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Converting Discrete Images
to Partitioning Trees

Kalpathi R. Subramanian and Bruce F. Naylor

Abstract —The discrete space representation of most scientific datasets (pixels, voxels, etc.), generated through instruments or by
sampling continuously defined fields, while being simple, is also verbose and structureless. We propose the use of a particular
spatial structure, the binary space patrtitioning tree, or, simply, partitioning tree, as a new representation to perform efficient
geometric computation in discretely defined domains. The ease of performing affine transformations, set operations between
objects, and correct implementation of transparency (exploiting the visibility ordering inherent to the representation) makes the
partitioning tree a good candidate for probing and analyzing medical reconstructions, in such applications as surgery planning and
prostheses design. The multiresolution characteristics of the representation can be exploited to perform such operations at interactive
rates by smooth variation of the amount of geometry. Application to ultrasound data segmentation and visualization is proposed.

The paper describes methods for constructing partitioning trees from a discrete image/volume data set. Discrete space
operators developed for edge detection are used to locate discontinuities in the image from which lines/planes containing the
discontinuities are fitted by using either the Hough transform or a hyperplane sort. A multiresolution representation can be
generated by ordering the choice of hyperplanes by the magnitude of the discontinuities. VVarious approximations can be obtained
by pruning the tree according to an error metric. The segmentation of the image into edgeless regions can yield significant data
compression. A hierarchical encoding schema for both lossless and lossy encodings is described.

Index Terms —Partitioning trees, BSP trees, space partitioning, miltiresolution representations, image reconstruction, image

coding, scientific visualization, MRI visualization.

1 INTRODUCTION

ISUALIZATION of scientific data arising from simula-

tions or experimental observations has become an im-
portant means to analyze, comprehend, and gain insights,
given the massive amounts of data that are generated, the
critical nature of these applications, and the availability of
computer graphics technology to aid the process. A key
capability that is required of this process is the ability to
interactively probe and examine the data under the control
of a user. When the data consists of multiple overlapping
structures, as in medical imaging reconstructions, the abil-
ity to make objects transparent provides a way to under-
stand the complex spatial relationships between different
materials and the interfaces between them.

While viewing medical reconstructions at interactive
speeds is possible with current technology, what is required
is the ability to efficiently perform spatial operations on
them. We list three potential applications:

Surgery Planning

Computer assisted virtual surgery allows rehearsals of an
upcoming surgery. For this, the portion of the anatomy that
relates to the surgery is first imaged (using CT, MRI, etc.)
and a model reconstructed using visualization algorithms.
The system should then permit the surgeon to create (or

* K.R. Subramanian is with the Department of Computer Science, The Uni-
versity of North Carolina at Charlotte, Charlotte, NC 28223.
E-mail: krs@mail.cs.uncc.edu.

¢ B.F. Naylor is with Spatial Labs Inc., 371 Finch Lane, Bedminster, NJ
07921. E-mail: naylor@spatial-labs.com

For information on obtaining reprints of this article, please send e-mail to:
tveg@computer.org, and reference IEEECS Log Number 105391.

select) appropriate scalpels or instruments to perform inci-
sions (cutaways) on the model. The resulting cutaways
should be displayed in real time, along with quantitative
information, such as depth or width of the incision; also
useful would be the ability to record a virtual surgery for
later playback. Finally, tools should be provided to evaluate
each operation as it is performed.

Prostheses Design

In this application, the system should permit a prosthetic
device (or implant) of the required shape and size to be
designed. The model into which the device is to be inserted
should then be built again, through a medical imaging pro-
cedure followed by model reconstruction. The system
should then allow the designer to interactively fit the im-
plant into the model. Facilities for evaluating the fit should
be provided, which could result in modifications to the im-
plant geometry. A more sophisticated system would relate
the geometry of the prosthetic device and the socket pa-
rameters to perform stress analysis, say, using finite ele-
ment modeling techniques.

Nondestructive Testing

The application domain here is industrial inspection of ma-
chine parts for detection of cracks or fractures. CT is the
primary imaging modality, as hard surfaces are easily visi-
ble under x-ray radiation. The surfaces of the part can be
reconstructed using a variety of algorithms. As in the pre-
vious two examples, the ability to interactively explore the
surface for defects would significantly enhance the process,
especially when there are interior surfaces that are obscured
by the outer surfaces.
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All of these applications involve interaction with a
model generated from the discrete data. In each case, the
user of the system needs to use a suitably designed tool
(scalpel or the implant in the medical applications) against
the model. In the first application, the result of using the
scalpel is the generation of a cutaway (whose geometry
depends on the path of the scalpel), while in the second, the
prosthetic device is being used as a tool to determine the
geometry of the cutaway. Both of these cases can be han-
dled by performing a set operation between the tool and the
model geometry. As these operations can occur in the inte-
rior sections of the model containing multiple overlapping
layers of different materials, making the model transparent
is an effective way to aid and clarify such operations in 3D.

Making objects transparent serves two purposes,

1) allow interior features of a model to be revealed
without removing the outer layers, and

2) examination of boundaries or interfaces between ad-
joining materials.

In the context of probing discrete images/volumes, trans-
parency is a very desirable capability, especially when used
in conjunction with cutaways. A probe, such as a transpar-
ent cube could be used to explore the model (using a mouse
or a suitable input device). When the probe is in contact
with the model, the space intersected by the probe could be
removed and the user presented with a view of the
boundaries of the clipped cavity. Interactively controlling
the probe (via affine transformations) makes this process all
the more intuitive and provides an environment that could
be used for research, instructional or clinical purposes for
rapid exploration of medical reconstructions.

1.1 Difficulties with Current Representations

The boundary representation (or brep) used in current
graphics systems (polygonal patches, for example), while
adequate for hardware assisted rendering and interactive
viewing, is inefficient for performing spatial operations, as
the model is represented simply as a list of primi-
tives/objects. Set operations between two breps is usually a
complicated operation, requiring extensive case analysis.
Almost all graphics systems use the z-buffer algorithm to
compute the visible surface, primarily because the algo-
rithm is simple and can be implemented in hardware.
While all primitives will need to be scan-converted regard-
less of whether they are visible or not, there is no necessity
to order them, unlike most other visible surface algorithms.
However, this poses a difficulty in correctly rendering
transparent objects, which do require objects to be sorted by
depth, increasing the rendering complexity to O (n In n).
Integrating transparency into the z-buffer algorithm is
difficult. The work of Mammen [20] does propose such a
method, requiring several additional buffers for storing
pixel attributes and multiple passes to render all transpar-
ent pixels correctly. Transparency can also be implemented
via ray casting, but this method is expensive and non-
realtime, as each new view requires ordering the objects in
depth along each ray. Hierarchical data structures such as
octrees [16], k-d trees [14] or BSP trees [27] can be used to
accelerate this process, but the inability to exploit conven-

tional graphics hardware makes it unattractive to interac-
tive applications. An alternative to this is to use the alpha
channel (that stores the opacity at each pixel) available in
middle and high end graphics systems and use compositing
methods [29]. Here again, objects need to be maintained in
depth order, resulting in the same inefficiencies of ray
casting. For instance, Carpenter’s alpha buffer method
maintains polygonal fragments clipped to each pixel in
depth order [5].

