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ABSTRACT

JIANFEI LIU. From pixel to region to temporal volume: a robust motion
processing framework for visually-guided navigation.

(Under the direction of DR. KALPATHI R. SUBRAMANIAN)

The ability to view pre-operative CT colonoscopy images co-aligned with optical

colonoscopy images from endoscopic procedures can provide useful information to the

gastroenterologist and lead to improved polyp detection. Colonoscopy data presents

significant challenges from an image processing perspective: colon deformation, in-

sufficient visual cues, temporary loss of features due to blurry images, etc.

In this dissertation, advanced mathematical tools and computer vision techniques

are used to tackle these challenges, resulting in an automatic and robust tracking al-

gorithm capable of processing relatively long sequences of colonoscopy images. There

are three specific contributions. (1) Multi-scale optical flow is used to identify relative

image displacements between consecutive optical colonoscopy images, and egomotion

estimation based on the Focus of Expansion is used to estimate camera motion pa-

rameters. Straight and curved phantoms were designed to quantitatively validate the

accuracy of the method, and clinical colonoscopy sequences from multiple patients

were used to qualitatively evaluate the algorithm’s robustness. Phantom results vali-

dated that the error was less than 10mm of the 288mm displaced in tracking consec-

utive images. (2) A region-flow based method is used to measure large visual motion

of pairs of images interrupted by a blurry image sequence, and an incremental egomo-

tion estimation algorithm is developed to maintain accuracy. Large camera motion

is computed by subdividing visual motion into a sequence of optical flow fields. Ac-

curacy of the approach was statistically validated by excluding sequences of images,

using phantom images. In the straight phantom, after 48 frames were excluded, error

was less than 3mm of 16mm traveled. In the curved phantom, after 72 frames were
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excluded, error was less than 4mm of 23.88mm traveled. The accuracy was also eval-

uated by visually inspecting co-aligned optical and virtual colonoscopy images. (3)

Temporal volume flow improves on the region flow algorithm by comparing temporal

volumes separated by blurry images, followed by selecting the best image pair for

region flow computation. Results are demonstrated by comparing tracking results

with and without temporal volume flow.

Based on these new techniques, we have been able to continuously track over 4000

images of colonoscopy sequences comprising multiple colon segments and multiple

blurry sequences.
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CHAPTER 1: INTRODUCTION

“Imagination is more important than knowledge.”

– Albert Einstein

1.1 Motivation

Visually-guided navigation(VGN)[116] is a technique used by robots and au-

tonomous vehicles to navigate reliably. It systematically integrates all motion or

location information and develops optimized strategies to guide moving agents. VGN

involves several sub-problems depending on the extent to which the exterior environ-

ment is known. Given a known model, a typical problem is motion planning, which

attempts to control the robot to move smoothly along a planned route. It also at-

tempts to address inaccuracies in sensing and deviation between the model and the

actual environment. Compared to off-line motion planning, simultaneous localiza-

tion and mapping[199, 200] handles real-time navigation to reconstruct an unknown

environment or update a known map. At the same time, the robot’s position is

determined on the map.

A critical component in VGN is to collect the agent’s motion data and to compare

it with a current set of perceptions. This aspect is called sensing because data are

commonly acquired by external sensors – laser rangefinders, 2D or 3D sonar sensors,

and quasi-optical wireless sensors. However, the use of these devices brings extra

cost, and they might be unstable under some conditions.

Computer-vision-based approaches[94, 93, 104, 205, 191] are another means to

achieve the same purpose. Computer vision[80, 65, 66] is a research field that enables
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computers to analyze and understand the underlying information in digital images.

Like humans perceiving 3D structure in their environment while moving through it,

cameras are mounted in robotic agents, and computer vision algorithms reconstruct

3D scene structures and estimate camera motion from the video stream. Together,

3D scene reconstruction and camera motion estimation are called Structure from

Motion[217] because they both attempt to reconstruct three-dimensional structures

by analyzing visual signals over time. Structure from Motion is a key step for visually-

guided navigation based on computer vision, because it computes the agent’s location

and motion, and it is functionally equivalent to sensors.

In this dissertation, I concentrate on developing a VGN system that uses only the

colonoscopy video stream to co-align optical colonoscopy (OC) and virtual colonoscopy

(VC) images. Clinical study[177] has demonstrated that OC or VC, when used alone,

is prone to missing precancerous lesions; they are complementary for detection. Here,

co-align means aligning orientations and positions of OC and VC cameras. The goal

is to keep the co-alignment error within 25mm for the entire OC procedure, because

a colon fold is about 25mm long[50]. This ensures pre-detected polyps are simulta-

neously visible in both modalities. Anatomical features such as folds or polyps will

appear within the same fold of the co-aligned OC and VC images. As a result, the

polyp-miss rate will be reduced. Fig. 1.1 illustrates the VGN problem: given an OC

video stream (left image), to determine the actual colonoscope’s movements to drive

the VC camera (shown in the right image) so as to achieve accurate OC and VC co-

alignment, and permit the camera to be located in the external view (bottom right

image).

However, OC and VC co-alignment challenges traditional VGN technologies based

on computer vision, due to difficulties with OC images: insufficient visual cues, colon

deformation, visual variance from VC images, and blurry image interruptions. Ac-

cordingly, very few people have attempted to work on this problem, although it is
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clinically significant. In this dissertation, I reformulate visual motion computation

and egomotion estimation to develop a robust VGN system. The fundamental con-

tribution of the proposed VGN system is presented as three levels of visual motion,

from pixel to region to temporal volume. Multi-scale optical flow accurately represents

pixel shifts between two consecutive OC images. FOE-based egomotion estimation is

then developed to precisely compute camera motion by employing multi-scale optical

flow. Region flow computation densely matches all region pairs to calculate large

visual motion between image pairs interrupted by blurry frames. Incremental ego-

motion estimation recovers large camera motion by subdividing visual motion into a

sequence of optical flow fields. Temporal volume flow compares two temporal volumes

before and after blurry images to compute their temporal coherence and to search

for an image pair with sufficient visual similarities. The selected image pair enhances

the accuracy of camera motion recovery using region flow.

1.1.1 Thesis Statement

Accurate co-alignment of real and virtual navigation is achieved through a visually-

guided navigation framework, developed by robust egomotion estimation and multi-

level visual motion flow from pixel to region to temporal volume.

1.1.2 Fields of Application

VGN has been shown useful for a variety of applications. For example, the Lunar

Rover in Fig. 1.2a is an unmanned vehicle for exploring the surface of the moon.

Because the rover and its mission are expensive, it is critical to safely guide the rover

around obstacles and to move it accurately along planned routes. Military applica-

tions also use visually-guided navigation systems. For instance, the Global Hawk,

illustrated in Fig. 1.2b, is an unmanned aerial vehicle that can be piloted remotely

or fly autonomously. This aircraft can perform attack missions and reconnaissance
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Figure 1.1: Outline of OC and VC co-alignment. OC and VC are two technologies
to screen the colon. The goal of this work is to automatically co-align correspond-
ing images for presentation to the gastroenterologist. OC (on the left) produces a
continuous video stream of images. These images are analyzed to determine camera
location and orientation from a colonoscopy tracking system. This information is used
in adjusting the virtual camera of the 3D reconstructed CT volume (on the right),
resulting in the bottom view of co-aligned OC and VC images, as well as the location
of the virtual camera in the external view. The top image of the colon anatomy is
reproduced from [223].

without a pilot, thus reducing casualties. Both of the above applications depend

on external sensors and human assistance. Cameras on these devices perform only

an auxiliary function during navigation, and the video streams assist operators to
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(a) (b)

(c) (d)

Figure 1.2: Possible visually-guided navigation applications. (a) Exploration of
moon – Apollo 17 Lunar Rover[40]; (b)unmanned reconnaissance aircraft – Global
Hawk[208]; (c) autonomous car – a car that can drive without any steering[48]; (d)
bronchoscopy tracking – a bronchoscopy surgery assisting system(This figure is copied
from [91].)

determine the system status, and to make interactive decisions.

Applications based solely on computer vision are still in the conceptual phase, with

many unresolved problems. However, as Figs. 1.2c and 1.2d show, such achievements

are possible. Fig. 1.2c shows an unmanned car[171] developed by Stanford University.

The purpose of this unmanned car is to reduce the incidence of automobile accidents
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and to save lives. Despite doubts as to whether the car really achieves this purpose,

or whether automobiles will navigate unaided in the future, this car has performed

in real situations with encouraging results.

Aligning optical and virtual bronchoscopy images, as shown in Fig. 1.2d, is an-

other VGN application. Optical and virtual bronchoscopy images are continuously

matched[25, 88, 180, 57] to update the camera’s location in the 3D virtual bronchi

model. Moreover, a magnetic sensor can be integrated to enhance the tracking

accuracy[159]. The system augments traditional bronchoscopy to accurately biopsy

peripheral lung nodules, masses located far from the main branches of the lungs and

difficult to reach using standard bronchoscopy. The fusion of optical and virtual bron-

choscopy provides visualization of anatomical structures outside the bronchial walls.

It also guides the bronchoscopist to follow the planned path and to determine location

of the bronchoscope inside the bronchi. Optical and virtual bronchoscopy alignment

is clinically useful for cancer detection and biopsy.

VGN is widely used in other areas, including manufacturing [170, 89, 103], en-

tertainment [59, 172], and undersea exploration [169, 237, 238]. These applications

show the importance and potential for computer-vision-based approaches, which can

perform in many environments and reduce costs as compared to sensor-based meth-

ods. In the past three decades, much research has been carried out with respect to

computer vision based VGN.

1.2 Overview

In this dissertation, I introduce a new visual motion processing framework to en-

hance VGN. This framework is applied to tracking a colonoscope, to demonstrate an

efficient endoscopy guidance system to reduce the polyp-miss rate. This VGN system

involves two main steps: visual motion computation and egomotion estimation. Vi-

sual motion is defined as the relative movement between similar visual patterns of an
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image pair. Egomotion is the relative movement between a camera and the external

world. Unfortunately, a navigation system cannot accurately track a colonoscope if it

uses only a single method to compute visual motion and a single method to estimate

egomotion. Colonoscopy navigation failure is due to various types of video sequences.

In terms of visual contents, a colonoscopy video can be classified as clear or obscure.

A clear colonoscopy video is called a fast-camera-motion video if camera translation

velocity exceeds 45mm/sec or camera rotation velocity is more than 30◦/sec. Oth-

erwise, it is called a slow-camera-motion video. Consequently, a colonoscopy video

stream can be classified as one of three types: a slow-camera-motion video sequence;

a fast-camera-motion video sequence; or an obscure video sequence.

A slow-camera-motion video stream is generally represented as a sequence of con-

secutive and clear colonoscopy images. Sparse and dense optical flows are two efficient

means in measuring visual motion between successive images. Because the Focus of

Expansion(FOE) accurately describes the camera motion in the optical flow field, an

egomotion estimation method based on the FOE is developed to separately compute

camera rotation and translation velocities. Slow-camera-motion images are accurately

tracked.

Two colonoscopy images, interrupted by an obscure video sequence, comprise a

fast-camera-motion video sequence. Sparse and dense optical flows fail to represent

the visual motion of two such images, because the temporal image derivatives are

invalid. Dense matching of region pairs is used instead to accurately measure large

visual motion yielding region flow. Unfortunately, FOE-based egomotion estimation

fails to directly compute large camera motion. Significant visual motion is subdivided

into a sequence of optical flow fields through a strategy based on partial differential

equations(PDE), and significant camera motion parameters are incrementally esti-

mated by sequentially performing the FOE-based method on all optical flow fields.

The accuracy of incremental egomotion estimation is determined by the visual sim-
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ilarity between two selected images. In order to search for two images with sufficient

similarity, temporal volume flow(TVF) is developed to compute temporal coherence

between two video sequences before and after blurry images. Finally, a micro-GPS

system can be constructed inside the colon by using the estimated camera motion

parameters to co-align OC and VC images, as shown in Fig. 1.1.

To specify my contributions in detail, I will describe next the challenges of visual

motion computation and egomotion estimation, as it relates to the visually-guided

navigation. Below, I discuss characteristic difficulties of OC images to provide insight

into the proposed framework.

1.2.1 Tracking Consecutive Colonoscopy Images

The primary issue of tracking consecutive colonoscopy images includes sparse and

dense optical flow computation as well as FOE-based egomotion estimation. Both are

discussed in chapter 4. This section describes technical challenges related to these

two problems, in conjunction with inherent difficulties of colonoscopy images.

Sparse optical flow calculation identifies two sets of interest points[79, 147, 12]

from an image pair and finds their correspondences to measure visual motion. An

interest point[79, 154] is a good feature candidate because it is the intersection of at

least two dominant edges. The Harris matrix[79, 194], commonly used for detecting

interest points, is a combination of spatial derivatives defined in the image domain.

Fig. 1.3a shows interest points detected by the Harris matrix and their sparse optical

flow. Interest points are represented as cubes, and optical flow vectors are indicated

by arrows. Note that interest points located inside a red rectangle are intersections

between the artificial seam and tube rings.

Unfortunately, spatial derivative calculation in the Harris matrix is an ill-posed

problem[207] because derivative calculation is mathematically unsound in the discrete

image domain. For robust derivative calculations, the image is first smoothed by the
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(a) (b) (c)

Figure 1.3: Two types of visual motion between successive colonoscopy phantom
images. (a) Sparse optical flow in the first frame; (b) dense optical flow in the first
frame; (c) the second frame. Here, optical flow vectors are visualized as arrows. In
Fig. 1.3a, an interest point is represented as a green cube if its sparse optical flow
vector is correctly computed. Otherwise, it is represented as a magenta cube.

Gaussian function. But image smoothing yields another issue: what is the optimal

scale parameter of the Gaussian function? If the scale parameter is too large, the

image is over-smoothed. If it is too small, image noise or fine image structures will

remain. Moreover, matching two sets of interest points involves temporal derivative

calculations because it assumes that intensities of corresponding points remain in-

variant over time. Thus, sparse optical flow computation also requires temporal scale

selection. Because the sampling rate is more dense in the spatial domain than in the

temporal direction, anisotropic Gaussian scale space is employed to smooth the video

stream. One critical issue in sparse optical flow computation is the search for optimal

spatial-temporal scales.

Sparse optical flow by itself is insufficient to accurately estimate camera motion

between two colonoscopy images. There are three main reasons. First, in contrast to

natural world images, colonoscopy images contain insufficient visual cues and generate

a small number of interest points. Fig. 1.4 compares the interest points detected by the

Harris-affine detector[155] on a street-view image versus the scale invariant feature

transform (SIFT) algorithm[147] on a colonoscopy image. There are high-density

interest points in Fig. 1.4a. Most of them are actual physical corners, located at

building roofs, window corners, moving cars, etc. All these points are good interest
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feature candidates because their descriptors are distinctive for sparse optical flow

computation. By contrast, there are few geometrical discontinuities in the OC image.

Only a few interest points are detected near a polyp and blood vessels in Fig. 1.4b,

although the SIFT algorithm usually generates a large number of feature points.

Second, the feature descriptors are not distinct because colonoscopy images, generated

by a tiny fiber camera, have less intensity variance. False feature matches often

occur and produce inaccurate sparse optical flow vectors. Finally, sparse optical flow

represents the projected three-dimensional camera motion on the two-dimensional

image plane. It is ambiguous to estimate the actual camera motion from only a set

of sparse optical flow vectors.

(a) (b)

Figure 1.4: Comparison of interest points detected in street and colonoscopy images.
(a) The Harris affine features[155] represented by ellipses; (b) the SIFT[147] features
indicated by white crosses. The SIFT feature detector usually generates higher density
interest points than the affine feature detector. However, there are only a few interest
points in Fig (b) because of insufficient visual cues, while massive feature points in
Fig (a)(This figure is reproduced from [198])

An alternative visual motion computation is to densely match point correspon-

dences and generate a dense optical flow field, as shown in Fig. 1.3b. Dense optical

flow can moderate false feature matches because its computation is the minimization

of a global energy function over the entire image domain. However, dense optical flow

estimation also involves scale selection in the spatial-temporal domain.
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The second issue, related to consecutive colonoscopy images, is the estimation of

camera velocities from sparse and dense optical flow. Camera velocity estimation

refers to egomotion estimation. Egomotion is relative movement between a camera

and the external world. However, egomotion is difficult to estimate accurately, even

when accurate sparse and dense optical flows are available, because the estimation

system is sensitive. Moreover, the ambiguous relationship between visual motion and

camera velocity complicates the estimation. For example, it is difficult to distinguish

(in the visual motion field) between a camera rotating clockwise around the X-axis

and a camera rotating counter-clockwise around the Y -axis.

Colonoscopy images also have inherent challenges that complicate egomotion es-

timation.

Deformation occurs frequently in the colon. Fig. 1.5 illustrates deformation by

stretching or telescoping, camera operation during colonoscopy procedures. In

comparison with the colon phantom in Fig. 1.5a, the right portion of this colon

phantom expands drastically while its left part contracts in Fig. 1.5b. Most

egomotion estimation algorithms assume that objects within the visual field

are rigid. Although recent research[195, 206] has made progress in non-rigid

motion analysis, most techniques use piecewise rigid-motion assumptions. This

piecewise approximation cannot completely estimate non-rigid motion within

the colon.

Visual distortion is generated because a tiny camera is installed on the tip of a

colonoscope. To maximize the visual field, this camera has a wide-angle lens,

causing fish-eye effect. Fish-eye effect severely distorts colonoscopy images,

making it nearly impossible to acquire high-quality images. Fig. 1.6 shows a

distorted colonoscopy image of a checkerboard. The checkerboard appears bent

near the center, although it is physically planar. The distortion seriously affects

accuracy of egomotion estimation because it violates the assumption that the
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(a) (b)

Figure 1.5: Illustration of colon deformation. (Thanks to Dr. Pete Santago from
Wake Forest University and Dr. Christopher Wyatt from Virginia Tech for providing
these colon phantom images.) (a) The initial state when the colonoscope is inserted
into the phantom; (b) another instance when the colonoscope is withdrawn near the
center of the phantom. In Fig.(b), one can see that the right colon expands while the
left colon contracts.

camera provides a perspective projection.

(a) (b)

Figure 1.6: A colonoscopy image of a planar checkerboard(left image) and its corre-
sponding undistorted image(right image). Fish-eye effect seriously distorts the image.
The checkerboard appears bent near the image center.

Visual variance between OC and VC images is caused by artifacts inside the

colon. Artifacts such as fluid, stool, and blood vessel are difficult to simulate

in VC images, even if the colon is perfectly segmented from CT data. Fig. 1.7
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compares co-aligned OC and VC images. The polyp and folds are synthesized in

both images, but yellow fluid and muscle textures are lost in the VC image. This

dissimilarity prevents application of the same image registration algorithms[25,

88, 159, 57] that are used in bronchoscopy tracking.

(a) (b)

Figure 1.7: Comparison between co-aligned OC and VC images. The yellow fluid and
muscle textures are impossible to duplicate in the VC image.

Contribution: In order to tackle these challenges, an egomotion estimation ap-

proach must handle errors of sparse and dense optical flow as well as colon artifacts.

FOE, the intersection between the camera translational directions and the image

plane, is an important feature point that can stabilize the estimation process. Cam-

era motion information at this point is more stable and accurate than anywhere else

in the optical flow field[218]. After the FOE is computed, camera translation and

rotation parameters can be separately computed. Therefore, the essential problem of

egomotion estimation is the identification of the FOE and exploiting it to estimate

camera motion parameters.

1.2.2 Estimating Large Motion

Blurry images frequently occur in the colonoscopy video stream and cause colonoscopy

tracking interruptions, due to the absence of stable visual motion information. The
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fundamental issue of continuously co-aligning OC and VC images is the exclusion of

blurry images and the estimation of large camera motion parameters from images be-

fore and after the blurry sequence, as described in chapter 5. The process includes two

main components: visual motion computation based on region flow and incremental

egomotion estimation.

Visual motion computation is challenging because discarding blurry images is

equivalent to producing large visual motion. Sparse and dense optical flows fail to

identify substantial visual motion. There are two main reasons. First, temporal sam-

pling rates are coarse when the camera motion is significant. Image smoothing along

the temporal direction results in aliasing. For this reason, temporal derivatives cannot

be accurately computed, and the result is inaccurate sparse and dense optical flows.

Second, the number of false feature matches in sparse optical flow computation is ex-

ponentially increasing because feature descriptors based on intensities are indistinct.

Also, interest points at artifacts such as fluid and water are unstable for determin-

ing significant visual motion. Fig. 1.8 gives an example. Fig. 1.8a and Fig. 1.8b

show two successive colonoscopy images with folds, fluids, and bright blobs. Only the

interest points near folds are true features that deliver camera motion information.

Other interest points are relatively stable between successive frames, as indicated by

red rectangles in Fig. 1.8a and Fig. 1.8b. But those interest points do not continue

for very long. It is important to note that blobs in the right rectangle disappear in

Fig. 1.8c while fluid in the left rectangle tends to accumulate. These dynamic changes

cause improper visual motion estimation, because the results do not stem from actual

camera motion.

Contribution: Two important strategies are employed to enhance the accuracy of

significant visual motion computation. On the one hand, the SIFT feature descriptor

is used to describe an interest point, so as to be insensitive to large visual motion.

On the other hand, region flow densely matches all region pairs to compute visual
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(a) (b) (c)

Figure 1.8: Dynamic effects of interest points in colonoscopy images. Many interest
points are detected near the areas with bright blobs or fluids, enclosed in the red
rectangles. They are invariant in two successive frames ((a) and (b)), but become
unstable in (c) after a blurry image sequence because the blobs and fluids are dynamic.

motion between the selected image pair. As detailed in chapter 5, the accuracy of

visual motion is continuously enhanced by performing SIFT feature matching and

employing region flow vectors as the predefined matching ranges.

Another critical component is the estimation of large camera motion from sig-

nificant visual motion. Besides inherent challenges of colonoscopy images, the most

difficult issue is the simplified relationship between camera velocity and optical flow,

as described in Appendix G. This simplified relationship is a critical equation for

deriving most egomotion estimation algorithms. Its use is justified in estimating ego-

motion between consecutive images, because camera velocities are small. However,

this equation is invalid when significant camera motion is artificially caused by the

exclusion of blurry images. At this point, the egomotion estimation system becomes

unstable and produces inaccurate camera motion parameters. There are two poten-

tial solutions to estimate large camera motion. One solution is the development of

an egomotion estimation algorithm based on a general mathematical prototype that

relates large camera motion parameters and visual motion.

Contribution: Subdivide significant visual motion into a sequence of optical flow

fields. This is followed by application of existing egomotion estimation algorithms to

incrementally estimate large camera motion from all optical flow fields, as described
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in Chapter 5.

