
A Cross-Domain Visual Learning Engine for Interactive
Generation of Instructional Materials

K.R. Subramanian
Department of Computer Science

The University of North Carolina at Charlotte
Charlotte, NC 28223, USA

krs@uncc.edu

T. Cassen
Department of Computer Science

The University of North Carolina at Charlotte
Charlotte, NC 28223, USA

bspt@pipeline.com

ABSTRACT
We present the design and development of a Visual Learning
Engine, a tool that can form the basis for interactive devel-
opment of visually rich teaching and learning modules across
multiple disciplines. The engine has three key features that
makes it powerful and cross-disciplinary, (1) it is based on
a finite state machine model, that supports concepts pre-
sented in any defined sequence, (2) instructional modules
are designed and generated interactively using graphical in-
terface widgets, facilitating non-programmers to use the sys-
tem, and (3) ability to simultaneously present concepts and
their visual representation that allows for a more intuitive
and exploratory learning experience. We demonstrate a pro-
totype of the learning engine by testing it on examples from
Computer Science(sorting algorithms, recursion) and Elec-
trical Engineering (signal manipulations).

Categories and Subject Descriptors
E.1 [Data Structures]: Arrays; I3.7 [Computer Graph-
ics]: Animation; K3.1 [Computer Uses in Education]:
Computer Assisted Instruction.

General Terms
Algorithms

Keywords
finite state machine, algorithm, signal, cross-disciplinary

1. INTRODUCTION
Most disciplines in science and engineering involve core

foundation-building technical courses, especially at the fresh-
man/sophomore levels, that can pose the biggest stumbling
blocks to undergraduate student learning. These courses in-
volve learning fundamental concepts in challenging environ-
ments, such as large class sizes, graduate student or tempo-
rary instructors distributed across multiple course sections,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

etc. This can result in long-term negative impacts, mak-
ing it unattractive to enter certain disciplines, and have an
impact on retention of discipline majors.

Over the last decade, desktop computer technology has
undergone a major revolution: today’s workstations are ex-
tremely powerful, are readily accessible to students and sup-
port multimedia technologies. These features make it pos-
sible to consider new ways of providing learning tools that
are highly scalable. In particular, the design and use of
interactive learning tools using a combination of graphics,
animation and visualization is very much feasible in today’s
learning environments.

In this article, we present the design and development of a
Visual Learning Engine, that can form the infrastructure for
rapid creation of new learning and teaching modules across
multiple disciplines. The key ideas that make this general
enough to be utilized across multiple disciplines are as fol-
lows:

1. The basic kernel of our design is based on a Finite State
Machine(FSM), a model that universally supports con-
cepts or modules that can be presented in a defined
sequence; this fits teaching concepts across many dis-
ciplines in science and engineering; some extensions to
this model based on run-time decision making further
expands its applicability to more non-linear teaching
models.

2. Designing content using our system is highly interac-
tive and centered on ease of use, using graphical inter-
face widgets that most domain experts and instructors
are comfortable with and use on a daily basis; thus, an
important goal of this design is to support instructors
that are not necessarily trained in software develop-
ment, which is a major hurdle to extending existing
systems to new disciplines. Another goal of this de-
sign is to facilitate interactive and exploratory learn-
ing by students through the manipulation of data in
real time. The graphical user interface provides easily
used means for achieving this goal.

3. A key aspect of our proposed design is the ability to
simultaneously present concepts and their associated
visual representation. This provides a powerful means
to relate (or provide context to) fundamental concepts
with an easy to understand visual representation. We
believe this leads to a more active student learning
scenario and a better platform for educators, especially
for more complicated concepts, such as recursion (in
computer science).

