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Abstract
Purpose Continuously, optical and virtual image alignment
can significantly supplement the clinical value of colonoscopy.
However, the co-alignment process is frequently interrupted
by non-informative images. A video tracking framework to
continuously track optical colonoscopy images was devel-
oped and tested.
Methods A video tracking framework with immunity to
non-informative images was developed with three essential
components: temporal volume flow, region flow, and incre-
mental egomotion estimation. Temporal volume flow selects
two similar images interrupted by non-informative images;
region flow measures large visual motion between selected
images; and incremental egomotion processing estimates sig-
nificant camera motion by decomposing each large visual
motion vector into a sequence of small optical flow vectors.
The framework was extensively evaluated via phantom and
colonoscopy image sequences. We constructed two colon-
like phantoms, a straight phantom and a curved phantom, to
measure actual colonoscopy motion.
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Results In the straight phantom, after 48 frames were
excluded, the tracking error was <3 mm of 16 mm traveled.
In the curved phantom, the error was <4 mm of 23.88 mm
traveled after 72 frames were excluded. Through evaluations
with clinical sequences, the robustness of the tracking frame-
work was demonstrated on 30 colonoscopy image sequences
from 22 different patients. Four specific sequences among
these were chosen to illustrate the algorithm’s decreased sen-
sitivity to (1) fluid immersion, (2) wall contact, (3) surgery-
induced colon deformation, and (4) multiple non-informative
image sequences.
Conclusion A robust tracking framework for real-time
colonoscopy was developed that facilitates continuous
alignment of optical and virtual images, immune to non-
informative images that enter the video stream. The system
was validated in phantom testing and achieved success with
clinical image sequences.

Keywords Colonoscopy · Tracking · Region flow ·
Temporal volume flow · Egomotion

Introduction

The mortality of colorectal cancer is estimated to be about
51,690 in the United States in 2012 [1]. Optical colonoscopy
(OC) is a primary screening procedure to detect and remove
cancerous polyps (tumors), despite the fact that OC pro-
cedures can miss polyps [2]. Summers [3] and Duncan
[4] showed that the ability to correlate polyps in virtual
colonoscopy (VC) with optical colonoscopy is clinically
important for screening colorectal cancer. The co-alignment
of OC and VC images [5] thus has the potential to improve
OC procedures, as anus-to-cecum distance measurements
indicate that the location difference of the majority of polyps
is within 10 cm.
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Fig. 1 Colonoscopy images can be classified as clear images (a, b)
and non-informative images (c–f). Non-informative images may be
due to fluid immersion (c), wall contact (d), extreme lighting (e), and
irrigation (f)

In our previous work [5], we treated the co-alignment
problem in the presence of clear OC images, as illustrated
in Fig. 1a, b. Optical flow can represent the actual image
motion by measuring colon fold’s displacements. A typical
colonoscopy video stream, however, comprises many non-
informative images that contain little or no image features;
these images typically make up 30–40 % of the entire
video stream [6,7]. Figure 1c–f illustrates four types of non-

informative images caused by fluid immersion, wall contact,
illumination blinding, and irrigation or bleeding. Optical flow
cannot estimate image motion reliably from non-informative
images due to lack of image features, leading to failure in
tracking algorithms.

In this paper, we present our work on optical flow-based
tracking algorithms to handle interruptions in the OC video
stream due to non-informative images. We describe three
novel techniques—temporal volume flow, region flow, and
incremental egomotion estimation, resulting in a robust and
accurate estimation of the camera motion across a non-
informative image sequence. Figure 2 shows an exam-
ple colonoscopy sequence (from our experiments) with
non-informative images. It contains two clear OC image
sequences bridged by a non-informative image sequence.
Our optical flow-based approach [5] can track up to the end of
the first clear image sequence, but fails when non-informative
images are encountered. The exclusion of non-informative
images generates a motion gap between frames 325 and 364.
To estimate the camera motion, we need to find two images
before and after the non-informative images, which contain
similar visual features that carry camera motion information.
Temporal volume flow is used to determine the best image
pair by exploiting temporal coherence. As the camera motion
is significant between the selected image pair, we propose
region flow and incremental egomotion estimation to com-
pute the final camera motion parameters. The combination
of temporal volume flow, region flow, and optical flow was
used to successfully track the entire image sequence shown
in Fig. 2.

Endoscopy video tracking techniques can be broadly clas-
sified into three categories, based on image motion veloc-
ity and frame-to-frame coherence: (1) moderate velocity
and contiguous frames, (2) rapid motion and contiguous
frames, and (3) interruptions due to non-informative images.

Fig. 2 Tracking optical colonoscopy (OC) images over non-infor-
mative image interruptions. The horizontal axis is over time (#frames)
representing tracked images, and the vertical axis represents an image
sequence tracked using two different schemes: optical flow (OF)
approach [5] (in red) and the combination of temporal volume flow
(TVF), region flow (RF), and optical flow (in green). The black bar

represents a non-informative image sequence. The current colonoscopy
image sequence contains 518 images (corresponding to Fig. 13) to
illustrate the challenges of non-informative image interruption. The OF
approach fails at frame 325 (onset of non-informative images), while
our combined approach successfully tracks the entire sequence
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Table 1 The three categories of endoscopy tracking problems and their
corresponding solutions

Optical conditions Existing Our approach
approaches

Moderate velocity and [11–16] Optical flow

contiguous frames [17–21]

Rapid motion and [8,9] Region flow

contiguous frames

Interruption from [10] Temporal volume flow

non-informative frames

Most of the prior approaches were concerned with the first
category, with few solutions for the second and third cate-
gories. Table 1 summarizes the status of endoscopy tracking
methods. A detailed survey can be found in Liu [5]. Matching
optical and virtual endoscopy images was a primary approach
to track contiguous bronchoscopy frames with moderate
velocity, given the minimal deformation and the ability to
exploit features such as bifurcations in the bronchi. How-
ever, these methods become unstable when the motion is
large or rapid, violating the small motion assumptions in
their governing equations. External tracking devices are effi-
cient tools to estimate rapid rigid motion because endoscopes
equipped with such sensors are not subject to loss of posi-
tion from non-informative video sequences. However, there
are reports in the literature on bronchoscopy tracking [8,9]
that sensor-based methods are sensitive to local image defor-
mation and easily cause misalignment of optical and vir-
tual images. Tracking errors can be moderated by estimating
camera motion from local image motion [8,9]. Our approach
complies with this strategy to compute rapid motion as the
purpose of our work is to track endoscopy images without
sensors.

