representation
to a particular continuous space representation, viz.
the binary space partitioning tree. The conversion is
accomplished using standard discrete space operators
developed for edge detection, followed by a Hough
transform to generate candidate hyperplanes that are
used to construct the partitioning tree. The result is a
segmented and compressed image represented in con-
tinuous space suitable for elementary computer vision
operations and improved image transmission/storage.
The method is more noise tolerant than methods
whose target is a topological representation, and more
adaptive than axis-aligned spatial partitioning
schemes. Affine transformations needed for interac-
tive manipulation are fast and edges do not blur with
enlargement of the image. Efficient algorithms are
known for spatial operations, such as masking/clipping
and compositing. We give several examples of
256x256 medical images for which we have estimated
the compression to range between | and 0.5 bitsipixel.

Introduction

A fundamental distinction in models of space is the
discrete-continuous dichotomy. The informational do-
main appears to be inherently discrete while the
physical domain is treated as being effectively contin-
uous. In geometric computation, discrete space repre-
sentations of sets and functions were initially intro-
duced as a by-product of the transducers needed to
convert between the physical and informational do-
mains. For example, MRI and CT devices detect elec-
tromagnetic energy at a single point in space at any
given moment. This generates a time continuos 1D sig-
nal which is sampled to yield a sequence of discrete
values.

Given this transducer led entry into discrete
space, the question arises as to whether the resulting
representation is necessarily the most suitable for ev-
ery kind of geometric computation involving images.
Modeling a finite region of d-space as a set of lattice

147

0-8186-2897-9/92 $03.00 © 1992 IEEE

points and representing this computationally as d-di-
mensional arrays provides a simple representation,
but one that is verbose and devoid of any set/function
dependent structure provided by higher-level but
more complex representations. Low level operations on
discrete space may have simple algorithms. But pro-
viding higher level operations, such as those required
by computer vision, usually requires increased ver-
bosity and may, because of a dependency upon image
structure, require more complex algorithms than ones
employing higher level descriptions. Discrete space op-
erations must also contend with aliasing.

Our view is this: while discrete space representa-
tions give an important methodology for geometric
computation, continuous space representations in
general provide a better fit, since the semantic domain
is intrinsically continuous. This thesis is supported by
the fact that to achieve semantically correct discrete
space algorithms typically entails viewing them as
discrete approximations of their continuous space
analogs. For example, affine transformations of discrete
space representations require the reconstruction (at
least conceptually) of a continuous function from the
sample points, transforming the function, and then
resampling it. The transformation process can be time
consuming for high resolution images, and since the
image is treated as a band-limited signal, edges arc
smeared when the image is enlarged.

Our approach is to instead focus on the problem of
converting from a discrete space representation to a
particular continuous space representation, the
binary space partitioning tree (also partitioning tree
or bsp tree). This process proceeds by discovering the
inherent structure in the image, yielding a
segmentation of the image into regions containing no
significant discontinuities, i.e. that contain only
"texture”. (Maximally connected components are
present only in the form of a convex decomposition;
however, it is possible to construct these components
from their convex parts using incidence relations
together with a graph search.) The segmentation
provides the opportunity for compression by using
more compact representations of the texture, and it
can also be a significant aid in certain recognition
problems. Matching could be facilitated in applications
where texture is not needed, since affine
transformations and set operations are very efficient
when using partitioning trees, the texture is highly

compressed, and moments are easily calculated. In
addition, a hierarchical representation is generated
that permits an efficient encoding as well as a form of
multi-resolution image representation.

Partitioning Trees

Binary space partitioning trees [Fuchs, Kedem and
Naylor 80] are defined via a generating algorithm, and
for this only one operation is required: binary parti-
tioning by a hyperplane of a region in a d-dimensional
continuous space, d > 0. Figure 1 illustrates this. Given
a homogeneous open region r, a hyperplane h that
intersects T is chosen using some criteria. Then h is
used to induce a binary partitioning on r that gener-
ates two new d-dimensional regions, r+ =rn h+
and r" =rn h", where h+ and h- are the positive
and negative open halfspaces of h respectively. Also,
generated is a (d-1)-dimensional region r® =r h,
called a sub-hyperplane (abbr. as shp). Thus r=r+ U
rrurl=(rn h*)u (rn b)u (rn h). Any of
these new unpartitioned homogeneous regions can
similarly be partitioned, and so on recursively. When
the process is terminated, the remaining unparti-
tioned regions, called cells, together with the sub-hy-
perplanes forms a partitioning of the initial region. In
figure 1, the cells are labeled with numbers and the
sub-hyperplanes with letters.