488

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1352135.1352300&domain=pdf&date_stamp=2008-03-12

Our primary objective of this learning engine is twofold:
to empower instructors to impact student learning, and to
provide a means for engaging students in interactive learn-
ing through exploration (what-if scenarios). In addition, the
system provides sufficient flexibility to fit varying teaching
styles, in contrast to a one-size-fits-all type system. Thus,
two instructors teaching similar courses might have varying
styles, and a well designed learning engine should accom-
modate both of them. A good analogy is a computer game
engine used by game content creators, that result in multiple
games using the same engine.

We demonstrate the initial design of our visual learning
engine in two disciplines, (1) Computer Science : sorting
algorithms and recursion, and (2) Electrical Engineering :
signal manipulation.

2. RELATED WORK
The majority of work that is relevant to our work pertains

to (1) algorithm animation and software visualization[20],
and (2) experimental studies that assess their impact on
student learning.
Algorithm Animation: Algorithm animation systems came
into their own in the eighties with the availability of desktop
workstations and bitmapped displays, and the increasing use
of computer animation. A number of algorithm animation
systems were developed, including BALSA [5](Brown Algo-
rithm Simulator and Animator) and its successor, BALSA
II[4, 1, 2], TANGO[17, 18] (Transition- based Animation
Generation) and XTANGO[19] animation systems. Signif-
icant effort via scripting or explicit programming was re-
quired to prepare an algorithm animation in many of these
systems. Zeus[3], a followup to Balsa II, had some inter-
esting features; in particular, code and data views could be
connected.

ANIMAL[16] is a more recent system that uses a graph-
ical user interface to build and generate animations, and
links animations to text (eg. algorithm pseudocode). While
this has primarily been used in computer science courses,
its interactive design capabilities make it easy enough to use
in other domains. However, ability for user data input and
expression evaluation is not possible, and thus, animations
are limited to custom designed examples.

JAWAA [13, 14, 15] has features similar to ANIMAL and
uses scripting languages to design animations, but does not
support user data input or expression evaluation. Jeliot[8]
and AlgAE[21] are program visualization systems and auto-
matically generate animations from variables, function calls,
and other operations, but the animations are not the most
intuitive.
Impact on Student Learning: A number of experimen-
tal studies on learning have been performed by researchers
to formally evaluate the impact of audio-visual materials,
including the use of animations. Several key benefits have
been observed, such as (1) combining animation with predic-
tion[6], (2) sophisticated combinations of instructional ma-
terials[11], (3) a direct correlation between student learning
and student engagement [7]. On the other hand, the meta
study by Hundhausen et al.[10] that classified and compared
22 previous studies concludes with a mixed result in the use
of algorithm visualization(AV); they report that roughly half
of the experimental studies they reviewed had some signifi-
cant results, while for a roughly equal half “no statistically
significant differences could be found between the perfor-

Object Library

Object Selector

Object Pool

Action Editor
(FSM Creation)

FSM Engine

(states, actions, objects)

Methods

Library

Runtime
Controls

GRAPHICAL USER INTERFACE

DISPLAY CANVAS

Figure 1: System Architecture

mance of (a) groups using some configuration of AV technol-
ogy, and (b) groups using either an alternative configuration
of AV technology, or no AV technology at all”.

In summary, we note that measuring the impact of stu-
dent learning is complicated and depends on factors such
as usability of system, prior knowledge, quality of anima-
tions, visual representation, appropriateness and complexity
of problem/algorithm, usage scenario, interaction and user
input capabilities. We exploit many of these established
and experimentally validated ideas from these studies in the
design and evaluation of our cross-domain visual learning
engine, towards adoption by students and instructors in the
classroom.

3. SYSTEM ARCHITECTURE
The high level architecture of our system is illustrated in

Fig. 1. Broadly, it consists of 4 parts:

Graphical User Interface (GUI): All of the interaction
with the learning engine is done via the GUI, thus facilitat-
ing ease of use across application domains by students and
instructors alike. For example, to design a computer science
module that illustrates the behavior of an algorithm, the
algorithm is written as a text file and brought into a wid-
get that displays it; other relevant objects, such as variables
and arrays, are instanced with appropriate attributes, and
finally the corresponding FSM for the module is created. All
this is done interactively through the GUI.