The appearance of non-informative images further com-
plicates the tracking problem because image motion cannot
be reliably calculated when the video is obscured, blurred, or
otherwise compromised. Neither computer vision techniques
nor sensor-based approaches [8,9] can reliably track an endo-
scope at all times. Under these conditions, the solution in
bronchoscopy tracking [10] was to let the user manually
adjust bronchoscope. Manual adjustment is impractical in
colonoscopy procedures, since more than 30 % of the images
are non-informative [6,7], resulting in the user having to fre-
quently reset the tracking system.

Thus, the work presented here aims to continuously and
automatically track OC and VC images across interruptions
caused by non-informative images. Our system comprises
three stages:

– Temporal volume flow compares two temporal volumes
before and after a non-informative image sequence, in

order to search for an image pair by using temporal coher-
ence.

– Region flow computes relative image displacements of all
image regions between the selected image pair; signifi-
cant image motion is accurately computed by employing
region flow vectors that use reduced feature ranges.

– Incremental egomotion is used to estimate image motion
across the non-informative image sequence by subdivid-
ing it into a sequence of small image displacements, and
the camera motion is incrementally estimated from these
displacements.

We evaluate our new methods using both phantom exper-
iments and clinical colonoscopy data. Two colon-like phan-
toms, a straight phantom and a curved phantom (both in the
shape of a tunnel), are constructed with a high degree of con-
fidence of the accuracy necessary to generate ground truth
for quantitatively validating the proposed methods. In the
straight phantom, after 48 frames were excluded, the error
was <3 mm of 16 mm traveled. In the curved phantom,
after 72 frames were excluded, the error was <4 mm of
23.88 mm traveled. We also tested the colonoscopy tracking
algorithm on 30 clinical colonoscopy image sequences from
22 patients, and spanning five different colon segments.1

These experiments demonstrate the robustness of our method
with respect to the following scenarios that result in non-
informative images:

– Wall contact,
– Fluid immersion,
– Structural changes due to surgical removal of polyps, and
– Multiple non-informative image sequences.

Methods

Our strategy for tracking colonoscopy video in the presence
of non-informative images is similar to real-world naviga-
tion; look for landmarks or features that might match those
encountered earlier. Non-informative images in the video
stream pose difficulties since their visual information is unre-
liable. Thus, our first step is to match visual information in
images before and after the non-informative image sequence.
However, rather than picking arbitrary images on either side
of the sequence, we analyze the temporal volumes that bridge
the non-informative image sequence and compute temporal
volume flow (TVF), exploiting temporal coherence. This pro-
cedure results in selecting an image pair (guided by the TVF
vectors) that has the best probability for success in determin-
ing the motion across the non-informative image sequence.

1 Part of the Walter Reed Army Medical Center training dataset archive
from the National Cancer Institute.
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Rapid camera motion causes large visual motion between
the two selected images. Wide-baseline point matching
techniques [22–25] are potential solutions to estimate large
image displacements by matching corresponding feature
points. However, feature descriptors used in these techniques
are indistinctive due to the lack of visual cues in OC images.
Instead of performing point-to-point matching, we compute
region flow between the two images by comparing all image
regions within a global energy minimization framework.
As region flow carries global motion information, it can sig-
nificantly improve the accuracy and stability of large image
displacement. Also, since camera motion cannot be accu-
rately estimated from large image displacements, each large
displacement vector is subdivided into a set of small optical
flow vectors through an incremental egomotion estimation
framework. Large camera motion is then computed by adding
camera motion parameters from all the individual optical flow
vectors. Figure 3 illustrates the three stages of our tracking
algorithm for handling non-informative image sequences.

Finally, there is an initialization step. We manually adjust
the VC images to match with the first OC image, using
locations and orientations of polyps and/or colon folds. An
egomotion estimator based on optical flow [5] is used to auto-
matically track informative OC images thereafter. A blurry
image detection algorithm [26] based on saturation values,
intensity distribution, and edge information in the current OC
image is employed to suspend the frame-by-frame tracking
when non-informative images are encountered. The detection
algorithm makes this decision on the current image based on
a blurriness threshold. If the current image score is above
this threshold, it is considered to be non-informative; other-
wise, it is informative, corresponding to image t2 in Fig. 3.
As image t1 (prior to the blurry image sequence) is recorded
by our system, we can determine the informative image pair
before and after the non-informative image sequence. Con-
trol then goes to the three stages of the algorithms described
above by using the image pair t1 and t2.

Thus, we treat the overall problem from matching temporal
volumes to image regions, and finally onto points, corre-
sponding to our three main contributions: temporal volume
flow, region flow, and incremental egomotion estimation.
Their computations are all based on the dense comparison
of visual information and represented by the following vari-
ational function:

E(
−→u (p)) =

∫

Ω

(M(Dk F,
−→u )︸ ︷︷ ︸

Data Term

+ α S(∇F,∇−→u )︸ ︷︷ ︸
Smoothness Term

)dp (1)

where p = (x1, x2, . . . , xn) denotes an n-coordinate point
and −→u = (u1, u2, . . . , um) is a m-tuple visual motion vec-
tor to be estimated. Dk F is the set of all partial deriv-
atives of I of order k. M(Dk F,

−→u ) is a data term, and
S(∇F,∇−→u ) is a smoothness constraint. α is a parameter to

Fig. 3 The flowchart for managing non-informative image interrup-
tions in colonoscopy video. The central idea behind our approach is
to continuously reduce the tracking problem from the difficult issue of
non-informative frame interruption to the easier problem of contiguous
frame tracking with moderate velocities. Non-informative images (red
frames) are first identified by a blurry image detection algorithm, and
temporal volumes before and after the non-informative image sequence
are then constructed. Temporal volume flow computation compares
them to find a visually similar image pair. Region flow computation
identifies corresponding feature points between the two selected images
(shown as green dots). If there are an insufficient number of correspond-
ing features, video times t1 and t2 are shifted and the process repeated
with new temporal volumes. The results are input to the incremental
egomotion estimation algorithm, an iterative optical flow computation
to determine camera translational and rotational parameters

balance data and smoothness terms. The data term measures
the similarity between two corresponding elements, such as
intensity and gradient, and the smoothness term enforces the
visual motion between two corresponding elements to vary
smoothly except at data discontinuities.
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Temporal volume flow

This involves two steps, computation of the temporal volume
flow field, followed by the search for the optimal image pair
containing similar features.

