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Abstract. Co-located optical and virtual colonoscopy images provide
important clinical information during routine colonoscopy procedures.
Tracking algorithms that rely on image features to align virtual and opti-
cal images can fail when they encounter blurry image sequences. This is a
common occurrence in colonoscopy images, when the endoscope touches
a wall or is immersed in fluid. We propose a region-flow based matching
algorithm to determine the large changes between images that bridge
such interruptions in the visual field. The region flow field is used as
the means to limit the search space for computing corresponding feature
points; a sequence of refining steps is performed to identify the most
reliable and accurate feature point pairs. The feature point pairs are
then used in a deformation based scheme to compute the final camera
parameters. We have successfully tested this algorithm on four clinical
colonoscopy image sequences containing anywhere from 9-57 consecutive
blurry images. Two additional tabletop experiments were performed to
quantitatively validate the algorithm: the endoscope was moved along a
slightly curved path by 24 mm and along a straight path by 40 mm. Our
method reported errors within 1-5% in these experiments.
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1 Introduction

The simultaneous use of pre-segmented virtual and optical colonoscopy images
during routine endoscopic procedures provides useful clinical information to the
gastroenterologist. Tracking algorithms must be employed to keep both image
sequences aligned throughout the procedure. In medical images this presents a
number of challenges: images can become blurry (endoscope touching a wall, fluid
immersion), bright areas or tools may appear, etc. In these instances, endoscopic
images over short periods of time may be devoid of features, causing tracking
algorithms to fail. The goal of this work is to investigate new methods to skip
such interruptions in the visual field and seamlessly continue tracking. Optical
colonoscopy image sequences (our application of interest here) are particularly
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(a) (b) (c)

Fig. 1. Region flow vs. optical flow for describing large motion, (a) source image with
overlaid optical flow vectors, (b) source image with overlaid region flow vectors, (c)
target image after a 20 frame blurry sequence. White and green squares in the target
image represent 3 selected regions in the image, and correspond to the white and green
squares in the source images, after application of optical and region flow vectors. Region
flow does a better job tracking the image motion. The lengths of the vectors in the
source images represent the magnitude of the motion velocity.

challenging, due to deformation and other artifacts, and necessitate very robust
algorithms.

The problem we study in this work can be stated as follows: given tracked im-
ages prior to a blurry image sequence, determine camera parameters (translation
and rotation velocities) after the sequence, so as to continue tracking. There have
been two general approaches to handling blurry images in endoscopic sequences:
the use of a magnetic sensor[1,2] for tracking bronchoscopy images, and recovery
from failures. It is unclear that this will work well with colonoscopy images, due
to the more severe deformation effects, making sensor calibration a difficult task.
An alternate approach is to use computer vision algorithms to locate and match
corresponding features along the temporal dimension[3]. Termed wide-baseline
matching[4,5], these methods find temporal correspondence through local com-
parison of feature descriptors, and results depend on the distinctness of the
image features. Optical flow has also been used to track images[6], but typically
does not work well for large changes between images. Fig. 1 illustrates an ex-
ample, with Figs. 1(a),1(c) representing optical images bridging a blurry image
sequence. The white squares in these images represent corresponding pairs gen-
erated by the optical flow field; they do not match up with the green squares,
which roughly represent the positions of the true corresponding pairs.

In this work we present a computer vision algorithm to accurately match cor-
responding features representing large motion between images, to improve the
robustness of tracking algorithms. Central to this approach is the use of region
flow, a dense feature matching strategy that provides a basis and framework
for understanding large motion. As indicated by the work of Brox et al.[7] and
Liu et al.[8], dense feature correspondences can improve the accuracy of many
vision applications, such as structure-from-motion, object recognition, and im-
age retrieval. In the problem addressed here, region flow computation is a key
and novel step of our method, for two reasons, (1) permitting the algorithm
to limit the search space for accurately identifying corresponding features, and
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(2) point-to-point correspondence relies on the intensity constancy model, which
is generally not true for large motion; instead, invariance of a region’s intensity
distribution is a more reasonable assumption. The region flow matching step
is followed by a sequence of refinements, that lead towards accurate compu-
tation of corresponding feature point pairs, and involves region-to-region and
point-to-point matching steps, and false feature rejection. Finally, an image de-
formation based egomotion estimation method is used to recover camera parame-
ters; we constrain the 2D-2D image deformation based egomotion determination
problem[9] to a 3D-2D pose estimation problem by using depth values from a
colon model. Fig. 2 details the various steps of our region flow based approach
to handling large motion and thereby provide the means to skip blurry image
sequences.

We demonstrate initial results using this method on four clinical colonoscopy
sequences containing blurry images; two of these are in the sigmoid colon and
the remaining two in the ascending colon. A table top validation experiment
was also performed to quantify the accuracy of the method by acquiring two
sequences in which the endoscope was moved 24 mm along a slightly curved
path and 40 mm along a straight path.

