
Congestion Control in Mobile Networks

K.R. Subramanian T.A. Dahlberg
Department of Computer Science, The University of N. Carolina at Charlotte

Charlotte, NC 28223, USA,{krs,tdahlber}@uncc.edu

Abstract

Current research is focused on adaptive re-
source management protocols to offer qual-
ity of service guarantees within mobile net-
works. The usual approach to protocol evalua-
tion is statistical analysis of simulation results.
This is insufficient for understanding complex
behaviors of distributed, adaptive algorithms.
We propose adaptive admission control algo-
rithms to manage mobile network congestion
caused by failures, and data visualization for
algorithm analysis. Examples illustrate the
dramatic impact of even simple visualizations
on enabling the protocol designer to clearly
understand real-time algorithm behavior un-
der highly variable conditions.

1 Introduction

The rapid adoption of mobile communications tech-
nology in both business and consumer applications as
well as the convergence of voice and data transmis-
sion poses great challenges for extending Quality of
Service (QoS) guarantees to the mobile terminal. Nor-
mal operating mode for a wireless access network is
characterized by bursts of demand from mobile users
attempting to gain access to wireless links with vary-
ing signal quality. Network congestion can result from
hardware or software failures of network components
and also from increased user demand due to rush-hour
traffic or highway accidents. In addition, the availabil-
ity and quality of a wireless signal is affected by terrain,
foliage, rain, and other environmental occurrences.

Over-allocation of resources to meet varying de-
mand is not solely a cost issue, but is constrained by
limited frequency spectrum. As a result, current re-
search on mobile networks is focusing on the develop-
ment of adaptive techniques that are not only dynam-
ically sensitive to current conditions, but also permit
scalable resource allocation policies that are designed
to meet desired performance objectives.

Adaptive protocols used in mobile networks must
react to a variety of changing conditions, and hence
need to keep track of network activity using a number
of real-time metrics to specify, for example, sampling
rates and threshold values. An inherent tradeoff exists
in developing an adaptive protocol that can differenti-
ate between “real problems which must be addressed”
and ”burst activity that should be ignored”. Also, since
protocol behavior must be monitored at each network
access point (or cell), protocol analysis requires inter-
pretation of huge amounts of data which vary on a
spatial and temporal basis. This points to the need for
data visualization tools.

The earliest applications of data visualization al-
gorithms were in the fields such as biomedical imag-
ing (CT, MRI, Ultrasound) and fluid flow analysis. In
recent years, visualization has been applied to more
abstract types of data, such as telephone databases
[4] and multivariate data from various applications.
However, application of visualization to communica-
tion networks has not approached its full potential.
Work on modeling performance in a telecommunica-
tion network is reported in [2]. The emphasis in this
work is on visualizing backbone network topology, with
some interactive query support for understanding net-
work activity.

2 Network Architecture

The portion of the mobile network that is of inter-
est here is the cell-site. A cell refers to a basestation
(BS) transmission tower and the geographical region
surrounding it, within which a mobile terminal can reli-
ably communicate with a BS. The resources of interest
here are the wireless channels, and each BS has a fixed
number of channels available. When a mobile initiates
or accepts a call it makes a new-call request to the
closest BS. When it moves from one cell to another,
a handover-call request is made to the BS in the new
cell.

A Channel Allocation (CA) policy is used by each
BS to respond to new-call and handover-call requests.
The CA policy works within constraints determined by



an Adaptive Admission Control (AAC) algorithm. AAC
algorithms monitor network conditions and dynamically
adjust CA policy to optimize performance over various
operating modes (e.g. normal or high loads, failure
conditions). Specific cell-site architecture and CA al-
gorithms used here are described in [1].

3 Adaptive Admission Control

For evaluation, metrics of interest are the forced ter-
mination rate (ftr) and the new call blocking rate
(nbr). ftr is calculated as the ratio of the number of
handover-call requests that were rejected to the total
number of handover-call requests over a stated time-
frame. nbr is the ratio of the number of new-call re-
quests that were rejected to the total number of new-
call requests over a stated timeframe. In general, it is
desirable to have low values for ftr and nbr. How-
ever, since disconnection of an ongoing call is consid-
ered to cause greater user dissatisfaction than blocking
a new-call request, lowering ftr is of higher priority.
Thus, our performance objective is twofold, (1) mini-
mize ftr + nbr, and (2) maintain an ftr/nbr ratio of
0.5.