Temporal volume flow computation

Assume there is a colonoscopy video stream I (x, y, t) con-
taining a non-informative image sequence at (t1, t2) (red
frames, top row of Fig. 3). In the second row, two tem-
poral volumes are constructed by collecting two stacks of
colonoscopy images at (t1 − Δt, t1) and (t2, t2 + Δt). With-
out loss of generality, define ρ to represent the artificial time
of a temporal volume stream. All temporal volumes form a
continuous 4-d temporal volume stream, V (x, y, t, ρ). Sup-
pose ρ1 and ρ2 correspond to image sequences at (t1−Δt, t1)
and (t2, t2 + Δt), temporal volume flow performs a global
comparison between V (x, y, t, ρ1) and V (x, y, t, ρ2) to find
two similar images.

TVF densely matches V (x, y, t, ρ) at time ρ1 and ρ2 as
described in Eq. 1, and it is mathematically formulated as
follows:

E(−→w ) =
∫∫∫

(Ψ ((V (x + wx , y + wy , t + wt , ρ2) − V (x, y, t, ρ1))2

︸ ︷︷ ︸
Intensity Constancy Term

+γ (∇V (x + wx , y + wy , t + wt , ρ2) − ∇V (x, y, t, ρ1))2)︸ ︷︷ ︸
Gradient Constancy Term

+αΨ (|∇wx |2 + |∇wy |2 + |∇wt |2)︸ ︷︷ ︸
Smoothness Term

)dxdydt (2)

where Ψ (x2) = √
x2 + ε2, ε = 0.001 is a modified L1

norm and allows the computation to handle occlusions and
other non-Gaussian deviations of the matching criterion
[27–29]. −→w = (wx , wy, wt ) is a TVF vector at a point
p = (x, y, t, ρ1). α and γ are two constants to balance dif-
ferent components in Eq. 2. They are experimentally set to
80 and 5, respectively. These values were also empirically
validated by Brox [29]. Minimizing Eq. 2 with respect to −→w
generates TVF.

The Euler–Lagrange equation can be used to solve Eq. 2
and for the x component is given by

Ψ ′((∂ρV )2 + γ ((∂xρV )2 + (∂yρV )2 + (∂tρV )2))

(∂x V ∂ρV + γ (∂xx V ∂xρV + ∂xy V ∂yρV + ∂xt V ∂tρV ))

−αdiv
(
Ψ ′(|∇wx |2 + |∇wy |2 + |∇wt |2)∇wx

)
= 0 (3)

where

∂ρV = V (x + wx , y + wy, t + wt , ρ2) − V (x, y, t, ρ1)

∂xρV =∂x V (x+wx , y+wy, t+wt , ρ2)−∂x V (x, y, t, ρ1)

(4)

∂yρV and ∂tρV are similarly defined.
However, Eq. 3 is a nonlinear equation with respect

to −→w due to nonlinear intensity and gradient constancy
terms. Ψ (x2) also generates non-convexity. Equation 2
is therefore difficult to minimize because Eq. 3 is non-
convex and nonlinear. In order to remove nonlinearity
and non-convexity, two numerical strategies are employed:
multi-scale image representation and sequential lineariza-
tion.

Multi-scale image representation. Non-convexity in the
TVF computation arises mainly from the appearance of fine
image details. Multi-scale image representations [30] effec-
tively handle this issue because they suppress fine details
at coarse scales, helping to better identify a global min-
imum. Temporal volume pyramids are used as the multi-
scale image representations in TVF computation by down-
sampling temporal volumes. They can smooth fine details as
well as reduce computational cost. In our implementation,
the down-sampling rate is chosen to be 0.75 between suc-
cessive image resolution levels to ensure smooth transition
across different scales.

Sequential linearization. This step aims to remove nonlin-
earity in Eq. 3. TVF vectors to be estimated are decoupled
from other nonlinear functions, such as Ψ ′, through two
nested iterations (as detailed in the appendix). Finally, each
voxel has three linear equations corresponding to x, y, and
z-directions, which leads to a large and sparse linear system
to compute TVF. Successive over-relaxation (SOR) method
[31] is applied to solve it. We summarize TVF computation
in the online supplement.

In our implementation, a temporal volume consists of 20
consecutive OC images, which corresponds to 0.67-s interval
between successive images, assuming the recording rate is
30 frames/s in OC videos. Across such short intervals, TVF
will not miss polyps or other anatomical/pathological fea-
tures. The computational cost is also significantly reduced.
A thorough validation on the number of OC images to make
up a temporal volume can be found in our earlier work [5].
An iterative search is performed in our recovery framework,
as shown in Fig. 3. If there are insufficient feature matches
between the selected images, we shift five frames (t1 − 5 or
t2 +5 in Fig. 3) to recreate new temporal volumes before and
after non-informative images.

Figure 4 illustrates the TVF results on two temporal vol-
umes separated by non-informative images due to wall con-
tact. Here, temporal volumes are composited to two images
through volume rendering techniques, and TVF vectors are
represented as arrows. Note that the fold in the left image
moves to the bottom left corner in the right image, and
flow vectors accurately capture the movements between the
twofolds.
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Fig. 4 Temporal volume flow
(TVF) results on a
non-informative image
sequence. Here, volume
rendering techniques are used to
visualize temporal volumes and
to composite left and right
images. TVF pointing to bottom
left corner accurately reflects
relative displacements between
colon folds in the left and right
images

Fig. 5 Comparison of tracking results with and without temporal vol-
ume flow (TVF) in the descending colon after polyp removal. a OC and
VC images at frame 30 before a non-informative sequence; red rec-
tangles indicate polyp locations, b selecting frame 356 after the non-

informative image sequence for matching causes a recovery failure,
c TVF chooses frame 374 to successfully continue tracking, because
the same folds (red rectangles) appear in both OC and VC images

Image pair search

After TVF is computed, we track all possible voxel displace-
ments between the two temporal volumes. Then we count
the number of all possible voxel correspondences connected
by TVF vectors, between every image pair between the tem-
poral volumes. Thus, if there are N images in both temporal
volumes, there are N × N pairs of images that will be con-
sidered. We select the image pair that has the largest number
of voxel correspondences.

Figure 5 compares the tracking results on an OC sequence
with and without TVF-assisted image pair search. Figure 5a
shows the co-aligned OC image (top) and VC image (bottom)
at frame 30 prior to non-informative images. Frame 356 is
the image just after the non-informative sequence. Note that
the colon folds in Fig. 5a are scaled down and lifted, which
causes substantial dissimilarity between frame 30 and 356.
Thus, the VC image fails to co-align with the OC counterpart,
represented as a blank image in Fig. 5b. Instead, TVF selects

frames 30 and 374 to compute the motion. The corresponding
folds remain at approximately the same regions although the
folds are lowered. Figure 5c shows that OC and VC images
are successfully co-aligned due to a more similar image pair
chosen by the TVF.