With the difficulties in supporting transparency, the al-
ternative is to perform cutaways of reconstructions to re-
veal interior structures. Current visualization systems per-
mit only planar cutaways, which are ineffective and very
unsatisfactory for applications such as those listed above or
those that require a form of x-ray vision for probing the
data. Using a simple object such as a cube with transpar-
ency is a visually more effective means to understanding
3D structure than planar cutaways of opaque objects. Ide-
ally, what is desirable is a system or representation that can
efficiently perform cutaways of arbitrary geometry, detect
collisions between objects, support transparency and affine
transformations on the model. All of these can be accom-
plished through variants of geometric set operations.

Discrete space structures such as quadtrees and octrees
[35], [34] can be used to augment the brep’s lack of struc-
ture, but affine transformations on such structures require
resampling or tree reconstruction after each operation, cur-
tailing performance. For instance, rotating an object repre-
sented by an octree by any angle other than a multiple of 90
degrees will require a new octree to be built to represent
the object, as the partitioning planes in the transformed tree
will no longer be axis-aligned. As described in detail in [34],
the procedure requires deriving the boundary of the octree
regions (for instance, via chain codes), transforming the
polygonal outlines and then constructing the target octree.

An alternative to this is to use voxelization techniques to
represent all of the geometry [43], [13]. This permits simple
algorithms for performing set operations between objects.
The main difficulty is in performing affine transformations,
suffering the same disadvantages of quadtrees/octrees. In
addition, voxel representations are verbose and have to
contend with aliasing artifacts. Operations that require a
model search, as is needed in operations such as object
picking or collision detection are inefficient and difficult to
perform at interactive speeds.

1.2 The Partitioning Tree Approach

A spatial structure that has been in development since the
late seventies is the binary space partitioning tree, or simply,
partitioning tree or bsp tree. The earliest use of partitioning
trees was in computing the visible surface in polyhedral
environments [8]. As the tree provided the means to gener-
ate view-dependent orderings of the polygons in back to
front order, this was advantageous in interactive 3D view-
ing applications without the need for a z-buffer. Since then
partitioning trees have evolved into a representation for
solid models [23] and efficient tree algorithms have been
developed for performing geometric computation. Three
important capabilities make partitioning trees attractive
from a computational standpoint:
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1) Affine transformations on objects represented via parti-
tioning trees can be performed with great ease.

A partitioning tree can be transformed by any affine
transformation M, by simply transforming its hy-

1

perplanes by M.~ T, the transpose of the inverse of

M, [9]. Besides being fundamental to viewing, this

property is crucial for interactive probing, as is the
case for the applications stated at the beginning of this
section.

2) Visibility priority orderings can be generated from any
viewpoint.

Partitioning tree representations allow priority or-
derings of objects to be generated in O(n) time, as op-
posed to O(n In n) for breps. In addition to the advan-
tage of visible surface determination without the need
for a z-buffer, it also allows transparent objects to be
rendered correctly in linear time.

3) Intersections between objects can be calculated efficiently.

Both collision detection [24] and geometric set opera-
tions [40] are efficiently calculated by exploiting the
tree structure; by representing the objects as individ-
ual trees, both operations reduce to merging the two
object trees [26]. In general, each view is generated by
dynamically merging transformed instances of the
object trees prior to rendering. Picking is imple-
mented by casting a ray into the environment and de-
termining the first object intersection, which can be
performed in logarithmic time. Clipping also reduces
to an intersection operation, between the view vol-
ume and the object environment.

Partitioning trees with hyperplanes in their interior
nodes and continous functions in their cells (to be de-
scribed in detail in Section 2) are a sufficient representa-
tion, not requiring the explicit representation of the bound-
ary. All of the computation is performed within a single
unified representation, hence, it is sufficient to perform a
single representation conversion at the outset, and all spa-
tial operations are efficiently performed within the tree
representation. These features of partitioning trees make it
a good candidate for probing discrete images and volumes.
Hence our motivation to perform a representation conver-
sion from a discrete set (images and volumes) to a parti-
tioning tree.

In this article, we focus on the problem of converting
from a discrete space representation to a partitioning tree.
This process proceeds by discovering the inherent structure
in the image, yielding a type of segmentation into regions
containing no significant discontinuities, i.e., that contain
only texture. The segmentation provides the opportunity
for compression by using more compact representations of
the texture. Compression is important whenever large
amounts of data need to be transmitted or archived. The
tree representation can be used to generate lossless or lossy
encodings of the discrete data, depending on the applica-
tion (for instance, broadcast TV would use lossy encodings
for real time transmission, while medical applications
would require lossless encodings).

The tree representation can also be a significant aid in
certain recognition problems. Matching could be facili-
tated in applications where texture is not needed
(inspection of parts on an assembly line, for example) and
only the object boundaries are relevant. Ease of perform-
ing affine transformations assists in generation of shapes
or templates for such applications, while set operations
can be used to recognize the shape of the objects. In this
case, the tree can use a highly compressed representation
of the image texture, or even ignore it. Further, the global
nature of our conversion scheme makes the tree represen-
tation highly tolerant to noise; boundaries can be ex-
tracted with high confidence even in the presence of con-
siderable noise (refer to Section 5.3), that can result in the
introduction of false edge points and/or removal of small
features. This allows boundaries to remain sharp without
the necessity of excessive smoothing. This can be ex-
ploited in segmenting clinical ultrasound images; these
tend to be low contrast noisy images, possessing a variety
of artifacts. Traditional segmentation methods, such as
region or edge based methods and clustering techniques
do not work well with ultrasound images [33].

In addition, our method of constructing the partitioning
tree provides a kind of multiresolution representation in
which various levels are selected by pruning the tree ac-
cording to an error metric. This can be exploited for interac-
tive viewing by using the simpler coarse level representa-
tions for selecting a view quickly, followed by a more
lengthy but higher quality rendering at a higher resolution
(using scan-conversion or ray-tracing). This is somewhat
analogous to the adaptive refinement in [1] except that we
are varying the amount of geometry involved rather than
the complexity of the shading calculations. Combined with
the capability of performing intersections, a “probe” or
“microscope” modeled by a simple transparent polyhedron
(e.g., a cube) can be employed to interactively select sections
of the data for high resolution rendering with transparency,
while the remainder is at a coarse resolution and opaque.
Such combinations of analytic objects with sampled data
requires no additional effort since all sets are represented
using a single schema (i.e., partitioning trees), obviating the
need for hybrid algorithms such as those in [17].