1.2.3 Computing Temporal Coherence

Large motion estimation involves selecting two colonoscopy images before and

after a blurry image sequence and assumes that they have similar visual patterns.

Visual motion is computed by measuring relative image displacements between visual

patterns. However, visual similarity is not always guaranteed in the selected images.

Temporal coherence can improve the image pair search because it is represented as the

concurrence of similar visual patterns in the video stream. Thus, temporal coherence

computation is an important topic in this dissertation.

The routine strategy[122, 121, 110, 190, 231] in computing temporal coherence is

to detect a set of feature points in the video stream and to define feature descriptors

for detected feature points. The temporal coherence computation is thus converted

into measuring the distance values between feature descriptors. However, a small

set of feature descriptors cannot reliably represent a video stream and false feature

matches will cause improper temporal coherence results. Moreover, the image pair is

also difficult to select based on a set of sparse feature matches.

Contribution: A PDE-based scheme is used to densely match two video streams

before and after blurry images, resulting in temporal volume flow. It represents rel-

ative displacements between the corresponding visual patterns, and is used to search

for an image pair with maximum visual similarity.

1.3 Organization and Contributions

In this dissertation, I have developed a visually-guided navigation system based on

computer vision and show its application to co-align OC and VC images. The system

includes multi-scale optical flow(Chapter 4), region flow(Chapter 5), and temporal

volume flow(Chapter 6). In an effort to understand the full range of contributions
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in these three chapters, I present the reader with a sigmoid colonoscopy sequence,

shown in Fig. 1.9, to explain my proposed algorithms.

Fig. 1.9a and Fig. 1.9b are two consecutive colonoscopy images, which occur before

a blurry sequence. In order to accurately measure their visual motion, multi-scale op-

tical flow is proposed to compute accurate sparse and dense optical flow in optimized

spatial-temporal scales. Egomotion estimation based on the FOE uses sparse and

dense optical flow to sequentially estimate camera rotation and translation parame-

ters. They are used to accurately track consecutive colonoscopy images, as described

in Chapter 4.

However, blurry images typically occur in the colonoscopy video stream. For

instance, Fig. 1.9d - Fig. 1.9f are three blurry images in the sigmoid colonoscopy

sequence because the colonoscope touches colon wall. These images contain unsta-

ble visual motion, and the tracking system fails to accurately estimate egomotion.

The tracking system must be able to recover camera motion parameters from such

interruptions. The colonoscopy images before and after the blurry sequence have sig-

nificant visual motion. In chapter 5, region flow is proposed to measure large visual

motion by densely matching region pairs. A set of accurate sparse visual motion vec-

tors is determined by using region flow to limit search ranges. Large visual motion is

then artificially subdivided into a sequence of optical flow fields. Large camera mo-

tion is incrementally estimated by using the FOE-based egomotion estimation on all

optical flow fields. Finally, colonoscopy tracking failure is recovered, and the tracking

system can continue to track colonoscopy images.

The image pair used for region flow computation is arbitrarily chosen, assum-

ing the two colonoscopy images are similar because of temporal coherence, such as

Fig. 1.9c and Fig. 1.9g. However, Fig. 1.9b and Fig. 1.9g are better image pair candi-

dates because they are more visually similar. In order to search for such image pairs,

the TVF computation is developed to match two temporal volumes interrupted by
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blurry images, as described in Chapter 6.

(a) No.25922 frame (b) No.25923 frame (c) No.25975 frame

(d) No.26051 frame (e) No.26054 frame (f) No.26055 frame

(g) No.26084 frame (h) No.26086 frame (i) No.26087 frame

Figure 1.9: A sigmoid colonoscopy video segment is used to illustrate the contributions
to track OC images in this dissertation. (a,b): two consecutive colonoscopy images
before blurry images; (c) the last clear colonoscopy image before a blurry sequence; (d-
f): three blurry images; (g) the first clear colonoscopy image after the blurry sequence;
(h,i) two successive colonoscopy images after the blurry sequence. My contributions
is centered at developing robust visual motion and egomotion estimation algorithms
to robustly track consecutive colonoscopy images as well as to recover tracking system
when blurry interruptions happen.

With respect to a better understanding, medical and technical backgrounds are

described in Chapter 2 and 3, respectively. The main contributions – three level

visual motion flow – are described in chapters 4, 5 and 6. Chapter 7 summarizes my

main contributions and discusses future work.



CHAPTER 2: BACKGROUND – COLONOSCOPY

“Of the 22,000 operations I have personally performed, I have never found a single

normal colon and of the 100,000 that were performed under my jurisdiction, not over

6 percent were normal.”

– John Harvey Kellog, M.D.

This thesis concentrates on the development of visually-guided navigation tech-

niques and its application to colonoscopy tracking, the co-alignment of optical colonoscopy

(OC) and virtual colonoscopy (VC) images. To better comprehend this problem, some

medical background is needed regarding the colon.

This chapter does not attempt an in-depth discussion of the colon’s medical as-

pects. I describe only those aspects related to colon anatomy, optical colonoscopy,

virtual colonoscopy, colon cancer and polyps. Moreover, a similar application, bron-

choscopy tracking is discussed to understand similarities and differences. These ele-

ments contribute to understanding of the proposed tracking framework.

2.1 Colon Anatomy

The colon is a hollow tube about 5 feet long, as illustrated in Fig. 2.1. It is

comprised of six parts,

1. Cecum, the beginning of the colon;

2. Ascending colon, the right vertical portion of the colon;

3. Transverse colon, the portion traversing from right to left;
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4. Descending colon, the left vertical descent of the colon;

5. Sigmoid colon, the s-shaped segment of colon;

6. Rectum and anus, the last part of the colon for excreting the solid waste.

The main function of the colon is the storage of unabsorbed food waste, absorbed

water and other body fluids before the waste is eliminated.

Figure 2.1: Colon anatomy. This figure is reproduced from[83]

2.2 Colon Cancer and Polyps

Colon cancer is often discussed with rectal cancer, and together they are referred

to as colorectal cancer. It was the fifth most common cancer affecting both men and

women in 2010[105]. There were 102, 900 colon and 39, 670 rectal cases diagnosed in

the United States in 2010, that caused 51, 370 mortalities. It accounted for 10% of

cancers in men and 11% in women [132, 174].

Colorectal cancer shown in Fig. 2.2a is usually developed from a colon polyp.

A polyp is a flesh growth, and it is extremely common in the colon. Its incidence

increases as individuals get older. Colon polyps are displayed in two basic varieties:

pedunculated(Fig. 2.2b) and sessile(Fig. 2.2c). Pedunculated polyps are mushroom-

like tissue growths that are attached to the surface of the mucous membrane by a

long and thin stalk. Sessile polyps sit right on the surface of the mucous membrane.
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(a) Colon cancer (b) (c)

Figure 2.2: Examples of (a) the colon cancer([73]); (b) a pedunculated polyp([74]);
and (c) a sessile polyp([114]).

Clinical statistics show that 50% of people over the age of 60 have at least one polyp.

When polyps grow large enough, they can become cancerous. Screening for colon

polyps and removing them early in their development are particularly important for

reducing the incidence of colon cancer.

The four most common types of colon polyps are inflammatory, adenomatous

(adenoma), hyperplastic, and villous (tubulovillous) adenoma[60]. In addition to

these, two less common polyp types are lymphoid and juvenile. Lymphoid polyps are

usually rare and benign. Juvenile refers to a type of polyp, not the age at which the

polyp first develops.

Inflammatory colon polyps are found most often in patients with an inflammatory

bowel disease. They are not actually polyps; but rather, they are a reaction

to chronic inflammation in the colon. Inflammatory polyps are benign and the

risk of them becoming cancerous is generally low.

Adenomatous polyps are the most common type of polyp and make up about 70%

of polyps in the colon. Adenomas can develop into colon cancer, but fortunately,

this process typically takes many years.

Hyperplastic refers to the activity of the cells forming the polyp. The cells in

this type of polyp are increasing in number. Hyperplasia denotes an abnormal



22

increase in the number of cells in a tissue, with enlargement of the area. Despite

the fact that the cells in hyperplastic polyps are growing and reproducing, these

have minor chances of developing into cancers.

Villous or Tubulovillous Adenoma accounts for approximately 15% of polyps

that are found and removed by colonoscopy. These polyps are more danger-

ous because they have the highest likelihood of developing into colon cancer.

Villous adenomas may be sessile, or flat, making them extremely hard to re-

move.

2.3 Optical Colonoscopy

OC is the most common procedure to detect and remove polyps by using a colono-

scope. The colonoscope is a flexible and multi-channelled tube attached to a CCD

camera or a fiber optic camera on its tip shown in Fig. 2.3.

Figure 2.3: Optical colonoscope.

A colonoscope has several channels including irrigation, instrument port, light,

and lens, as illustrated in the right image of Fig. 2.4. Irrigation is a variant of

enema treatment, which involves flushing the colon with water in different quantities,

temperatures and pressures. As with an enema, the purpose of injecting water is

to clean the colon. The top left image in Fig. 2.4 is an example of water injection,



23

releasing from irrigation channel. The light channel serves to illuminate the colon,

which helps the lens to record clear images. Surgical tools are inserted through the

instrument port for purposes of colon biopsy or polyp removal. For instance, the

center and bottom left images illustrate polyp removal by a snare and biopsy forceps,

respectively.

Figure 2.4: Colonoscope channels. The right image shows the tip of a colonoscope.
It has multiple channels, including irrigation for pushing air or injecting water, an
instrument port for inserting surgery tools, light for illumination, and a lens to record
video. The left images present three examples. The top left image shows the injection
of water, while the center and bottom left images show the insertion of snare and
biopsy forceps to remove polyps. Here, the right figure is reproduced from [158].

Before colonoscopy, the colon must be free of solid matter. For one to three days,

the patient is required to consume a fluid-only diet. The colonoscope is first inserted

though the anus, up the rectum, across the colon (sigmoid, descending, transverse and

ascending colon), and ultimately arriving at the cecum. Fig. 2.5a displays the surgical

environment. The gastroenterologist is able to observe the inside of the colon and

track unusual lesions, providing a lasting record of the exam that may be reviewed.

During the procedure, the colon is occasionally insufflated with air to maximize vis-
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ibility. Biopsies are frequently taken for histology. For screening purposes, a closer

visual inspection is often performed upon withdrawal of the endoscope, and with-

drawal takes 20 to 25 minutes. Figs. 2.5b through 2.5d illustrate different phases of

colonoscopy examination in the cecum colon, transverse colon, and sigmoid colon.

(a) (b)

(c) (d)

Figure 2.5: Illustration of a colonoscopy procedure. (a) The colonoscopy environment.
The gastroenterologist inserts the colonoscope into the patient’s colon and observes
the inside on a video monitor; (b-d) show different phases of colonoscopy surgery in
the cecum colon, transverse colon, and sigmoid colon. All figures are reproduced from
Health.com website([83]).

Because OC provides such an elegant procedure for detecting and removing polyps,

many gastroenterologists and patients believe that colonoscopies are nearly infallible.

Thus, a person who has a colonoscopy ought to remove all colon polyps and cancer.

However, a recent article[115] in the New York Times claimed that :

“The test may miss a type of polyp, a flat lesion or an indented one that

nestles against the colon wall. And now, a Canadian study, published in

the journal Annals of Internal Medicine, found the test, while still widely
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recommended, was much less accurate than anyone expected. The test

missed just about every cancer in the right side of the colon, where cancers

are harder to detect but about 40 percent arise. And it also missed roughly

a third of cancers in the left side of the colon.”

2.4 Virtual Colonoscopy

VC[96, 167, 109] is an alternative medical tool designed for examining the colon,

building on medical image processing and visualization[95, 10]. It is also called a CT

(Computed Tomography) colonoscopy. Gastroenterologists can preview the colon

and roughly know the polyp’s distributions in advance. A careful surgical plan is

thus designed to reduce the polyp missing rate.

The concept of virtual endoscopy was first proposed by Mori[161] and Vining[222,

221], respectively, and developed into early practical systems including virtual bron-

choscopy and virtual colonoscopy. Clinical study[113, 112] demonstrated that VC is

as effective as OC in detecting a polyp larger than 5mm. Commercial softwares have

been applied at research hospitals. For instance, VC developed by the Stony Brook

university has been commercialized and evolved into the Viatronix system[219]. In

this section, I review some critical technical components to build a VC system, which

is summarized in Fig. 2.6. These technical components include procedure preparation,

CT data collection, colon segmentation, centerline extraction, and virtual navigation.

Procedure preparation. Similar to preparation for an OC procedure, the patient

will be required to take oral agents the day before, to clear stool from the colon.

Remaining fecal matter is cleansed from the rectum by a suppository. This process

is called fecal tagging. It helps the radiologist to better view virtual images because

all feces are eliminated, which may otherwise lead to false positive results.

CT data collection. After fecal tagging, CT scan is then performed on the patient.

Computed Tomography Imaging, known as a CT scan (or CAT scan), is shown in the
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Figure 2.6: Process of virtual colonoscopy development. CT scans(b) are first per-
formed on the patient(a). A virtual model(d) is then reconstructed for surface ren-
dering by segmenting the colon from the original CT data(c). The centerline is also
extracted from the segmented colon. Finally, all these resources are combined to build
VC in figure(f). It includes virtual navigation (top left), external map (top right),
and the sagittal, coronal, and transverse planes of the CT data (bottom images)
from the current camera position. Figures (a) and (b) are cited from [124] and [223],
respectively.

left image of Fig. 2.6(b). A CT scanner includes a portable table on which the patient

lies. This table moves the patient through a ring-shaped scanner. A movable ring
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is installed on the edge of the scanner, containing the x-ray tube and its associated

detectors. During CT scanning, the ring-shaped scanner rotates around the patient

with a fine fan of x-ray beams passed through the body from all angles into their

associated detectors. Information from all detectors are compiled by a computer into

an image which is representative of the particular slice of the body. Once the movable

ring rotates 360 degree, a slice has been acquired.

The right image of Fig. 2.6(b) illustrates a slice of an abdomen CT scan, which

shows several types of tissue with great clarity. Tissue types include bone, soft tissue

and colon lumen(noted by yellow cross lines). When the radiologist performs CT

scan on a patient, the patient’s CT scan is required to be carried out both face down

(prone) and face up (supine) in order to decrease the number of collapsed colonic

segments and to improve sensitivity for polyp detection. The scan has high spatial

resolutions in every slice, usually about 0.625mm, and the spacing between two slices

is commonly 1.0mm. Consequently, CT scans can detect and determine the exact

size and location of anatomical abnormalities such as polyps, tumors, and lesions.

CT data are also generally of a cross-sectional nature, with the ability to produce 3D

images of internal structures. Magnetic Resonance Imaging (MRI) is another imaging

technology for building a VC system[14]. The feasibility of MRI colonoscopy has been

found to be consistent with CT colonoscopy. Due to costs, MRI colonoscopy is seldom

used, and it will be ignored in this dissertation.

Colon segmentation. A critical step in the construction of VC is the segmentation

of colon regions from CT data. However, colon segmentation poses many challenges.

Unlike other organs, the colon contains several materials involving air, fluid, and stool.

This causes two extreme intensity ranges in the CT data. The lumen, full of air, is

imaged in dark, while the region filled with fluid or stool is relatively bright. CT data

may also contain disconnected regions of the colon, due to collapsed segments. Most

colon segmentation algorithms[46, 129, 187] start with a region-growing algorithm



28

to extract colon lumen. Fig. 2.6(c) presents the segmentation results of the CT

slice in Fig. 2.6(b), where the green regions are air-filled areas and the cyan regions

are fluid-filled areas. After all colon components are extracted, digital cleansing

techniques [120, 192] are used to connect fluid-filled and air-filled areas as well as

refine boundaries between colon and non-colon regions.

Machine learning techniques [46, 129] are another good choice to supervise the

segmentation process. They classify various objects in the CT data, erase non-colon

materials, and thus improve accuracy. However, this process is very time-consuming.

The level-set method[72, 43, 45] has been widely investigated to refine the bound-

ary between air and fluid objects for avoiding segmentation leakage and reducing

computation cost.

Centerline extraction. To easily control the movements of a virtual camera, the

centerline is introduced to guide VC navigation. Most centerline extraction algorithms

are based on the distance transform, which labels each data point with the distance

to the nearest boundary. Therefore, it is often referred to distance from boundary

(DFB). Some algorithms also use an additional distance transform, distance from

source (DFS), which represents the distance from a source point. Various distance

metrics have been used for distance propagation during distance transform, such

as 1-2-3 metric[241], 3-4-5 chamfer metric[22], or 10-14-17 metric[44]. Exact voxel

distances (1 −
√

2 −
√

3), have been used as the distance metric[225]. A number

of researchers have exploited the combination of DFB and DFS distance fields, and

Dijsktra’s algorithms (shortest path or minimum spanning tree) to extract the object’s

centerline. The primary idea in these schemes is to transform the object voxels

(identified in a pre-processing step) into a weighted graph, with the weights defined

by the inverse of the computed distance. Then Dijkstra’s algorithm is applied to

find the shortest path between specified end points. Chen[44] used this approach

but modified the shortest path voxels to the maximal DFB voxels orthogonal to the
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path. Zhou[241] chose centerline points among voxel clusters with the same DFS

distance. Bitter[18, 17] used a heuristic that combines DFS and DFB distances, with

the latter distance being considered a penalty aimed at discouraging the hugging-

corner problem, which is typical of shortest path based approaches. Wan[224, 225]

proposed a method that also used both DFS and DFB distances, but he emphasized

the latter distance to keep the centerline close to the center of the tubular structure.

More recently, Uitert[216] employed the level-set method on the colon’s outer wall

instead of the inner wall, in order to improve the centerline accuracy at the sub-

pixel level. To reduce dependence on segmentation results, I developed a Gaussian-

type probability model[142] to simulate the boundary between colon and non-colon

regions. This model builds a more robust distance field and reduces the reliance

on segmentation results. Fig. 2.6(e) illustrates my centerline result. All centerline

points stay near the actual center of the virtual colon, and the camera has maximum

visibility by using the centerline as the camera’s trajectory.

Virtual navigation. After centerline and segmented colon are obtained, surface or

volume rendering techniques are chosen to achieve interior navigation. Surface ren-

dering is used in my tracking system. The colon mesh shown in Fig. 2.6(d) is recon-

structed through the marching cube algorithm[146], followed by mesh smoothing to

erase what is known as ‘stairway’ artifacts. Hong[96, 47] decomposed the colon mesh

into cell-and-portal structures and only rendered the cells visible from the current

viewpoints, in terms of visibility determination algorithms. Instead of determining

real-time visibility in Hong’s method, I calculate it prior to virtual navigation[143].

Visibility is computed using spheres in place of irregular portals and is managed

through a tree-structure. However, the resulting image quality is usually poor, and

some polyps might fade.

Direct volume rendering techniques[61, 125] instead mapped the scalar values of

the colon data into RGBA(red, green, blue, and alpha) color space through trans-
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fer functions. They composited every pixel value through various rendering strategies,

such as ray casting[127, 126], splatting[230], shear warp[118], and texture mapping[90].

Volume rendering can now achieve real-time performance by using a state-of-the-art

graphics card[131]. GPU-acceleration has also been applied to colonoscopy rendering[123].

The current research interest has shifted to enhancing navigation images to facilitate

the detection of polyps. Fig. 2.6(f) gives an example of my virtual navigation system,

where the top left view shows the virtual navigation, and the top right displays an

external map. The three bottom images show the sagittal, coronal, and transverse

planes of the CT data viewed by the current camera position.

VC is very useful in polyp detection. One important application is supine and

prone registration[167, 100, 168]. If a polyp is observed in both supine and prone

virtual navigation, it increases the radiologist’s confidence that the polyp is real, and

not a false result. Because polyps might be hidden by folds, they might be missed

in virtual navigation even though the view point can be freely adjusted. Virtual

colon flattening[76, 220, 97] is proposed to handle this issue by virtually clipping the

colon and projecting it into a plane. Thus, the radiologist can find polyps that might

otherwise have gone undetected. Automatic polyp detection[233, 128, 240] is another

active research area of VC. The idea is to predefine feature vectors using curvature,

intensity, gradient and other properties near polyp-prone areas as well as to select

training datasets to designate polyp classifiers. When the optimized parameters are

found, the presence of a polyp can be detected based on the trained classifiers.

2.5 Optical Colonoscopy Versus Virtual Colonoscopy

VC has several clinical advantages. First, VC is less invasive to the patient than

its optical peer because it does not require body contact. As a result, the patient can

return to his/her usual activities immediately after the procedure. More important,

VC is free of risk and can be repeated as necessary. The physician can inspect the
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colon with unlimited repetitions, in search of hidden polyps. Moreover, about 1 in

10 patients are unable to undergo a full cecum evaluation by OC. Therefore, we need

VC to inspect the cecum.

The main disadvantage of VC is that a physician cannot biopsy or remove polyps

during VC examination. OC must be performed subsequently if abnormalities are

found. VC images also lose details that are presented in OC images, such as muscles

or flat polyps. Thus, polyps smaller than 2mm might go undetected.

OC is still regarded as the gold standard for colorectal cancer treatment. It is

recommended by many professionals because it permits actual viewing of the colon.

OC gives an opportunity to identify polyps and cancer, and then to do biopsies or

removal of the lesions, sometimes immediately. However, as indicated in Section 2.3,

OC can also easily overlook polyps.

Simultaneously co-alignment of OC and VC images can reduce the polyp-miss rate

during surgery, because pre-detected polyps in VC images can be merged into the OC

procedure. When the colonoscope approaches this area, the physician is warned to

observe it carefully. Summers[202] indicated that properly matching polyps on OC

and VC also impacts the VC research. Typically, the locations of polyps identified by

OC and VC may vary considerably. Such errors can impair computer aided diagnosis

research. Benefits such as these ignite interest in the topic of this dissertation, OC

and VC co-alignment, or colonoscopy tracking.

2.6 Bronchoscopy Tracking

A similar research problem has been extensively studied in the bronchi, which is

called bronchoscopy tracking. However, because a bronchi undergoes mostly rigid mo-

tion and the bifurcations in the bronchi contain a lot of structural information, most

bronchoscopy tracking algorithms explore matching optical and virtual bronchoscopy

images. Bricault [25] first proposed a multi-stage tracking algorithm, making full
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use of anatomical marks and repeated 2D and 3D registrations to align optical and

virtual bronchoscopy images. This method depends on the anatomical features to

reconstruct a 3D shape and it is difficult to get accurate results far from the bi-

furcations. Helferty[88] simplified the matching strategy and suggested an entropy

measurement to assess the similarity of 2D images. Rai[180] assumed virtual and

optical bronchoscopy images had the same depth values if two views were aligned,

and these values were imported into the normalized cross-correlation metric to match

virtual and optical bronchoscopy images. But this method is sensitive to depth dis-

continuities, since the depth accuracy is sensitive to the sampling rate of the Z-buffer.