Region flow

Region flow is a global region-to-region matching method
to measure large image motion between two images (second
blue frame of Fig. 3). After TVF computation, we obtain an
image pair with large image displacements, such as Fig. 5a, c.
Large image motion displacements have been defined by
wide-baseline image matching methods [22–25,32,33], to
be larger than 1 or 2 pixels in successive video images.
The difficulty in estimating large image motion increases
quadratically with the magnitude of image displacement,
making wide-baseline image matching impractical for this
purpose. Region flow explores all image regions to globally
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understand large displacements of all image points. Local
SIFT feature matching [22] constrained by global region
flow can significantly enhance the accuracy of large image
displacement estimation. This section describes region flow–
based image motion estimation.

Region flow computation

To simplify the description, let I1(x, y) and I2(x, y) be
a pair of selected images at t1 − i and t2 + j shown in
Fig. 3. The essential feature of region flow computation is
to use region comparison to replace point matching in opti-
cal flow methods [28,34–36], to reduce its sensitivity to large
image displacements. The similarity between two regions of
I1(x, y) and I2(x, y) can be measured by normalized cross-
correlation(NCC) [37]:

NCC(x, y,
−→r ) =

∫∫
Î2(x + rx , y + ry) Î1(x, y)dxdy

Î1(x, y) = I1(x, y) − Ī1

σI1

Î2(x, y) = I2(x, y) − Ī2

σI2

(5)

where Ī1 and Ī2 are mean values, and σI1 and σI2 are standard
deviations. −→r = (rx , ry) represents a region flow vector at
point (x, y). NCC values are in the range [−1, 1], and two
regions are matched if the NCC value is maximized.

In order to fit NCC measurement into the minimization
framework of region flow computation, Eq. 5 is rewritten to
minimize 1.0 − NCC(x, y,

−→r ). Similar to TVF computa-
tion, a global energy function similar to Eq. 1 is applied to
compute region flow, within a minimization framework:

E(rx , ry) =
∫∫

min(|1.0 − NCC(x, y, rx , ry)|, α)︸ ︷︷ ︸
NCC Term

+λ min((|∇rx |2 + |∇ry |2), β)︸ ︷︷ ︸
Smoothness Term

dxdy (6)

where α and β are truncation values to prevent oversmooth-
ing and λ is a parameter to balance data and smoothness con-
straints. In our implementation, we set α = 0.8, β = 50, and
λ = 1 to process both phantom and clinical image sequences
in our experiments.

The original resolution of OC images is 720×480, and the
selected two OC images are first down-sampled by a factor
of 4 to reduce the computational cost. The accuracy of region
flow might be decreased because of its computation on down-
sampled images. However, highly accurate region flow is
unnecessary at this step because the purpose of region flow is
to provide search ranges for SIFT feature matching described
in section “Feature matching.” The final large image motion
is determined by measuring relative displacements between
matched SIFT features (SIFT features are extracted from the
original OC images). Consequently, the estimation of large

image motion will not be affected by down-sampling OC
images for region flow computation.

The computation begins by calculating NCC measure-
ment to match image regions in the down-sampled source
image to corresponding regions in the down-sampled target
image at every pixel. Its computational cost is O(N 4) for
N × N -sized images. Equation 5 indicates that the NCC
value not only depends on (x, y) and −→r , but also correlates
with Ī1 and σI of candidate image regions at source and target
images. The multivariable NCC function is easy to compute
through discretely matching image regions. A Markov ran-
dom field [38] is an efficient approach to minimize Eq. 6 with
a discrete NCC term by converting images into four con-
nected graphs. Efficient belief propagation [39,40] is used
to minimize the connected graph. The detailed implemen-
tation to compute region flow can be found in our earlier
work [5].

Figure 6 compares image displacements measured by
region flow and optical flow on an image pair separated by
non-informative images. Figure 6b illustrates an OC image
with overlaid region flow vectors. They represent the actual
image displacements between Fig. 6b, c. Three corner points
are manually selected and indicated by white boxes in Fig. 6a
and green boxes in Fig. 6b. The white squares in Fig. 6c rep-
resent corresponding pairs generated by optical flow. They do
not match up with the green squares, which roughly represent
the positions of the true corresponding pairs.

Feature matching

Figure 7 illustrates the process of feature matching based
on region flow. Two sets of SIFT feature points are detected
on the original-sized colonoscopy image pair, illustrated as
white crosses in Fig. 7. The SIFT algorithm [22] is chosen
because it usually generates a sufficient number of feature
points. This property is useful for colonoscopy tracking, con-
sidering that colonoscopy images often lack sufficient visual
cues.

Region-to-region matching In this step, corresponding
regions are identified using region flow field and a local
matching procedure. The corresponding regions of SIFT fea-
ture points in the target image are identified using region
flow vectors and a local neighborhood search. In Fig. 7a, the
green squares joined by the white lines represent correspond-
ing regions containing at least one SIFT feature point in the
source image and 0 or more SIFT feature points in the target
image. In the implementation, the mapped region is locally
adjusted using NCC as a metric to find the best region match.

Point-to-point feature matching In this step, each corre-
sponding region pair is refined to a corresponding point pair.
If the target region does not contain a SIFT feature point, it is
removed. For target regions with multiple SIFT feature point
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Fig. 6 Region flow versus optical flow for describing large motion,
a source image with overlaid optical flow vectors, b source image
with overlaid region flow vectors, c target image after a 20 frame non-
informative sequences. The lengths of the vectors in the source images
represent the magnitude of the motion velocity. Three corner regions
are marked by white squares in the source image a and green squares in

the source image b to assist in the accuracy comparison between opti-
cal and region flow. Their corresponding regions are also highlighted
as green and white squares in the target image c after application of
optical and region flow vectors. Region flow does a better job tracking
the image motion because green squares are located at approximately
the same corner regions, in contrast to the white squares

Fig. 7 Corresponding pair computation. Top and bottom images rep-
resent images before and after the non-informative image sequence,
a region-to-region matching. Green squares indicate the matched
regions using the region flow field. Local search using NCC is per-
formed to find the best region pair, b point-to-point feature matching.
Using SIFT descriptor as a metric, the best SIFT feature point pair is
determined between source and target regions, c false feature match
rejection using epipolar geometry, d original SIFT feature matching.
Note the incorrect feature matches using SIFT only approach

candidates, the candidate with the closest SIFT descriptor (a
distance metric) is chosen as the best candidate. Figure 7b
illustrates the selected feature point pairs after this step.
False feature match rejection With the chosen feature point
pairs, epipolar geometry is built using the RANdom SAm-
ple Consensus (RANSAC) algorithm [25]. Matched feature
points should stay at corresponding epipolar lines in the

source and target images based on epipolar geometry. Fea-
ture pairs that fail to fulfill this condition are removed, as
seen in Fig. 7c.