An earlier example of a representation conversion from
discrete to continuous space in 3D is the “marching cubes”
schema, pioneered in [28] and applied to 3D medical data
in [19], where the target continuous space representation is
a variety of boundary representations (in particular, a set of
triangles specified by vertices). The differences between this
and our approach include,

1) our method detects discontinuities, not just contours,
and hence represents the entire set; subsets of the
function (for instance, contours or 2D slices from 3D
volumes) can be generated by only using the relevant
boundary points.

2) ours is inherently multiresolution,

A schema much more similar to ours is that of [10], in which
a tetrahedral decomposition is used that admits a visibility
ordering, and each tetrahedron (analogous to our convex cells)
is scan-converted so as to incorporate proper integration
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(@) Initial Region and Tree

(c) Spatial Partitioning and Binary Tree

Fig. 1. Partitioning tree construction.

of transmittance. This approach, as compared to ours, lacks
multiresolution rendering as well as set operations.

Partitioning tree schemas have, in fact, been used to repre-
sent volume data, although only the axis-aligned variety. In
[37], volume rendering via ray-tracing is accelerated by first
using a k-d tree to partition the data. Bintrees [17], octrees
[42], [15] and pyramidal structures [18], [6] have also been
used. However, the generality of partitioning trees permits
creating a more adaptive representation when compared to
discrete space structures such as octrees; since partitioning
trees have no restrictions on hyperplane orientation, discon-
tinuity representation is usually more accurate (a polygon is
exactly represented, not discretized). This feature is essential
for constructing a multiresolution representation; applying
general affine transformations to rotate and translate objects
precludes restrictions to axis-aligned hyperplanes.

The schema we will describe was first introduced in [32]
and refined in [39] for 2D images. In the work presented
here, we extend the methodology to 3D volumetric data
(with a new scheme for hyperplane generation) and intro-
duce multiresolution tree pruning using least-squares fit
linear approximations of the image within a region of the
tree. We also demonstrate for the first time the use of such
trees in interactive environments.

2 PARTITIONING TREES

Binary space partitioning trees [8] are defined via a gener-
ating algorithm, and for this only one operation is required:
binary partitioning of a region by a hyperplane in a d-
dimensional continuous space, d > 0. Fig. 1 illustrates this.
Given a homogeneous open region r, a hyperplane h that
intersects r is chosen using some criteria. Then h is used to
induce a binary partitioning on r that generates two new d-
dimensional regions, r™ = r N h"and r =r N h~, where h*
and h™ are the positive and negative open halfspaces of h
respectively. Hence, r=rf Ur-ur’=(rnhhu rnh?) U
(r N h). Also generated is a (d — 1)-dimensional region =
r N h, called a subhyperplane (abbr. as shp, represented by
the bold lines in Fig. 1c). Any of these new, unpartitioned
homogeneous regions can similarly be partitioned, and so

on recursively. When the process is terminated, the remain-
ing unpartitioned regions, called cells, together with the sub-
hyperplanes form a partitioning of the initial region. In
Fig. 1, the cells are labeled with numbers and the subhyper-
planes with letters. If the initial region is a convex and open
set, then all regions of the tree are also convex and open.
Partitioning trees can represent functions whose domain

and range are continuous spaces of finite dimensions d; and
d, respectively: f:X e % =Y es®. The partitioning tree
partitions the domain into a hierarchical collection of sub-

domains. Within each subdomain, a function f;, which is
typically value-continuous, defines the value of f within

that subdomain (typically, f; is defined for all of s% as well,

although this is not essential). Points in s% at which f is
value-discontinuous are contained within partitioning hy-
perplanes. The represented function can be evaluated at

any point x by following the path in the tree to the cell ¢;

that contains the point [22] and evaluating f; (x). This path
following is just the standard method of inserting a point into
a search tree, and is commonly called point classification.

3 THE CONVERSION ALGORITHM

To convert from a discrete space representation of a func-
tion to a partitioning tree representation, we need to find
points in the domain at which the function is value-
discontinuous and then “absorb” them into partitioning
hyperplanes. In the context of discrete sets (2D images or
3D volumes), this constitutes segmentation of the image
into regions containing no significant discontinuities, but
only texture. The first part of the conversion algorithm will
determine the points representing discontinuities and asso-
ciate them with partitioning hyperplanes (lines in 2D and
planes in 3D). These hyperplane candidates (along with
their point sets) will then be input to a tree construction
algorithm. In [40], an algorithm was given, adapted from
[8], for converting from the boundary representation of a
polytope to a partitioning tree representation. We will use a
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Fig. 2. The conversion process.

modified version of this algorithm to instead convert from a
discrete representation to a partitioning tree. The basic idea
is this. We know that the schema for representing functions
has as a necessary condition that all significant discontinui-
ties lie on the subhyperplanes of the tree. Therefore, the
hyperplane of any facet (edge in 2D or face in 3D) must be
among the set of partitioning hyperplanes if the boundary
points of that facet are to be contained in the subhyper-
planes. This necessary condition can be met by recursively
choosing a partitioning hyperplane and partitioning the
candidate hyperplane’s point set, as illustrated in Algo-
rithm 1.

HpCandidateSet«—DiscreteSet_to_HpCandidateSet
(DiscreteSet dset,Operator dset_op)
{
PointSet boundary_pts;
Bspt T;
HpCandidateSet
cand_set;

boundary_pts =
GetPoints_DiscreteSet (
NonMaxSuppress_DiscreteSet (
Gradient_DiscreteSet (
Smooth_DiscreteSet (dset, dset_op), dset_op)),
dset_op);

cand_set = Get_HpCandidateSet (boundary_pts, dset);
T = HpCandidateSet_to_Bspt (cand_set);
}

Bspt«—HpCandidateSet_to_Bspt (HpCandidateSet cand_set)
{
if cand_set == NULL
T =acell;
else
{
hp = ChooseCandidate_Hyperplane (cand_set);
{pos_cand_set, neg_cand_set, on_cand_set} =
Partition_HpCandidateSet (cand_set, hp);
T.faces = on_cand_set;
T.pos_subtree = HpCandidate
Set_to_Bspt(pos_cand_set);
T.neg_subtree = HpCandidate
Set_to_Bspt(neg_cand_set);
}
}
Algorithm 1: DiscreteSet_to_Bspt: DiscreteSet dset —Bspt T

g —_— —><—>
I~

Hyperplanes Partitioning Tree

Tree
> Building

Since our input domain is a discrete image, we will need
to generate something equivalent to a b-rep; using standard
image processing operators, we accomplish this by deter-
mining the set of points that correspond to discontinuities
in the image. These boundary points are then “distributed”
among a set of candidate hyperplanes. Two different
schemes have been explored to perform this operation,

1) application of the Hough transform and,

2) sorting the gradient vectors of each discrete point and
grouping hyperplanes close to each other (gradient
vector at each lattice point coupled with the point’s
location defines a hyperplane).