- +
’ o % oﬁ\o
h-
Initial region and tree Fjq; binary New tree
partitioning
N
B D
/N N\
/c\ 3 /E\
1 2 4
Spatial partitioning Binary tree
Constructing a partitioning tree
Figure 1

This process, when begun with d-space as the ini-
tial region, induces a structure on d-space in the form
of a hierarchical decomposition. A partitioning tree is
the computational representation of this process, and
its combinatorial/syntactic form is captured by a bi-
nary tree. This tree is simply the directed graph of an
asymmetric relation defined on the set of regions gen-
erated by this process, where r1 —-> ra if r3 was cre-
ated by a partitioning of rj. The tree also corresponds
to the graph of the partial ordering of the regions in-
duced by the subset relation. In addition, the tree can
be interpreted as a type of computation graph by in-

148

terpreting the arcs as intersection operations:
"moving” a set s contained in a region r and parti-
tioned by hyperplane h along a left arc from r to r-
can be interpreted as computing s h-, and similarly
the right arc computes s n h+. This interpretation
provides a set theoretic definition of any region r' as
the intersection of open halfspaces corresponding to
arcs on the path from the root to r'. In figure 1, cell-3
2-space N A- n B+. Consequently, if the initial re-
gion is a convex and open set, it follows that all regions
of the tree are convex and open.

Partitioning trees can represent functions whose
domain and range are continuous spaces of finite di-
mensions dj and d respectively: f:Xe 881 = Ye
S92, The partitioning tree partitions the domain into a
hierarchical collection of sub-domains. Within each
sub-domain a value-continuous function fj defines the
value of f within that sub-domain (typically, fi is de-
fined for all of S491 as well, although this is not essen-
tial). All points in 891 at which f is value-discontinuous
are contained within partitioning hyperplanes. The
function can be evaluated at any point X by following
the path in the tree to the cell ¢j that contains the
point and evaluating the fi(x). This is just the standard
method of inserting a point into a search tree, and is
commonly called point classification [Thibault and
Naylor 87].

Partitioning Tree Representation of Images

To convert from a discrete space representation of a
function to a partitioning tree representation, we need
to find all points in the function at which the function
is value discontinuous and then "absorb" them into
partitioning hyperplanes. In the context of image rep-
resentations, i.e. f : 2-space -> color-space, this
constitutes segmentation of the image into regions
containing no edges but only texture. The selection of
the individual fj for each subdomain used to represent
the texture is not a topic we will address here, since we
have only been able, up to now, to tackle the segmen-
tation component. Consequently, we are currently
using the simplest possible functions: constant-valued
fi corresponding to the mean value of the function in
the subdomain. This should not be construed as an in-
trinsic component of our methodology, however. The
general schema admits any function for an fj, and so
we would expect to exploit more interesting functions
in the future.

In [Thibault and Naylor 87], an algorithm was
given for converting from the boundary representa-
tion of a polytope to a partitioning tree representation.
We will use a modified version of this algorithm to in-
stead convert from a discrete representation to a
partitioning tree. The basic idea is this. We know that
the schema for representing functions has as a
necessary condition the requirement that all
discontinuities, i.e. boundary points, lie on the sub-
hyperplanes of the tree. Therefore, the hyperplane of

an edge must be among the set of partitioning
hyperplanes, if the boundary points of that edge are to
be contained in the sub-hyperplanes. This necessary
condition can be met by recursively choosing an edge
hyperplane and partitioning the b-rep by it, as given
in Algorithm I below.

Algorithm I
Brep_to_Bspt: Brep b -> Bspt T
{

IF b == NULL
THEN

T = a cell
ELSE

h = Choose_Edge_ Hyperplane(b)
{ b+, b-, b0 } = Partition_Brep(b, h)
T.faces = b0
T.pos_subtree = Brep_to_Bspt(b+)
T.neg_subtree = Brep_to_Bspt(b-)
END
}

We can employ this algorithm for converting from
discrete space if we can generate something compara-
ble to the b-rep representation. We could try to first
convert from a discrete representation to a b-rep di-
rectly, and then apply algorithm I to generate a tree.
But we claim that converting to a b-rep is more diffi-
cult than generating a partitioning tree directly.
Instead, what we will do is generate a finite set of
boundary points lying on the discrete lattice using
standard image processing techniques. To these we
apply a Hough transform in order to select candidate
hyperplanes, and then we "distribute” the boundary
points among these hyperplanes. This then is the input
to an algorithm using the same schema as algorithm I,
but with the b-rep data type replaced by a sub-hy-
perplane containing a list of boundary points. Figure 2
illustrates the general scenario.