Mori[160] proposed a two-stage bronchoscopy tracking algorithm. Endoscope motion

parameters were first estimated through optical flow based epipolar geometry be-

tween consecutive optical bronchoscopy images, and they were then refined through

matching optical and virtual bronchoscopy images. Alternatively, Deguchi [55, 54]

selected some image regions near the bifurcations and utilized sum-of-square differ-

ence as a cost metric on selected regions to measure the similarity between virtual

and optical bronchoscopy images for the estimation of the camera motion parame-

ters. Nagao [163] exploited the Kalman filter to linearly predict the camera motion

by combining registration results from previous frames and reduced the search space

of camera motion parameters. Similar to Bricault’s method, Deligianni[56] also chose

shape-from-shading algorithms to recover a 3D shape of the bronchi through pq-space

analysis and performed 3D-2D matching to track bronchoscopy. She further intro-

duced Consedation algorithm to compensate for the bronchi’s deformation, and in

turn, improved registration results.

Recent trends focus on integrating magnetic sensors to assist tracking. Deligianni[57]

developed a probabilistic framework to synthesize camera locations and orientations.

She combined electromagnetic trackers and an image-based registration algorithm to

provide a statistically optimal pose. The deformation of bronchi was compensated
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for by active shape models. The accuracy of camera motion was enhanced by remov-

ing deformation. Mori[159] employed sensor position and orientation as the starting

point for an intensity-based image registration. Camera position and orientation were

then estimated by matching optical and virtual bronchoscopy images. Both methods

demonstrated that combination of image registration as well as sensor results made

the bronchoscopy tracking problem very tractable, and obtained very encouraging

results on the entire video sequence of the phantom data. Nevertheless, all these

methods assume that virtual and optical bronchoscopy images are roughly the same.

They also suppose that the presence of relevant anatomical features inside navigation

images can be easily identified during matching.

However, bronchoscopy tracking algorithms cannot be directly applied to colonoscopy

tracking. Technically, image registration algorithms fail to function well on colonoscopy

images. First, colonoscopy images lack visual cues and do not contain important

structural information, such as bifurcations. Secondly, artifacts like fluids and Spec-

ularities are difficult to simulate in the VC images, which causes visual difference

between OC and VC images. Finally, OC and VC images are also dissimilar due to

colon deformation. All these challenges make it difficult to apply image registration

algorithms to colonoscopy tracking. From the application viewpoint, bronchoscopy

tracking concentrates on improving the accuracy of biopsy procedures so as to accu-

rately remove tumors growing outside the bronchi, which requires virtual and optical

bronchoscopy images to look identical. On the contrary, because polyps grow inside

the colon, colonoscopy tracking aims towards the simultaneous appearance of impor-

tant anatomical features like folds or polyps in both optical and virtual colonoscopy

images. At this moment, colonoscopy tracking does not need a high level of accuracy.

This is the main reason I regard colonoscopy tracking as a visually-guided navigation

problem.



CHAPTER 3: BACKGROUND – VISUALLY-GUIDED NAVIGATION

“Mathematics is the queen of the sciences.”

– Carl Friedrich Gauss

In this chapter, I explore visually-guided navigation based on computer vision to

tackle colonoscopy tracking because this method does not rely on visual similarity

between optical colonoscopy(OC) and virtual colonoscopy(VC) images. Instead, it

directly estimates camera motion from OC video streams and uses the estimated

camera motion to co-align OC and VC images. There are two essential problems

in a visually-guided navigation system based on computer vision, including visual

motion computation and egomotion estimation. Visual motion computation measures

relative image displacements between two images, and egomotion estimation uses

visual motion to recover actual camera motion. In this chapter, three underlying

computational theories are presented, including calculus of variations, scale-space

theory, and Markov random field. Then I discuss some representative algorithms

related to visual motion computation and egomotion estimation.

3.1 Computational Theories

Table 3.1 summarizes underlying computational theories used in my proposed

algorithms. The proposed algorithms include sparse and dense optical flow, region

flow, temporal volume flow, and incremental egomotion estimation. Sparse and dense

optical flows are two types of small visual motion representations measuring image dis-

placements between consecutive colonoscopy images. Region flow is a large visual mo-

tion expression for estimating significant image displacements between a colonoscopy
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Table 3.1: Relationship between underlying computational theories and my proposed
methods in this dissertation.

Underlying Computational Theories
Proposed algorithms Scale-space Calculus of Markov random

theory variation field
Sparse optical flow ×
Dense optical flow ×

Region flow ×
Temporal volume flow × ×

Incremental egomotion estimation × ×

image pair interrupted by blurry images. Temporal volume flow is a field of dense

point shifts between two video segments, which assists the search for a colonoscopy

image pair used in region flow computation. Incremental egomotion estimation is a

partial differential equation based scheme to iteratively estimate substantial egomo-

tion from the selected image pair. Scale-space theory is explored in sparse optical flow

computation to determine optimal spatial-temporal scales for derivative calculations.

This theory is also used in incremental egomotion estimation and temporal volume

flow computation to remove fine image details that steers a minimization process

towards local minima. Calculus of variations is used to compute dense optical flow,

incremental egomotion estimation, and temporal volume flow using a variational for-

mulation. Markov random field is an alternative mathematical tool to estimate region

flow when a variational formulation contains discrete terms, and the Euler-Lagrange

equation fails to minimize a discrete function.

Scale-space theory[232, 135] is a formal theory for representing an image as a

one-parameter family of smoothed images, which is parameterized by the size of the

smoothing kernel used for suppressing fine-scale image structures. The motivation of

scale-space theory originates from an observation that an image usually contains ob-

jects of different scales. For example, Fig. 3.1a shows an image with many sunflowers.

Scale invariant feature transform(SIFT) algorithm[147] is used to detect some feature

points and their corresponding scales, where blue crosses indicate SIFT features, and
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the radii of blue circles are equal to their detected scales. Obviously, feature points

from anthers and leaves have different scales. In addition, the same object is projected

with different scales into an image plane when the distance between the object and a

camera varies. (Note the same anthers are indicated by red arrows in Fig. 3.1a and

Fig. 3.1b). The associated scales are variant because the distance between the objects

and a camera of Fig. 3.1a is closer than Fig. 3.1b. The main purpose of scale-space

theory is the search for the characteristic object scale, which is defined as the scale

parameter corresponding to the extreme scale response[135].

(a) (b)

Figure 3.1: A set of SIFT features detected in sunflower images adapted from [151, 37].
The location of every feature point is indicated by a blue cross, and the radius of the
corresponding circle is the characteristic scale. Anthers and leafs have different scales
in Fig. 3.1a. Moreover, the same anther indicated by red arrows also has different
scales because the distance between the objects and the camera in Fig. 3.1a is closer
than in Fig. 3.1b. Scale-space theory is thereby developed to automatically detect
this scale for tackling the vision-front problem[135].

Calculus of variations[63] and Markov random field[130] have been extensively

used to handle computer vision problems. Because depth information is lost, almost

all vision problems[149, 217, 80, 65] lack unique solutions and are defined as ill-posed

problems[210, 207]. Smoothness constraints are frequently used to convert ill-posed

problems into well-posed problems. After combining smoothness and data constraints,

many computer vision problems are explicitly interpreted as the minimization of a



37

global energy[30].

E(−→u (p)) =

∫
Ω

( M(DkF,−→u )︸ ︷︷ ︸
Data constraint

+ α S(∇F,∇−→u )︸ ︷︷ ︸
Smoothness constraint

)dp (3.1)

where p = (x1, x2, · · · , xn) denotes a n-coordinate point and −→u = (u1, u2, · · · , um)

is a m-tuple to be estimated. Assume DkF is the set of all partial derivatives of F

of order k. M(DkF,−→u ) is a data assumption and S(∇F,∇−→u ) is a data smoothness

constraint. α is a constant to balance data and smoothness terms. Dense optical

flow, region flow, temporal volume flow, and incremental egomotion estimation are

all computed based on the energy function as defined in Eq. 3.1.

Calculus of variations and Markov random field are two common methods for

minimizing Eq. 3.1. If E(−→u (p)) is considered as a functional of the function −→u (p),

calculus of variations is a mathematical tool that finds extremal function −→u (p) that

makes E(−→u (p)) attain a minimum value. Alternatively, if E(−→u (p)) is regarded as an

energy function over a graph, Markov random field can be used to minimize Eq. 3.1

to find −→u (p), which is essentially a data labeling process.

3.1.1 Scale Space

Scale-space theory helps us understand the inherent object scales, so as to design

proper metrics in search of the characteristic scales to perform computer vision tasks.

Many researchers[135, 232] demonstrated that smoothing image to build multi-scale

image representation is essentially a diffusion process to evolve the images. Supposing

L(p; τ) : Rn × R+ → R is a scale space representation of a n-dimensional image

I(p) : Rn → R, where τ is the scale parameter, multi-scale image representation is

defined as

∂τL = div(D · ∇L) (3.2)
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Here, the matrix D is called the diffusion tensor and scale-parameter τ is also called

the diffusion time. Variant D leads to different types of scale spaces, including linear

isotropic, nonlinear isotropic, and nonlinear anisotropic. I will briefly describe each

of these scale spaces, including their benefits and limitations, and then explain why

nonlinear anisotropic is the most appropriate choice for my research.

Linear Isotropic Scale Space

The scale space is linear isotropic if D = I, where I is an identity matrix. D = I

means image smoothing is homogeneous in the entire image domain. Eq. 3.2 is

converted into

∂τL = ∇2L (3.3)

It is a classical result that the solution of Eq. 3.3 is

L(p; τ) =

 I(p) τ = 0

I(p) ∗G(p; τ) τ > 0
(3.4)

where G(p; τ) is a Gaussian function. Suppose τ = σ2, the Gaussian function is

defined as

G(p; τ) =
1

2πτ
exp−(p·p)/2τ =

1

2πσ2
exp−(p·p)/2σ2

= G(p;σ2) (3.5)

Therefore, linear isotropic image scale space is explicitly represented as the convo-

lution between the Gaussian function G(p;σ2) and original image I(p). Fig. 3.2

illustrates an example of linear scale space. A Chinese food image is chosen because

it contains illumination variance(the surface of mushroom) as well as color change

(brown mushroom and white Chinese cabbage). Fig. 3.2a shows the scale-space rep-

resentation L(p;σ2) at scale parameter of σ2 = 0. It corresponds to the original image

L(p; 0) = I(p). Fig. 3.2b through Fig. 3.2f illustrate the evolution of the scale-space
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representation with the increase of scale parameter τ = σ2 = 1, 4, 25, 64, 100, and the

image becomes blurrier. Some extreme points, such as bright dots on the mushroom

in Fig. 3.2a, disappear in Fig. 3.2f because they are averaged by neighboring points.

(a) (b) (c)

(d) (e) (f)

Figure 3.2: An example of the Gaussian scale space, where the original image contains
mushroom and Chinese cabbage. (a) Gaussian scale-space representation L(p;σ2) at
scale σ2 = 0, corresponding to the original image I(p); (b) scale-space representation
L(p;σ2) at scale σ2 = 1; (c) σ2 = 4; (d) σ2 = 25; (e) σ2 = 64; (f) σ2 = 100.

Linear isotropic scale space has a simple representation defined in Eq. 3.4 and it

can be efficiently implemented in the image domain. Linear isotropic scale space

is also demonstrated to have several scale invariant properties described in Ap-

pendix B, and it is extremely valuable in tackling vision-front problems, such as corner

detection[137, 147, 155], edge extraction[136, 62, 188], image segmentation[204], and

optical flow computation[27, 35], etc. However, important image features are often

over-smoothed. For instance, image edges between mushroom and Chinese cabbage

are hardly preserved in Fig. 3.2f.
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Nonlinear Isotropic Scale Space

In order to avoid over-smoothing important features, the diffusion tensor D is

modified to F (|∇L|2)I[176], which adapts to local image gradient magnitudes.

F (s2) =
1

1 + s2/α2
(α > 0) (3.6)

Eq. 3.2 is converted into

∂τL = div(F (|∇L|2)∇L) (3.7)

The scale space based on Eq. 3.7 is nonlinear isotropic.

Variant image regions have sharp image boundaries in every scale level, and intra-

region smoothing is superior to inter-region smoothing. Important image features can

be well kept because they stay at image edges. For instance, image edges between

bright dots and mushroom are clearly preserved in Fig. 3.3b because substantial

diffusivity forbids smoothing image regions with significant image gradient.

(a) (b)

Figure 3.3: Comparison between linear and nonlinear isotropic scale-space represen-
tations at σ2 = 64. (a) Linear isotropic scale-space representation; (b) nonlinear
isotropic scale-space representation. Almost all bright dots of mushroom are pre-
served in Fig. 3.3b, while they are barely visible in Fig. 3.3a.

However, as indicated by Weickert[226], nonlinear isotropic scale space is unsta-

ble. Some new extreme points might be created during the construction of multi-scale
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image representation, which fails causality property discussed in Appendix B. In ad-

dition, the modified diffusion tensor is dependent on local image gradient magnitudes,

but orientation is invariant. This uniform diffusion still over-smoothes image features

in colonoscopy video streams, preventing the usage of nonlinear isotropic scale space

in colonoscopy tracking.

Nonlinear Anisotropic Scale Space

It is desirable to redesign the diffusion tensor D with respect to local image’s

anisotropy, which results in anisotropic scale space. The anisotropic scale space is

defined as

L(p; Σ) = I(p) ∗G(p; Σ) (3.8)

It is similar to Eq. 3.4, except that Gaussian kernel is defined as

G(·; Σ) =
1

2π
√

det Σ
exp−

pΣ−1pT

2 (3.9)

where Σ is a symmetric positive semi-definite (covariant) matrix.

In order to build multi-scale image representation with respect to local image

structures, Σ should be related to the anisotropy of local image structures. In the

two dimensional image domain, the anisotropy is measured in terms of the structure

tensor J(x, y; Σs,Σw)[138, 226]. It is an anisotropic-scale representation of Harris

matrix defined in Eq. 3.16. In the three dimensional video stream, exploiting structure

tensor to estimate local affinities is very complicated. To simplify anisotropic scale

space and to emphasize the anisotropy between spatial and temporal domains, the
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scale parameter Σ in anisotropic Gaussian scale space is simplified to

Σ =


σ2
s 0 0

0 σ2
s 0

0 0 σ2
t

 (3.10)

where σs and σt are scale metrics with respect to spatial and temporal domains.

Multi-scale optical flow computation will use Eq. 3.8 and Eq. 3.10, as detailed in

chapter 4.

3.1.2 Calculus of Variations

Calculus of variations is a field of mathematics that addresses extremizing func-

tionals, and it is generally considered as an approach to minimize functions of func-

tion. It has several useful properties. First, all data components can be explicitly

integrated into a single mathematical equation as presented in Eq. 3.1. There are no

underlying assumptions necessary in this formulation. The whole problem statement

is thereby easily comprehended from a single energy formula. The formulation of

the energy formula also forces the designer to clearly think about what assumptions

can be made[26]. Second, the influence of different data components in Eq. 3.1, can

be easily controlled by artificially adjusting their balance parameters. One can ei-

ther dynamically modify these parameters, or they may remain constant. Therefore,

the minimization process is artificially manipulated to proceed towards the designer’s

purpose.

The last and most important property is that calculus of variations provides a

mathematically well-founded technique to minimize the energy. It leads to the so-

called Euler-Lagrange equation. For instance, the Euler-Lagrange equation of Eq. 3.1
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is 

∂u1M︸ ︷︷ ︸
Data

− αdiv(∂∇nu1S)︸ ︷︷ ︸
Smoothness

= 0

...

∂umM︸ ︷︷ ︸
Data

− αdiv(∂∇numS)︸ ︷︷ ︸
Smoothness

= 0

(3.11)

where div is a divergence operator and ∇nui = ( ∂ui
∂x1
, · · · , ∂ui

∂xn
), i ∈ [1, · · · ,m]. Ap-

pendix A provides the deduction of the Euler-Lagrange equation. The solution of a

complicated Euler-Lagrange equation can be converted into a linear system in terms

of some advanced numerical methods[183], such as sequential linearization approach

described in chapters 5 and 6. Consequently, calculus of variations not only pro-

vides a sound mathematical basis in the modeling process but also gives well-founded

numerical solutions.

3.1.3 Markov Random Field

Calculus of variations fails to minimize Eq. 3.1 if data or smoothness terms are dis-

crete. Markov random field is an alternative method to minimize the discrete energy

function. Eq. 3.1 is regarded as an energy expression of the Gibbs distribution[130].

The Hammersley-Clifford theorem[77] demonstrated that Gibbs distribution is equiv-

alent to Markov random field, and Li[130] proved that maximizing a posterior solution

of Markov random field is equivalent to minimizing Eq. 3.1.

In order to employ Markov random field to minimize Eq. 3.1, it is first converted

into

E(−→u ) =
∑
p∈Ω

M(−→u (p)) +
∑

(p,q)∈N

S(−→u (p),−→u (q)) (3.12)

where N (p) is the neighborhood of p and Ω is the entire image domain. Markov

random field is defined as a graphical model with a set of random variables fulfilling

the following two conditions:
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1. PDF (−→u (p)) > 0 (positivity)

2. PDF (−→u (p)|−→u (Ω− p)) = PDF (−→u (p)|−→u (N (p))) (Markovianity)

Here, PDF (x) is a probability density function. Minimizing Eq. 3.12 through Markov

random field[130] is essentially a data labeling process over the graphical model. Belief

propagation[67] and graph cut[24] are two main strategies to efficiently minimize

Eq. 3.12.

3.2 Optical Flow

In the previous section, I describe the computational theories, calculus of vari-

ations and scale-space theory, that underlie the optical flow techniques used in this

dissertation. Optical flow refers to the relative movements of the same visual patterns

between an image pair. It is a fundamental component in a visually-guided naviga-

tion system because optical flow is also considered as the projection of the egomotion

onto the image plane. In this section, I describe sparse and dense optical flow compu-

tation in more detail. A comprehension of their computation is required in order to

understand the specific techniques in this dissertation to calculate multi-scale optical

flow, region flow and temporal volume flow.

3.2.1 Sparse Optical Flow

Sparse optical flow is a set of visual motion vectors measuring relative movements

between two sets of corresponding feature points in an image pair. It is widely used in

egomotion estimation[203, 98, 52], video tracking[162, 5], and image mosaic[193, 41].

Sparse optical flow can be accurately computed if there exists two sets of matched

feature points. Interest points are usually chosen as feature candidates to calculate

sparse optical flow because these points stay at intersections of at least two dominant

edges. Sparse optical flow computation assumes that the interest point is sufficiently
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distinctive for feature matching. Egomotion can thus be precisely computed from

accurate sparse optical flow. The Harris matrix[79, 194] is often used to detect interest

points.

J = G(·;σw) ∗

 (∂xI)2 ∂xI∂yI

∂xI∂yI (∂yI)2

 (3.13)

and an interest point is determined if two eigenvalues of J are all large. Fig. 3.4 gives

an example of sparse optical flow between an image pair of Fig. 3.4a and Fig. 3.4b

based on the Harris matrix, where interest points are represented as cubes and sparse

optical flow vectors are indicated as arrows.

(a) First frame (b) Second frame

Figure 3.4: Example of sparse optical flow between two phantom images. Interest
points are represented as cubes and sparse optical flow vectors are visualized as arrows.

Multi-scale space analysis is of particular importance because it enables interest

point detection at optimal scales and produces accurate and stable feature points.

In this section, I describe two types of multi-scale space techniques. The first type

relies on the linear isotropic scale space theory while the second type depends on the

nonlinear anisotropic scale space.
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Linear isotropic scale space

This section investigates linear isotropic scale space to compute sparse optical flow.

Lindeberg[137] improved upon Eq. 3.13 in a linear isotropic scale representation,

J(·;σ2
s , σ

2
w) = G(·;σ2

w) ∗

 (∂xL(·;σ2
s))

2 ∂xL(·;σ2
s)∂yL(·;σ2

s)

∂xL(·;σ2
s)∂yL(·;σ2

s) (∂yL(·;σ2
s))

2

 (3.14)

Here, L(·, σ2
s) is defined in Eq. 3.4, and σ2

s and σ2
w are derivative and integration

scales. In order to reduce the search space of σs and σw, they are coupled by σw =

γσs, γ ∈ [
√

2, 2]. The scale-normalized Laplacian operator[154] is used to find optimal

scales.

∇2
normL(·;σ2

s) = σ2
s∇2L(·, σ2

s) (3.15)

An iterative multi-scale corner detection algorithm is developed to identify inter-

est points in the optimized scales when corner response (Eq. 3.14) and normalized

Laplacian (Eq. 3.15) both achieve extrema. Fig. 3.5 shows corner features detected by

multi-scale Harris matrix, where the location of a feature point is the circle’s center

and its corresponding scale is equal to the circle’s radius. Note that all feature points

locate at the intersections between two dominant image edges, such as boundaries

between the door and the wall. Following the same strategy, lots of interest point

detection algorithms [135, 51, 147, 110, 190] have been developed based on the linear

scale space.

However, as was indicated in section 3.1.1, linear scale space tends to over-smooth

image features, especially when two images have significant visual motion. Fig. 3.6

gives an example. Fig. 3.6(a) and Fig. 3.6(b) are a pair of images undergoing sig-

nificant viewpoint change. If the linear scale space is built on circular image regions

centered at the corner of the ‘N’ character in two images, then two regions contain
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Figure 3.5: Interest points detected by multi-scale Harris matrix. Every point locates
at the center of a circle, and its corresponding scale is indicated by the circle’s radius.

different visual contents, as illustrated in Fig. 3.6(d) and Fig. 3.6(e). Comparing

region descriptors built over different image regions yield inaccurate sparse optical

flow.

Nonlinear anisotropic scale space

In order to address inherent limitations of the methods based on linear isotropic

scale space, nonlinear anisotropic scale space is proposed to remove affine distortion

when an image pair undergoes significant visual motion, such as an ellipse image

region shown in Fig. 3.6(f). The ellipse image region used by nonlinear anisotropic

scale space contains the same visual contents as a circular region shown in Fig. 3.6(a).

The essential idea of the nonlinear anisotropic scale space is that scale parameter

Σ should be designed with respect to local affinity. The local affinity is measured

based on the affine Harris matrix[155].