Once a set of hyperplanes have been generated, Algorithm 1
can be employed to perform the recursive partitioning with
the difference that point-sets are partitioned across each
hyperplane in contrast to a b-rep. The final step is to calcu-
late attributes (for instance, material color) for each tree cell.
Fig. 2 illustrates the general scenario.

3.1 Discontinuity Detection

The first step in the process is the discovery of discontinui-
ties. For this, we identify a subset of the lattice points to be
treated as boundary points. This is accomplished by ap-
plying standard image processing techniques used for edge
detection in 2D images. The processing pipeline is: noise
compensation, generating gradients, determining those gra-
dients which are local maxima, and separating edge gradi-
ents from texture and noise gradients, as illustrated in Fig. 3.

Noise Gradient Local Maxima

Filter Operator Detection
Boundary Hysteresis
Points Thresholding

Fig. 3. Image processing operations.

Various strategies have been developed for compensat-
ing for noise in data. A common first step is to apply a
smoothing operator using a Gaussian filter (with a std. de-
viation = 1 or 0.75 as needed). However, being a convolu-
tion, it also has the undesirable effect of blurring the
edges [41], and so we only use it to the extent that the level
of noise demands (currently user defined). Because our
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general methodology is relatively noise tolerant, we can use
a sharper filter.

The second step is to produce a gradient at each lattice
point by application of a gradient operator to the entire
data set. For this we use the Canny edge operator [3], which
is a separable operator (i.e., dimension independent, appli-
cable to each dimension separately and in any order). Its
form is:

X Y

Fig. 4. The canny edge detector.

We must now identify those points whose gradient sug-
gests they lie on edges. A standard technique for this is to
assume that such points have gradients that are local
maxima. Since the gradients arise from first derivatives, this
is equivalent to finding the “zero-crossings” of the second
derivative, and is called “nonmaximum suppression” [3].
For a given lattice point with gradient g, two gradient
magnitude values are calculated along the direction of g
by applying linear interpolation to the gradient magnitudes
at the neighboring lattice points, as illustrated in Fig. 5. If
both of these magnitudes are lesser than the magnitude of
g, then we have identified a zero-crossing, and so a local
maximum.

The final step in the image processing pipeline is to sepa-
rate the local maximum gradients of edge points from tex-
ture points. One method of accomplishing this is hysteresis
thresholding [4]. This separates the points by their gradient
magnitudes into three groups (as illustrated in Fig. 5):
strong/accepted edge points, potential edge points, and
rejected edge points. Points from the second group will
subsequently be accepted if and only if they are topologi-
cally connected to some point in the first group. This re-
quires the user to specify two thresholds, interpreted as a

i1, ap) ittt
@ O o—0O
O &) O
o P..
A1 Ry
O—6—0 O

G Gi,)

Fig. 5. Nonmaximum suppression.
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percent of the cumulative histogram of the gradient magni-
tudes, to distinguish the three groups. To do this, one first
computes the histogram of the gradients, then the cumula-
tive histogram (integral of the histogram), followed by the
conversion of the percent values into actual gradient mag-
nitudes. We can now begin the search process by first
marking every lattice point as unvisited. Then the process
goes through the set of lattice points, initiating a depth first
search at any unvisited point whose gradient magnitude is
above the high threshold. Any point visited by this is
marked, so as to avoid redundant computation. The
thresholds must be selected for each data set by a user
driven iterative process; the high threshold is typically 70
percent of the cumulative histogram while the low thresh-
old is around 50 percent. We provide interactive display of
the boundary points to facilitate selecting thresholds.

As mentioned earlier, a popular way to study 3D medi-
cal datasets is through the visualization of constant density
surfaces called isosurfaces. We accommodate this in our
representation by generating only the boundary points that
correspond to the contour surface. The major difference
here is we only represent a subset of the function. Boundary
points on the contour surface are determined by perform-
ing an intersection of the contour surface with each voxel
(similar to the marching cubes algorithm) using linear in-
terpolation to estimate the intersection points. A gradient
vector is then computed for each boundary point, again by
linear interpolation from the gradients at the two lattice
points on the edge containing the boundary point. However,
we do not generate polygonal elements at each voxel; in-
stead, the boundary points are directly converted into candi-
date hyperplanes, as described in the following section.

For generating boundary points corresponding to isosur-
faces, the only operations that need to be performed on the
volumetric data is smoothing to compensate for noise, fol-
lowed by the computation of the gradient at the lattice
points.

3.2 Generating Candidate Hyperplanes

We now come to the step that provides the bridge between
discrete and continuous space: generating hyperplanes
from boundary points. We have experimented with two
different approaches, (1) using the Hough transform, and

Cumulative
Gl Histogr:
Low
Threshold N
~ High
Threshold
1] Il 1
Gray Level
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Fig. 6. The Hough transform.

(2) by sorting the boundary points on their gradient vector
coefficients, followed by a clustering procedure.

3.2.1 Hough Transform

The Hough Transform, or HT [11], [7], [12] is a search
method that uses a finite discrete space to represent all hy-
perplanes that may be incident with boundary points; that
is, points in Hough space correspond to hyperplanes in im-
age space. Discretizing and bounding the Hough space
means that only a finite number of hyperplanes are consid-
ered, which is crucial to the technique. In image space, hy-
perplanes are commonly represented by a unit normal f
and distance p from the origin. The Hough space uses p as a
parameter/dimension, but f is represented instead as an-
gles measured between the normal and coordinate axes. For
3D, there are two angles ¢, 0< ¢<27,and 6,0< 6< «.

The idea of the HT is to count how many image space
points lie on any given image space hyperplane, with the
anticipation that hyperplanes with many points are ones
containing edges/faces. We could for each possible hyper-
plane simply go through the list of points and determine
coincidence with a dot product. But for any given point P,
it is known a priori that it is not coincident with most hy-
perplanes. So, a less expensive approach is to go in the re-
verse direction: for each point enumerate all hyperplanes
containing P.

Since the Hough space is represented discretely, we will,
in effect, scan-convert the hypersurface corresponding to P
by stepping through the angles throughout their entire
range and determining p as a function of P and the angles
(in 2D, p = xcos@+ ysin@, where (x, y) are the coordinates of
P, as shown in Fig. 6). We have chosen empirically to have
p be approximately the same as the lattice spacing, and we
quantize the angles into 1/2 degree units. Since we want to
use the HT to identify hyperplanes containing facets and
we have previously computed a discrete gradient for each
boundary point, we can improve this process dramatically
by limiting the range of angles to lie within a small neigh-
borhood of this gradient, as suggested in [30]. For 2D, this
range can be somewhat generous, say as much as + 10 de-
grees, but for 3D, it is crucial for this range to be much
smaller, say around * 2 degrees.

Hough Space

For a d-dimensional image, we represent the discrete
Hough space by a d-dimensional array, and for each point
in Hough space, we maintain a list of the boundary points
which are coincident with the corresponding image space
hyperplane. We also maintain a measure of “goodness”
that is the sum of the measurements produced by a neigh-
borhood operator described below. And finally, for each
point we maintain a list of Hough cells to which it contrib-
utes (whose use is also described below).