2 Methods

The flow of our algorithm for recovering motion parameters after a blurry image
sequence is described in Fig. 2. We describe in more detail the major steps of
our method.

2.1 Region Flow Computation

Computing region flow is the key to efficiently determining feature point corre-
spondences between images representing large motion.

Let I1(x, y) and I2(x, y) be a pair of normalized images, with −→u = (ux, uy)
representing the region flow vector at point (x, y). The similarity between two
regions of I1(x, y) and I2(x, y) with relative displacement −→u can be measured
by Normalized Cross-Correlation(NCC) and given by

NCC(x, y, ux, uy) =
∫∫

I2(x + ux, y + uy)I1(x, y)dxdy (1)

Similar to optical flow computation[10], we use a global energy function to com-
pute region flow, within a minimization framework.

E(ux, uy) =

∫∫
min(|1.0 − NCC(x, y, ux, uy)|, α)︸ ︷︷ ︸

Data constraint

+ λ min((|∇ux| + |∇uy |), β)︸ ︷︷ ︸
Smoothness constraint

dxdy

(2)

where α and β are truncation values to prevent over-smoothing. λ is a parameter
to balance data and smoothness constraints.
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Fig. 2. Region flow based algorithm for recovering motion parameters after a blurry
image sequence

Implementation. In general, region flow computation involves matching re-
gions in the source image with regions in the target image, at every pixel, an
O(n4) computation, for N × N sized images. In our implementation, we reduce
the computation by (1) downsampling images by a factor of 4 in each dimension,
and (2) restrict the largest image motion(we allow up to 150 pixel displacement
on a 500 by 400 image), so that the corresponding search space in the tar-
get image is reduced. The minimization procedure of Eq. 2 is performed using
the coarse-to-fine belief propagation procedure described in Felzenwalb[11]. The
minimization results in a set of region flow vectors that provide a good approxi-
mation to the image motion. Fig. 1(b) illustrates an example colonoscopy image
with overlaid region flow vectors. The region flow vectors follow the image motion
between the two images, Figs. 1(b) and 1(c).

2.2 Corresponding Pairs Computation

Region-to-Region Matching. In this step, corresponding regions are identi-
fied using the region flow field and a local matching procedure. A set of stable
feature points are detected by the SIFT algorithm[5] in the source and target
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(a) (b) (c) (d)

Fig. 3. Corresponding Pairs Computation. Top and bottom images represent images
before and after the blurry image sequence, (a) Region-to-Region matching. Green
squares indicate the matched regions using the region flow field. Local search using
NCC is performed to find the best region pair (b) Point-to-Point feature matching.
Using SIFT descriptor as a metric, the best SIFT feature point pair is determined
between source and target regions. (c) False feature match rejection using epipolar
geometry, (d) local matching using only (locally defined) SIFT feature descriptors,
illustrating significant errors.

images. The corresponding regions in the target image are identified using the
region flow vectors and a local neighborhood search. In Fig. 3(a), the green
squares joined by the white lines represent corresponding regions containing at
least one SIFT feature point in the source image and 0 or more SIFT feature
points in the target region. In the implementation, the mapped region is locally
adjusted using NCC as a metric to find the best region match.

Point-to-Point Feature Matching. In this step, each corresponding region
pair is refined to a corresponding point pair. If the target region does not contain
a SIFT feature point, it is removed. For target regions with multiple SIFT fea-
ture point candidates, the candidate with the closest SIFT descriptor(a distance
metric) is chosen as the best candidate. Fig. 3(b) illustrates the selected feature
point pairs after this step.

False Feature Match Rejection. With the chosen feature point pairs, epipolar
geometry is built using the RANSAC algorithm[4]. Outliers that do not satisfy
the epipolar geometry constraints are removed, as seen in Fig. 3(c).

Finally, Fig. 3(d) illustrates the same example using just SIFT feature point
matching. It can be clearly seen that the lack of global motion information results
in significant mismatches.

2.3 Image Deformation Based Egomotion Estimation

In the final step, we estimate the camera motion parameters of the image after
the blurry images. We use a deformation based method.
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Fig. 4. Egomotion Estima-
tion

In Fig. 4, the visual angle θ1 of two world coor-
dinate points P and Q from the camera projection
center O1 is defined as the angle between the pro-
jection rays of P and Q. If −→v o1p1 and −→v o1q1 are the
normalized projection rays, the disparity between
θ1 and θ2 can be expressed in terms of vectors or-
thogonal to −→v o1p1 and −→v o1q1 as follows(see [9]):

θ2 − θ1 =
−→
T � (dP−→v ⊥

o1p1
+ dQ−→v ⊥

o1q1
) (3)

where dP = 1
|P−O1| , and dQ = 1

|Q−O1| and
−→
T =

(Tx, Ty, Tz) is the translation velocity. Eq. 3 depends only on
−→
T . As depth

values can be obtained from the virtual colon model, the computation of
−→
T

is linearized. Once
−→
T is known, we can compute the Focus of Expansion,

FOE = (fTx/Tz, fTy/Tz). Rotation velocities
−→
R = (Rx, Ry, Rz) are then com-

puted by embedding the FOE in a polar coordinate system, as described by
Reiger[12].