J(·; Σs,Σw) = G(·; Σw) ∗

 (∂xL(·; Σs))
2 ∂xL(·; Σs)∂yL(·; Σs)

∂xL(·; Σs)∂yL(·; Σs) (∂yL(·; Σs))
2

 (3.16)

Σw represents the integration scale parameter of the Gaussian window function de-
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Figure 3.6: Comparison between linear isotropic and nonlinear anisotropic scale
spaces on an image pair with significant image deformation. (a) First viewpoint;
(b, c) second viewpoint. Two patches in (a) and (b) using linear Gaussian scale-
space(represented as the fixed circular patches) can not deal with significant view-
point change because they do not include the same visual contents in (d) and (e).
Anisotropic Gaussian scale space can handle this problem. Visual contents in ellipses
in (c) and (f) are equal to that in the circles of (a) and (d). All these figures are
adapted from Mikolajczyk’s work[157].

fined over an image region. L(·; Σs) is an anisotropic scale space representation de-

fined in Eq. 3.8, and Σs is the anisotropic scale parameter. There are many fea-

ture detectors[107, 150, 213, 214, 108, 157, 156, 215, 154] based on the nonlinear

anisotropic scale space, which utilize Eq. 3.16 to detect affine invariant image re-

gions. Eq. 3.16 has also been extended to determine affine invariant volumes in video

streams[121, 231, 111].

Fig. 3.7 illustrates feature matching results of the affine Harris detector[155] in

the image domain. A pair of feature points near the cartoon’s leg are detected and

matched in the left two color images. There is significant affine distortion between

this image pair due to substantial camera movements. The center two images illus-

trate two image regions centered at the selected features(corresponding to two green
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rectangles in the left image pair), and the ellipses indicate their local affinities. In-

stead of directly building anisotropic Gaussian scale space on the ellipse image regions,

anisotropic scale space is alternatively constructed by performing linear scale space on

the normalized image regions shown in the image pair in the right column of Fig. 3.7,

which is called transformation property. Ellipse image regions can be normalized

into circular image regions, and only rotation variance exists between corresponding

normalized image regions.

Figure 3.7: Example of affine Gaussian scale-space over images. Left column shows
a pair of images and two matched feature points linked by a green line, detected by
the affine Harris detector. A pair of image regions centered at feature points near
the cartoon’s leg are illustrated in the middle column. They are copied from the
original images and two ellipses indicate their local affinities. Two normalized images
are displayed in the right column. Two circles cover the same regions and the only
difference between visual contents in two regions is a small amount of rotation. Local
affine distortion is thus removed through normalization.

3.2.2 Dense Optical Flow

Dense optical flow is defined as image displacements of the same visual patterns

between two images. It is extensively used in object detection and tracking[162], robot
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navigation[191], and visual odometry[171]. Dense optical flow is useful in estimating

the Focus of Expansion(FOE). The FOE is a key property for stabilizing egomotion

estimation because it encompasses the most accurate egomotion information in the

optical flow field[218].

Figure 3.8: Optical flow as a function of time. Optical flow estimation is based on
the assumption that intensities of image points, such as p0 and p (filled blue circles),
projected from the same object point P remain invariant. These projected points
form a profile curve, ξ(x, y, t); several such curves are illustrated. The optical flow
vector ~u at time t is the tangent vector of ξ(x, y, t), as indicated by a red arrow.

From the definition of dense optical flow, we can realize that dense optical flow

cannot be accurately computed unless there are enough duplicated visual patterns

between two matched images. Therefore, its computation starts with intensity con-

stancy model, which assumes that the intensity of image points projected from the

same objects remain invariant. In Fig. 3.8, all projection points of an object point P

at varying times(the filled blue circles along each curve) form a profile curve, ξ(x, y, t)

at [0, t]. Assuming p is a projection point in ξ(x, y, t) at t, its optical flow vector,

−→u = (ux, uy, ut), is the tangent vector of ξ(x, y, t)(the red arrow). Let p0 = (x0, y0)
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be the projection point at t = 0. Thus,

ξ = (x0, y0, 0) +

∫ t

0

−→u dτ =


x0 +

∫ t
0
uxdη

y0 +
∫ t

0
uydη∫ t

0
utdη

 (3.17)

and intensity constancy model is represented as two different formulations:

dI(ξ)

dt
= 0⇒ ∂xIux + ∂yIuy + ∂tIut = 0 linear model

I(x0, y0, t0) = I(x0 +
∫ t

0
uxdη, x0 +

∫ t
0
uydη, x0 +

∫ t
0
utdη) nonlinear model.

(3.18)

Eq. 3.18 is an essential equation in estimating dense optical flow.

However, Eq. 3.18 is an under-constrained problem to determine −→u because there

are two unknown variables ux and uy in a single equation. During optical flow com-

putation, ut is frequently assumed to be 1. This issue is also called an aperture

problem[99].

Additional constraints are needed to handle the aperture problem. One frequently

used assumption is that optical flow vectors vary smoothly in the image domain except

for the areas at depth discontinuities. Two types of smoothness constraints result in

two different dense optical flow estimation approaches, including local and global

methods. Local method assumes that optical flow vectors remain constant within a

local image patch, such as a 5×5 image region. Global approach explicitly integrates

intensity constancy model and smoothness constraint into an energy function over

the entire image domain.

In this section, I elaborate on some representative algorithms in the image domain
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with respect to these two approaches. Phase type methods[81, 71, 82, 75, 70] are out

of scope and referred to in some survey papers[9, 13, 19].

Local Methods for Computing Dense Optical Flow

Local methods subdivide an image into several regular image regions, and the

combination of the estimated optical flow in each image region forms the final dense

optical flow.

Lucas-Kanade[148] proposed the following equation to estimate dense optical flow

within an image region.

E(−→u ) = G(x, y;σ2
w) ∗ (∂xIux + ∂yIuy + ∂tI)2 (3.19)

Here, G(x, y;σ2
w) is a Gaussian window function defined over the image region. In

terms of intensity constancy assumption in Eq. 3.18, optical flow vectors −→u should

make E(−→u ) achieve minimum. Differentiating Eq. 3.19 with respect to ux and uy

leads to G(;σ2
w) ∗ (∂xI)2 G(;σ2

w) ∗ (∂xI∂yI)

G(;σ2
w) ∗ (∂xI∂yI) G(;σ2

w) ∗ (∂yI)2


 ux

uy

 = −

 G(;σ2
w) ∗ (∂xI∂tI)

G(;σ2
w) ∗ (∂yI∂tI)


(3.20)

If the inverse of left matrix exists, the flow vector −→u could be computed. Alterna-

tively, the value of Eq. 3.19 is minimized by eigen-analyzing a spatial-temporal linear

structure tensor[15, 140].

Local methods based on Eq. 3.19 include the following constraints:

• Optical flow remains invariant within small image regions.

• Optical flow is piece-wise within an image region[19, 20, 21]

• Non-quadratic estimators, such as Lorentzian function[101, 78], are used to
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reduce outlier influence in estimating optical flow.

• Optical flow is constant at variant sizes of image regions[164, 29, 140, 234].

• Optical flow undergoes affine visual motion[197, 196, 15, 20, 64].

However, all these constraints assume optical flow vectors are constant within

an image region. This condition does not hold in colonoscopy images, especially

near colon folds. In addition, nearly all local methods cannot guarantee optical flow

is globally smooth and fully dense, eg., image regions having insufficient texture

information. Consequently, local methods are not employed to estimate dense optical

flow.

Global Methods for Computing Dense Optical Flow

Global methods have elegant properties, which address two issues of local methods:

partial optical flow results and motion boundary over-smoothing. Global methods

have been extensively studied to estimate both small and large visual motion.

Small Visual Motion Small visual motion approaches are used when we have

successive image frames, and two frames only have small pixel shifts. Small visual

motion is computed by explicitly integrating intensity constancy and smoothness

constraints into a single global energy function.

All these methods can be summarized as a general energy equation like Eq. 3.1

E(−→u ) =

∫∫
(x,y)∈R2

(F (−→u JD
−→u T )︸ ︷︷ ︸

Data term

+ αS(∇uxJS∇uTx +∇uyJS∇uTy )︸ ︷︷ ︸
Smoothness term

)dxdy (3.21)

where JD is called motion tensor[30]. JS is a diffusion tensor to control the smoothing
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process. The Euler-Lagrange equation of Eq. 3.21 is


∂xF (−→u JD

−→u T )︸ ︷︷ ︸
Data

− αdiv(∂∇uxS(∇uxJS∇uTx +∇uyJS∇uTy ))︸ ︷︷ ︸
Smoothness

= 0

∂yF (−→u JD
−→u T )︸ ︷︷ ︸

Data

− αdiv(∂∇uyS(∇uxJS∇uTx +∇uyJS∇uTy ))︸ ︷︷ ︸
Smoothness

= 0
(3.22)

Eq. 3.22 can also be expressed in a diffusion-reaction equation,


∂τux = div(∂∇uxS(∇uxJS∇uTx +∇uyJS∇uTy ))︸ ︷︷ ︸

Diffusion

− 1
α
∂xF (−→u JD

−→u T )︸ ︷︷ ︸
Reaction

∂τuy = div(∂∇uyS(∇uxJS∇uTx +∇uyJS∇uTy ))︸ ︷︷ ︸
Diffusion

− 1
α
∂yF (−→u JD

−→u T )︸ ︷︷ ︸
Reaction

(3.23)

Eq. 3.23 shows that global optical flow computation is essentially a diffusion process,

where optical flow vectors within textural regions gradually propagate into areas de-

void of texture information. The diffusion tensor JS steers the direction and intensity

of the local diffusion, and the motion tensor JD keeps estimated optical flow vectors

fulfilling data constraints. A constant α balances data and smoothness constraints to

achieve an optimal compromise.

There are two types of approaches to formulate the energy function associated with

the key equation in Eq. 3.21, two image driven and two flow driven computational

methods[30].

Image-driven methods The assumption behind image-driven approaches is

that visual motion boundaries are located at image regions with large gradient mag-

nitudes. Image-driven methods design the diffusion tensor JS with respect to local

image structures, rather than local optical flow patterns. After JS is properly de-

signed, it is imported into either Eq. 3.22 or Eq. 3.23 to compute optical flow field.

Horn[99] assumed that optical flow computation is a homogeneous diffusion pro-

cess, mathematically represented as JS = I. However, this method is prone to
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Comparison of dense optical flow results using different motion and dif-
fusion tensors as well as estimators. (a) and (b) are two successive Yosemite frames;
(c) diffusion tensor is an identity matrix (Horn’s method[99]); (d) non-quadratic esti-
mator is used for data and smoothness terms to compute flow-driven isotropic optical
flow; (e) gradient constancy model is embedded into non-quadratic estimator; (f)
nonlinear intensity and gradient constancy models are input into a non-quadratic
energy function (Brox’s method[27]). Optical flow results become smoother and mo-
tion boundaries are also well kept by exploiting sophisticated estimators as well as
diffusion tensors.

causes over-smoothing at visual motion boundaries. Two successive Yosemite im-

ages (Fig. 3.9a and Fig. 3.9b[7]) are chosen to illustrate dense optical flow results.

Here, the camera is moving toward the mountain. Fig. 3.9c gives results from Horn’s

method, where optical flow is not smooth because visual motion boundaries cannot be

well kept. In order to avoid over-smoothing along image edges, Alvarez[3] developed

a nonlinear isotropic diffusion tensor to penalize diffusion in image regions with large

gradient. Similarly, Lai[119] prohibited optical flow diffusion at image contours[92].

However, nonlinear isotropic, image-driven methods can still over-smooth optical flow

field along image edges. Nagel[165, 166, 164] developed an anisotropic image-driven
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diffusion tensor, which is orientation variant in terms of local image gradients and

their directions. The method prevents optical flow over-smoothing along image edges.

Although the problem of optical flow over-smoothing along image edges is pre-

ventable [165, 166, 164], image driven methods are not applicable to colonoscopy

tracking because visual motion boundaries are not always located at image edges. For

example, the homogeneous areas corresponding to the colon wall in the colonoscopy

images have no edges, but visual motion is not constant because of varying depth

values. Optical flow vectors at visual motion boundaries will be over-smoothed in

these homogeneous areas because diffusion tensor is defined by image gradients.

Flow-driven Methods To prevent over-smoothing visual motion boundaries,

a more reasonable strategy is the development of JS directly related to optical flow

vectors, which is also called the flow-driven method. After JS is designed, optical flow

can be accurately computed by using Eq. 3.22 or Eq. 3.23. Because large optical flow

gradients correspond to visual motion boundaries, over-smoothing can be effectively

moderated in flow-driven methods. The accuracy of dense optical flow is thus en-

hanced, improving the tracking results. Similar to image-driven methods, flow-driven

approaches are also comprised of isotropic and anisotropic methods.

An optical flow computation method is isotropic flow-driven if diffusion tensor JS

is designed in terms of optical flow gradient magnitudes. Cohen[49, 117] suggested

to use non-quadratic L1 term to reduce the smoothness deviation and defined the

smoothness term as

S(∇uxJS∇uTx +∇uyJS∇uTy ) =
√
∇ux∇uTx +

√
∇uy∇uTy (3.24)

Eq. 3.24[153, 58, 6] not only reduces the influence of the image noise, but also forces

the diffusivity adaptable to local optical flow variance. This smoothness term results

in an isotropic flow-driven method and avoids over-smoothing along visual motion
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boundaries. Fig. 3.9d illustrates the flow results of Cohen’s method. In compar-

ison to 3.9c, optical flow is significantly improved, particularly in the bottom left

corner. Alternatively, Schnorr replaced L1 norm with a non-quadratic measurement

S(x2) = Ψ(x2) =
√
x2 + ε2, where ε is a small constant, for instance, 0.001. Based on

this derivation, diffusion tensor, Ψ(∇ux∇uTx +∇uy∇uTy ), becomes rotation-invariant.

Fig. 3.9f depicts optical flow results in terms of this rotation invariant tensor. Opti-

cal flow vectors vary smoothly, and they accurately represent the actual visual mo-

tion. Thanks to this useful rotation invariant property, many optical flow computa-

tion methods are developed from the isotropic flow-driven diffusion tensor, such as

[228, 34, 35, 32, 33, 27, 175, 31, 30].

However, optical flow vectors are orientation variant along visual motion bound-

aries, whereas flow-driven isotropic methods might over-smooth optical flow field

along certain directions. Anisotropic flow-driven method is needed to handle this is-

sue. Optical flow computation method is anisotropic flow-driven if smoothness terms

are dependent on optical flow gradients as well as their orientations. For instance,

Weickert[227] proposed a direction-oriented smoothness term, which belongs to flow-

driven anisotropic methods. It is stated as

S(∇uxJS∇uTx +∇uyJS∇uTy ) = traceΨ(∇uTx∇ux +∇uTy∇uy) (3.25)

The smoothness term defined in Eq. 3.25 is mathematically demonstrated to achieve

real flow-driven anisotropic optical flow computation.

Theoretically, flow-driven anisotropic methods generate the most accurate optical

flow results. However, it is extremely time-consuming. Flow-driven isotropic meth-

ods can produce sufficiently accurate dense optical flow but with lower computation

cost. It is the major reason flow-driven isotropic optical flow algorithms are more

appropriate for colonoscopy tracking and are used in this dissertation.
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Large Visual Motion All global methods I described thus far focus on estimating

small visual motion. However, many computer vision tasks require computing sig-

nificant visual motion, such as estimating large visual motion between a colonoscopy

image pair after a sequence of blurry images are disregarded. There are three large

displacement optical flow estimation techniques that I utilize in my approach: coarse-

to-fine large displacement optical flow, Brox’s large displacement optical flow and

SIFT flow. In this section, I briefly describe and indicate both the similarities and

differences between my approaches and these techniques.

Coarse-to-fine large displacement optical flow[4, 30] Coarse-to-fine is a

common strategy to build an image pyramid for estimating optical flow. Calculus of

variations computes optical flow from the coarsest pyramid and iteratively updates

the computation to the finest level. Region flow computation employs coarse-to-fine

strategy to estimate large visual motion between an image pair. Similarly, temporal

volume flow computation estimates large visual motion by comparing two multi-

resolution temporal volume pyramids.

Instead of using calculus of variations, Markov random field is chosen to minimize

the energy function like Eq. 3.21 in estimating region flow. Although temporal vol-

ume flow computation also employs calculus of variations, it estimates visual motion

between two temporal volumes rather than two images.

Brox’s large displacement optical flow[28] Brox segmented the image pair

into a set of image regions with uniform motion, and each region was represented

as the SIFT[147] feature descriptor. A set of matched regions was determined by

measuring the distance between two SIFT descriptors[147, 155, 214]. These region

correspondences were then combined into Eq. 3.21 and the Euler-Lagrange equation

was used to estimate large displacement optical flow.

Incremental egomotion estimation also applies this strategy to integrate sparse fea-

ture correspondences into Eq. 3.21 and uses the Euler-Lagrange equation to estimate
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visual motion. However, instead of identifying feature matches through image seg-

mentation, incremental egomotion estimation exploits a set of accurate SIFT feature

correspondences from region flow. This strategy can effectively handle the influence

of false sparse feature matches on the optical flow computation. In addition, the pur-

pose of integrating sparse feature matches into the incremental egomotion estimation

is the subdivision of large visual motion vectors for egomotion estimation, but not

the estimation of large displacement optical flow.

SIFT flow[139] This method employs SIFT feature correspondences as the

data term in Eq. 3.21 to densely estimate SIFT flow. Belief Propagation[68] is used

to minimize the energy function because the data term consisting of SIFT feature

correspondences is discrete.

Region flow shares the same idea and also employs Belief Propagation[68] to min-

imize the discrete energy function. Instead of using SIFT feature correspondences

to formulate the data term, efficient normalized cross-correlation is used to measure

the similarity between two image regions in region flow computation. Moreover, the

purpose of region flow computation is not for image retrieval, but for accurate SIFT

feature matching.

3.3 Egomotion Estimation

The previous two sections describe the computational theories needed to estimate

optical flow. In this section, I review techniques to calculate egomotion from optical

flow. Egomotion is the movement of the camera relative to the external world. We

need to know the egomotion in order to accurately determine positions and orienta-

tions of the colonoscope camera in the colon.

I first describe the basic mathematical formulation between egomotion and optical

flow, and then derive the governing equations for egomotion determination. Let

an object point P = (X, Y, Z) be in a camera-centered coordinate as depicted in



60

Figure 3.10: An instantaneous camera coordinate relating camera velocities and visual
motion.

Fig. 3.10. P is projected into a point p = (x, y) in the image plane.
−→
T = (TX , TY , TZ)

and
−→
R = (RX , RY , RZ) are, respectively, the translational and rotational velocities

of the camera. The egomotion between the camera and the object point is projected

into the image plane. It forms visual motion field −→v = (vx, vy, vt) in the image plane,

which is defined as

−→v (x, y, t) =


vx(x, y, t)

vy(x, y, t)

vt(x, y, t)

 =


TZ(t)

Z (x− fTX(t)
TZ(t) ) +RX(t)xy

f −RY (t)(f + x2

f ) +RZ(t)y
TZ(t)

Z (y − fTY (t)
TZ(t) ) +RX(t)(f + y2

f )−RY (t)xy
f −RZ(t)x

α1


(3.26)

where α1 is the temporal component and is usually assumed to be 1, and Z, the depth

value. Eq. 3.26 is a core equation to bridge 3D camera motion and 2D visual motion

in the image plane. However, the exact visual motion field is usually unknown, and

optical flow is considered an approximation to the visual motion flow. In the other

words, visual motion is regarded as the geometric prototype of optical flow. The

essential problem of egomotion estimation is thus expressed as the search for
−→
T and

−→
R that minimizes ∫∫

(x,y)∈R2

‖−→v −−→u ‖2dxdy (3.27)
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Minimizing Eq. 3.27 leads to two basic types of egomotion estimation algorithms,

including simultaneous translation and rotation estimation as well as sequential trans-

lation and rotation estimation. This section surveys some typical algorithms based

on this category. Part of their comparison can be found in Tian’s work[209].

3.3.1 Simultaneous translation and rotation estimation

There are three basic approaches of simultaneous computation methods. The first

method directly minimizes Eq. 3.27 with respect to camera translation and rotation

parameters, such as Bruss’s method[36]. Depth values are obtained either from depth

sources, such as range cameras or the depth buffer of a graphics card, or from math-

ematical relation to motion parameters, derived from Eq. 3.26. Differentiating with

respect to
−→
T and

−→
R yields a 6× 6 linear system, and camera motion parameters can

be simultaneously estimated. Later on, Adiv[1, 2] suggested a subdivision method

to choose image regions with reliable optical flow fields to improve the accuracy of

camera motion parameters and to reject outliers.

The second approach directly recovers motion parameters in avoidance of optical

flow computation[98]. The essential idea here is to submit Eq. 3.26 for the linear

model of Eq. 3.18 based on the assumption that −→u = −→v . It yields a sequence of linear

equations to compute
−→
R and

−→
T . Helferty[87] applied this method to bronchoscopy

tracking and obtained promising tracking results.

Epipolar geometry[80, 65] is the third approach to directly estimate translation

and rotation parameters. Given that p1 and p2 are two image points projected from

the same object point P, the constraint can be written in the camera coordinate

system

p1 · (
−→
T ×Mp2) = 0 (3.28)

where M is a rotation matrix related to rotation velocity
−→
R .
−→
T and

−→
R can be

determined based on Eq. 3.28 if a set of feature correspondences is known.
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These three approaches all assume that optical flow is accurate enough to be con-

sidered as the actual visual motion. Camera translation and rotation velocities can be

safely estimated from a sequence of linear equations based on this assumption. How-

ever, all these approaches are sensitive to optical flow errors because the linear system

combining translation and rotation parameters is highly unstable. I empirically and

mathematically demonstrate this in Appendix G.

3.3.2 Sequential translation and rotation estimation

Sequential egomotion estimation methods separately compute translation and ro-

tation parameters. The robustness of an egomotion estimation can be significantly

enhanced over the simultaneous method because the search for camera translation

and rotation parameters is reduced from a 6 × 6 linear system to two 3 × 3 linear

systems. Decreasing search space reduces the ambiguity of egomotion estimation.

This separation is either based on the FOE, or other important, non-FOE optical

flow features. Next, I describe these approaches along with their advantages and

disadvantages.

FOE-Based Approaches

FOE-based approaches are egomotion estimation methods using the FOE to sep-

arate camera translation and rotation estimation. The FOE is defined as the inter-

section between the camera translation direction and an image plane.

FOE-based methods can accurately estimate translation and rotation parameters

because the FOE encompasses the most stable camera motion information in the op-

tical flow field. These methods employ different visual motion properties to determine

the FOE, such as motion parallax, collinearity, etc. Several examples are described

here:

• Heeger[86, 84, 85, 106] assumed that a set of optical flow vectors could be
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detected in the image plane and the combination of these optical flow vectors

are orthogonal to
−→
T . Based on this property, the FOE can be determined.

However, this method is very time-consuming if a dense optical flow field is

used to detect the expected set of optical flow vectors and to determine the

FOE. By contrast, if sparse optical flow is utilized, this method might cause

estimation bias.