The HT is inherently a global operator. To achieve the
fidelity in reconstruction that is required, we have found it
necessary to introduce some locality into our schema. For
this we use a neighborhood operator. When considering
incidence between a point x and a hyperplane h, we first
examine the neighborhood of x restricted to h. We want to
favor points whose neighborhood lying in h is dense with
other boundary points. This prevents boundary points from
a facet being considered as incident with a hyperplane that
intersects but does not contain the facet. Also, isolated
points due to noise are easily identified and eliminated.
This allows us to introduce a degree of topological sensi-
tivity in a manner that does not sacrifice noise tolerance.
In addition, we will use the neighborhood density as a
positive weight for ordering candidate hyperplanes. Those
hyperplanes, which have many points with dense neigh-
borhoods, will be favored over those with less density.
This will be important in constructing a multiresolution
representation.

The neighborhood must be approximated discretely. We
use in 2D a neighborhood of five pixels, and similarly in
3D, a 5 x 5 neighborhood. The larger the neighborhood the
more accurately can we determine whether a boundary
point is part of some facet lying on the hyperplane being
considered; yet, too large a neighborhood will cause points
on features smaller than the neighborhood to be rejected.
The lattice points corresponding to the neighborhood lying
on the hyperplane are found by “scan-converting” the neigh-
borhood. A measure, used subsequently to order hyper-
planes, is computed as a weighted sum over the neighbor-
hood. We currently are using as our weightsw = [4 3 0 3 4]
to generate a radially symmetric filter. This value is then
scaled by the gradient magnitude of the boundary point.
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To create the set of candidate hyperplanes to be used
during tree construction, we must go through the entire
Hough table and extract hyperplanes which have suffi-
ciently large measures; that is, we must look for peaks in
the measure defined over the Hough space. Now, in the
vicinity of a peak, there will generally be multiple HT cells
(hyperplanes) with large measure, due to the inaccuracy of
the HT. However, we usually want only a single hyper-
plane per peak. To facilitate this, we generate hyperplanes
by always “removing” the hyperplane from the Hough
table whose measure is currently the greatest, accompanied
by also removing from the table the measure of every
boundary point lying on the removed hyperplane. This
means subtracting a point’s measure from every HT cell
that contains the point. This is why for each point we keep
a list of HT cells containing the point, so that this measure-
removal process can proceed quickly. The removing of
measure not only has the effect of setting to zero the meas-
ure of the removed hyperplane, but it also significantly re-
duces the likelihood of a single peak generating multiple
hyperplanes. In addition, rather than going through the en-
tire Hough table for each hyperplane we generate, we first
sort by measure all hyperplanes/HT cells whose measure lies
above a user specified threshold. When we remove measure
from the table, this list is resorted in order to reflect the
changes due to the removal. This is done using an insertion
sort, since this is very efficient for nearly sorted lists.

The Hough transform can be extended to discover hy-
perplanes in 3D in a straightforward manner. In 3D, the HT
is computed as follows:

p=xSin@Sing+y Cosg + z Cosé Sing 1)

Similar to the 2D transform, p is the distance from the
hyperplane to the origin, and ¢ and @ are the angles that
orient the hyperplane. Discretizing all three parameters for
large discrete sets entails the use of a significant amount of
space, and the associated computation to locate the bound-
ary points in the HT buckets. Reducing the size of the table
makes the representation coarse, resulting in poor quality
reconstructions. Discretization resolution for all three pa-
rameters of the Hough Transform have to be pre-
determined, making the process even more prone to alias-
ing. Since our scheme maintains lists of hyperplanes with
each boundary point and lists of boundary points with each
candidate hyperplane (primarily for efficiency), the storage
requirements to perform the representation conversion be-
comes impractical for large 3D volumes.

3.2.2 Hyperplane Sort

To overcome some of these problems in using the Hough
transform in 3D, we have started using a scheme that sim-
ply sorts the boundary points using the coefficients of the
hyperplane associated with each point. Note that the nu-
merical gradient computed at each boundary point and the
location of the point can be used to determine a hyperplane
(the gradient estimates the hyperplane normal) equation for
each point. Two hyperplanes, h; and h, with normals 7,
and i, and distances d; and d, are considered to be coinci-
dent if the angle between their normals is within a user
specified threshold, A8, and the distance between them is

within a specified threshold AD, which can be tested as
follows:

(i,  fiy| > A8) AND |d, — d,| < AD @)

In order to determine points coincident with
edges/faces, the boundary points are successively sorted
four times, once using each of the three components of the
gradient vector as the sorting key and once more using the
hyperplane distance. This ensures that all collinear points
on each face are properly gathered and reduces the intro-
duction of any bias due to the order in which the hyper-
plane coefficients are used to determine coincidence be-
tween pairs of candidates. A merge sort is used in our im-
plementation, with candidate merging performed using the
coincidence check illustrated above. The merge process is
recursive; a previously merged candidate hyperplane can
be merged repeatedly with its neighbors if it satisfies the
closeness criterion.

While the HT scheme performs a bucket sort on the
boundary points, the hyperplane sort uses a traditional
sorting algorithm (O(n) vs. O(n log n)), we have found the
latter scheme to be more practical and simpler for large 3D
datasets. Also, the scheme requires fewer user defined con-
stants in the hyperplane generation procedure. In 3D, only
the angle resolution and the hyperplane width (A and AD)
need to be specified prior to the hyperplane sort. Most im-
portant of all, it enables us to perform representation con-
versions of datasets of the order of 256 x 256 x 256, which
was not possible with the HT method (given the same
computing resources).

3.3 Tree Construction

After all hyperplanes have been generated, each having a
list of incident boundary points, we are now ready to con-
struct the tree by applying Algorithm 1. Each candidate
hyperplane is partitioned across a chosen partitioning hy-
perplane by having its boundary points subdivided into
negative and positive subsets. Any time this partitioning
produces a hyperplane with no boundary points, it is dis-
carded. This is likely since the choice of the partitioning
hyperplane is governed by a cost model (described below)
which might result in a partitioner placing all of the bound-
ary points on one side of the hyperplane.