We have been experimenting with two distributed
AAC protocols that use a local guard band, denoted δ,
to manage a tradeoff between ftr and nbr. δ specifies
the percentage of channels within the cell that must
be reserved for handover-call requests.

AAC 1:
if ftrrt > γhigh δ+ = ∆
if ftrrt < γlow δ− = ∆

AAC 2:

if ftr
′

rt > χhigh δ+ = ∆
if ftr

′

rt < χlow δ− = ∆

where the subscripts rt refers to real-time measure-
ment of ftr and nbr. Both ftrrt and nbrrt are sliding
window metrics. ftr

′

rt and nbr
′

rt are the derivatives
of ftr and nbr respectively. Thus, AAC 1 compares
the value ftrrt to upper and lower thresholds, whereas
AAC 2 compares the rate-of-change of ftrrt to the
threshold values. In both cases, increasing ftrrt in-
dicates increasing network congestion which calls for
an increase in the guardband, while decreasing ftrrt
implies the opposite.

4 Visualization

Visualization tools have been constructed using the Vi-
sualization Toolkit (VTK) [3]. Our system has been
designed using a spreadsheet style format. Each row

represents a simulation run and within each row, an
arbitrary number of metrics can be visualized (see Fig-
ure 3). This permits comparisons between a number
of simulation runs, each run possibly using a different
AAC algorithm. Two different types of visualizations
have been used, (1) height fields, where the height cor-
responds to a metric value at a specific cell, (2) color
maps, where the metric values are mapped into a set of
colors (we use a rainbow color map, from blue to red).
The application permits an arbitrary number of simula-
tion datasets to be input and animated over time. VCR
style controls permit the simulation run to be reviewed
in a convenient manner.

5 Results

The cell site network used in our experiments consists
of 105 cells arranged in a square grid. Using a nomi-
nal system-wide offered load of 50 calls/sec a number
of experiments were performed towards determining
the lowest values of ftr and nbr, calculated over one
simulated hour, resulting in a 60 sec. sampling rate,
180 sec. sliding window size, γ(AAC1) ∈ (0.02, 0.5),
χ(AAC2) ∈ (0.0, 0.001). To compare AAC 1 and 2,
we simulated the performance of each algorithm un-
der different failure conditions, for a lightly loaded (40
calls/sec) and a heavily loaded (60 calls/sec) system.
The simulation provides results for ftr and nbr, as cal-
culated system-wide over one simulated hour (after 30
minute rampup). Each set of sampled data consists of
105 values for each of ftrrt, δ, and nbrrt, per sampled
time step.

In general, we found the relative performance of
the algorithms to be similar during different failures.
AAC 1 consistently performed better during light load-
ing and AAC 2 performed better during heavy loading.
What was not clear was “Why?”. The following ex-
ample1 illustrates how application of data visualization
proved essential to answering this question.

We simulated failure (loss of 75% of capacity) in 3
adjacent cells over a duration of 30 minutes for light,
nominal and heavy loads. Figures 1-3 show snapshots
of ftr, δ, and nbr for AAC 1 (top rows) and AAC 2
(bottom rows) taken at the specified time steps. Ide-
ally, the system should operate as follows. With a
significant peak in ftr (high network congestion), δ
(guard band) should rise in the corresponding cell, fol-
lowed by a similar peak in the nbr plane (meaning new
calls are blocked during congestion). When the ftr
diminishes, the δ peak should immediately diminish so
as not to cause nbr to increase unnecessarily.