• Vitoria[52, 53] realized that FOE is located at the zero sum of the collinear

optical flow vectors and used this property to determine the FOE. However, the

search for collinear points involves lots of computation, and the sum of optical

flow vectors amplifies estimation errors.

• Sundareswaran[203, 102] observed that the curl of optical flow field was only

related to camera rotation parameters, and translation components of an optical

flow field could be excluded. The FOE was thus determined according to the

translation components of optical flow.

• The FOE can also be determined based on the assumption that flow differences

between two points near depth discontinuities point to the FOE, due to motion

parallax[181]. Chapter 4 improves this method to track consecutive colonoscopy

images. The enhancement includes: 1) development of a covariance matrix to

measure region confidence; and 2) use of multi-scale optical flow to estimate

camera motion parameters.

Because the FOE is mathematically demonstrated to contain the most accurate

and stable camera motion information in the optical field[218], camera translation

and rotation parameters can be accurately computed. In terms of the FOE, tracking

a long colonoscopy image sequence becomes possible.
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Other Separation-Estimation Methods

Other approaches include egomotion estimation methods that use features in the

optical flow field besides FOE to separate camera translation and rotation estimation.

Various algorithms have used the following visual motion features:

• Tomasi[211, 212, 239] noticed that visual angle changes were only dependent on

camera rotation. Therefore, camera rotation and translation can be separately

computed by measuring visual angle changes.

• Prazdny[178, 179] derived a mathematical constraint independent on camera

rotation parameter from a triple of image points, and rotation parameter is

estimated from his mathematical equation. Once camera rotation parameter

is known, it is substituted back into Eq. 3.26 to estimate camera translation

parameter.

• Lim[133, 134] realized that the optical flow sum of two antipodal points is

devoid of camera translation parameters. This property is very important for

large field-of-view cameras i.e., range camera or endoscope camera.

These separation algorithms have similar benefits to FOE-based approaches in

robustly estimating camera motion parameters. However, they are somehow still

sensitive to optical flow errors. For instance, Tomasi’s method requires selected fea-

ture points well distributed in the image domain, so as to build robust visual angles.

Therefore, these types of separation methods are not used in my colonoscopy tracking

system.

3.4 Summary

This chapter reviewed techniques related to visual motion computation and ego-

motion estimation in a visually-guided navigation system. Underlying computational
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theories were first presented, including scale-space theory, calculus of variations, and

Markov random field. After underlying computational theories were described, I dis-

cussed several representative algorithms related to visual motion computation and

egomotion estimation. Visual motion computation included sparse and dense optical

flow calculations. Egomotion estimation approaches were comprised of simultane-

ous translation and rotation estimation, as well as FOE-based and other sequential

egomotion estimation methods.

Chapter 4 through 6 explore the described techniques to develop a robust colonoscopy

tracking system. Chapter 4 investigates scale-space theory to determine optimized

scales and to detect distinctive interest points. It also computes sparse and dense

optical flows between consecutive colonoscopy images. Motion parallax is used to de-

tect the FOE in the optical flow field and to separately estimate camera translation

and rotation velocities.

When a colonoscopy video stream is interrupted by blurry image sequences, Markov

random field is an important mathematical tool to compute region flow to measure

significant visual motion between two images. I discuss this in chapter 5. Incre-

mental egomotion estimation employs calculus of variations and scale-space theory

to subdivide significant visual motion from region flow into a sequence of optical flow

fields. Large egomotion between image pairs is estimated incrementally using the

FOE-based egomotion estimation method on the optical flow sequence. Temporal

volume flow, described in chapter 6, also uses calculus of variations and scale-space

theory to estimate temporal volume flow for an image pair interrupted by blurry im-

ages. The accuracy of colonoscopy tracking failure recovery can be enhanced by using

the selected image pair.



CHAPTER 4: CONTRIBUTION ONE – MULTI-SCALE OPTICAL FLOW

“Even a journey of a thousand miles begins with a small step.”

– Chinese saying

In the previous chapter, I described the theoretical and technical background per-

taining to a visually-guided navigation system. In this chapter, these techniques are

utilized to tackle the first problem of a colonoscopy tracking system, Vis. co-alignment

of consecutive optical colonoscopy(OC) and virtual colonoscopy(VC) images. Because

OC images are lacking in visual cues, optical flow is chosen as a means of focusing on

smaller features such as folds and polyps for visual motion computation. The tracking

algorithm employs scale-space theory to search for optimal spatial-temporal scales.

A set of sparse optical flow vectors is computed at the optimal scales to accurately

represent image displacements between consecutive OC images. Dense optical flow is

also computed at the optimal scales.

The proposed tracking system must be stable in estimating egomotion, in order to

be useful for co-aligning OC and VC images. Focus of Expansion(FOE) encompasses

the most accurate camera motion information in the optical flow field; therefore,

FOE-based egomotion estimation is explored in this chapter. Motion parallax is in-

vestigated to determine the FOE, which is used to separately compute camera trans-

lation and rotation velocities. Finally, the position and orientation of the colonoscope

are determined by integrating the estimated velocities. Straight and curved phantoms

are designed to quantitatively validate the tracking accuracy of the proposed method.

Five clinical colonoscopy image sequences are used to verify robustness and accuracy.
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4.1 Problem Statement

The goal of this chapter is to track consecutive OC images and guide OC by co-

aligning OC and VC images. Colonoscope’s positions and orientations are required in

order to achieve OC and VC co-alignment. The positions and orientations are deter-

mined by integrating all egomotion parameters between two consecutive colonoscopy

images. Egomotion is the relative motion between a camera and the external world.

To calculate egomotion, we need to calculate optical flow from the OC video stream.

Accurate optical flow calculation requires a lot of stable visual cues in OC images,

such as interest points.

However, colonoscopy images manifest a number of challenges in visual motion

computation and egomotion estimation, mainly due to lack of stable visual cues and

significant colon deformation. Visual cues consist of geometrical and texture discon-

tinuities. Because the colon is a tubular structure, geometrical discontinuities rarely

exist in OC images. Moreover, they contain a few texture discontinuities due to in-

distinct intensity variance of OC images. For these reasons, only a small amount of

interest points can be detected near blood vessels in colonoscopy images, as illustrated

in the left image of Fig. 1.4b.

Colon deformation also seriously affects colonoscopy tracking. In Fig. 4.1, when

the colonoscope is inserted, the folds are originally presented as triangle shapes

(Fig. 4.1a), and they gradually become inflated and convert into ellipse forms (Fig. 4.1b).

These non-rigid deformations affect egomotion estimation algorithms because egomo-

tion assumes that objects undergo rigid motion. In order to track colonoscopy images,

egomotion estimation algorithms must be resistant to colon deformation.

Given the lack of prominent features in the colon, optical flow is chosen as the

means of focusing on smaller features (folds, polyps) for visual motion computation.

In this chapter, I propose a multi-scale optical flow based colonoscopy tracking al-
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(a) (b)

Figure 4.1: Two transverse colonoscopy images illustrating colon deformation. A
triangle fold in 4.1a expands to a ellipse fold in 4.1b because the colon is pushed by
the colonoscope.

gorithm that combines sparse and dense optical flow techniques, resulting in a more

robust and accurate egomotion estimation.

4.2 Optical Flow Based Colonoscopy Tracking Algorithm

Fig. 4.2 shows the framework for tracking consecutive colonoscopy images. Scale-

space theory is used to determine characteristic spatial-temporal scales across mul-

tiple anisotropic scale representations for each OC image. A set of accurate sparse

optical flow vectors is then computed at the characteristic scales. The chosen scales

are applied to compute dense optical flow, which determines the FOE. FOE and

sparse optical flow are jointly used to estimate camera rotation velocities. Camera

translation velocities are then computed by eliminating camera rotation components

from sparse optical flow and using depth values from a colon-like cylinder model. OC

and VC images are manually co-aligned at t = 0 to determine the initial camera

position and orientation. The position and orientation corresponding to the image

being tracked at that time are computed by integrating the estimated camera trans-

lation and rotation velocities. The bottom right image of Fig. 4.2 illustrates the final

colonoscopy tracking system by using camera position and orientation parameters,
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Figure 4.2: Colonoscopy tracking algorithm. The input consists of OC video stream
and VC images. Scale-space analysis is performed to compute the characteristic
spatial-temporal scales for each OC image, prior to computation of the sparse opti-
cal flow, using the Harris metric. These characteristic scales are used to determine
the dense optical flow, which is then used to compute the FOE. FOE and sparse
optical flow are used to determine the camera rotation velocity. After removal of
camera rotation velocity from the optical flow field, camera translation velocity is de-
termined, using depth values from a colon model. Camera positions and orientations
are computed by integrating estimated camera velocities, and are transformed into
CT volume coordinates to adjust the VC camera, illustrated in the bottom right.

including the optical image(top), the tracked VC image (bottom) and the camera

location in the colon (right).

I will describe colonoscopy tracking framework under two general headings: multi-

scale optical flow and FOE-based egomotion estimation. Multi-scale optical flow

includes calculating sparse and dense optical flow. FOE-based egomotion estimation

consists of FOE determination from dense optical flow as well as camera rotation

velocity computation followed by camera translation velocity calculation based on

the FOE.
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4.2.1 Multi-scale Optical Flow

This section first describes a multi-scale selection metric to compute sparse and

dense optical flows and then validates their accuracy on some VC images because

their ground-truth optical flows are known.

Algorithm Description

Multi-scale optical flow computation encompasses calculating sparse and dense

optical flow.

Anisotropic Gaussian scale space: Nonlinear, anisotropic Gaussian scale space

is constructed over an OC video stream. Anisotropic Gaussian scale space represen-

tation L : R2×R×R2
+ → R[122] is built by convolving the OC video stream I(x, y, t)

with an anisotropic Gaussian function.

L(x, y, t;σ2
s , σ

2
t ) = I(x, y, t) ∗G(x, y, t;σ2

s , σ
2
t ) (4.1)

where

G(x, y, t;σ2
s , σ

2
t ) =

e

„
−(x2+y2)

2σ2
s
− t2

2σ2
t

«
√

(2π)3σ4
sσ

2
t

(4.2)

and the semicolon in G(x, y, t;σ2
s , σ

2
t ) implies that the convolution is performed only

over x, y, t, while σ2
s and σ2

t are spatial and temporal scale parameters. In the imple-

mentation, anisotropic Gaussian scale space is built on a group of images.

Temporal scale is critical in optical flow computation because 1) intensity con-

stancy model defined in Eq. 3.18 involves a temporal derivative calculation; 2) a

colonoscope moves unevenly during a colonoscopy procedure, which results in various

sampling rates in the colonoscopy video stream. In order to preserve local details

in the video stream as well as keep computational costs reasonable, a group of 11

colonoscopy images centered at the current colonoscopy image is selected to build
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the anisotropic scale space. Anisotropic scale space is used for sparse optical flow

calculation. The goal here is to search for the characteristic spatial-temporal scale

parameters (σs, σt). They are initialized with σ2
s = 0.5, σ2

t = 0.3.

Sparse optical flow computation: Anisotropic scale space is now used in calcu-

lating sparse optical flow. Sparse optical flow computation involves two main compo-

nents: interest point detection and matching. The Harris matrix is frequently used

in interest point detection and is defined in the spatial-temporal scale space as

J(x, y, t;σ2
s , σ

2
t ) = G(x, y;σ2

w) ∗

 (∂xL)2 ∂xL∂yL

∂xL∂yL (∂yL)2

 (4.3)

where G(x, y;σ2
w) is a Gaussian window function and L is defined in Eq. 4.1. Lucas-

Kanade method[148] is used to match interest points and compute sparse optical flow

−→u = (ux, uy)

E(−→u ) = G(x, y;σ2
w) ∗

[
L(x, y, t;σ2

s , σ
2
t )− L(x+ ux, y + uy, t+ 1;σ2

s , σ
2
t )
]2

≈ G(x, y;σ2
w) ∗ [(∂xL)ux + (∂yL)uy + (∂tL)]2

(4.4)

Sparse optical flow is computed by first detecting a set of interest points according

to Eq. 4.3 and calculating the first derivative of Eq. 4.4 with respect to (ux, uy) of the

detected interest points. By setting the first derivative to zero, a 2× 2 linear system

is obtained to compute sparse optical flow. The linear system is expressed as follows.

G(·;σ2
w) ∗

 (∂xL)ux + (∂yL)uy + (∂tL)(∂xL)

(∂xL)ux + (∂yL)uy + (∂tL)(∂yL)

 =

 0

0


⇒G(·;σ2

w) ∗

 (∂xL)2 (∂xL∂yL)

(∂xL∂yL) (∂yL)2


 ux

uy

 =

 G(·;σ2
w) ∗ (∂tL∂xL)

G(·;σ2
w) ∗ (∂tL∂yL)


(4.5)
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Spatial-temporal scale selection: Accurate sparse optical flow exhibits maxi-

mum variance in the spatial domain while maintaining a minimum difference along

the temporal direction. Based on this, I combine Eqs. 4.3 and 4.4, and propose the

following scale selection metric to search for characteristic spatial-temporal scales in

computing sparse optical flow,

N(x, y, t;σ2
s , σ

2
t ) =

G(x, y;σ2
w) ∗

[
L(x, y, t;σ2

s , σ
2
t )− L(x+ ux, y + uy, t+ 1;σ2

s , σ
2
t )
]2√

|C(x, y, t;σ2
s , σ

2
t )|+ 1.0

(4.6)

where

C(x, y, t;σ2
s , σ

2
t ) = det(J(x, y, t;σ2

s , σ
2
t ))− αTrace2(J(x, y, t;σ2

s , σ
2
t )) (4.7)

and α = 0.04[79].

Converting the numerator through Taylor expansion, Eq. 4.6 is transformed into

N(x, y, t;σ2
s , σ

2
t ) ≈

G(x, y;σ2
w) ∗ [(∂xL)ux + (∂yL)uy + (∂tL)]2√
|C(x, y, t;σ2

s , σ
2
t )|+ 1.0

(4.8)

The numerator in Eq. 4.8 represents the similarity between corresponding in-

terest points, while the denominator measures how distinct the interest points are

in their local neighborhoods. Good corresponding feature points should make the

numerator(temporal difference) as small as possible and the denominator(spatial dis-

tinctiveness) as large as possible. Thus, the smaller the response of N(x, y, t;σ2
s , σ

2
t ),

the better the match. Another critical property of Eq. 4.8 is that it is invariant to

scale changes and characteristic spatial-temporal scales can be determined if Eq. 4.8

also attains the minimum. In Eq. 4.8, its numerator consists of multiple derivatives

including ∂2
x, ∂

2
y , ∂

2
t , ∂x∂y, ∂x∂t and ∂y∂t, while the denominator is the root of deriva-

tive combination of ∂4
x, ∂

4
y and ∂2

x∂
2
y . The derivative order is two in both numerator

and denominator. Therefore, the scale response of Eq. 4.8 remains invariant to scale

changes and is the basis for spatial and temporal scale selection.
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Scale response N(x, y, t;σ2
s , σ

2
t ) is computed by substituting −→u for Eq. 4.8. As-

sume the current scale index is k and the finer scale index is k − 1. A set of sparse

optical flow vectors and scale responses are known in the finer spatial-temporal

scales, (σk−1
s , σk−1

t ). The current spatial and temporal scales (σks , σ
k
t ) are set as

(
√

2σk−1
s ,
√

2σk−1
t ) to compute the second set of sparse optical flow vectors and scale

response. The factor
√

2 has been experimentally demonstrated for constructing a

smooth multi-scale space without losing important image structures[188]. The third

set of sparse optical flow vectors as well as scale response are determined again in the

coarser level (σk+1
s , σk+1

t ) = (
√

2σks ,
√

2σkt ). Therefore, we obtain three scale response

values. If the scale response value of the current scale level is a local minimum in

comparison with the finer and coarser scale response values, then the current spatial-

temporal scales are optimal with respect to sparse optical flow computation. If the

scale response value is not the local minimum, set the coarser scales as the current

scales, and repeat response computation and comparison until the current scale re-

sponse value is the local minimum.

Algorithm 1 illustrates the pseudo code and parameter details on scale selection

and sparse optical flow computation.

Algorithm 1: Multi-scale sparse optical flow computation

Input: Video stream I(x, y, t).
Output: Sparse optical flow vectors (ux, uy) and characteristic

spatial-temporal scales σ2
s and σ2

t .
begin

Initialize σ2
s = 0.5 and σ2

t = 0.3;
while (ux, uy, σ

2
s , σ

2
t ) /∈ arg minux,uy ;σ2

s ,σ
2
t
N(x, y, t;σ2

s , σ
2
t ) do

begin
Construct anisotropic scale space L(x, y, t;σ2

s , σ
2
t ) (as per Eq. 4.1);

Select interest points with the largest values C(x, y, t;σ2
s , σ

2
t ) (as per

Eq. 4.7);
Estimate optical flow vectors −→u = (ux, uy) (as per Eq. 4.5);
σ2
s ←
√

2.0σ2
s , σ

2
t ←
√

2.0σ2
t ;

end

end
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Dense optical flow computation: The colonoscopy video stream is smoothed

with the chosen spatial and temporal scales, and Horn’s method[99] is used to compute

the dense optical flow over the smoothed video stream at the optimal spatial-temporal

scales. Although Horn’s method is unable to avoid over-smoothing visual motion

boundaries, the accuracy of dense optical flow is reasonable for egomotion estimation,

and has low computational costs.

Example Demonstration

A VC image sequence was used to examine the effectiveness of the scale selection

metric and optical flow computation. Scale selection results are illustrated in Fig. 4.3.

Fig. 4.3(d) shows a response curve plotted as a function of the two spatial and tem-

poral scale parameters. It can be seen that the response curve first decreases to a

local minimum and then gradually increases. There are also three navigation images

overlaid with ground truth sparse optical flow vectors (red) and the estimated sparse

optical flow vectors(blue). Small green cubes indicate the positions of the chosen

interest points. Fig. 4.3(a), corresponding to point A in Fig. 4.3(d), shows the results

with fine spatial and temporal scales, where large vectors deviate from the ground

truth because the scales are not sufficient to eliminate the noise or large intensity vari-

ation; because the chosen scales are too coarse, small areas with varying motion are

merged. Therefore, small vectors diverge in Fig. 4.3(c), which corresponds to point

C in Fig. 4.3(d). Spatial-temporal scales at the local minima are a means to bal-

ance between these two extremes, and as seen in Fig. 4.3(b) (point B in Fig. 4.3(d)),

generate sparse optical flow vectors close to the ground-truth.

Fig. 4.4 illustrates dense optical flow results on the characteristic spatial-temporal

scales. Fig. 4.4a gives the ground-truth dense optical flow in the current VC image.

Dense optical flow that is computed in fine spatial-temporal scales is illustrated in

Fig. 4.4b. There are many large optical flow vectors because small image structures
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Figure 4.3: Relationship between spatial-temporal scales and the scale selection met-
ric. Ground-truth optical flow vectors are in red and estimated flow vectors are in
blue. Green cubes represent the selected feature points, (a) Results with fine spatial
and temporal scales, (b) Results with characteristic scales, (c) Results with coarse
scales, (d) The response curve between spatial-temporal scales and the scale met-
ric; the scale values at points A, B and C correspond to images (a), (b), and (c)
respectively.

are smoothed insufficiently. Fig. 4.4c shows dense optical flow computed in coarse

spatial-temporal scales. Dense optical flow becomes smooth except in area marked

A. In this circle, inverted optical flow vectors are generated because of improper

smoothing along the temporal direction. Some optical flow vectors also disappear in

area B because this area is homogeneous and fails to contain sufficient visual cues.

Fig. 4.4d shows a reasonable dense optical flow computed in the characteristic spatial-

temporal scales, and inverted optical flow vectors disappear in area marked A, with
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exception of homogeneous area B.

(a) (b)

(c) (d)

Figure 4.4: Dense optical flow computed in different spatial-temporal scales. (a)
Ground-truth dense optical flow; (b) estimated dense optical flow in the fine spatial-
temporal scales; (c) the coarse scales; (d) the characteristic scales;

4.2.2 FOE Based Egomotion Estimation

This section describes a FOE-based egomotion estimation algorithm by using

sparse and dense optical flow, followed by a validation of a VC image sequence.

Algorithm Description

FOE-based egomotion estimation consists of determining the FOE, and computing

camera rotation and translation velocities. Optical flow vectors at the FOE encom-
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pass the most accurate egomotion information, and FOE is determined by camera

translation velocities alone, independent of camera rotation velocities. Thus, the

FOE can separate camera translation and rotation computation. This property is

important in estimating egomotion because it significantly reduces the search space

of camera translation and rotation parameters. FOE-based egomotion estimation can

improve both accuracy and robustness over non-FOE based methods, such as Bruss

and Horn’s method[36].

Fig. 4.5 shows the comparison between FOE and non-FOE based methods on

an 1000-image sequence of a colon phantom. This phantom is a bent tube with

artificial polyps glued to its interior surface, and it is imaged using both CT and

an endoscope. Fig. 4.5(a) shows the camera being tracked at frame 540 by using

the FOE-based egomotion estimation method, while in Fig. 4.5(b), Bruss and Horn’s

method is shown in the 4th frame. It can be seen that the camera has moved out

of the colon phantom (external view on the right shows the camera at the boundary

of the colon phantom). In this sequence, FOE-based egomotion estimation was able

to track the phantom images between the first and the second polyps. Note that the

second polyp is displayed in the optical and the virtual images, as marked by red

arrows in Fig. 4.5(a). Bruss and Horn’s method fails to accurately estimate phantom

images because 1) this method uses an estimator based on the least sum of squares,

and the estimator is sensitive to optical flow errors; and 2) a 6× 6 linear system from

this estimator is also sensitive. The sensitivity is mathematically demonstrated in

Appendix D.

FOE-based egomotion estimation is investigated to compute camera velocities in

my colonoscopy tracking system. The intersection between the camera translation

velocity
−→
T and the image plane is defined as Focus of Expansion when the camera

moves towards objects; and it is called Focus of Contraction when the camera moves

away from the objects; and the intersection is at infinity if
−→
T is parallel to the image
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(a) (b)

Figure 4.5: Comparison between my approach and Bruss and Horn’s method on a
phantom image sequence. (a) Tracking results at frame 540, showing the camera
reaching the second artificial polyp, (b) Bruss and Horn’s algorithm results at frame
4, where the camera is out of the phantom. In Figs. 4.5a and 4.5b, the phantom
images are displayed in the top left images, the tracked VC images are illustrated in
the bottom left images, and the external views are depicted in the right images.

plane. The FOE[145] makes it possible to separate translation and rotation compo-

nents from visual motion flow, the geometrical prototype of optical flow, because it is

determined by the translation velocity
−→
T alone. This property is a key to estimating

camera motion parameters.