Canvas: The drawing canvas is the area where all of the
objects and textual material are displayed, manipulated or
animated, and also serves the central area for interaction
with the system, including objects, concepts and/or algo-
rithms, as well as user data input.

Object Model: We maintain a library of objects. These
can be instantiated as required by the application domain.
Each object has an associated set of attributes. For exam-
ple, the simplest object associated with illustrating various
computer science algorithms is a memory cell that contains a
value; visual attributes include background and foreground
colors for the cell, text font and size, and methods to draw
and receive input events. All attributes of an object as well
as its behavior is controlled via the GUI.

Finite State Machine Model: Building a new module
(for instance, a sorting algorithm presentation) essentially
involves constructing its finite state machine representation.
This involves creating appropriate states and actions to be
executed within each state. A special Action object is pro-

489

Figure 2: Module Design Procedure:(Left) Array and memory cells instanced and displayed on canvas for
bubblesort algorithm, (Right) Action Editor displays the FSM being built(cyan panel), and method dialog
box for choosing parameters.

vided to facilitate the execution of actions, and a set of spe-
cial objects are provided to support branching (similar to
if- and if-else statements), repetition (loops), and function
calls. Once constructed, a module is run by executing its
finite state machine representation. Actions are constructed
from a Methods Library, which efficiently maintains a single
copy of a method to be shared (loosely speaking, objects in-
herit them) across application domains. The FSM supports
all of the needed control flow, including jumps and recursion,
in a manner analogous to programming languages. To our
knowledge, recursion concepts are not supported by existing
systems in such an explicit manner to enable demonstration
of recursive algorithms.

4. MODULE DESIGN
We next describe the process of creating and executing

a new module. We will use the bubble sort algorithm (in
computer science) as an example, as illustrated in Fig. 2.

1. Write the algorithm (as pseudo-code or real code) and
save it as a text file. This will be displayed in a widget
as shown in the left panel of Fig. 2. The appropriate
widget is instanced (via the GUI) using the Object
Selector.

2. The Object Selector is used to instance other appro-
priate objects in the library (an array, and cells corre-
sponding to variables p, n and i are created).

3. After objects have been instanced the Action Editor is
used to create the underlying FSM for the module.

4. The Action Editor displays various actions (assign-
ment, addition, attribute changes, etc.) that may be
used in a module. Actions are presented in the form
‘A method B’, where A and B are expressions. For
example, an assignment statement is presented as an
action of the form ‘A assign B’. Selecting a particular
action brings up a list of parameters from which ex-
pressions appropriate to the method involved may be
constructed. When finished, the newly created action
is added to the fsm and displayed in the Action Editor.

5. Once the module design is complete the presentation
can be run from start to finish without stopping, or it
can be run step by step.

5. RESULTS
Our prototype Visual Learning Engine is implemented us-

ing Jython[9, 12], that enables Python access to the Java
API. Our goal in using Python is three-fold, (1) rapid proto-
typing with access to extensive capabilities of Java packages,
(2) platform independence, facilitating public dissemination,
and (3) the ability to perform run-time expression evaluation
and decision making. We use Java graphics for all drawing
and animation.

We have used our system to construct example modules
in two domains, computer science and electrical engineering.
Our prototype system includes the following objects: mem-
ory cell, label, textlist, 1D array, 1D signal, and graph. The
methods library supports operations for assignment, addi-
tion, comparison, swap, and signal transformations (scale,
translate). Methods such as swap, comparison and signal
transformations can be animated to emphasize the mechan-
ics of the underlying concept. With these objects and meth-
ods, we can demonstrate a large number of algorithms and
data structures, and limited operations on signals.