2D Lattice Boundary Points

kY

Hough
Transform
i

Image
Processing
=

Discrete Space

Partitioning Tree Hyperplanes

X/

A Tree
A Bullding
N <=

Continous Space Continuous <- Discrete

Major steps in the conversion process
Figure 2
Edges are then approximated by boundary points.

However, we need not construct edges explicitly from

149

boundary points, but rather we can generate hyper-
planes from boundary points. This is a simpler task,
since it is not based upon the topological operation of
discovering connected components, a process which is
sensitive to noise. The only topological operation we
use is a local fixed-width neighborhood operation for
determining whether a given boundary point should
be treated as lying on a given hyperplane, as opposed
to some other hyperplane.

The schema illustrated in Figure 2 was first intro-
duced in [Rahda et al 91). In the work present here, we
demonstrate the application of this methodology to
medical images as well as providing several improve-
ments. The Hough transform has been augmented
with an iterative least-squares fit and a neighborhood
operation that together produce higher fidelity hy-
perplanes, leading to better quality trees. In addition,
we have incorporated ideas concerning the generation
of good trees based on cost models for the expected
case [Naylor 92], which we use in
Choose_Edge_Hyperplane() in Algorithm I. Unlike
previous partitioning tree construction heuristics, the
intrinsic hierarchical nature of trees have been ex-
ploited to provide an overtly multi-resolution form.
This yields better trees in terms of size, cost of spatial
operations, and degree of compression, and it reduces
or eliminates the need for the pyramidal based con-
version scheme in [Rahda et al 91].

Discrete Space Operations

The first step in the process is the discovery of discon-
tinuities in the geometric set. This takes the form of
generating a finite set of boundary points, each located
on the lattice upon which the discrete data is defined.
Currently, we accomplish this by applying standard
image processing techniques used for edge detection in
2D images. The processing pipeline is: initial noise com-
pensation, gradient generation, finding gradients
which are local maxima, and separating edge gradients
from texture and noise gradients (Figure 3).

Noise Gradlent Local Maxima
Filter Operator, Detection
‘ Hysteresis
Threshoidin

Image processing operations
Figure 3

Edges
Points

Various strategies have been developed for com-
pensating for noise in data. Since no stage of the pro-
cess can ecliminate noise induced artifacts, each stage
must in fact be noise tolerant. However, a common
first step is to apply a smoothing operator using, for
example, a Gaussian filter, that does no more than
distribute the "energy" due to noise about its local
neighborhood. However, being a simple convolution, it
also has the undesirable effect of blurring the edges
[Torre and Poggio 86], and so we only use it to the ex-

tent that the level of noise demands. Because our gen-
eral methodology is very noise tolerant, we need a
weak filter.

The second step is to apply a gradient operator to
the entire data set, resulting in a gradient defined at
each lattice point. For an analytically defined function,
the gradient is the set of partial derivatives, and so is
well defined. But for a discrete space representation,
this operation must be approximated, and there are a
number of ways of doing so. We have tried the differ-
ence operator, the central difference operator, the
Sobel operator (see, for example, [Ballard and Brown
82]) and Canny's edge operator [Canny 83]. Each has
its advantages and disadvantages, and we have no
definitive opinion yet about which to use, but we are
currently using Canny's.

From the discrete representation of the gradient,
we must identify those points whose gradient suggests
that they lie on edges. A standard technique is to as-
sume that such points have gradients that are local
maxima. Since the gradients arise from 1st deriva-
tives, this is of course equivalent to finding the zeros of
the second derivative. The operation for doing this is
called "non-maximum suppression” (see [Canny 83]). It
simply examines the local neighborhood of a gradient
to determine whether it is a local maximum or not.