To derive the FOE location in the optical flow field, visual motion vector −→v can be

split into two vector components, −→v T and −→v R, caused solely by camera translation

and rotation velocities,

−→v = −→v T +−→v R (4.9)

where

−→v T =


vTx

vTy

0

 =


TZ
Z

(
x− fTX

TZ

)
TZ
Z

(
y − fTY

TZ

)
0

 (4.10)

and

−→v R =


vRx

vRy

1

 =


RX

xy
f
−RY (f + x2

f
) +RZy

RX(f + y2

f
)−RY

xy
f
−RZx

1

 (4.11)
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It can be seen from Eq. 4.10 that the spatial components of−→v T intersect at (f TX
TZ
, f TY

TZ
),

which is the FOE.

The motion parallax theory proposed by Longuet[145] can be used to estimate

the FOE. Suppose there are two object points P and Q at distinct depths Z1 and Z2

but with the same projection point p = (x, y), where their visual motion vectors are

−→v 1 and −→v 2; the difference between spatial components of −→v 1 and −→v 2 is given by

v1x − v2x

v1y − v2y

=
vT1x − vT2x
vT1y − vT2y

=
x− f TX

TZ

y − f TY
TZ

(4.12)

because vR1x = vR2x and vR1y = vR2y. Eq. 4.12 indicates that the direction of spatial

visual motion vector difference [v1x − v2x, v1y − v2y] of two adjacent points at depth

discontinuity would point to FOE.

FOE determination: This step applies the motion parallax theory to determine

the FOE in dense optical flow. I propose a subdivision method similar to[181] to search

for the FOE, as illustrated in Fig. 4.6. The image plane is subdivided into rectangular

regions. The estimated spatial optical flow vector difference ∆−→u = (∆ux,∆uy) =

(ux(xc, yc) − ux(x, y), uy(xc, yc) − uy(x, y)) between the center point pc = (xc, yc)

and its neighbors p = (x, y) are tabulated. The covariance matrix, C(∆−→u ) in each

sub-region is formed,

C(∆−→u ) =

 ∑
(∆ux)

2
∑

∆ux∆uy∑
∆ux∆uy

∑
(∆uy)

2

 (4.13)

The eigenvector(represented by the major axis of ellipses in Fig. 4.6b), corre-

sponding to the largest eigenvalue, is the direction joining the center point of an

image region to the FOE, based on principal component analysis. Eigen-ratio of this

matrix δ = ‖λsmall/λlarge‖ represents the confidence of the computed direction, and is

thresholded to select the sub-regions with high confidence. A line fitting procedure is



80

(a) (b) (c)

Figure 4.6: Determining the FOE. (a) Dense optical flow; (b) anisotropy of the co-
variance matrix defined in Eq. 4.13 in each grid, indicated by ellipses; the principal
orientation within each region is indicated by the long axis of each ellipse and the con-
fidence of this orientation is the inverse of the ratio between the minor and the major
axes; (c) FOE, the intersection of the green lines, is determined by least-squares fitting
the high confidence regions. Most of these regions are near depth discontinuities.

performed on the selected regions and the intersection of these lines (shown in green)

is the estimated FOE in Fig. 4.6c. Note that most of the selected subdivision regions

are near colon folds, which are areas of depth discontinuity.

Camera velocity computation: After the FOE is determined, camera rotation

velocity can be first estimated through a polar coordinate centered at the FOE. Let

−→
d = [dx, dy] be a 2D vector joining the current feature point p to the FOE, and

−→
d ⊥ = [d⊥x, d⊥y] is perpendicular to

−→
d . Including the temporal component, two 3D

vectors, −→e = [dx, dy, 0] and −→e ⊥ = [d⊥x, d⊥y, 0], are defined in the spatial-temporal

domain. Because−→e is parallel to−→v T from Eq. 4.10, −→v T �−→e ⊥ = 0. Camera translation

velocity is eliminated as follows:

−→v R �−→e ⊥ = −→v R �−→e ⊥ +−→v T �−→e ⊥ = [−→v T +−→v R] �−→e ⊥ = −→v �−→e ⊥ = −→u �−→e ⊥ (4.14)
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Substituting Eq. 4.11 into Eq. 4.14, we obtain


RX

xy
f
−RY (f + x2

f
) +RZy

RX(f + y2

f
)−RY

xy
f
−RZx

1

 �−→e ⊥ = −→u �−→e ⊥ (4.15)

The sparse optical flow is used to determine camera rotation velocity, due to its

accuracy. Substituting all sparse optical flow vectors for Eq. 4.15 leads to a sequence

of linear equations,




RX

x1y1
f
−RY (f +

x2
1

f
) +RZy1

RX(f +
y21
f

)−RY
x1y1
f
−RZx1

1

 �−→e ⊥1 = −→u (x1, y1) �−→e ⊥1

...
RX

xnyn
f
−RY (f + x2

n

f
) +RZyn

RX(f + y2n
f

)−RY
xnyn
f
−RZxn

1

 �−→e ⊥n = −→u (xn, yn) �−→e ⊥n

(4.16)

where n is the number of sparse optical flow vectors. Singular value decomposition is

then applied to compute camera rotation velocity
−→
R .

If OC and VC images are well co-aligned, I can safely assume that depth values in

VC images are equal to those in optical colonoscopy images[180, 141]. This property

is critical for determining camera translation computation because Eq. 4.19 requires

the depth value of each interest point is known. In order to generalize the colonoscopy

tracking algorithm, a cylinder-like colon model is used to approximate the colon and

to generate depth values. The core of the colon model is the centerline from the

virtual colon, and the radius is the average distance of all centerline points to the

colon boundary. Rather than using patient specific parameters, an alternative is

to use a radius that is averaged over patients, further generalizing the model, or a
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model with varying radii that typically represent the different segments of the colon

anatomy.

The sensitivity of the cylinder-like colon model is assessed through comparing the

tracking results using depth values from the actual CT colon model with the cylinder-

like colon model. Fig. 4.7a shows two snapshots from a sequence of 796 OC images

containing a polyp (marked inside red circles) in the descending colon. I compare

tracking results between the use of depth values from the virtual colon(Fig. 4.7b)

and cylinder model(Fig. 4.7c). In both cases, tracking results are quite reasonable in

frame 40 (top row). At frame 796, the only noticeable difference between the OC and

VC images is the appearance of the fold, located in the bottom right corner(green

squares). It is smaller using the cylinder model (bottom right image) versus the

colon model(bottom center image). While a detailed study on this issue is beyond

the scope of this work, experiments on additional clinical datasets illustrates no major

differences or errors introduced through the use of depth values from a cylinder model.

I first substitute estimated camera rotation velocity
−→
R for Eq. 4.11 to compute

−→v R. Next, −→v R, depth value Z from the colon model, and sparse optical flow −→u

are substituted for Eq. 3.27 to compute the square of the difference between visual

motion and optical flow components caused by translation only, ε,

ε =

∫∫ ∥∥−→v T − (−→u −−→v R)
∥∥2
dxdy

=

∫∫
∥∥∥∥∥∥∥∥∥∥


TZ
Z

(
x− f TX

TZ

)
TZ
Z

(
y − f TY

TZ

)
0

− (−→u −−→v R)

∥∥∥∥∥∥∥∥∥∥

2

dxdy

(4.17)

Set ∂

∂
−→
T
ε = 0 to minimize Eq. 4.17, and a 3× 3 linear system is obtained,

B
−→
T = −→g (4.18)
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(a) (b) (c)

Figure 4.7: Comparison of tracking results by using depth values from a cylinder-
like colon model. To generalize the tracking algorithm, I use a cylinder like model
derived from the 3D virtual colon. Results shown at two different frames. Left
column illustrate the optical images, middle column shows results using depth from
the virtual colon, and right column shows results using the colon model. A round
polyp (red circle) is used as a reference to evaluate the tracking accuracy. Tracking
results are comparable by using different depth sources, as the polyp is tracked well.

where

B =


−
∫∫

f
Z
dxdy 0

∫∫
x
Z
dxdy

0 −
∫∫

f
Z
dxdy

∫∫
y
Z
dxdy

−
∫∫

xf
Z
dxdy −

∫∫
yf
Z
dxdy

∫∫ (x2+y2)
Z

dxdy

 (4.19)

and

−→g =


∫∫

[ux − vRx ]dxdy∫∫
[uy − vRy ]dxdy∫∫

[x(ux − vRx ) + y(uy − vRy )]dxdy

 (4.20)
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Substituting sparse optical flow vectors to discretize Eq. 4.19 and Eq. 4.20, I obtain

B =
n∑
i=1


−f/Zi 0 xi/Zi

0 −f/Zi yi/Zi

−xif/Zi −yif/Zi (x2
i + y2

i )/Zi

 (4.21)

−→g =
n∑
i=1


ux(xi, yi)− vRx (xi, yi)

uy(xi, yi)− vRy (xi, yi)

xi(ux(xi, yi)− vRx (xi, yi)) + yi(uy(xi, yi)− vRy (xi, yi))

 (4.22)

where Zi is the depth value of the i-th feature point. Camera translation velocity
−→
T

can be obtained through solving B
−→
T = −→g .

A least sum of squares(LS) estimator is used to compute Eqns. 4.15 and 4.18.

However, this estimator is unable to identify outliers inside the sparse optical flow

vectors, and it employs all flow vectors to estimate camera velocities. Fig. 4.8a shows

an example of features(in cyan) used by the LS method. A few optical flow vectors

are pointing to the wrong (left) direction shown by two black circles, which are outlier

vectors and have to be excluded from estimating camera velocities.

In order to remove outlier optical flow vectors, a least median of squares(LMS)

estimator[185] is used to enhance camera rotation and translation computation. The

LMS estimator iteratively analyzes and converges toward the main distribution of

optical flow vectors while disregarding outliers. The application of the LMS method

to camera motion computation is described in Appendix E. Fig. 4.8 shows the selected

feature points of the LS and LMS methods within an OC image. The right image

illustrates the features used by the LMS method, where the marked features in black

indicate outliers that are discarded. The black circles illustrate features that are

wrongly directed and are detected as outliers. They are excluded from camera motion

estimation by using the LMS estimator, and the accuracy of camera velocities are
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(a) Features selected by the LS method. (b) Features selected by the LMS method.

Figure 4.8: Selected features (in cyan) used by the LS (a) and the LMS (b) methods
on a tracked OC image in the transverse colon. Each cube represents the selected
feature point. Black features are outliers and black circles indicate areas with outliers,
where some feature vectors are pointing to the wrong direction (towards left), which
is incorrect.

improved.

Camera location and orientation computation: Colonoscopy tracking system

assumes that OC and VC images are well co-aligned in the first OC image. Au-

tomatically initializing OC and VC cameras is infeasible at this time, and I have

to manually adjust virtual camera to co-align virtual and OC images. Therefore,

the initial camera position Υ(0) = [ΥX(0),ΥY (0),ΥZ(0)] and camera orientation

Θ(0) = [ΘX(0),ΘY (0),ΘZ(0)] of the OC are known after manual co-alignment.

The current camera position Υ(t) = [ΥX(t),ΥY (t),ΥZ(t)] : R+ → R3, and camera

orientation Θ(t) = [ΘX(t),ΘY (t),ΘZ(t)] : R+ → R3 are determined by

Υ(t) = Υ(0) +

∫ t

0

−→
T W (τ)dτ,

Θ(t) = Θ(0) +

∫ t

0

−→
RW (τ)dτ

(4.23)

where
−→
T W and

−→
RW are corresponding velocities for

−→
T and

−→
R in the world coordinate,
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and computed as

−→
T W = MT−→T
−→
RW = MR−→R

(4.24)

MT and MR represent the affine transformation between the camera and world co-

ordinates, and defined in Appendix. F.

Υ(t) and Θ(t) are used to drive the VC camera, and OC and VC images are

co-aligned in the bottom image of Fig. 4.2.

Example Demonstration

A sequence of 807 OC images containing a polyp in the sigmoid colon was used for

the colonoscopy tracking demonstration. I chose this dataset because it contains only

a single polyp, as confirmed by the gastroenterologist in both OC and VC reports.

In addition, the polyp is relatively large and easily recognized during evaluation.

Fig. 4.9 shows four frames from this sequence. Column one illustrates the OC images

and column two shows the tracked VC images. As the ground truth was not known,

the virtual camera was interactively adjusted in order to match the corresponding OC

image, and column three shows the resulting VC image. By measuring the differences

in camera velocities that produced the images in columns two and three, I can get an

estimate of the error from my tracking algorithm.

From frame 1 to 200, the colonoscope moves toward and rotates around the polyp,

and the OC image is tracked accurately. From frame 200 to 400 (second row), the

colonoscope is mostly stationary, focused on the polyp; from 200 to 246, the OC

and corresponding VC images are nearly stationary due to the small motion of the

colonoscope. From frame 242 to 322, video recording is suspended, thus the OC image

is frozen. At frame 322, there is a significant motion change as recording is resumed.

As the tracking system is currently unable to handle such large motion changes, the
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tracking is stopped at frame 322 because motion changes exceed predefined thresholds

(currently, 10mm for translation and 6◦ for rotation). Exceeding these thresholds is

considered a tracking failure in the current system and will be further investigated in

chapter 5. From frame 322 to 400, the colonoscope slightly rotates around the polyp

and this motion is tracked precisely. After frame 400, the colonoscope moves closer

to the polyp and rotates around it again. Tracked VC images (third row) show that

the VC camera also moves toward the polyp. From frame 600 to 800, the colonoscope

moves away from the polyp and has another significant rotation at frame 765. Note

the translational error in the polyp location between the OC and VC images; this is

due to colon stretching or flattening. The tracking is stopped again. Finally, these

two big motion changes and colon deformation cause a 7◦ rotation error. At frame

807, the fold appears in the top OC image while it is only partly visible in the VC

image. Other than that, the colonoscope is always tracked and the most important

feature, polyp, is always observable in the OC and VC images. Table 4.1 illustrates

the measured error between tracked and adjusted VC cameras at five particular frames

along the sequence. The drift error gradually increases, but it is within 2mm and the

polyp is always tracked.

Table 4.1: Accuracy evaluation using a clinical colonoscopy dataset. Translation and
rotation errors illustrated between the tracked and interactively adjusted VC cameras
at five frames along the image sequence.

Frame Translation(mm) Rotation(degree)
X Y Z X Y Z

100 0 0 0 0 0 0
300 -1.0 0 0.0 0 0 0
500 0.5 0 1.0 0 0 0
700 0.0 0.0 0.5 -2 0 0
800 0 0 -0.5 -7 0 0
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(a) (b) (c) (d)

Figure 4.9: Accuracy evaluation using a clinical colonoscopy dataset. An 807-image
sequence in the the sigmoid colon segment, containing a polyp. Column 1: OC
images, Column 2: tracked VC images; Column 3: VC image(from column 2) after
interactively adjusting virtual camera to match corresponding OC image (column 1),
in order to measure errors between OC and tracked VC images, Column 4: Camera
position within the virtual colon. The drift error is no more than 2mm and the polyp
is always tracked.

4.3 Phantom Validation

The colon phantom used in Fig. 4.5 can only qualitatively evaluate colonoscopy

tracking accuracy by visually inspecting OC and VC polyps. These qualitative results

are insufficient in understanding tracking accuracy because statistical analysis cannot

be performed with respect to tracking accuracy. Designing phantom models with
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known camera motion parameters is therefore extremely important to quantitatively

analyze the tracking algorithm. In this section, straight and curved phantoms are

developed for this purpose.

4.3.1 Phantom Design

Before I present the physical setup of the phantom experiments, let me first de-

scribe the experimental requirements.

1. Instantaneous camera motion velocities can be measured for the evaluation of

tracking algorithms.

2. A colonoscope should navigate inside the phantom models in order to simulate

an actual colonoscopy procedure.

3. The phantom image must contain large amounts of image edges and corners for

optical flow computation.

4. Phantom models must be reproducible whenever needed. As a result, the phan-

tom design can contribute to endoscopy research.

5. Phantom experiments must be repeatable at the same conditions. The confi-

dence of the tracking results can thus be statistically evaluated.

6. The colonoscope’s movements inside the phantom models must be capable of

being simulated in two general motions, along a straight line and in a curved

path. Moreover, the velocities of the colonoscope in the phantom models should

approximate the velocities that occur during an actual colonoscopy procedure.

Based on the requirements listed above, I designed two types of colon phantoms,

including straight and curved phantoms, as shown in Fig. 4.10.
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(a) Straight phantom (b) Curved phantom

Figure 4.10: Two types of colon phantoms. In the straight phantom, one end is open
and is used to insert the colonoscope(indicated by a blue arrow). The top(a white
arrow) is also uncovered for the purpose of observing the colonoscope’s movements.

Lego bricks1 are selected to build a straight tunnel phantom because Lego products

have several useful properties that easily fulfill the experimental requirements. First,

they are uniform in size. Second, the straight model is made of different colored

bricks, which yield many interest points and edges near the bricks’ boundaries. Visual

motion can be easily measured by identifying interest points. In addition, Lego bricks

facilitate actual camera motion determination because the colonoscope’s displacement

can be visually measured as it passes a brick. Fig. 4.10a shows a straight-tunnel

phantom made of 4 × 1 Lego bricks, where each Lego brick is 32mm×9mm×8mm.

The interior of the straight-tunnel phantom is 105mm×32mm×384mm.

Because it is difficult to use Lego bricks to build a curved tunnel, two tubes made

of cardboard with different radii were used, as illustrated in Fig. 4.10b. Their radii

are 158.5mm and 102.5mm, respectively. The height of each tube is 125mm. In order

to generate distinctive interest points for visual motion computation, papers printed

with different colored squares are pasted inside the curved phantom(the inner walls

of the large tube and the outer walls of the small tube). Here, the size of each colored

square is 54mm× 28mm.

1http://www.lego.com/

http://www.lego.com/
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After straight and curved phantoms are designed, a colonoscope is placed inside

each phantom to collect datasets. For repeatability, the colonoscope in the phantom

experiments is controlled by a motor. As it is more complex to manipulate the motor

to precisely move the colonoscope at different speeds; straight and curved phantoms

are instead driven by the motor, while the colonoscope is kept stationary during data

collection.

(a) (b)

(c) (d)

Figure 4.11: (a,b) The straight phantom experiment setup; (c) the colonoscope’s
placement; (d) Two laptop computers that collect exterior and interior colonoscopy
navigation images.

Straight phantom experiment. Fig. 4.11 illustrates the experimental setup for

moving the straight phantom. It includes six main steps:

1. A long wooden board is placed on top of two stacks of books of equivalent height,
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and a straight iron wire is installed on the board to place the colonoscope.

Fig. 4.11c gives a close view of the colonoscope’s placement. The colonoscope

is firmly taped to the iron wire.

2. The straight phantom is placed under the wooden board, and the colonoscope

in conjunction with the iron wire is inserted into the straight phantom shown

in Fig. 4.11a.

3. A wooden box is also placed under the wooden board and is fastened to a table

by a clamp, as illustrated in Fig. 4.11b. A steel axis is fixed inside this box,

and one end of a fish wire is wound around the axis. The fish wire then passes

through a small hole in the wooden box and the other end is connected to

the straight phantom. Constant rotation of the axis can, therefore, move the

straight phantom at a uniform speed.

4. An external video camera is placed on top of a stack of books, and it points to

the straight phantom. A lamp is used to enhance the brightness and to improve

the recording of the external video camera, as shown in Fig. 4.11a.

5. A drill rotates the axis. Its current and voltage are adjusted by a power supply

as shown in Fig. 4.11b, thus controlling the speed of the drill.

6. Phantom images recorded from the colonoscope are analog. A video converter

is used to transform the analog images into digital images. The digital images

are then imported into the left laptop computer, shown in Fig. 4.11d. The

images captured by the external video camera are input into the right laptop

computer. A straight phantom trial is completed when the colonoscope exits

the phantom.

In the straight phantom experiment, the phantom is pulled by the fish wire at

speeds of 10mm/sec, 15mm/sec, and 20mm/sec: three typical colonoscope speeds
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used during a colonoscopy procedure. Let me explain how these three speeds are

determined. A colonoscopy consists of an insertion phase (from sigmoid colon to

cecum colon) and a withdrawal phase (from cecum colon to sigmoid colon.) The

procedure lasts about half an hour. The actual colon examination is performed in

the withdrawal phase. In the withdrawal phase, the main colonoscope’s motion is the

withdrawal. This phase also includes insertion, therapy, biopsy, and observation. The

average pure withdrawal motion lasts about 6.5 minutes, based on clinical studies[8,

182]. However, even a 6.5-minute period includes adjusting time when blurry images

appear, and the colonoscope is manipulated away from colon walls or fluid. The

period of blurry images should be excluded from the withdrawal time calculation.

JungHwan[173] applied image retrieval techniques to find that approximately 40% of

colonoscopy images are blurry. Therefore, the colonoscope’s average velocity is about

1500mm/(6.5 × 60 × (1 − 40%)) = 6.4mm/sec because the colon is about 1500mm

long. Considering that the colonoscope is not withdrawn at a constant speed, and is

sometimes stopped, three speeds were chosen: 10mm/sec, 15mm/sec and 20mm/sec.

Twenty-five trials are collected for each individual speed level. Five trials are

selected from these twenty-five trials based on two criteria: 1) the phantom’s dis-

placement divided by the time length of the trial approximates the speed within an

error of 2mm/sec; 2) the time difference between five selected trials is less than 0.3

seconds. Finally, fifteen exterior and interior straight phantom image sequences are

collected at speeds of 10mm/sec, 15mm/sec, and 20mm/sec(five at each speed.)

Curved phantom experiment. Fig. 4.12 shows the setup of the curved phantom

experiment and involves five steps.

1. The curved phantom is first fixed on top of a turntable, and a bicycle wheel

is installed under the turntable. The curved phantom, the turntable, and the

bicycle wheel comprise the entire rotating apparatus, shown in Fig. 4.12a, and

they share the same center. This bicycle wheel can produce smooth, slow rota-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: (a) The curved phantom setup; (b) the colonoscope’s placement; (c) the
colonoscope inside the curved phantom; (d) the external view recording; (e) curved
phantom rotation; (f) two laptop computers that collect exterior and interior phantom
images.

tion. Finally, the apparatus is fixed on top of a wooden board, which is fastened

to the table by a clamp.
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2. The colonoscope is fastened to a curved iron wire, to keep it stationary during

phantom experiments, as illustrated in Fig. 4.12b.

3. The colonoscope and the curved iron are placed inside the curved phantom. An

external video camera is also placed on top of a stack of books and pointed

toward the curved phantom, as shown in Fig. 4.12c and Fig. 4.12d. A lamp is

utilized to enhance the lighting for recording the external view. Papers printed

in checkerboard patterns are wrapped around the outer wall of the large tube,

facilitating ground-truth motion determination.