Region flow generates accurate SIFT feature matches
because region flow vectors predefine feature matching
ranges and limit false feature matches. In comparison, origi-
nal SIFT feature matching generates significant mismatches
in Fig. 7d because the matching size is uncertain and the SIFT
feature descriptor is indistinct.

Region flow results in a set of matched SIFT feature points,
and accurate large image motion is obtained by measuring
relative displacements between the matched points.

Incremental egomotion estimation

Most existing egomotion estimation methods [41–44] fail
to accurately estimate rapid camera motion because they
assume that image motion should be small. To address this
issue, we developed an incremental egomotion estimation
strategy to subdivide every large image displacement vec-
tor into a sequence of optical flow vectors by iteratively
performing point-to-point optical flow computation (bottom
of Fig. 3). Rapid camera motion is estimated by combining
small camera motion parameters from each iteration.

We use Eq. 1 to combine global SIFT matching term and
local image intensity and gradient constancy terms within
a variational equation, and minimizing this equation yields
the subdivision of large displacement vectors. The Euler–
Lagrange equation is unfortunately invalid because the SIFT
matching term is non-differentiable. Instead of keeping the
SIFT matching term during the minimization process, we
advance it to the initialization phase by performing image
region matching on every SIFT feature correspondence.
Figure 8 illustrates image region matching. For each fea-
ture correspondence, two regions centered at matched fea-
ture points, such as Fig. 8b, c near a polyp, are first built in
the OC image pair. Optical flow method [28] is employed
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Fig. 8 Region-to-region image
matching. a SIFT feature
matches, where white crosses
indicate SIFT features and lines
link matched feature pairs, b an
image region centered at a SIFT
feature in the left image, c the
image region in the right image,
d the warped image region in
terms of the image matching
results

Fig. 9 Phantom design.
a Straight phantom, b curved
phantom

to compute image motion between two regions. Figure 8d
is the warped equivalent of Fig. 8c using the image match-
ing results. Image matching accurately measures relative dis-
placements between two image regions because Fig. 8b is
similar to Fig. 8d. Discrete SIFT matching term is replaced by
a term that measures the difference between optical flow vec-
tors and the vector sum of region matching vectors and large
image displacement vectors. This replacement makes the
Euler–Lagrange equation become valid, and large displace-
ment vectors can be iteratively decomposed into a sequence
of optical flow vectors. We modify our egomotion estimation
method [5] to incrementally estimate camera translational
and rotational parameters at every iteration. The detailed
implementation of incremental egomotion estimation can be
found in the online supplement of this article.

The camera motion parameters are finally determined by
summing all incremental motion parameters. They are used
to transform the VC camera, and the OC and VC images are
aligned.

Phantom validation

In order to evaluate the accuracy and robustness of our
tracking algorithms, we constructed two colon-like phan-
toms (curved and straight), as seen in Fig. 9. Colonoscope
velocity and displacement were the metrics used to com-
pare the algorithm performance to the generated ground
truth.

Phantom experiment setup

We designed the two phantoms to satisfy the following
requirements:

– Repeatable. The experiments must be capable of being
performed multiple times under the same conditions
and collecting multiple image sequences for statistical
analysis.
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– Consistent. To simulate the actual colonoscopy proce-
dure, the colonoscope must be placed inside the phantom
and moved at typical speeds.

– Controllable. Colonoscope velocities must be adjustable,
with the ability to constrain other free parameters,
enabling validation of the most important parameters,
camera velocity and displacement.

– Precise. The actual camera velocities and displacements
must be measurable, enabling reliable evaluation of the
tracking system.

The repeatability requirement suggests the use of a motor
to move the optical colonoscope. However, this is nontrivial,
since the colonoscope has a long flexible tube and a heavy
handle. Instead, we motorize the phantoms to generate rel-
ative camera motion. We chose LEGO blocks to build the
straight phantom since (1) LEGO phantoms can be easily
built to fulfill the controllability requirement and (2) LEGO
products have high precision, with a manufacturing tolerance
as small as 0.01 mm [45]. As a result, the phantoms can be
easily built by using LEGO bricks to fulfill the requirements
of controllable experiments, accurate ground-truth determi-
nation, and consistent navigation.

In the straight phantom experiment, LEGO bricks were
used to build a straight-tunnel phantom (Fig. 9a), with the
interior size of 105 mm×32 mm×384 mm. The colonoscope
(indicated by green arrows) was suspended by the iron wire
(red arrows), while the straight phantom is driven by a motor.
The straight phantom was translated at three speeds of 10,
15, and 20 mm/s. At each speed, five image sequences were
collected.

The curved phantom was built using two concentric sheets
(thick cardboard) of radii 158.5 and 102.5 mm (Fig. 9b). The
height of each sheet is 125 mm. Textured (color squares) pat-
terns coat the inside of the two curved sheets, simulating the
effects of LEGO bricks. The size of each colored square is
54 mm×28 mm. A small wheel of radius 0.6 mm is attached
to the end of the drill and used to rotate the turntable. Sim-
ilar to the straight phantom experiments, the colonoscope is
kept stationary by iron wires, while the curved phantom was
rotated at three different speeds. The detailed experimental
setup can be found in [5].

Note that our phantoms are rigid while the actual colon
is a deformable organ. The color and texture of phantom
images are also quite different from the actual colonoscopy
images, although the phantom images are recorded from a
real colonoscope (Fig. 12). However, extracting ground-truth
from a deformable phantom is difficult, especially if we are
to simulate the complicated motion of a human colon. If
the ground-truth cannot be reliably obtained, then validating
the accuracy of our tracking algorithms will not be possible,
defeating the primary goal of the phantom experiments. Our
phantom design supports interior navigation, permits typical

colonoscope speeds, and most importantly allows accurate
measurement of camera velocity and displacement and the
ability to perform multiple trials of the same experiment.
We can thus evaluate our tracking system with confidence,
unlike prior phantom experiments [8,19,21] in bronchoscopy
tracking. Although their phantom shapes are more faithful to
the bronchi, they are also rigid, and the color and texture
of the endoscope images vary from the actual bronchoscopy
images.