The final step in the image processing pipeline is to
separate the remaining local maximum gradients of
texture from the edge points. One method for accom-
plishing this is called hysteresis thresholding [Canny
86]. The idea is separate the points by their gradients
initially into three groups: accepted edge points, po-
tential edge points, and rejected edge points. Points
from the second group will subsequently be accepted if
and only if they are connected to some point in the
first group. To do this classification, one computes a
histogram of the gradients, followed by the selection of
two thresholding values for separating the three
groups. The lower threshold is typically 80% of the
cumulative histogram (integral of the histogram),
while the high threshold is typically 2-3 times the low
threshold.

Hough tramsform

We now come to the step that provides the bridge
between discrete and continuous space: generating
hyperplanes from boundary points. The principal
method for this is the Hough Transform, or HT [Hough
62] [Duda and Hart 72] (see [Illingworth and Kittler 88]
for a survey containing 136 references). This is a
search method using a finite discrete space to repre-
sent all hyperplanes that may be incident with bound-
ary points; that is, points in Hough space correspond to
hyperplanes in image space. Discretizing and bounding
the Hough space means that only a finite number of
hyperplanes are considered, which is crucial to the
technique. In image space, hyperplanes are commonly
represented by the unit normal m and distance p from
the origin. The Hough space wuses p as a
parameter/dimension, but n is represented instead as
angles measured between the normal and coordinate

150

axes. In 2D, this is the angle 8,0 < 8 < &, measured from
the x-axis. The quantization chosen for these coordi-
nates is correlated to the quantization and noise of the
image space [Brown 83]. We chose p to be approxi-
mately the same as the lattice spacing, and we quan-
tize the angles into 1 or 1/2 degree units.

The idea of the HT is to count how many image
space points lie on any given image space hyperplane,
with the anticipation that hyperplanes with many
points are ones containing edges. We could for each
possible hyperplane simple go through the list of
points and determine coincidence with a dot product.
But for any given point, it is known a priori that it is
not coincident with most hyperplanes. So a less
expensive approach is to go in the reverse direction:
for each point enumerate all hyperplanes containing
the point. If the Hough space was continuous, then this
“enumeration” would be equivalent to the following: a
single point X in image space maps to a hypersurface in
Hough space; and conversely, this hypersurface
contains every Hough space point corresponding to an
image-space hyperplane incident with x. Since the
Hough space is represented discretely, we will, in
effect, scan-convert the hypersurface corresponding
to a particular x by stepping through the angles
throughout their entire range and determining p as a
function of X and the angles. In 2D, p = x cos 8 + y sin 8)
(Figure 4). We have extended this process slightly by
incorporating a hyperplane width 2o; that is, we vary
the value of p over a small interval, p + ® , where 1< ©
< 2. The motivation for this is that the discrete space
operators generate "fat" edges with width usually > 1.
Without a hyperplane width, only a subset of these
points would be treated as incident with the face's
hyperplane. Thus p can have a relatively high
resolution to achieve good positioning without
boundary points being missed. This also smooths
somewhat the quantitization of the Hough space.

cos 6+ sin 6

=2 sin 8

X

p=2 sin o

The Hough Transform
Figure 4

Since we want to use the HT to identify hyper-
planes containing faces, and we have previously com-
puted a discrete gradient for each boundary point, we
can limit the range of angles to lie within some neigh-
borhood of this gradient, as suggested in [Princen et al
89]. However, since this discrete gradient can be
rather poor in quality, we found it prudent to use a
relatively large neighborhood of almost 45 degrees,
instead of the much smaller neighborhood of ~22 de-
grees advocated in [Princen et all 89] in order to avoid
unintentionally excluding a point from being coinci-
dent with its "true" hyperplane.

We are able to use this much more conservative
gradient culling because we use in addition a neigh-
borhood operator. Image processing uses frequency as
its primary metaphor and convolution as its primary
operator. In geometry, many properties are defined in
terms of the structure of the e—neighborhood sur-
rounding a point. This defines whether a point is in the
interior, exterior or on the boundary, and if a bound-
ary point, then whether it lies in the relative interior
of a face, edge or vertex (in general, a k-face). When
considering incidence between a point X and a hyper-
plane h, we first examine the neighborhood of x re-
stricted to h. This allows us to introduce a degree of
topological sensitivity without sacrificing noise toler-
ance, since drop-outs will have a limited effect, and
noise induced isolated points can be detected and
eliminated.