Now, since every ordering of the hyperplanes will lead to
a different tree, but one representing the same image, the
question arises as to which trees are better. Constructing
good trees is like many optimization problems, it is too hard
to solve exactly, and so heuristics must be employed. We
have described our current ideas on this subject in [25]. The
key concept is that a good tree is one that represents the data
by an ordered set of approximations. To see how a single tree
might accomplish this, first observe that each path in a tree
from the root to a cell corresponds to a nested sequence of
regions which “converges” to the cell. Pruning the path at
various points yields a region that “approximates” the cell.
Now, for an entire tree, we can for each node v compute an
approximation of the function represented by the subtree
rooted at v (we use a linear approximation, described in the
following section) as well as a measure of the error using
some appropriate metric (we use squared error) and store
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that approximation and measured error at v. Then, given an
error threshold, the tree can be pruned by turning each sub-
tree whose measured error is below the threshold into a cell
whose attributes are an approximation of those in the sub-
tree. Since the tree is finite, this can produce only a finite num-
ber of approximations. However, a continuum of approxima-
tions can be created by interpolating between the approxima-
tion at what is currently a cell of the pruned tree and the ap-
proximation of its parent region. For this, we use linear inter-
polation with an interpolation parameter defined as:

E EceII (3)

t =
E E(:eII

global —

parent

where Eyqpy is the current global error threshold E, and
Eparent are the errors of the cell and its parent.

We now face the question of how to generate such mul-
tiresolution trees. One important technique is provided by
the HT measure which assigned greater measure to hyper-
planes with a large number of densely spaced points and
which have large gradients (for the hyperplane sort scheme,
we use the sum of the gradient magnitudes of the points that
are associated with the hyperplane). Since the hyperplanes
were removed from the Hough table in order of decreasing
measure, we could build the tree simply using this ordering.
However, we can improve upon this by instead considering a
number of candidate hyperplanes, say the top 15 or so from
our sorted list. To choose among these, we employ a second
technique which associates a quantitative interpretation of
“goodness” with low expected cost. Our thesis is that repre-
senting a function by a set of approximations will yield low
expected cost behavior for various spatial operations. Thus, if
tree construction attempts to minimize expected cost, it will
tend to produce better multiresolution trees.

To compute the expected cost for a particular operation
for a given tree T, we can, in effect, insert some geometric
entity x, treated as a random variable, into the tree. To do
this we need, as always, to know how to “partition” x at an
internal region r, and in this case this means we need to
know the probability of x lying in r* and r™. If we assign a
unit cost to the partitioning operation then we have:

0, Tisacell
Eoost(T) = {1+ P Ewst(T’) +ptx Ecost(T+), otherwise @)
This formula as stated does not directly express any de-
pendency upon a particular operation; those characteristics
are encoded in the two probabilities p— and p+. Now consider
point classification. Then, x is a random variable chosen from
a uniform distribution over some initial region R which is
partitioned by T. For any internal region r, we have

pt = voI(r*)/voI(r) (5)
p- = vol(r‘)/vol(r) (6)
where vol(r) is the d-volume of r.

3.4 Attribute Generation

One of the advantages of partitioning trees over traditional
b-reps is the explicit representation of d-dimensional cells
with which we can associate attributes and so represent
functions. Since we have segmented the image into rela-
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tively homogeneous regions, we can approximate the origi-
nal data lying within a cell by a low degree polynomial; in
particular, we have chosen to use constant and linear func-
tions to define these attributes (depending upon the vari-
ance). Constant functions correspond to the mean value
within a cell, while linear functions are generated using
least-squares fit.

After the tree is constructed from the boundary points, we
determine the attributes for each cell by inserting all lattice
points into the tree using the standard point classification
algorithm. If a constant function is used to represent the at-
tributes of a cell, then a running sum of material color (r, g, b,
@) is maintained at each cell. During classification, if a point
is found to be incident with the hyperplane, then its opacity o
is halved (each point’s opacity begins with an initial value of
1.0 at the root node) and the point is inserted into both sides
of the tree. When all lattice points have been inserted, then
the mean intensity is calculated at each cell by dividing each
material attribute by the summed ¢ at that node.

When the attributes at each cell is to be represented by a
linear function, then a least squares fit of the material at-
tributes within each cell is performed. For this, we main-
tain, at each cell, two matrices of coefficients, (1) M., the
moments of the lattice points, and, (2) M_,, the coefficients
of the material color, as shown below:
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where (X;, Vi, z;, 1.0) is the ith lattice point within the cell and
(ri, 9;, b;, &) is the material color associated with the point.
n is the number of lattice points that are interior to the cell
(which will be different for each cell) and used in con-
structing the linear functions. The above system is then
solved to determine the linear functions for each of the four
material attributes. The red function, for instance, is deter-
mined as follows:

Mmomxr =R )
where X, is [A, B, C, D,]T, the coefficients of the linear func-

tion for the red primary, and

— n n n n T
R= [Ziﬂrixizi:lriini:lrizi i=1ri} '
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In a similar fashion, the remaining attribute functions can
be obtained. A 2D example is illustrated in Fig. 7. X and Y
are the spatial dimensions, while r represents the red com-
ponent of the material color. The polygon shows a subset of
the plane approximates the red attribute over the region of
interest. The shaded circles are the intersection of the points
with the plane that approximates the attribute function.

Linear Function
Approximation

X K K4 K \\
Lattice Points

Fig. 7. Linear attribute calculation—2D example.

3.5 Rendering

To render the geometry represented by the partitioning
tree, the boundary of the surface is first determined from
the partitioning tree and the material attributes, (r, g, b, @),
are evaluated at the vertices of each polygon, followed by
color interpolation for the interior points. For 2D images,
the linear functions are defined over a polygonal domain (x,
y, {r, g, b, &}), which can be rendered by linear interpola-
tion. In 3D, the domain of the function is a polyhedron.
Rendering involves determining the surface boundary
[40](a set of polygons at each node) and evaluating the ma-
terial color at the vertices, followed by scan conversion.

The above procedure determines the linear attributes at all
cells of the partitioning tree. For tree pruning, we also need
attributes to be defined at each internal node, as any node
could be turned into a cell if its error is below the current
error threshold. The least squares coefficients at each internal
node (M, and M) are obtained simply by adding the cor-
responding coefficients obtained from its two child nodes. In
other words, the parent node’s approximation is determined
by combining the contributions of the points in its two child
nodes. Finally, to render a tree given a particular error
threshold, we first determine those nodes of the tree whose
error falls below the current error threshold and redefine the
subtrees rooted at these nodes as cells of the tree. Next, the
cells are rendered by interpolating vertex intensities between
each cell and its parent, as per (3). In our implementation, the
tree can be pruned interactively by smoothly increasing the
error threshold, resulting in a corresponding reduction in the
amount of geometry that is rendered.

Attribute calculation reveals another way in which our
schema is noise tolerant. First, since we are calculating the

attributes from the original data, we can chose to generate
as good of an approximation as seems appropriate (linear,
quadratic, etc.). Secondly, spurious partitioning hyper-
planes generated from noise in the data will have limited
effect on the attribute representation.

4 EXAMPLES AND RESULTS

The representation converter has been implemented on
UNIX workstations (Suns and SGIs) and converts 2D and
3D discrete sets to partitioning trees. It works in conjunc-
tion with SCULPT [24], a solid modeling system based on a
partitioning tree representation.