5.1 Computer Science
We illustrate two important concepts in computer science

using our system: sorting algorithms and recursion. These
are usually introduced during the freshman/sophomore year
in algorithms or data structure courses. Fig. 3(left) illus-
trates a bubble sort module; an array object holds the data
to be sorted, while memory cells (left column) illustrate the
variables being used in the algorithm. As the FSM exe-
cutes, these change value according to the algorithmic step
(highlighted in red) on the text widget that contains the
algorithm. At this stage of the algorithm, it can be seen
that the value 7 is ’bubbling’ to the end of the array, with
7 and its neighboring value being swapped. Methods such
as swap and assignments are animated to clearly illustrate

490

Figure 3: Computer Science: (Left)Bubble Sort, (Right) Recursion - Factorial Example

Figure 4: Elect. Engineering Example:Signal Ma-
nipulation illustrating y(t) = x(0.5t− 1). (Top) A 1D
signal being time shifted by −1.. The green wave-
form is the original, the waveform in orange ani-
mates the transformation to its final position, (Bot-
tom) Signal scaled by 0.5.

the progress of the algorithm, in step with the pseudocode
on the right.

The right panel illustrates a factorial computation exam-
ple, in order to illustrate recursion. We use a stack object to
keep the state variables due to function calls. As recursive
calls are made, new stack frames are pushed into the stack,
and popped on their return.

5.2 Electrical Engineering: Signal
Manipulation

A fundamental topic in electrical engineering involves the
manipulation of discrete and continuous signals (scaling,
time-shifting, time-reversals and combinations of these). Such
operations can benefit from a visual representation, in con-
trast to an equation/blackboard only approach. The ability
to experiment with different parameters also adds flexibil-
ity to make up/try different examples, as well as encourage
students to explore further.

Fig. 4 illustrates a 1-dimensional signal manipulation mod-
ule that was constructed with our system. A signal object
was created as a base object, and represented as a discrete
set of values. Transformations on the signals manipulate the
individual values of the signal. As before, the text widget
illustrates the sequence of steps involved in manipulating
the signal. Here we show scaling and time-shifting a sig-
nal, x(t). The transformation, y(t) = x(at − b) is done by
first time-shifting the signal, (y1(t) = x(t− b)), followed by
scaling, y2(t) = y1(at). As the FSM executes through the
sequence, new transformed signals are created at each step.
The transformation is animated, so as to show the transition
to the final signal form.

6. CONCLUSIONS
We have demonstrated a prototype of a Visual Learning

Engine that can form the basis for interactive development of
instructional modules by educators across disciplines. A key
aspect of our system emphasizes ease of design using graph-
ical user interface widgets, permitting non-programmers to
use the system; this helps extend its applicability to multiple
disciplines. The ability to tightly couple fundamental con-
cepts to visually rich content in a purely interactive design

491

framework is a unique feature of our system. We believe that
this will assist student engagement and learning. A second
important aspect of our system is the ability of the user (stu-
dents, for example) to change input data to test the same
algorithm (concept), or explore what-if style scenarios, and
as a result promote student engagement and active learning.

We are currently planning user studies for evaluation of
our system on qualitative and quantitative basis. In partic-
ular, our focus is on (1) ease of use, (2) impact on student
learning and (3) cross-domain extensibility.

We have illustrated the use of the learning engine with
examples from computer science and electrical engineering.
With just a few domain specific objects, it is possible to build
modules covering a large number of concepts. For instance,
with the array and cell objects, many sorting algorithms
can be built (we have built insertion sort as well); the stack
object then extends this to recursive algorithms (quick sort,
merge sort). Thus, the interactive infrastructure built on an
FSM model provides the needed generality and extensibility
to other domains.

Future work on the system will be focused on adding
multi-media capabilities (images, video, audio objects). This
opens up the application of the system to disciplines that fo-
cus on multi-media content, or use such content to perform
decision making (what-if scenarios, multiple-choice based
questionnaires, etc). We also are planning on a more robust
object editor that will allow users to modify existing objects
and create new objects specific to their discipline. This ca-
pability will make this system significantly more powerful
and serve as an important resource for instructors and stu-
dents.