If we consider an edge e as an open set relative to
its hyperplane of support e.h, then all boundary
points comprising e should have a dense e-neighbor-
hood, for some ¢, in e.h. Thus points with a sparse
neighborhood in some arbitrary h could not be edge
points, and so should not, for the purposes of edge
recognition, be treated as incident with h. This pre-
vents boundary points from an edge being considered
as incident with a hyperplane that only intersects but
does not contain e. Also, isolated points due to noise
are easily identified and eliminated, and so there is less
need for the Gaussian blurring mentioned above as
the first step in the image processing pipeline. In addi-
tion to eliminating points, we will, for retained points,
use the density of their neighborhood as a positive
weight when selecting hyperplanes. Consequently,
those hyperplanes which have many points with
dense neighborhoods will be favored over those with
less density.

The neighborhood must of course be approximated
in discrete space. We use a width 5 neighborhood and
its lattice points are found by scan-converting the
neighborhood. A measure, used subsequently to order
hyperplanes, is computed as a weighted sum over the
neighborhood, similar to convolutions. We currently
are using [1 2 4 2 1] as our weights. However, we can
also perform certain kinds of pattern recognition. For
example, the vertices of an edge, being shared by
other edges, constitutes an area in which the quanti-
zation seriously degrades the ability to reconstruct the
geometry using boundary points within that area.
However, the neighborhood operator can often rec-
ognize such vertex points, by for example detecting

151

that one or more of the points in the neighborhood are
missing (assuming no dropouts). The vertex points can
then be excluded from the reconstruction process.
Currently we define a vertex point to be one whose
neighborhood along a given hyperplane contains less
than 3 other boundary points. In figure 5, points
labeled with vl or el are respectively vertex and edge
points with respect to hyperplane H1, and similarly v2
are vertex points with respect to H2. Note that the
classification of boundary point lying at the
intersection of H1 and H2 is different for each
hyperplane. We can afford to ignore small features
since all k-faces, k < d-1, are defined in the partitioning
tree by the intersection of hyperplanes, and thus, we
only need to recognize edges.

Boundary point classification by neighborhood

operator.
Figure 5

The discrete Hough space is represented by a 2-
dimensional array, and for each point in Hough space,
we maintain a list of the boundary points which are
coincident with the corresponding image space hy-
perplane. We also maintain a measure of "goodness”
that is the sum of the measurements produced by the
neighborhood operator. While it has been common
when using the Hough transform to use the Hough co-
ordinates for the image space hyperplane, we want
greater fidelity than these quantized parameters can
provide. Consequently, we apply a least squares fit,
using floating point to the boundary points which
mapped to a single Hough point, to generate an image
space hyperplane with floating point coordinates.

After all hyperplanes have been generated, we are
now prepared to create the input to the tree con-
struction algorithm in the form of an ordered set of
sub-hyperplanes each containing incident boundary
points. Initially, the sub-hyperplanes will represent
the same set as the hyperplanes, but during tree con-
struction, the sub-hyperplanes will be subjected to
partitioning, an operation not defined on hyperplanes
(see [Naylor, Amanatides and Thibault 90] for repre-
sentation and generation of sub-hyperplanes). First,
the sub-hyperplanes are ordered by using the mea-
sure from the Hough array. This ordering favors sub-
hyperplanes with large numbers of boundary points
with dense neighborhoods. Then the boundary points
are distributed among the sub-hyperplanes by
partitioning the entire set of boundary points in the
order induced by the measure and associating a
boundary point with the first sub-hyperplane with

which it is incident. Any sub-hyperplane containing
no boundary points is immediately discarded.
Algorithm I can now be applied to this ordered list
of sub-hyperplanes, instead of b-rep edges, where
partitioning of a sub-hyperplane entails partitioning
its boundary points into negative and positive subsets
as well. Any time this partitioning produces a sub-hy-
perplane with no boundary points, it is discarded.

Attribute generation

One of the advantages of partitioning trees over tradi-
tional b-reps is the explicit representation of d-di-
mensional cells with which we can associate attributes
and so represent functions. After the tree is con-
structed from the boundary points, we must deter-
mine the attributes for each cell. To do this, we insert
all lattice points into the tree using the standard point
classification algorithm which determines the cell in
which each point lies. For each cell, its attributes are,
currently, the average of the attributes of lattice
points lying in that cell. This is implemented in the
usual way by keeping a running sum of the values
along with the number of points contributing to the
sum. After all lattice points have been inserted, the
average values for each cell can be computed in a final
pass through the tree. This, of course, introduces loss
of information. Better "fits" could be obtained with
more sophisticated methods; a simple alternative
would be to use least-squares fit to produce a linear
approximation.