The goal of our phantom validation is the evaluation
of large camera motion caused by the appearance of non-
informative images. Thus, we only chose high-velocity
colonoscopy sequences, about 20 mm/s. We created large
intervals of varying durations with as few as 19 informa-
tive images in a 430-image straight phantom sequence and
13 images in a 430-image curved phantom sequence. All
other images were eliminated to simulate non-informative
image interruptions. In the straight phantom, 19 images are
selected when the iron wire highlighted by a red arrow arrives
at the positions shown by the three white circles in Fig. 9a.
The selected positions are the boundaries between LEGO
bricks or LEGO tilts and are observed from an external
video camera. The camera displacement between two adja-
cent selected images is 16 mm (half brick length). Similarly,
13 phantom images are chosen in the curved phantom when
the colonoscope stays at the boundaries between white and
black checkerboards in Fig. 9b. The camera displacement
between two adjacent curved images is 23.88 mm.

Validation results

Figure 10 shows the tracking results by using region flow
and incremental egomotion estimation on the straight phan-
tom image sequences. Here, the camera translational velocity
is measured in mm/interval, not mm/s. By the same token,
camera rotational velocity is measured by degree/interval.
Here, we chose the angle between the z axis of the esti-
mated camera and the medial axis of the straight phantom
to evaluate the camera rotational velocity error. Figure 10a
indicates that the maximum translational velocity error is
under 5 mm/interval on both original and calibrated phan-
tom image sequences (five each) in the straight phantom,
after 19 phantom images have been tracked. The average
translational velocity error is <3 mm/interval on the original
image sequences and <4 mm/interval on the calibrated image
sequences. Figure 10b shows that the maximum rotational
velocity error is <3.2 degree/interval on both original and
calibrated phantom image sequences in the straight phantom.
The average rotational velocity error is <1.1 degree/interval
on the original image sequences and <2.1 degree/interval
on the calibrated image sequences. In Fig. 10c, the aver-
age displacement error is <7 mm on the original image
sequences and <8 mm on the calibrated image sequences.
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Fig. 10 Comparison between ground-truth and estimated camera
motion parameters on the original and calibrated straight phantom
image sequences. a Camera translational velocity curves, b camera rota-
tional velocity curves, and c camera displacement curves. The blue line
represents the ground-truth, and red and green bands indicate the esti-
mated motion parameters on the original and calibrated phantom image
sequences, respectively. The bottom and upper curves in each band indi-
cate the minimum and maximum motion parameters of five trials, and
the center curve represents the average motion parameters

The maximum displacement error is <13 mm on both orig-
inal and calibrated image sequences. The velocity and dis-
placement information in straight phantom experiments is
also summarized in Table 1 of the online supplement of this
article.

Fig. 11 Comparison between the ground-truth and estimated cam-
era motion parameters on the original and calibrated curved phantom
images, a camera translational velocity curves, b camera rotational
velocity curves, and c camera displacement curves

Large camera motion parameters are more challenging to
estimate in the curved phantom image sequences because
the colonoscope moves 23.88 mm between two adjacent
images. Figure 11a shows that there is a significant trans-
lational velocity error at frame 1 in the original phantom
image sequences and at frame 2 in the calibrated sequences
(indicated by black arrows) in the second trial. This was
investigated, as shown in Fig. 12. There is a vertical curve
highlighted by a red ellipse in the left phantom image, which
is located on the inner wall of the curved phantom. Some
SIFT feature points were detected on the vertical curve, while
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Fig. 12 SIFT feature matches between two phantom images. Some
SIFT feature points inside a red ellipse are detected, along a vertical
curve in the left image, while all these points disappear in the right
image because the vertical curve is occluded. During incremental ego-

motion estimation, several false SIFT feature matches from the elliptical
region were chosen, causing significant estimation error. An example
false SIFT feature correspondence connected by a red line is shown

they disappear from the right image because the vertical
curve no longer exists due to large camera motion. These
cause false SIFT feature correspondences that are used by the
incremental egomotion estimation procedure (for instance, a
false SIFT feature correspondence is shown by the red line
in Fig. 12). The image motion vector calculated from this
false feature match would point to the image center corre-
sponding to the image motion when the colonoscope moves
backward. However, the colonoscope is currently moving
forward. Thus, all false feature matches from the vertical
curve reduce the estimated camera motion parameters dur-
ing egomotion estimation. As a result, there is a significant
drop of the estimated camera velocity at frame 1, indicated
by a black arrow in Fig. 11a. For the same reason, the camera
velocity is underestimated at frame 2 on the calibrated image
sequence.

With the exception of the second curved phantom image
sequence, the camera velocities are estimated reasonably
well in all the remaining sequences. The average transla-
tional velocity error is <3 mm/interval in both original and
calibrated phantom image sequences. The maximum veloc-
ity error is <8 and 7 mm/interval on the original and cali-
brated image sequences, respectively. Similar to the straight
phantom, the rotational velocity error was measured by the
angle between the Z axis of the estimated camera and the
tangent direction of the medial axis of the curved phantom.
The average rotational velocity error is <1.5 degree/interval
in both original and calibrated phantom image sequences.
The maximum velocity error is <6 degree/interval and
7 degree/interval on the original and calibrated image
sequences, respectively. The average camera displacement
error is <8 mm on the original phantom image sequences and
<7 mm on the calibrated sequences. The maximum camera
displacement error is <14 mm on both original and calibrated
curved phantom image sequences. Similar to straight phan-
tom experiments, we have summarized the validation results
in Table 2, in the online supplement of this article.

From the phantom experimental results, we can draw the
following conclusions:

1. Both straight and curved phantom results demonstrate
that our approach can accurately recover large camera
motion. The average velocity error is 3 mm of 16 mm in
the straight phantom and 3 mm of 23.88 mm in the curved
phantom. If the colonoscope is moving at the average
speed of 10 mm/s, our method can accurately recover the
tracking system after
16 mm×30 frames/s

10 mm/s = 48 frames are excluded in the

straight phantom, and 23.88 mm×30 frames/s
10 mm/s ≈ 72 frames

are eliminated in the curved phantom.
2. The accuracy of large camera motion estimation is depen-

dent on the amount of the colonoscope’s movement
because large camera motion will cause a large portion
of SIFT features to be occluded.

3. There is no significant variance in results between the
original and calibrated colonoscopy image sequences,
indicating that camera calibration is not required.