The 2D reconstructions in Figs. 8 and 9 demonstrate the
quality that is achievable using this conversion technique.
Fig. 8 shows a 2D slice, 256 x 256 pixels, from an MRI da-
taset of the brain. The left image (Mandrill) in Fig. 9 is of
size 512 x 512 pixels, and an example frequently used in
graphics and image processing literature. The brain image
has been resampled to twice its resolution in each dimen-
sion before conversion to a partitioning tree for better re-
construction. A key factor that governs quality is the use of
linear color for the tree cells. When compared to the origi-
nal images, the discontinuities are well represented by the
hyperplanes, while the homogeneous regions (represented
by the tree cells) exhibit a degree of smoothness. This is
more evident in the mandrill example, which is an image
with a considerable amount of texture. The converter tends
to over-segment the images: The trees in Fig. 8 and 9 have
5,002 and 20,000 internal nodes respectively; pruning
these to 2,000 and 10,000 nodes (the leftmost images in
Figs. 10 and 11) seems to make very little difference in the
quality of the reconstruction. In general, the representation
conversion needs to be followed by tree pruning so as to
generate not only a good quality reconstruction but also
one that is of reasonable size. All of the tree pruning is
performed at interactive rates using SCULPT.

The 2D examples (both the brain slice and mandrill) can
be generated within about two to five minutes on an In-
digo-2 (R4400) workstation. The actual run times do de-
pend on a number of factors, including the size of the final
tree, the thresholds used to control the number of hyper-
planes used in the tree construction, and the threshold used
to limit the number of points that constitute a candidate.
Our experience suggests that the tree conversion should be
followed by pruning, which provides finer control in gen-
erating a good and concise representation. All of the pruning

(a) original
Fig. 8. Brain slice.

(b) Tree
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(a) original

Fig. 9. Mandrill.

(a) 2,500 nodes
Fig. 10. Tree size (brain slice).

(b)1,500 nodes

(b) Tree

(c) 500 nodes

(a) 5,000 nodes
Fig. 11. Tree size (Mandrill).

is performed at interactive speeds using SCULPT.

Figs. 10 and 11 show the same example images at three
different resolutions. Even at the coarsest resolution (500
nodes for the brain slice and 1,000 nodes for the mandrill),
the reconstructions are easily recognizable. The biggest ad-
vantage of using the coarse resolution trees is the ability to
manipulate the images at interactive rates (which will be
even more critical in 3D).

(b) 2,500 nodes

(c) 1,000 nodes

The images in Fig. 12 illustrate the tolerance of the repre-
sentation to noise that can corrupt the data. Noise in images
can introduce spurious points or remove points that repre-
sent a discontinuity. This could manifest itself in images
through weak or missing edges or the loss of small features.
In Fig. 12, a subset of the points that represent discontinui-
ties have been selected at random and discarded. The four
images (from left to right) represent reconstructions
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(a) 40 percent (b) 70 percent

Fig. 12. Boundary point decimation.

Fig. 13. Eye socket.

performed after discarding 40, 70, 80, and 90 percent of the
points that represented the discontinuities in the image.
Only the last image shows appreciable degradation in re-
construction quality. Two reasons could account for the
high quality of the reconstructions despite the absence of a
large fraction of the point set:

1) Our method of constructing hyperplanes is a global
technique, and does not require all points on an edge
to be present to generate the hyperplane; the neigh-
borhood operator is the only local operation that
looks at the density of the neighborhood.

2) Itis likely that the discontinuity detection step gener-
ates points in excess of what is needed to perform a
good reconstruction. However reducing the points at
the outset tends to have more of a dramatic effect on
reconstruction quality. Its usually safer to generate
more points than what is needed (incurring a small
penalty in computation) and then prune the con-
structed tree to reduce the size of the representation,
if the image appears to be over-segmented.

Figs. 13 and 14 show two examples of the converter ap-
plied to 3D discrete sets. For interactive visualization, isosur-
faces are a common way to view medical data; our converter
only generates the boundary points corresponding to the
isosurface and then converts these points into a partitioning
tree. For nonvisualization applications, such as compression

(c) 80 percent (d) 90 percent

(b)

or transmission, all of the points representing discontinuities
will be input to the converter. In general, we believe that a
subset of the function (isosurfaces, arbitrarily oriented 2D
slices are examples) are more useful in 3D visualization.
Fig. 13 is a reconstruction of a 40 x 40 x 40 subset of an MRI
dataset (region around the left eye, at a threshold of 42).
Fig. 14 is a 50 x 50 x 50 subset of an engine block dataset. In
this example, vertex normals are generated for smooth
shading. In 13a, a front view of the left eye is shown, while in
13b, a cutaway of the eye socket is performed (via set intersec-
tion with the tree) revealing the socket cavity as well as the
cornea. Fig. 14 illustrates reconstruction of the engine block in
both opaque and transparent modes. The hyperplane sort
scheme was used in both examples to generate hyperplanes
from the boundary points.

Finally, Fig. 15 shows the interaction between a transpar-
ent cube and the engine block reconstruction. In the left im-
age, the transparent cube acts as a probe to explore different
parts of the engine block under user control. Notice that the
space intersected between the cube and the engine block is
selectively made transparent as the cube is moved through
the engine block. In 15a, the cube is just beyond the shaft
head, making part of it and a section of its body transparent.
In 15b, the volume of the engine block intersected by the
cube has been removed (via a set difference operation); the
head of the shaft that is visible in the left image now appears
clipped in the second image. On an SGI Indigo2 workstation
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Fig. 14. Engine block.
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(b)

@

Fig. 15. Interaction between engine block and cube.

with Extreme graphics, the transparent cube can be moved
through the engine block model in near real time. In all of
these operations, the tree representations of the tool (cube)
and the workpiece (engine block) are merged into a single
partitioning tree in real time before the view is updated [26].

The 3D reconstructions using our conversion technique
are, in general, less detailed when compared to techniques
such as the marching cubes method [19]. The primary rea-
son is the difference in the approach to constructing the
surface. The global nature of our scheme results in con-
suming coincident points that span hundreds or thousands
of voxels, depending on their orientation. The marching
cubes method constructs several triangle elements for every
voxel that intersects the isosurface. While our conversion
scheme produces surfaces with considerably fewer polygo-
nal facets (the tree representation needs to be converted
into polygonal facets prior to rendering, as required of cur-
rent graphics systems), marching cubes method usually
produces very large polygonal models, necessitating the
use of decimation algorithms [36].

(b)

A second important difference between our scheme and
those produced by locally based methods is the degree of
smoothness of the generated surface. Local methods have
sufficient adjacency information to match faces (common
vertices or edges, for instance) across voxels. Global meth-
ods, such as ours, have to rely on the discrete approxima-
tion of the data to generate accurate hyperplanes that will
produce a smooth manifold. The surface that is generated is
usually coarse, as evidenced by the transparent engine
block in Fig. 14. While the roughness can be reduced at the
expense of additional computation, it has been our experi-
ence that this requires significant manipulation of parame-
ters that control the reconstruction.