Compression

Compression can be important if one wishes to store a
library of images or reduce transmission costs of im-
ages. To encode a tree, we first recall that any binary
tree can be linearized by a preorder traversal. In this
linearized format, one needs to distinguish between
internal and leaf nodes; for this, the first bit of each
record will do. The only information required at inter-
nal nodes are the hyperplane coefficients [p 8], and at
leaf nodes the value of the image within that cell. Given
the resolution of our source images (e.g. 256x256), 9-
bits for each coefficient is sufficient. The record for
each leaf node would occupy 9-bits, the first bit set to
1 and the remaining 8-bits being the value at that
node. Thus, this encoding would require 19 bits for
each internal node and 9 bits for each leaf node for an
average of 14 bits per node (since the number of leaf
nodes = 1 + the number of internal nodes).

Further compression could be obtained by
exploiting the tree hierarchy. For each internal node v
corresponding to a region r, we can easily compute the
mean value of the image in r. This is the weighted sum
of the values at the leaf nodes of the subtree rooted at
v, each weight being the area of a cell (normalized to
the area represented by the root of the tree).
However, instead of storing this average, we instead
store the difference between a node's value and its
parent's value. A small exponent can be associated
with these delta values, either explicitly or implicitly as

152

a function of the size of the region and/or depth in the
tree. Similarly, the hierarchy can be used to compress
the hyperplane coefficients; for example, the p of a hy-
perplane h can be normalized to the size of the region
partitioned by h. Altogether, this could reduce the size
of the encoding to an estimated 10 bits per node. (We
have pot yet implemented an encoder.)

A decoded version suitable for interactive display
is most easily accomplished using a boundary
representation of the image, i.e. a list of colored convex
polygons each as a list of vertices. These can be
synthesized easily from the basic tree representation
simply by classifying an initial polygon corresponding
to the image domain. This can be done with an
algorithm given in [Thibault and Naylor 87].

Examples

In the color plates, we show pictures of three different
data sets all obtained through UNC Chapel Hill. For the
first two pairs of pictures, the original discrete data is
on the left and the partitioning tree version on the
right. Picture 1 knee slice and Picture 2 head slice are
courtesy of Siemens Medical Systems. In Picture 3, we
have a horizontal cross-section through the nasal
passages of a head courtesy of North Carolina
Memorial Hospital (due to space limitiations, only the
partitioning tree representation is shown).

Finally, we have illustrated our claim of robust-
ness by taking the set of boundary points for the MRI
head (#2), and prior to the HT, randomly removing
20% percentage of points. While this injects some
visible degradation, we were still able to generate a
quite acceptable tree as shown in Picutre 2c.

The estimated compression for these examples is
given below.

Picture Name resolution type -~size bits/pixel
1 knee 256x152 MRI 7120 1.1
2 head 256x256 MRI 6150 0.9
3 brain 256x256 CT 3000 0.5

While these rates are attainable by alternative tech-
niques, such as the Discrete Cosine Transform and/for
Vector Quantization, what we have presented here
represents fairly early stages in the development of
our methodology. For example, we have from the
outset intended to exploit the hierarchical nature for
multi-resolution representations, but have yet to fully
develop this. Assuming this is successful, then our
coding should be compared to other multi-resolution
methods. Also no encoder/decoder has been
implemented so we do not really know what the
compression will be. Additionally, our numbers are for
256x256 images. We predict, and have some data to
indicate, that tree size will grow linearly with increase
in linear resolution. If so, we should get twice the
compression rates with 512x512 images. However,
one is getting more than compression, since the image
is being segmented and represented with a search
structure, i.e by a tree. This should be crucial for
computer vision applications that attempt some form
of automated image analysis.

Comparison to Quadtrees

Our method provides a schema for encoding images in
continuous space that is an alternative to quadtrees,
which are essentially discrete space entities. There
discrete space nature is evident when applying affine
transformation. Transforming quadtrees entails trans-
forming the cells as if they were continuous space
entities, resampling them at lattice points, and then
constructing a new quadtree from the resulting
discrete space representation. In contrast, the
structure of partitioning trees are unaffected by affine

transformations, as they are true continuous space
representations. The time required to transform a
partitioning tree is typically much less than that

required by quadtrees or array representations, and
does not require maintaining both an original and a
transformed instance in order to avoid accumulation
of quantization errors. And as noted earlier, enlarging
the image does not blur edges (or alternatively
generate huge pixels).