Clinical data evaluation

We randomly selected 30 image sequences from 22 patients at
the WRAMC virtual colonoscopy training data archive of the
National Cancer Institute. These datasets were specifically
collected for the training purpose in colonoscopy research,
and the CRADS zero score [46] might be excluded in this
study. Each patient underwent OC and VC examination, and
OC and VC reports recorded polyp size and location. We
collected 10 ascending colonoscopy image sequences, five
transverse sequences, nine descending sequences, two sig-
moidal sequences, and four rectal sequences. Each image
sequence contains at least one non-informative image
sequence. Fifteen image sequences have polyps, while the
other 15 sequences are devoid of polyps. Only qualitative
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Fig. 13 Experimental results of tracking 30 clinical image sequences
containing non-informative images sequences. Horizontal axis repre-
sents the number of tracked frames, and vertical axis indicates the 30
image sequences. The sequences with polyps are marked by ellipses,
while those without polyps are marked by rectangles. Green bars denote
clear image sequences, and black bars represent non-informative image

interruptions in the sequence. Symbols at the end of each sequence
show (in order) the causes of the non-informative image interruptions
(in order) in the corresponding colonoscopy sequence (with a legend
detailing the causes). In our experiments, we have been able to track
more than 3500 OC images (sequence 1) and continuously over 10
non-informative sequences (sequence 22)

evaluation of the tracking accuracy is possible on the clini-
cal sequences, since the ground truth of the colonoscope is
unknown. Polyps are good landmarks to qualitatively eval-
uate system performance. An image sequence is consid-
ered to be successfully tracked if polyps are simultaneously
located at similar regions of the OC and VC images. By the
same token, colon folds can be used as landmarks on image
sequences without polyps. Tracking is considered to be suc-
cessful if the number of colon folds traversed is the same in
both OC and VC images.

Figure 13 illustrates additional information on the causes
behind the non-informative sequences and the successful use
of our system in handling these sequences. We observe the
following:

– We tracked more than 3,630 images with multiple non-
informative image sequences, such as sequence 1. The
average number of tracked images is 1,185.

– Our system tracked up to 10 non-informative image
sequences (sequence 22) within a single colonoscopy
image sequence. The average number of non-informative
image sequences is 2.9. Assuming the frame rate is
30frame/sec, the non-informative images appear every

(1, 185/30)/2.9 ≈ 14 s. Accordingly, recovery from
non-informative image interruptions is essential.

– Our system successfully tracked a 273-image non-
informative image sequence (sequence 4b). The number
of non-informative images per non-informative image
sequence varied from 5 to 273.

– In these experiments, our system encountered non-
informative images due to wall contact, fluid immersion,
irrigation, lighting, presence of surgical tools, and moist
lens, as detailed in table 3 in online supplement.

– We noticed that the image sequence without polyps
(marked by squares in Fig. 13) contained more non-
informative image sequences than those with polyps
(marked by ellipses). The average number of non-
informative image sequence increases to 4 in the selected
image sequences, with a non-informative sequence appear-
ing every 6.4 s, on average. Most likely, this is due to the
higher colonoscope velocity in these image sequences
without polyps.

We next look at tracking results from the use of our system
on three types of non-informative images: wall contact, fluid
immersion, and polyp removal (appearance of surgical tools
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Fig. 14 Wall contact caused non-informative images. A 520-rectum
image sequence with a rounded polyp is selected, where the polyp
is highlighted by green circles. Wall contact causes a sequence of 55
non-informative images. OC images are shown in the left column, and
VC images are displayed in the right column. Top row: the OC–VC
image pair before the non-informative images; center row: the image
pair during non-informative images; bottom row: the image pair after
non-informative sequence

in the images). We conclude with an image sequence with
eight non-informative image sequences, to demonstrate the
robustness of our tracking algorithms.

Wall contact

In Fig. 14, a 520-rectum colonoscopy image sequence
corresponding to sequence 6d in Fig. 13 was chosen to
illustrate the tracking results from wall contact caused non-
informative images. OC images are shown in the left col-
umn, and VC images are displayed on the right. There are
55 non-informative images starting from frame 306 to 360
in this sequence. Temporal volume flow picks frame 304 and
361 to recover the tracking system. The top row illustrates
the co-aligned OC–VC image pair at frame 304 before non-
informative images, and the bottom row shows the track-
ing results at frame 361 after non-informative OC images.
The center row shows the non-informative images due to
wall contact. Despite the fact that colon folds present in
the top parts of VC images while they disappear in the OC
images due to colon deformation, the most important feature,

Fig. 15 Fluid immersion caused non-informative images. A 535-
descending-image sequence after polyp removal is used to evaluate
our tracking strategy. The colon compression produces fluid immer-
sion, which results in 35 non-informative images as shown in the cen-
ter image of the left column. In spite of fluid-induced non-informative
images and complicated colon deformation, our tracking algorithm is
able to recover colonoscopy, as seen by the areas of the polyp marked
by green circles in the top row (before non-informative images) and the
bottom row (after)

a rounded polyp highlighted by green circles, is still seen
(displaced) in both OC and VC images. These results also
mean that polyps can be used by the gastroenterologist as
landmarks to maintain spatial context between the OC and
VC images.

Fluid immersion

Figure 15 shows the tracking results on the sequence 2a in the
descending colon when the colonoscope is being withdrawn.
It contains 535 images, and 35 non-informative images occur
from 135 to 170 due to the colonoscope being immersed
in fluids. In this work, we are only interested in recovering
the tracking system from the interruption in the withdrawal
phase because colon surgery often happens in this phase. In
OC images of Fig. 15, the polyp regions are marked by green
circles. The top row indicates that OC and VC images are co-
aligned in terms of polyp locations, though the colon defor-
mation causes significant shape variance of colon folds. After
non-informative images, the colon folds in the OC images
enlarge because of deformation (bottom row), which pushes
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Fig. 16 Surgical tool operation caused non-informative images. A
1443 sigmoid image sequence with five non-informative image
sequences is used to evaluate our tracking system. Here, we use the
fourth non-informative image sequence as an example. In this sequence,
the gastroenterologist uses a snare to remove the polyp, which causes the
camera to touch the colon wall, generating 80 non-informative images.
However, the tracking system continues to perform well, as evidenced
by the corresponding polyp pairs in OC and VC images

the polyp regions to the bottom (green circle, lower right).
The polyp in the tracked VC image also moves to the bottom.

Structural changes caused by surgical tools

Sequence 11 was chosen to illustrate tracking over non-
informative images due to the presence of surgical tools in the
optical field. Surgical tools used in the colonoscopy exami-
nation include snare, biopsy forceps, and a measuring tool.
They are all observed in our selected image sequences. In
Fig. 16, the snare is used to remove a polyp. This video seg-
ment contains 1,443 OC images with five non-informative
image sequences. We used the fourth non-informative image
sequence as an example. The gastroenterologist snared a
polyp back and forth to remove it from the folds. The move-
ment makes the colon collapse and produce 80 wall contact–
like non-informative images, as seen in the top column
of Fig. 16a. Using temporal volume flow calculations, OC
image frames 901 and 992 were chosen to estimate cam-
era motion. Due to small image displacements between OC
images, the camera motion is accurately estimated, using
polyp location as the landmark for verification.