Finally, our conversion schema is targeted at represent-
ing the entire function represented by the image/volume,
not just a subset. This is evidenced by the 2D examples,
where the partitioning tree represents the entire image. This
leads to important applications in transmission and com-
pression of image and video, as we will describe later. A
large component of 3D visualization of scientific data is
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through isosurfaces, especially in biomedical applications.
This is partly because of the complexity of making sense of
the entire set and the difficulties of interacting with the sur-
face containing a large amount of geometry. The partition-
ing tree representation can ameliorate the problems of spa-
tial interaction (operations are of logarithmic complexity),
however, the surface smoothness needs to be improved,
which might require some hybrid use of local and global
techniques to generate the hyperplanes, or the use of higher
order surfaces (cubics, for instance).

5 APPLICATIONS

We discuss three potential applications of using the parti-
tioning tree representation of images and volumes, which
we are in the process of pursuing.

5.1 Probing Medical Images

As affine transformations and set operations on objects rep-
resented by partitioning trees can be performed efficiently
and with great ease, the representation is suited to inter-
acting with medical reconstructions. For instance, clipping
a part of an object can be implemented (arbitrarily oriented,
not just axis-aligned) by simply performing an intersection
operation between the clip volume and the view volume.
More generally, one can take a transparent object (shaded
differently from the reconstructed volume to make it dis-
tinct), such as a cube, and use it as a “probe” to examine the
interior of a medical imaging data set. As all objects are
represented by partitioning trees, to generate a view, all
that needs to be done is to merge the “probe” tree and the
3D image tree [26] (the volume intersected between the
probe and image trees is removed, revealing interior fea-
tures along the boundaries of the cube). As this can be per-
formed at interactive rates (depending on the complexity of
the object, if the frame rate gets too slow, tree pruning can
be used to improve the rate), this provides a capability to
interact with 3D medical images.

As described in the previous section, Fig. 15 illustrates
an example of this idea of interactively exploring 3D recon-
structions.

5.2 Compression

Compression is important anytime large amounts of data
need to be transmitted or archived. Classic examples in-
clude broadcast TV (analog), video conferencing/dialtone,
fax, etc. In noncritical applications, some loss of data to re-
duce the transmission time can be tolerated (broadcast TV
has few alternatives because of the amount data involved).
As our current focus is on medical applications, we are in-
terested in generating lossless encodings, since further deg-
radation of the already discretized images is unacceptable.
Another idea that needs to be investigated is how well par-
titioning trees that have good multiresolution properties
compress compared to those that are not. Multiresolution
representations are attractive in transmission applications
as they permit successive refinement of the image at the
receiving end.

To encode a partitioning tree, we first recall that any
binary tree can be linearized by a preorder traversal. In

this linearized format, one needs to distinguish between
internal and leaf nodes; for this, the first bit of each record
will do. The only information required at internal nodes
are the hyperplane coefficients, (p, ) for 2D and (p, 6, ¢)
for 3D (all other information can be derived from the
tree). The actual number of bits allocated for any given
hyperplane can be made dependent upon its place in the
hierarchy [31]. In particular, if the region of discrete space
partitioned by a specific hyperplane has a maximum lin-
ear resolution of x bits, then the hyperplane coefficients
need to be encoded only with x bits. However, this re-
quires that these coefficients be defined with respect to a
local coordinate system, defined by the smallest axis-
aligned bounding box of the region being partitioned.
Thus, as one moves further down the tree, fewer bits are
needed (as the partitioning regions get successively
smaller). Finally, for lossless encoding, as required by
medical images, we can encode the residuals; that is, we
can encode, within each leaf/cell, the difference between
the pixel/voxel values and the linear approximation for
that cell. These encoded residuals can then follow in scan-
line order the encoding of the linear function. The residu-
als can be variable length encoded using either Huffman
or Arithmetic Coding. The variance (or the squared error)
for each cell will become part of the encoding, as it deter-
mines the number of bits used to encode each residual
within that region.

Earlier work on compressing 2D images represented as
partitioning trees, proposed in [31], used an optimization
scheme to generate partitioning lines, targeted at minimiz-
ing the sum of the squared error of the partitioned regions.
Results using this scheme on sample images allowed a bit
rate anywhere from 0.12 bits/pixel to 0.35 bits/pixel, de-
pending on the mean squared error. However, the method
does not take advantage of the hierarchy to optimize the bit
allocation and requires an expensive optimization tech-
nique to generate the tree.

5.3 Image Segmentation

Segmentation is the process of classifying images into se-
mantically defined objects. It is critical to image under-
standing and analysis. In medical visualization, they pro-
vide an important visual cue for diagnosis and identifica-
tion of different material or tissue types.

Segmentation is a very difficult problem and to date, no
single technique exists that works well for all images [21].
There are a number of methods that can be used to segment
images [2]. Three of these methods include edge detection,
clustering, and region growing methods.

In Fig. 12, the robustness of the partitioning tree repre-
sentation was demonstrated for the brain data slice by arbi-
trarily discarding large fractions of the boundary points
and then performing the representation conversion. A po-
tential application of this representation is in segmenting
ultrasound images, used widely in OB/GYN, for monitor-
ing the unborn fetus. Ultrasound images, in contrast to CT
and MRI, are noisy, of poor contrast and possess a variety
of artifacts [33]. Discontinuity detection applied to ultra-
sound images shows significant loss of boundary points,
resulting in weak or missing edges/features. Preliminary
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work on using traditional segmentation algorithms (region
growing methods, for instance) on ultrasound images [38]
demonstrate their sensitivity to noise and dropouts of edge
points. The tree representation usually can build hyper-
planes with only a few of the boundary points (along an
edge) present. Further, the gradient measure that was com-
puted and used in the tree construction algorithm can be
used to decide if regions neighboring a segmented region
belong to the same object. Boundary information such as
the gradient measure can make the region growing less
sensitive to dropouts in boundary points or spurious edge
points, introduced by noise.

Segmentation algorithms will thus operate within the
tree representation. A region growing algorithm, for in-
stance, will start from a seed region and recursively merge
cells belonging to the same region. The algorithm to per-
form this is similar to determining the boundary of a poly-
hedral object represented as a partitioning tree [40]. Such an
algorithm, would, in general, be more robust and less sensi-
tive to noise, compared to operating in discrete space.

6 CONCLUDING REMARKS

We have presented a scheme that converts 2D and 3D dis-
crete images to a partitioning tree representation. The pri-
mary reason to perform this conversion is to exploit the
structure of the tree representation to interactively explore,
visualize, and quantify objects within such datasets. The
partitioning tree representation, being piecewise continu-
ous, facilitates these operations through affine transforma-
tions, geometric set operations, and its multiresolution
properties. We are currently focused on exploring the ap-
plications of the tree representation towards 3D medical
visualization, segmentation of fetal ultrasound images, as
well as image and video compression.
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