Fig. 5. Validation. A table top experiment was performed to move the endoscope a
fixed distance. The resulting video was used to test the algorithm. (a) The table top
experimental setup: the endoscope was placed on a surface with distance markings and
moved along a predefined path, (b,c) Acquired images at the beginning and end of the
sequence.

3 Experimental Results

We have tested our algorithm on four clinical colonoscopy sequences, distributed
in different segments of the colon. We have also performed a validation experi-
ment to quantify the accuracy of the algorithm.

3.1 Validation Experiment

Our goal in this experiment was to move the endoscope precisely a certain dis-
tance and acquire images between the end points. Since depth of the colonoscope
from its starting point was needed, a flat surface was held at right angles at the
edge of the desk, thus the depth is the same for all points in the projected image.
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(a) (b)

(c) (d)

Fig. 6. Results on 4 Colonoscopy Sequences. OC-VC image pair before and after blurry
sequences, (a) 520 polyp surgery sequence in sigmoid colon with a 57 image blurry
sequence (b) 160 image polyp removal sequence in sigmoid colon with a 21 image blurry
sequence, (c,d) 450 image sequence with 2 blurry image sequences of 9 and 19 images.
The tracking system tracked through both blurry images sequences successfully.

Fig. 5 illustrates the experimental setup and image pair of one of the acquired
sequences. Two sequences were tested with this setup, (1) colonoscope moved
along a straight path by 40 mm, (2) colonoscope moved along a slightly curved
path, with the end to end (Euclidean) distance of 24mm. Analyzing these two
sequences using our algorithm resulted in distances of 39.6mm and 22.96mm
respectively.

3.2 Clinical Colonoscopy Experiments

Fig. 6 illustrates 4 example colonoscopy sequences with blurry image sequences.
The top rows illustrate the optical images before and after the blurry images.
The corresponding virtual colonoscopy images are in the bottom rows. Regions
marked by green circles indicate corresponding features to establish accuracy.



512 J. Liu, K.R. Subramanian, and T.S. Yoo

Experiment 1: Polyp Surgery in the Sigmoid Colon. This sequence con-
tains 520 images, with a blurry image sequence from frame 304 to 361, due to
the colonoscope touching the colon wall. In Fig. 6(a) the polyp can be clearly
seen in the OC and VC images, including scale changes in the polyp. The fold
in the virtual image is likely due to deformation.

Experiment 2: Polyp Removal in the Sigmoid Colon. This sequence rep-
resents the removal of the polyp, and contains 160 images, with a blurry image
sequence between 90 and 111. Injection of water (bright area) in the vicinity of
the removed polyp caused the blurry image sequence. Though somewhat harder
to see, the green circles estimate the location of the polyp quite well in the OC
and VC images.

Experiments 3,4: Ascending Colon. This sequence in the ascending colon
contains 450 images and contained two blurry sequences, from 277 to 286 and
321-340; in both cases, the colonoscope was very close to a fold. Our algorithm
was able to track continuously through the two blurry sequences, as seen by the
well aligned OC and VC images in Figs. 6(c),6(d).

Our initial results are very promising. Despite the large changes in images in
these sequences and the artifacts (especially deformation) in colonoscopy images,
the region flow field accurately captures the global motion characteristics, easing
the corresponding pairs computation. In all of these experiments, it is possible
to identify features (folds, polyps, etc.) that provides qualitative accuracy and
confidence in the tracking system. It is worthy to note that our tracking system
tracked continuously through the two blurry image sequences in Figs. 6(c),6(d)
without interruption.

4 Conclusions

We have presented a region flow based algorithm to handle large motion induced
changes in colonoscopy video; this frequently happens when the colonoscope
touches a wall or fold, or is immersed in fluid. The region flow field provides the
computational basis for accurate and robust corresponding pairs computation,
which in turn permits estimating camera parameters. We show through a val-
idation experiment and four clinical colonoscopy sequences the effectiveness of
our algorithm to keep the tracking system functioning as it encounters blurry
image sequences; in our experiments, blurry image sequences ranged from 9 to
57 consecutive images. We are currently looking at two issues in improving our
method, (1) carefully examine the computational considerations in computing
region flow, and (2) improve the robustness of the egomotion estimation.
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