4. A drill controlled by the power supply is again used to motorize the spinning

table shown in Fig. 4.12e. First, I determine what rotational speeds of the

turntable will cause the colonoscope to translate at the three selected speeds.

Supposing the colonoscope is placed at the medial axis of the curved phan-

tom, the radius about the medial axis is (158.5mm+ 102.5mm)/2 = 130.5mm

where 158.5mm is the radius of the big tube and 102.5mm is the radius of

the small tube shown in Fig. 4.10b. Therefore, the length of the medial axis

is 2π × 130.5 = 820mm. After one complete revolution of the spinning ta-

ble, the colonoscope will traverse 820mm inside the curved phantom. In or-

der for the colonoscope to be 10mm/sec, the angular velocity of the turntable

should be 360◦

(819.54mm)/(10mm/sec)
= 4.4◦/second. In order to achieve this slow

speed, a drive system was designed to reduce the turntable’s angular speed(The

motor is unstable at slow speeds.) Fig. 4.12e illustrates this simple but ef-

fective speed reduction system. A small wheel of radius 0.6mm is attached

to the end of the drill. This wheel then touches against the side wall of the

turntable. Because the radius of the turntable is 240mm, this drive system

can reduce the speed 240mm/0.6mm = 400 times. Therefore, the colono-

scope can move at 10mm/sec while the drill can still rotate at 400×4.4◦/second
360◦

≈
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5revolutions/second.

5. Exterior and interior colonoscopy navigation images are imported into two lap-

top computers, as illustrated in Fig. 4.12f.

Similar to straight phantom data collection, twenty-five trials are performed at each

speed. Five trials are chosen based on the two criteria described above. Therefore,

five exterior and five interior curved phantom image sequences are obtained at each

of the three speeds.

4.3.2 Straight Phantom Results

Exterior phantom image sequences are used to determine the actual colonoscope

motion, and interior image sequences are used to estimate the colonoscope’s motion

by the proposed tracking algorithm. Thus, the accuracy of the tracking algorithm

can be analyzed by comparing the actual and estimated colonoscope motions. This

section describes the determination of the ground-truth colonoscope motion from the

external phantom image sequences in the straight phantom. It also describes accuracy

of the estimated camera motion from the interior image sequences.

(a) (b)

Figure 4.13: Marked points used for determining actual colonoscope motion in the
straight and curved phantoms. In (a), the vertical iron wire is indicated by a yellow
arrow.
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The initial portion of the external video sequences is excluded from ground-truth

motion determination because the drill is in the acceleration phase. After the accel-

eration phase is eliminated, I select nineteen marked locations that are boundaries

between Lego tiles and bricks, as shown in Fig. 4.13a. An image sequence in the

straight phantom is employed to validate the tracking algorithm, if the vertical iron

wire remains between No.1 and No.19 marked locations of the external phantom im-

age. The distance between consecutive locations is 16mm(half of one brick length),

and the length from locations 1 to 19 is 16mm × 18 = 288mm. Because the drill

rotates smoothly in the selected external phantom sequences, the colonoscope is as-

sumed to move constantly between successive marked locations. The time required

for the colonoscope to move between two marked locations is determined by finding

two images in which the vertical iron wire arrives at these two locations. Then I

measure the time difference between the two images. The ground-truth colonoscope

velocities are determined by dividing the distance traveled, 16mm, by the time used

in traveling this distance. The time is calculated by counting the number of video

frames to travel a half-brick length. The ground-truth colonoscope displacements are

then calculated by accumulating ground-truth velocities.

After the ground-truth camera motion has been determined from the exterior

phantom images, the corresponding interior video streams are used by the FOE-

based egomotion estimation algorithm. Because the colonoscope camera has a strong

fish-eye effect, colonoscopy images are distorted, affecting the tracking results. This

section analyzes the effect of this distortion on the colonoscopy tracking algorithm.

Matlab Toolbox[23] is used to calibrate the camera and to remove distortion from OC

images. Fish-eye effect can thus be understood by comparing the tracking results on

the same colonoscopy image sequences, with and without camera calibration.

A virtual straight model is created through VTK (Visualization Toolkit)[189] to

generate depth values needed in camera translation estimation. The view angle of the



98

virtual camera is set to 65◦, so that the VC images look very similar to OC images.

In order to adapt the FOE-based egomotion estimation algorithm to the current

phantom setup, the algorithm is enhanced in the following two aspects. First, a

weighted least-sum-of-squares estimator is used to highlight the feature points that

are close to the camera and to reduce the influence of feature points far away. This

weighting of feature points is because optical flow vectors close to the camera are

more accurate. The weight of each feature point is defined as

f(Z) =
1.

1.+ (Z/α)6
(4.25)

where α = 100 and Z is the depth value of the current feature point. Second, I remove

some feature points in egomotion estimation when the estimated camera translation

velocity from these points exceeds certain thresholds.

Fig. 4.14 shows the camera velocity curves on five straight phantom trials at a

speed of about 10mm/sec, where the blue band represents the ground-truth colono-

scope motion, and the red and green bands represent the estimated camera velocity

curves on the original and calibrated phantom image sequences (five each). The lower

and upper curves of each band indicate minimum and maximum camera velocities

of five trials. The solid center curve represents the average velocities. At about

10mm/sec, average velocity error is less than 2mm/sec after 750 phantom images

have been tracked. Maximum velocity error is less than 8mm/sec on both original

and calibrated phantom image sequences. Table 4.2a presents the average, maximum,

and minimum estimated camera velocity errors of each of five trials. Fig. 4.15 shows

camera displacement curves at about 10mm/sec. Average displacement error is less

than 7mm on five original phantom image sequence, and it is less than 9mm on the

calibrated image sequence. Maximum displacement error is less than 15mm on both

original and calibrated image sequences. Table 4.2b gives the average, maximum, and
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minimum estimated camera displacement errors of each of five trials.

Figure 4.14: Camera velocity curves at about 10mm/sec in the straight phantom. The
blue band represents the ground-truth camera velocities of five trials, and the red and
green bands show the estimated velocities on the original and calibrated phantom
image sequences(five each), respectively. The bottom and upper curves represent the
minimum and maximum velocities of five trials in each band. The solid center curve
represents the average velocities. Average velocity error is less than 2mm/sec on both
original and calibrated phantom image sequences after 750 images have been tracked.
Maximum velocity error is less than 8mm/sec on both sequences.
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Figure 4.15: Camera displacement curves at about 10mm/sec in the straight phan-
tom. The blue band represents the ground-truth camera displacements of five trials,
and the red and green bands indicate the estimated displacements on the original and
calibrated phantom image sequences, respectively. The bottom and upper curves rep-
resent the minimum and maximum displacements of five trials in each band. The solid
center curve represents the average displacements of five trials. Average displacement
error of five trials is less than 7mm on the original phantom image sequences after 750
images have been tracked, and it is less than 9mm on the calibrated image sequences.
Maximum error of five trials is less than 15mm on both original and calibrated image
sequences.

Fig. 4.16 and Fig. 4.17 illustrate the camera velocity and displacement curves at

about 15mm/sec, respectively, after 580 phantom images have been tracked. Aver-

age velocity error of five trials is less than 1.5mm/sec on both original and calibrated

image sequences, and maximum velocity error is less than 7mm/sec. Average dis-

placement error of five trials is less than 3mm on the original phantom image sequence,

and it is less than 5mm on the calibrated image sequences. Maximum displacement

error of five trials is less than 6mm on the original image sequences and less than

8mm on the calibrated image sequences. Table 4.3a presents the average, maximum,

and minimum estimated camera velocity errors of each of five trials. Table 4.3b shows

their average, maximum, and minimum estimated camera displacement errors.
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Table 4.2: The average, maximum, and minimum estimated camera velocity and
displacement errors of original and calibrated straight phantom image sequences at
about 10mm/sec after 750 images have been tracked.

(a) Camera velocity

Image Original Images(mm/sec) Calibrated Images(mm/sec)
sequence average maximum minimum average maximum minimum

1 1.68 6.36 0.004 1.66 5.93 0.01
2 1.52 5.23 0.005 1.6 5.05 0.002
3 1.97 7.2 0.01 1.99 7.4 0.0007
4 1.6 6.06 0.003 1.63 5.61 0.0006
5 1.64 6.11 0.003 1.53 5.81 0.003

(b) Camera displacement

Image Original Images(mm) Calibrated Images(mm)
sequence average maximum minimum average maximum minimum

1 5.92 11.89 0.0 8.7 12.33 0.0
2 4.26 8.72 0.0 7.46 9.87 0.0
3 6.55 10.44 0.0 8.58 11.91 0.0
4 6.5 12.19 0.0 8.4 13.3 0.0
5 6.87 14.65 0.0 8.21 14.57 0.0

Fig. 4.18 and Fig. 4.19 show the camera velocity and displacement curves at about

20mm/sec, respectively. Average velocity error is less than 2mm/sec on both original

and calibrated image sequences after 400 images have been tracked, and maximum

velocity error is less than 7mm/sec. Average displacement error is less than 2mm

on the original phantom image sequences, and it is less than 4mm on the calibrated

sequences. Maximum displacement error is less than 5mm on the original image

sequences and less than 7mm on the calibrated image sequences. Table 4.4a presents

the average, maximum, and minimum estimated camera velocity errors of the original

and calibrated phantom image sequences. Table 4.4b shows their average, maximum,

and minimum estimation errors of the camera displacements.
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Figure 4.16: Camera velocity curves at about 15mm/sec in the straight phantom. The
blue band represents the ground-truth camera velocities of five trials, and the red
and green bands indicate the estimated velocities on original and calibrated phantom
image sequences, respectively. The bottom and upper curves represent the minimum
and maximum velocities of five trials in each band. The solid center curve shows their
average velocities. Average velocity error is less than 1.5mm/sec on both original
and calibrated phantom image sequences after 580 images have been tracked, and
maximum velocity error is less than 7mm/sec on both sequences.
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Figure 4.17: Camera displacement curves at about 15mm/sec in the straight phantom.
The blue band represents the ground-truth camera displacements of five trials, the red
and green bands indicate the estimated displacements on the original and calibrated
phantom image sequences, respectively. The bottom and upper curves represent
the minimum and maximum displacements in each band. The solid center curve
represents the average displacements. Average displacement error is less than 3mm
on the original phantom image sequences after 580 images have been tracked, and
it is less than 5mm on the calibrated sequences. Maximum displacement error is
less than 6mm on the original image sequences and less than 8mm on the calibrated
sequences.

4.3.3 Curved Phantom Results

Because colored squares are pasted inside the curved phantom and there are no

symmetrical squares on the outside, the outer walls of the big tube are wrapped by

checkerboard images for the determination of the actual camera motion, as shown

in Fig. 4.13b. Here, the size of each black or white square is 29mm × 19mm. Af-

ter excluding the acceleration portion of the external videos, the video streams are

chosen for the ground-truth motion computation when the vertical iron wire stays be-

tween No.5 and No.17 squares. The displacement that the colonoscope moves across
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Table 4.3: The average, maximum, and minimum estimated camera velocity and
displacement errors of original and calibrated straight phantom image sequences at
about 15mm/sec after 580 images have been tracked.

(a) Camera velocity

Image Original Images(mm/sec) Calibrated Images(mm/sec)
sequence average maximum minimum average maximum minimum

1 1.43 6.71 0.001 1.61 7.06 0.008
2 1.43 5.39 0.004 1.54 6.43 0.004
3 1.29 4.33 0.0041 1.4 4.47 0.009
4 1.3 4.47 0.004 1.43 5.07 0.0005
5 1.09 4.13 0.002 1.17 4.29 0.001

(b) Camera displacement

Image Original Images(mm) Calibrated Images(mm)
sequence average maximum minimum average maximum minimum

1 1.12 3.64 0.0 2.87 7.11 0.0
2 1.76 4.52 0.0 3.23 6.94 0.0
3 2.76 5.47 0.0 4.76 7.97 0.0
4 1.69 3.77 0.0 2.45 5.46 0.0
5 1.63 3.38 0.0 1.52 4.98 0.0

a square is 29mm × 130.5mm/158.5mm = 23.88mm, where 130.5mm is the radius

of the medial axis and 158.5mm is the radius of the large tube. The total move-

ment of the colonoscope is (17− 5)× 23.88mm = 286.56mm in the curved phantom

image sequences. The colonoscope’s instantaneous speed is determined based on an

assumption that the colonoscope moves constantly inside the square. The time period

that it takes the colonoscope to pass the square is measured by finding two images

in which the vertical iron wire just arrived at the square’s boundaries. Dividing the

time period between two selected images by 23.88mm yields the ground-truth veloc-

ity when the colonoscope moves inside the square. Finally, ground-truth colonoscope

displacements are built by accumulating ground-truth colonoscope velocities.

A virtual curved model is also created through VTK to generate depth values

needed in camera translation estimation. Eq. 4.25 is also used to enhance egomotion

estimation in the curved phantom image sequences. Fig. 4.20 shows the camera
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Figure 4.18: Camera velocity curve at about 20mm/sec in the straight phantom. The
blue band represents the ground-truth camera motion of five trials, and the red and
green bands indicate the estimated camera velocities on the original and calibrated
phantom image sequences, respectively. The bottom and upper curves represent the
minimum and maximum velocities of five trials in each band. The solid center curve
shows the average velocities. Average velocity error is less than 2mm/sec on both
original and calibrated phantom image sequences after 400 images have been tracked,
and maximum error is less than 7mm/sec.



106

Figure 4.19: Camera displacement curves at about 20mm/sec in the straight phantom.
The blue band represents the ground-truth camera displacements of five trials, and
the red and green bands indicate the estimated camera displacements on the original
and calibrated phantom image sequences, respectively. The bottom and upper curves
in each band represent the minimum and maximum displacements of five trials. The
solid center curve represents the average displacements. Average displacement error
is less than 2mm on the original phantom image sequences after 400 images have
been tracked, and it is less than 4mm on the calibrated image sequences. Maximum
displacement error is less than 5mm on the original image sequences and less than
7mm on the calibrated sequences.

velocity curves on five curved phantom trials at a speed of about 10mm/sec. Average

velocity error is less than 2mm/sec on both original and calibrated phantom image

sequences after 750 images have been tracked, and the maximum velocity error is

less than 8mm/sec. Fig. 4.15 shows the camera displacement curves at a speed

of about 10mm/sec. Average displacement error is less than 2mm on the original

phantom image sequences, and it is less than 4mm on the calibrated image sequences.

Maximum displacement error is less than 5mm on the original image sequences and

less than 10mm on the calibrated image sequences. Table 4.2a presents the average,
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Table 4.4: The average, maximum, and minimum estimated camera velocity and
displacement errors of original and calibrated straight phantom image sequences at
about 20mm/sec after 400 images have been tracked.

(a) Camera velocity

Image Original Images(mm/sec) Calibrated Images(mm/sec)
sequence average maximum minimum average maximum minimum

1 2. 7.04 0.004 2.0 6.85 0.015
2 1.57 6.6 0.019 1.69 5.9 0.005
3 1.7 5.9 0.005 1.82 6.79 0.001
4 1.71 5.47 0.001 1.83 5.94 0.021
5 1.52 5.91 0.001 1.69 6.64 0.01

(b) Camera displacement

Image Original Images(mm) Calibrated Images(mm)
sequence average maximum minimum average maximum minimum

1 1.15 3.59 0.0 3.14 7.0 0.0
2 0.8 2.0 0.0 2.05 4.7 0.0
3 1.37 4.08 0.0 2.68 5.01 0.0
4 1.85 4.37 0.0 2.76 4.98 0.0
5 0.81 2.13 0.0 2.16 5.44 0.0

maximum, and minimum estimation errors of the camera velocity on original and

calibrated phantom image sequences. Table 4.2b gives the average, maximum, and

minimum estimation errors of the camera displacements.

Fig. 4.22 and Fig. 4.23 illustrate the camera velocity and displacement curves at

about 15mm/sec. Average velocity error is less than 3mm/sec on both original and

calibrated phantom image sequences after 550 images have been tracked. Maximum

velocity error is less than 9mm/sec on the original image sequences, and it is less

than 8.0mm/sec on calibrated image sequences. Average displacement error is less

than 7mm on the original phantom image sequences, and it is less than 9mm on the

calibrated sequences. Maximum displacement error is less than 10mm on the original

image sequences and less than 13mm on the calibrated sequences. Table 4.6a presents

the average, maximum, and minimum estimation errors of the camera velocity on

each of five trials. Table 4.6b shows the average, maximum, and minimum estimation
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Figure 4.20: Camera velocity curves at about 10mm/sec in the curved phantom. The
blue band represents the ground-truth camera velocities of five trials, and the red
and green bands indicate the estimated camera velocities on the original and cali-
brated phantom image sequences, respectively, after 750 images have been tracked.
The bottom and upper curves in each band represent the minimum and maximum
velocities of five trials, and the solid center curve represents the average velocities.
Average velocity error is less than 2mm/sec on both original and calibrated image
sequences after 750 images have been tracked, and maximum velocity error is less
than 8mm/sec.
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Figure 4.21: Camera displacement curves at about 10mm/sec in the curved phantom.
The blue band represents the ground-truth camera displacements of five trials, and the
red and green bands indicate the estimated camera displacements on the original and
calibrated phantom image sequences, respectively. The bottom and upper curves in
each band represent the minimum and maximum displacements of five trials, and the
solid center curve represents the average displacements. Average displacement error
is less than 2mm on the original phantom image sequences after 750 images have
been tracked, and it is less than 4mm on the calibrated image sequences. Maximum
displacement error is less than 5mm on the original image sequences and less than
10mm on the calibrated image sequences.

errors of the camera displacements.

Fig. 4.24 and Fig. 4.25 show the camera velocity and displacement curves at about

20mm/sec in the curved phantom. Average velocity error is less than 3mm/sec on

both original and calibrated image sequences after 470 images have been tracked.

Maximum velocity error is less than 9mm/sec on the original image sequences and

less than 8.0mm/sec on calibrated image sequences. Average displacement error is

less than 6mm on the original phantom image sequences, and it is less than 7mm on

the calibrated image sequences. Maximum displacement error is less than 9mm on

the original image sequences and less than 10mm on the calibrated image sequences.

Table 4.7a presents the average, maximum, and minimum estimation errors of the
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Table 4.5: The average, maximum, and minimum estimated camera velocity and
displacement errors of original and calibrated curved phantom image sequences at
about 10mm/sec after 750 images have been tracked.

(a) Camera velocity

Image Original Images(mm/sec) Calibrated Images(mm/sec)
sequence average maximum minimum average maximum minimum

1 1.39 6.08 0.002 1.57 7.42 0.00
2 1.52 5.44 0.00 1.6 5.47 0.003
3 1.59 5.71 0.0015 1.31 5.43 0.002
4 1.49 5.69 0.0009 1.41 5.6 0.003
5 1.57 6.03 0.0004 1.56 6.62 0.004

(b) Camera displacement

Image Original Images(mm) Calibrated Images(mm)
sequence average maximum minimum average maximum minimum

1 1.3 3.86 0.0 2.82 7.45 0.0
2 0.99 3.27 0.0 1.23 9.8 0.0
3 1.32 4.22 0.0 2.84 6.18 0.0
4 1.64 3.85 0.0 3.76 10.2 0.0
5 1.29 3.8 0.0 1.94 4.44 0.0

camera velocity on each of five trials. Table 4.7b shows the the average, maximum,

and minimum estimation errors of the camera displacements.

I can draw the following conclusions based on the straight and curved phantom

results from figures 4.14 through 4.25 and tables 4.5a through 4.7b.

1. In both straight and curved phantom experiments, average estimated velocity

error is less than 3mm/sec on the original and calibrated phantom image se-

quences at speeds of 10mm/sec, 15mm/sec, and 20mm/sec. Average displace-

ment error is less than 7mm over 288mm, the actual translation distance of the

colonoscope in the straight phantom. In the curved phantom, average displace-

ment error is less than 7mm over 286.56mm. As was described in chapter 2,

the colon is generally 1500mm long and it has six colon segments. Phantom

experiments validated that the proposed algorithm could accurately track the

length of a colon segment.
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Figure 4.22: Camera velocity curves at about 15mm/sec in the curved phantom. The
blue band represents the ground-truth camera velocities of five trials, and the red and
green bands indicate the estimated camera velocities on the original and calibrated
phantom image sequences, respectively. The bottom and upper curves in each band
represent the minimum and maximum velocities of five trials, and the solid center
curve represents the average velocities. Average velocity error is less than 2mm/sec
on both original and calibrated curved phantom image sequences after 550 images
have been tracked. Maximum velocity error is less than 8mm/sec on the original
image sequences, and it is less than 9.0mm/sec on calibrated image sequences.



112

Figure 4.23: Camera displacement curves at about 15mm/sec in the curved phantom.
The blue band represents the ground-truth camera velocities of five trials, and the
red and green bands indicate the estimated camera displacements on the original and
calibrated phantom image sequences, respectively. The bottom and upper curves in
each band represent the minimum and maximum displacements of five trials, and the
solid center curve represents the average displacements. Average displacement error
is less than 7mm on the original phantom image sequences after 550 images have
been tracked, and it is less than 9mm on the calibrated image sequences. Maximum
displacement error is less than 10mm on the original image sequences and less than
13mm on the calibrated image sequences.

2. There is no significant difference between the camera velocity and displace-

ment errors in the original and calibrated phantom image sequences, in both

straight and curved phantom experiments. The estimated velocities from the

calibrated phantom image sequences are slightly larger than those from the

original sequences. The velocity enlargement arises because phantom images

are artificially scaled up after the calibrated parameters are used to remove the

image distortion, which increases the optical flow magnitudes also. But the

tracking results are very comparable because average displacement error is less

than 7mm in both original and calibrated phantom image sequences. There-

fore, the proposed tracking algorithm is insensitive to image distortion caused
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Table 4.6: The average, maximum, and minimum estimated camera velocity and
displacement errors of original and calibrated curved phantom image sequences at
about 15mm/sec after 550 images have been tracked.

(a) Camera velocity

Image Original Images(mm/sec) Calibrated Images(mm/sec)
sequence average maximum minimum average maximum minimum

1 1.75 5.62 0.014 1.72 5.74 0.003
2 1.79 5.6 0.003 1.75 6.2 0.003
3 1.82 6.9 0.001 1.86 8.9 0.0006
4 1.63 7.51 0.004 1.67 5.55 0.012
5 1.88 5.67 0.0016 1.76 5.64 0.0022

(b) Camera displacement

Image Original Images(mm) Calibrated Images(mm)
sequence average maximum minimum average maximum minimum

1 3.35 6.33 0.0 5.94 8.33 0.0
2 6.13 9.26 0.0 8.46 13.0 0.0
3 2.43 4.96 0.0 4.6 7.0 0.0
4 4.51 8.15 0.0 6.45 11. 0.0
5 3.6 7.78 0.0 6.7 8.5 0.0

by fish-eye effect.