Another difference is the presence in partitioning
trees of arbitrarily oriented hyperplanes. This allows
one to represent an edge exactly rather than by a
discrete approximation, i.e. as a set of pixels (quadtree
cells). This leads to partitioning trees that are in gen-
eral smaller than the corresponding quadtree. Similar
arguments can be made when comparing k-d tree
based approaches, such as [Subramanian and Fussell
90], to partitioning trees. For example, a quadtree for
the three data sets are of approximate size 87k, 77k
and 33k respectively, yielding compression factors of
8.3, 7.3 and 3.1 bits/pixel, assuming 1-byte per leaf
node and one bit per internal node. However, this is a
lossless encoding, which is not the function we have
represented with partitioning trees. So if we instead
generate the quadtree for exactly the same function,
the respective numbers are about 32k, 28k and 8k for
compression factors of 3.0, 2.7 and 0.8. Thus
partitioning trees appear to be 3 to 1.5 times better on
these examples.

References

[Ballard and Brown 82]
Ballard and Brown, Computer
Hall (1982).

[Brown 83}
C.M. Brown, "Inherent Bias and Noise in the Hough
Transform”, IEEE Transactions on

Vision, Prentice

Pattern

Analysis and Machine Intelligence, vol. 5, pp.
87-116, (1983).
[Canny 83]

JF. Canny, "Finding Edges and Lines in Images”,
Artificial Intelligence Lab, MIT Technical Report
720, 1983.

[Canny 86]
J.F. Canny, "A Computational Approach to Edge
Detection”, IEEE Transactions on

Pattern

153

Analysis and Machine Intelligence, Vol. 8, pp.
679-698, (November 1986).

[Duda and Hart 72]
R.O. Duda and P.E. Hart, "Use of the Hough
Transformation to Detect Lines and Curves in
Pictures”, CACM, Vol. 15, pp. 11-15, (1972).

[Fuchs, Kedem, and Naylor 80]
H. Fuchs, Z. Kedem, and B. Naylor, "On Visible

Surface Generation by a Priori Tree
Structures”, Computer Graphics, Vol. 14(3), pp-
124-133, (June 1980).

[Hough 62]

P.V.C. Hough, "Method and Means for Recognizing
Complex Patterns”, U.S. Patent 3069654 (1962).

[Illington and Kittler 88]
J. Iilington and J. Kittler, "A Survey of the Hough
Transform” Computer Vision, Graphics, and
Image Processing, vol. 44, pp. 87-116, (1988).

[Naylor 92]
Bruce F. Naylor, "Constructing Good Partitioning
Trees", unpublished manuscript.

[Naylor, Amanatides and Thibault 90]
Bruce F. Naylor, John Amanatides and William C.
Thibault, "Merging BSP Trees Yields Polyhedral Set
Operations", Computer Graphics Vol. 24(4), pp.
115-124, (August 1990).

[Princen et al 89]
J. Princen, H. Yuen, J. Illingworth and J. Kittler, "A
Comparison of Hough Transform Methods”, Proc, of
IEEE International Conference on Image Processing
and its Applications, pp. 73-77, (July 1989)..

[Radha et al 91]
Hayder Radha, Riccardo Leonardi, Martin Vetterli
and Bruce Naylor, "Binary Space Partitioning Tree
Representation of Images”, Visual
Communications, Vol. 1, (1991).

[Subramanian and Fussell 90]
K.R. Subramanian and Donald S. Fussell, "Applying
Space Subdivision Techniques to Volume
Rendering”, Proceeding of Visualization '90, (Oct.
1990).

[Thibault and Naylor 87]
W. Thibault and B. Naylor, "Set Operations On
Polyhedra Using Binary Space Partitioning Trees”,
Computer Graphics Vol. 21(4), pp. 153-162,
(July 1987).

[Torre and Poggio 86]
V. Torre and T. Poggio, "On Edge Detection”, IEEE

Transactions on Pattern Analysis and
Machine Intelligence, Vol. 8, pp. 147-163,
(February 1986).

Picture 1a: Knee slice. Picture 1b: Knee slice.

Picture 2a: Head slice. Picture 2b: Head slice.

Picture 2¢c: Head slice. Picture 3: Horizontal cross section, nasal passages.

(See color plates, p. CP-18.)

154