7. REFERENCES
[1] M. Brown. Exploring algorithms using BALSA-II.

IEEE Computer, 21(5):14–36, 1988.

[2] M. Brown. Perspectives on algorithm animation. In
Proceedings of the ACM SIGCHI ’88 Conference on
Human Factors in Computing Systems, pages 33–38,
may 1988.

[3] M. Brown. ZEUS: A system for algorithm animation
and multi-view editing. In Proceedings of the 1991
IEEE Workshop on Visual Languages, pages 4–9,
1991. Kobe, Japan, October 1991.

[4] M. Brown. Algorithm Animation. MIT Press,
Cambridge, MA, 1998.

[5] M. Brown and R. Sedgewick. A system for algorithm
animation. Proceedings of the 11th annual conference
on computer graphics and interactive techniques,
SIGGRAPH ’84, 18(3):177–186, July 1984.

[6] M. Byrne, R. Catrambone, and J. Stasko. Evaluating
animations as student aids in learning computer
algorithms. Computers and Education, 33:253–278,
1999.

[7] S. Grissom, M. McNally, and T. Naps. Algorithm
visualization in CS education: comparing levels of
student engagement. In SoftVis ’03: Proceedings of the
2003 ACM symposium on Software visualization,
pages 87–94, New York, NY, USA, 2003. ACM Press.

[8] J. Haajanen, M. Pesonius, E. Sutinen, J. Tarhio,
T. Teriisvirta, and P. Vanninen. Animation of user
algorithms on the web. In IEEE Symposium on Visual
Languages 1997, pages 360–367, 1997.

[9] J. Hugunin. Python and java - the best of both
worlds. In Proceedings of the 6th International Python
Conference, 1997. Oct. 14-17, San Jose, CA. WWW:
www.jython.org.

[10] C. Hundhausen and S. D. iand J.T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing,
13:259–290, 2002.

[11] C. Kehoe, J. Stasko, and A. Taylor. Rethinking the
evaluation of algorithm animations as learning aids:
an observational study. International Journal of
Human-Computer Studies, 54:265–284, 2001.

[12] S. Pedroni and N. Rappin. Jython Essentials. O’Reilly
& Associates, Inc., CA, USA, 2002.

[13] W. Pierson and S. Rodger. Web-based animation of
data structures using jawaa. In Proceedings of the 29th
SIGCSE Technical Symposium on Computer Science
Education, pages 267–271, 1998.

[14] S. Rodger. Introducing computer science through
animation and virtual worlds. In Proceedings of the
33rd SIGCSE Technical Symposium on Computer
Science Education, pages 186–190, 2002.

[15] S. Rodger. Using hands-on visualizations to teach
computer science from beginning courses to advanced
courses. In Second Program Visualization Workshop,
2002. Hornstrup Centert, Denmark.

[16] G. Roessling, M. Shuler, and B. Freisleben. The
animal algorithm animation tool. In Proceedings of the
5th annual SIGCSE/SIGCUE ITiCSEconference on
Innovation and technology in computer science
education, pages 37–40, 2000.

[17] J. Stasko. The path-transition paradigm: A practical
methodology for adding animation to program
interfaces. Journal of Visual Languages and
Computing, 1(3):213–236, 1990.

[18] J. Stasko. TANGO: A framework and system for
algorithm animation. IEEE Computer, 23(9):27–39,
1990.

[19] J. Stasko. Animating algorithms with XTANGO.
SIGACT News, 23(2):67–71, 1992.

[20] J. Stasko, J. Domingue, M. Brown, and B. P.
(Editors). Software Visualization. MIT Press,
Cambridge, MA, 1998.

[21] S. Zeil. AlgAE: Algorithm animation engine, 1999.
Available: www.cs.odu.edu/~zeil/algae.html.

492