The visualizations illustrate that AAC 1 is too sen-

1Additional examples and animations may be found at http://www.cs.uncc.edu/k̃rs/mobvis



sitive to bursty traffic, while AAC 2 is not sensitive
enough to recurring congestion during long failure
periods. Figure 1 shows a nominal load run, shortly
after the rampup period. The raised fields in the AAC
1 δ plane indicate cells for which the guardband has
been increased due to bursts during the rampup pe-
riod. In fact, note that the values of δ are not fully
decreased to zero until time 2460. This is not justi-
fied, because since no significant peaks arise in the ftr
plane during this time.

Figure 2 illustrates a light load run. At time 3000
sec., the failure has occurred (high peaks in ftr), and
each of the algorithms react by increasing δ in 2-3 cells.
At time 3060 (not shown), AAC 1 has fully responded
to the failure (δ raised in 3 cells), but AAC 2 has already
decreased δ in two cells. This implies that the failure
condition is thought to be diminishing, when in fact, it
is still in effect. AAC 1 tends to raise δ and keep it high
throughout the 30 minute failure period. AAC 2 raises
δ, then lowers it quickly. As a result, ftr will tend to
repeatedly peak up and down throughout the failure
period. AAC 2 tends not to respond after the initial
failure impact. For example, time 3360 shows a signif-
icant ftr peak ignored by AAC 2. For lightly loaded
cases, this causes AAC 2 to perform worse than AAC 1,
since ftr peaks more frequently. However, for heavier
loads, the slow response time of AAC 1 to diminish δ
has a greater negative impact on performance, since a
greater number of new calls are unnecessarily turned
away. These results have helped us propose AAC 3.

AAC 3:

if (ftrrt > γhigh) OR (ftr
′

rt > χhigh)
δ+ = ∆

if (ftrrt < γlow) OR
(ftr

′

rt < 0 AND ftrrt < γhigh)
δ− = ∆

The overall objective is to increase δ when either a fixed
threshold is exceeded or a significant increase in value
is detected for ftrrt. A decrease in δ is made when
either a fixed lower threshold is reached, or when the
value of ftrrt is decreasing and is also below a critical
upper threshold value.

Snapshots comparing the performance of all three
algorithms at heavy loads are illustrated in Figure 3.
While AAC 3 is not yet optimal, it does seem to be a
good compromise between AAC 1 and 2. At time 3000
sec, all algorithms respond appropriately. At time 3120,
AAC 1 and 3 appropriately maintain higher δ values in
the failed cells, while AAC 2 decreases δ too soon. At
time 3360, AAC 1 continues to have increased values

for δ even though the corresponding ftr values are flat.
AAC 2 has exhibited a cycle of increased ftr, increased
δ, decreased δ, decreased ftr, increased ftr, then no
response from δ. AAC 3 has been gradually decreasing
the raised δ values. At time 3480 AAC 2 has become
completely unresponsive to ftr peaks. AAC 1 main-
tains unnecessarily high values for δ. AAC 3 has finally
diminished δ appropriately.

6 Conclusions

Without the aid of the visualizations it is extremely
difficult to fully understand algorithm behavior on a
spatial (across all 105 cells) and temporal basis. Un-
derstanding algorithm behavior is crucial for the de-
velopment of robust and stable adaptive algorithms.
Continuing work includes developing more detailed vi-
sualizations to capture the interaction of multiple co-
operating adaptive resource management algorithms.

References

[1] T.A. Dahlberg and J. Jung. Survivable load shar-
ing protocols: A simulation study. ACM/Baltzer
WINET. To appear, 2000.

[2] E.E. Koutsofios, S.C. North, T. Truscott, and D.A.
Keim. Visualizing large-scale telecommunications
networks and services. In Proceedings IEEE Visu-
alization 1999, IEEE Computer Society, 1999.

[3] W. Schroeder, K. Martin, and B. Lorensen. The Vi-
sualization Toolkit: An Object-Oriented Approach
to 3D Graphics. Prentice Hall, 2nd edition, 1998.

[4] V.Anupam, S.Dar, T.Leibfried, and E.Petajan.
Dataspace: 3d visualization of large databases. In
Proceedings IEEE Information Visualization, IEEE
Computer Society, October 1995.



Figure 2: Light Load Performance

Figure 3: Heavy Load Performance