Fig. 17 Tracking results on a descending colonoscopy image sequence
with eight non-informative image sequences. a–c Recovery results at
No.1 non-informative image sequence; d–f recovery results at No. 4
non-informative sequence; g–i results at No.7 sequence. Here, colon
folds indicated by green arrows are chosen to determine the rela-
tive image motion between two images interrupted by non-informative
images, so as to qualitatively evaluate the accuracy of tracking failure
recovery

Multiple non-informative image sequences

Sequence 7 was selected to demonstrate that our algorithm can
successfully track through multiple non-informative image
sequences. This sequence has eight non-informative image
sequences, and the total number of non-informative images is
158. Such frequent appearance of non-informative images is
partly because this sequence does not contain polyps.
The dominant motion is fast withdrawal. We chose non-
informative image sequences No. 1, No. 4, and No 7 for
illustration, which correspond to the three rows in Fig. 17.
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The non-informative images in sequence No.1 are due to
the moist camera lens, as shown in Fig. 17b. Considering this
sequence does not contain any polyps, we chose colon folds
for qualitative evaluation. The selected folds are indicated
by green arrows. In terms of relative displacements between
marked folds, the camera motion between two OC images in
Fig. 17a, c is moving toward the image center. We notice that
the virtual camera also moves forward as two marked colon
folds move toward image boundaries.

In non-informative image sequence No. 4, the colono-
scope is immersed in fluids, and it is adjusted to return to
normal. Since marked colon folds have small image dis-
placements in OC images, they are well tracked, as seen in
Fig. 17d, f.

The No. 8 non-informative sequence is caused by the
colonoscope touching the colon wall. From the virtual colon
model, we note that there is a small curved turn at the current
camera location. This turn is wiped out in the OC images,
which causes significant visual differences between OC and
VC images in Fig. 17g. However, note that marked colon
folds move to right in the OC images, and the corresponding
folds exactly follow this motion by comparing Fig. 17g, i.

Conclusions and future work

In this paper, we presented a multistage framework to recover
colonoscopy tracking failure from non-informative images.
Our study indicates that every 14 s on average a non-
informative image will appear in a typical colonoscopy video
stream. They are generated more frequently when the current
OC images contain no polyps, most likely because the veloc-
ity of the colonoscope is higher when polyps are not encoun-
tered. The average interval of their appearance is reduced to
6.4 s. Therefore, continuously tracking over non-informative
image interruptions is critical to show that our methods are
viable in clinical environments. Sensors that can be externally
tracked can supplement our methods to overcome intractable
displacements where no visual features can be found to cor-
respond across an interval of non-informative frames.

Colonoscopy tracking over non-informative image inter-
ruption is challenging. The exclusion of non-informative
images artificially causes motion gaps. We thus need to find
an image pair containing the same visual contents before
and after non-informative images. Our temporal volume
flow algorithm serves this purpose and densely matches two
temporal volumes interrupted by non-informative images to
search for two images with the maximum amount of similar
visual contents. Unfortunately, the selected image pair often
contains large visual motion; the lack of distinctive visual
cues in the OC images further complicates the visual motion
computation. Region flow was developed to resolve this issue
by measuring large image displacements between all image

regions of the selected image pair. Combining the global
region flow field and local SIFT [22] features, we can accu-
rately estimate image displacements between two selected
images. Finally, every large image displacement vector was
subdivided into a sequence of small optical flow vectors
through the incremental egomotion estimation. An optical
flow-based approach [5] is then used to estimate camera
motion during every subdivision step, and the combination
of all small camera motion parameters yields the final cam-
era motion parameters that are used to transform the virtual
camera.

The strategy described in this paper was validated using
straight and curved phantoms. The phantom results demon-
strated that the average tracking error was 3 mm of 16 mm
after 48 images were excluded in the straight phantom, and
also 3 mm of 23.88 mm after 72 images were removed in the
curved phantom. Moreover, there was no significant differ-
ence between the results with and without camera calibration.
Thirty colonoscopy image sequences with at least one non-
informative image sequence from 22 patients were used to
qualitatively evaluate the robustness of the tracking frame-
work. Our clinical results indicated that the proposed strategy
was sufficient to track over different types of non-informative
image interruptions, such as wall contact, fluid immersion,
or surgical tool operations. The proposed algorithm can also
track an image sequence with eight non-informative images,
up to 358 non-informative images.

Our method successfully extended the number of tracked
OC images from a few hundred [5] to a few thousand. How-
ever, our tracking system still fails to track the entire OC
video stream, which is mainly caused by drift tracking errors
and colon deformation. We are investigating image registra-
tion strategies to understand the similarity of OC and VC
images. Temporal volume flow is another potential strategy
to tackle this issue. We plan to explore a probability function
to measure the degree of occlusion and our TVF approach to
find an image pair with the minimum amount of occlusion.

Computational efficiency is also an important issue to
be studied in the future. Our unoptimized program spends
about 2–5 min of processing time per non-informative image
sequence. The processing time is determined by the number
of shifted temporal volumes used to find the best image pair
(for TVF computation) as well as the number of SIFT fea-
ture points to compute patch flow for incremental egomotion
estimation. These time-consuming computations currently
prevent the applicability of our system to clinical practice.
We are studying an additive operator splitting scheme [47] to
reduce the computational cost of temporal volume flow and
subdivision egomotion estimation. A fast normalized cross-
correlation approach [48] is also being developed to acceler-
ate region flow computation.

As for colon deformation, we are studying visual odome-
try [49] to reconstruct the camera trajectory and compare it
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against the colon centerline to measure the deformation. The
scaling effect of anus-to-cecum distance between OC and
VC measurements found in Duncan [4] will be considered
in the study of colon deformation. Moreover, clinical image
sequences used in our study were cropped for colonoscopy
training, resulting in some incomplete OC videos, which
could introduce some bias. We chose video segments with
important anatomical features, such as polyps and colon folds
visible in both OC and VC images, to evaluate our track-
ing algorithm. The image sequences selected in our exper-
iments span all colon segments, ensuring a comprehensive
evaluation of our tracking system, as well as across differ-
ent artifacts: colon fold shapes, fluid accumulation, etc. The
validation on the complete OC video sequences including
CRADS zero score [46] will be studied in the future.
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