3. Despite the variance of the ground-truth camera motion at three speed levels,

the estimated camera velocity curves follow the same trend except that the

velocity amplitudes are different. These results indicate that the estimated

camera motion parameters rely on the actual camera motion as well as texture

distributions inside the phantom. Periodic texture distributions can artificially

affect the estimated camera velocities. Therefore, a random texture distribution

enhances estimation accuracy.

4. The number of tracked colonoscopy images dominates the errors in estimated

camera displacements, while the actual speed of the colonoscope has a lesser ef-

fect. Camera displacement errors decrease with the increase of actual camera ve-

locities because the slower the velocities, the greater the number of colonoscopy
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Figure 4.24: Camera velocity curves at about 20mm/sec in the curved phantom. The
blue band represents the ground-truth camera velocities of five trials, and the red and
green bands indicate the estimated camera velocities on the original and calibrated
phantom image sequences, respectively. The bottom and upper curves in each band
represent the minimum and maximum velocities of five trials, and the solid center
curve represents the average velocities. Average velocity error is less than 3mm/sec
on both original and calibrated image sequences after 470 images have been tracked.
Maximum velocity error is less than 9mm/sec on the original image sequences, and
it is less than 8.0mm/sec on calibrated image sequences.
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Figure 4.25: Camera displacement curves at about 20mm/sec in the curved phantom.
The blue band represents the ground-truth camera displacements of five trials, and
the red and green bands indicate the estimated camera displacements on the original
phantom image sequences The bottom and upper curves in each band represent the
minimum and maximum displacements, and the solid center curve shows the average
displacements. Average displacement error is less than 6mm on the original phantom
image sequences after 470 images have been tracked, and it is less than 7mm on the
calibrated image sequences. Maximum displacement error is less than 9mm on the
original image sequences and less than 10mm on the calibrated sequences.

images.

5. The modified egomotion estimation algorithm based on Eq. 4.25 is phantom-

oriented. It makes little difference on clinical colonoscopy image sequences. The

lack of effect is because the field of view inside phantom images is farther than

in colonoscopy images. Depth variance in the phantom images is larger than

in the clinical colonoscopy images. The modified egomotion estimation algo-

rithm based on depth weights, defined in Eq. 4.25, can enhance the tracking

accuracy on the phantom images while it might be inappropriate for the OC

images. Fig. 4.26 compares the tracking results by using the original and mod-

ified egomotion estimation approaches on an OC image sequence. There are

no major differences between the tracked VC images at frame 200 and 400. At
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Table 4.7: The average, maximum, and minimum estimated camera velocity and
displacement errors of original and calibrated curved phantom image sequences at
about 20mm/sec after 470 images have been tracked.

(a) Camera velocity

Image Original Images(mm/sec) Calibrated Images(mm/sec)
sequence average maximum minimum average maximum minimum

1 2.05 6.99 0.002 1.89 5.6 0.002
2 2.35 7.98 0.008 2.18 6.14 0.0006
3 2.33 8.12 0.004 2.05 7.97 0.004
4 2.15 6.87 0.013 1.85 6.17 0.02
5 2.18 7.36 0.006 1.7 5.1 0.0003

(b) Camera displacement

Image Original Images(mm) Calibrated Images(mm)
sequence average maximum minimum average maximum minimum

1 5.33 8.83 0.0 5.45 9.95 0.0
2 1.71 5.51 0.0 5.11 8.1 0.0
3 2.02 6.01 0.0 6.19 9.74 0.0
4 1.25 3.4 0.0 4.52 8.52 0.0
5 1.6 4.9 0.0 4.18 8.26 0.0

frame 600, the tracked VC image using the depth weights is slightly better than

the original tracked result by visually measuring the polyp’s size. However, the

original method produces more accurate results than the updated approach at

frame 807, because the top fold is included more in the center image than in

the right image. Nevertheless, tracking results based on these two egomotion

estimations are very comparable in the OC sequence.

4.4 Clinical Data Evaluation

In this section, the proposed tracking algorithm is evaluated on the OC image

sequences2. Without doubt, this is important because accurately tracking OC images

is the ultimate goal of the dissertation. However, unlike clear phantom images, OC

images exhibit a number of characteristics that pose significant challenges to any

2All clinical datasets are from National Cancer Institute(http://www.cancer.gov/).

http://www.cancer.gov/
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(a) (b) (c)

Figure 4.26: Comparison between the tracking results using the original and up-
dated egomotion estimation algorithms based on Eq. 4.25. The 807-frame sigmoid
colonoscopy sequence used in Fig. 4.9 is employed here. Column 1: OC images, Col-
umn 2: tracked VC images using original egomotion estimation algorithm; Column
3: modified egomotion estimation approach.

tracking system. These include deformation and structural changes due to patient

movement or simply from the fact that OC and VC are separate acquisitions over

time. Image artifacts include specularities (extremely bright regions), blurriness due

to the endoscope facing a wall or very fast motion. Pre and post surgery images are

another instance I will consider. I illustrate the robustness of my tracking algorithm

under many of these conditions in the following sections, using 4 clinical colonoscopy

sequences from 4 different patients.
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4.4.1 Colon Deformation

A sequence of 174 OC images were acquired in the transverse colon to illustrate

and evaluate the impact of deformation. Fig. 4.27 shows the OC(top row) and VC

(bottom row) images of four frames from this sequence. VC and OC images are

manually co-aligned at the first fold marked with a cyan triangle(column 1). Column

2 indicates the colonoscope arriving at the second fold, marked by the yellow triangle;

the fold becomes inflated and is elliptical in the OC image, while it is still triangular

in the VC image. In column 3 OC and VC images show the fold reverting to a

triangular shape. The images in the fourth column show the colonoscope at the

third fold, labeled by the blue ellipse. Here, the orientation of the marked triangle

and ellipse do not necessarily represent camera rotation, since the deformation also

contributes to the change in shape of the fold. Although this case is difficult to

evaluate, the results demonstrate that my algorithm is not very sensitive to the fold

or other structural changes in the colon, since the tracking system is able to keep the

OC and VC images in sync, i.e. they reach the same fold.

4.4.2 Fluid and Illumination Artifacts, Blurriness

A sequence of 272 OC images were captured between two folds in the ascending

colon. This sequence contained images with fluid and illumination artifacts, as well

as blurry frames. These artifacts are not present in the VC images, as they have been

segmented out. Fig. 4.28 shows four frames from this sequence. Yellow fluid (region

marked A in column 1), strong illumination band (colon moving close to the wall,

region marked B in column 2), and blurriness (colon moving fast, column 3) are some

of the difficulties that face the tracking system, while the corresponding VC images

are devoid of these artifacts. Despite these artifacts, it can be seen in column 4 the

colonoscope is close to the second fold (area marked D), and in sync with the VC
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Figure 4.27: Robustness evaluation: colon deformation. A sequence of 174 OC images
in transverse colon were used to evaluate algorithm sensitivity to deformation in colon
fold shape. Column 1: First fold marked with a cyan triangle in both OC and VC
images, Column 2: Colonoscope at second fold(yellow triangle) in both OC and VC.
Fold shape in OC is elliptical, but triangular in VC. Column 3: Fold in OC becomes
triangular with colonoscope near the colon’s wall and VC still stays near the second
fold, Column 4: Both VC and OC arrive at the third fold, marked by blue ellipse.

image (area marked E). Also note the artificial hole in the VC image of column 2 (area

marked C), a segmentation error. But it does not influence my tracking results, and

this fact is important because perfect segmentations are almost never achievable[72].

4.4.3 Surgery Induced Structural Changes

OC is a screening as well as treatment procedure. Removal of polyps changes the

structure of the colon. Fig. 4.29 illustrates this. The OC image in column 1 shows

the circled polyp, and the OC image in column 4 shows the area where the polyp

was removed. It is important that a tracking algorithm continue to work under these

conditions. In this example, I have selected two image sequences acquired before and

after the removal of the polyp in the sigmoid colon. The left two columns of images

in Fig. 4.29 show the tracking results of the first and last images of the sequence

before the polyp removal, while the right two columns illustrate the results after the
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Figure 4.28: Robustness evaluation: fluid and illumination artifacts. A 272 frame
sequence from ascending colon is used to demonstrate algorithm sensitivity to fluid
presence(area marked A), illumination band(area marked B), segmentation error re-
sults in artificial hole(area marked C), and blurry image(column three, top row). At
the end of the sequence, images are tracked well, as shown by corresponding areas D
and E in the OC and VC images of column 4.

polyp removal. The positions of the polyp are marked in both OC and VC images

with cyan circles. It can be seen that the tracking algorithm continues to function

successfully despite these structural changes induced by surgery.

Figure 4.29: Robustness evaluation: surgery related structural changes. Illustration
of tracking two image sequences corresponding to pre and post polyp removal in the
sigmoid colon. Left two columns show the tracking results of the first and last frame
before the polyp is removed, while the right two columns show the results after polyp
removal. Polyp positions are marked by the cyan circle.
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4.4.4 Multi-Object Motion Induced by Surgical Tools

Figure 4.30: Robustness evaluation: simultaneous motion of colonoscope and surgical
tools in optical flow field. A sequence of optical images in the descending colon
to illustrate effectiveness of tracking system under conditions that break egomotion
determination due to simultaneous motion of both colonoscope and surgical tools.
Column 1: Snare inserted into colon to circle polyp, marked A, Column 2: Polyp is
lifted up for removal, and VC image continues to track motion, Column 3: Polyp
is in the OC, but disappears in the VC image due to colonoscope’s motion, Column
4: Withdrawal of snare and polyp, but the VC image continues to track the optical
image.

During surgical procedures, tools will appear in the optical images. An example

is illustrated in the top row images of Fig. 4.30. Both the colonoscope and the tool

are simultaneously influencing the visual motion field captured by the optical flow.

Theoretically, this breaks the condition of egomotion determination. However, if the

affected region is relatively small and localized, then the optical colonoscope can

be successfully tracked. I attempted to test this with a sequence of optical images

captured in the descending colon. As illustrated in Fig. 4.30 (left column), a snare is

inserted into the colon to enclose the polyp, shown in the area marked A. VC image

is initially co-aligned based on the polyp’s position. Since the tissue near the polyp
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(area pointed to by the arrow B) is stretched, the gastroenterologist has to lift the

polyp in order to remove it. The polyp in the tracked VC image is partly hidden

because the egomotion in the OC image is translating along the Y direction. In the

area marked C(third column), the polyp is removed and attached by the snare, and

the polyp disappears in the tracked VC of the third column. However, the VC still

follows the actual egomotion of the optical image, while the polyp continues to stay

in the OC image. The images in the fourth column show both the tool and the

polyp withdrawn from the colon. However, this does not affect the tracking, and VC

continues to follow the egomotion of the optical sequence.

In this section, I evaluated colonoscopy tracking algorithms on four colonoscopy

image sequences from four different patients. My colonoscopy tracking algorithm is

demonstrated to be robust to colon deformation, colon artifacts, structural changes,

and multi-object motion. All these properties are very important to show its appli-

cation to clinical practice.

4.5 Conclusions

In this chapter, I have presented an optical flow based colonoscopy tracking algo-

rithm to co-align OC and VC images. This algorithm uses a combination of sparse

and dense optical flows with the FOE, resulting a highly robust and stable tracking

algorithm. Optimal spatial-temporal scales are determined for each image during

the sparse optical flow computation, which is also used to compute the dense optical

flow. The dense optical flow is employed to compute the FOE, utilizing the full visual

motion information in the optical flow field. The FOE permits separation of camera

rotation and translation velocities, contributing to the mathematical robustness of the

algorithm. Camera motion parameters are estimated using the sparse optical flow and

the FOE. This algorithm has also been augmented with a regression method, LMS,

to accurately estimate camera motion parameters. The regression method permits
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detection of outliers among the chosen feature points. This leads to better estimates

of rotation and translation parameters. Accumulation errors are reduced, making it

possible to track longer colonoscopy image sequences.

I have performed extensive experimental results, on (1) straight and curved phan-

toms with known camera motion parameters, and (2) 4 clinical colonoscopy image

sequences. Phantom validation indicated that the average camera velocity errors were

less than 3mm/sec at speeds of about 10, 15, and 20mm/sec, and the average camera

displacement errors were less than 7mm over a total displacement of 288mm in the

straight phantom and 7mm over 286.56mm in the curved phantom. Over 800 frames

of a clinical dataset were successfully tracked with a maximum error of 2mm. Specific

challenges posed by OC data include the presence of fluid, illumination and blurred

images, and deformation of colon tissue due to patient position changes between OC

and VC images. These artifacts make it difficult to accurately track colonoscopy im-

ages. Through four image sequences from four different patients, I have shown the

reliability of my tracking algorithm under these conditions.



CHAPTER 5: CONTRIBUTION TWO – REGION FLOW

“As far as the laws of mathematics refer to reality, they are not certain, and as

far as they are certain, they do not refer to reality.”

– Albert Einstein

In the previous chapter, an egomotion estimation framework based on multi-scale

optical flow was proposed to track consecutive colonoscopy images. But the method

fails when blurry images appear. In this chapter, I describe the key problem of esti-

mating large motion despite interruption by blurry images. Large motion estimation

includes two components: region flow computation and incremental egomotion esti-

mation. Phantom and clinical image sequences are used to verify the robustness and

accuracy of the proposed algorithm for estimating large egomotion.

5.1 Problem Statement

The appearance of blurry images is a common occurrence in the colonoscopy

video stream. This situation arises because a colonoscopy is an interior navigation

inside a narrow environment with many artifacts, including fluids and stools. When

the colonoscope touches these artifacts, it results in blurry images. For instance, a

colonoscope immerses into yellow fluid(Fig. 5.1a), touching the wall(Fig. 5.1b), lens

covered by water(Fig. 5.1c), extreme lighting conditions(Fig. 5.1d and Fig. 5.1e).

Blurry images shown in Fig. 5.1 contain unstable visual motion information be-

cause there are no folds or blood vessels for interest point detection. Intensity dis-

tributions of blurry images are also uniform, which makes it difficult to match two

interest points using the intensity constancy model, because there exist several feature
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(a) (b) (c)

(d) (e)

Figure 5.1: Five types of blurry images frequently occur in the colonoscopy video
stream because of (a) colonoscope immersing into the fluid; (b) colonoscope touching
the wall; (c) colonoscope’s lens covered by water; (d) strong light, causing bright
regions; (e) weak light, causing dark areas.

candidates with the same intensity value. Such properties of blurry images prohibit

multi-scale optical flow computation from accurately identifying visual motion. As

a result, the colonoscopy tracking system introduced in chapter 4 fails to compute

camera motion parameters using blurry images, due to inaccurate optical flow.

Consequently, the goal of this chapter is to continuously co-align optical colonoscopy

(OC) and virtual colonoscopy (VC) images after blurry images appear. Blurry im-

ages must be excluded from the colonoscopy tracking system. Also, two colonoscopy

images interrupted by a blurry image sequence have significant visual motion, such

as Fig. 5.2a and Fig. 5.2c. Note the large image displacements between two corre-

sponding folds, as indicated by red arrows.

Multi-scale optical flow is unable to compute large visual motion from these two

selected colonoscopy images. The difficulty is that the temporal derivative calculation

is an ill-posed problem when two images have significant visual motion. Many affine-

invariant feature descriptors[155, 147, 11, 213, 214] assume that regions of matched
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(a) Frame 6430 (b) Frame 6470 (c) Frame 6515

Figure 5.2: An OC image sequence with blurry images. (a) A clear colonoscopy image
before blurry images, (b) a blurry image, (c) a colonoscopy image after blurry images.

features undergo affine transform during large visual motion. The resulting feature

descriptors are insensitive to affine distortion. They are used along with wide-baseline

image matching techniques and have been extensively studied and used to compute

large visual motion. The accuracy of visual motion computation depends on the dis-

tinctiveness of feature descriptors and feature matching sizes. However, feature de-

scriptors are indistinct in the colonoscopy images because colonoscopy images contain

insufficient visual cues. Matching sizes are also unknown because image displacements

are unpredictable between two colonoscopy images interrupted by a blurry image se-

quence. For these reasons, there are many false feature matches in the colonoscopy

images.

Prior knowledge of the feature matching ranges can significantly reduce the num-

ber of false feature matches. Accordingly, the determination of feature matching

ranges is an important problem addressed in this chapter. Another issue is related

to egomotion estimation. The Focus of Expansion(FOE) based egomotion estimation

algorithm designed in chapter 4 can accurately estimate small camera motion, but it

fails when the camera motion is large. The estimation failure is due to a simplified

model, defined in Eq. 3.26, that assumes camera motion is small. This model fails

when there is large camera motion between two colonoscopy images. One solution is

the subdivision of large visual motion into a sequence of small optical flow fields. The

FOE-based egomotion estimation approach can then be applied to each individual
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small optical flow field. Therefore, another issue in this chapter is how to subdivide

large visual motion into a sequence of small optical flow fields. Then, all the small

optical flow fields are used to incrementally estimate large camera motion.

In order to resolve these two challenges, I propose a strategy for estimating large

motion due to blurry image interruption, which is based on region flow. Region flow is

used to pre-determine the feature matching ranges. Accurate visual motion can thus

be computed by using the determined ranges. A partial-differential-equations(PDE)

based framework is then developed to subdivide large visual motion into a sequence

of optical flow fields, to incrementally recover large egomotion. Fig. 5.3 details vari-

ous components of the proposed framework for estimating large motion when blurry

images appear. It first detects blurry images and selects a colonoscopy image pair

before and after the blurry image sequence. Region flow describes large visual motion

between the two selected images. Incremental egomotion estimation is developed to

compute significant camera motion parameters.

I will thereby describe a strategy for large motion estimation under three general

headings: blurry image detection, region flow based visual motion computation, and

incremental egomotion estimation.

5.2 Blurry Image Detection

This section describes different image filters to detect blurry images in a colonoscopy

video stream. I also present colonoscopy image selection after excluding blurry images

in this section. The effectiveness of blurry image detection is demonstrated by a long

colonoscopy image sequence.

5.2.1 Algorithm Description

Assuming No.k image is a clear colonoscopy image and k is the image index, No.k+

1 image is imported into the blurry image detector. The proposed approach modifies
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Figure 5.3: Strategy for estimating large motion to continuously co-align optical and
virtual colonoscopy images when blurry images appear.
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the blurry image detection algorithm described in [144] by ignoring machine learning

process. This modification is necessary in order to fulfill real-time requirements of

the colonoscopy tracking system. It is comprised of a saturation filter, edge filter,

and intensity filter.

• Saturation filter: Saturation measures the vividness of color images, and is

defined as

F saturation = 1− 3

R +G+B
[min(R,G,B)] (5.1)

at every pixel. R,G, and B are its intensities of red, green, and blue channels.

Saturation measurements can efficiently detect blurry images when the colono-

scope immerses into fluid or touches the wall. The detection works because

these images have less vivid color than unblurred images. The saturation de-

tector subdivides the input image into many regions. The size of each region is

25 pixels ×25 pixels. The average saturation (F̄ saturation) of each image region

is then measured, and blurry regions are detected if F̄ saturation >= 0.6. Finally,

the number of blurry regions are counted as Ns. Assuming N be the total

number of image regions, an image is blurry if Ns/N > 0.5.

• Edge filter: Blurry images have less intensity variance when the colonoscope’s

lens is covered with water. These types of blurry images can be measured

through edge detection. The Canny edge detection algorithm[39] is used to

extract edges in a colonoscopy image. It converts the image into a binary image

that includes only edge/non-edge pixels. I again use the subdivision strategy

to decompose the binary image into several image regions. An image region is

blurry if it contains no edge pixels. Let’s define Ne to be the number of blurry

regions. An image is classified as blurry if Ne/N > 0.7.

• Intensity filter: Extreme lighting conditions also generate blurry images.

These types of blurry images can be measured through intensity distribution.
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Again, the colonoscopy image is subdivided into a set of image regions. Let Ī

be the average intensity value of an image region. Assuming the intensity range

is [0, 255], an image region is blurry if Ī > 220 or Ī < 30.

Intensity variance is also exploited to classify blurry image regions. Let Imax

and Imin be the maximum and minimal intensities of an image region. Then

the intensity variance is defined as

F intensity =
Imax − Imin
Imax + Imin

(5.2)

An image is blurry if
∑N

i=1
F intensity(i)

N
< 0.05, where i ∈ [1, N ].

If the current image is blurry, the colonoscopy tracking system is temporally

halted. This image is excluded and the next image is retried to determine if it is

blurry too. This process continues until the first non-blurry image is found. If the

current image is not blurry, determine whether the current image index is k+1. If yes,

the colonoscopy tracking algorithm described in Chapter 4 is exploited. Otherwise,

kth colonoscopy image and the current clear colonoscopy image form a colonoscopy

image pair for estimating large camera motion.

5.2.2 Example Demonstration

Fig. 5.4 illustrates an example of blurry image detection results on a colonoscopy

image sequence using saturation and edge filters. All blurry images are accurately

classified in this sequence. In addition, all experimental results in this dissertation

also demonstrated that the proposed filters are sufficient to identify blurry images.

5.3 Region Flow Based Visual Motion

This section describes a region flow algorithm to accurately identify feature match-

ing ranges for scale-invariant feature transform(SIFT)[147] algorithm. As a result,
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Figure 5.4: Results of blurry image detection based on edge and saturation filters.
Solid red and blue lines represent the response curves of edge and saturation filters,
respectively. Thresholds 0.5(saturation) and 0.7(edge) are used for these two filters,
corresponding to blue and dash lines.

SIFT features can be accurately matched between a colonoscopy image pair by em-

ploying identified matching ranges, and large visual motion can be computed by

measuring relative image displacements between matched SIFT features. This sec-

tion concludes with the comparison of SIFT feature matches with and without region

flow.

5.3.1 Algorithm Description

Visual motion determination is comprised of region flow computation and SIFT

feature matching. After blurry images are detected and eliminated, two non-consecutive,

clear colonoscopy images are chosen for estimating large motion. Visual motion com-

putation starts from these two images. Because colonoscopy images contain insuf-

ficient visual cues, SIFT feature descriptors are indistinct for feature matching and

many false feature matches are generated in visual motion computation. Central to
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large visual motion computation is the use of region flow, a dense feature matching

strategy. It provides a framework to predefine feature matching size and to limit the

search space for accurately matching corresponding features.

Let me first mathematically describe region flow calculation and assume I1(x, y)

and I2(x, y) be a pair of selected images. In order to reduce the effects of illumination

variance, images are normalized as

Î1(x, y) =
I1(x, y)− Ī1

σI1
Î2(x, y) =

I2(x, y)− Ī2

σI2
(5.3)

where Ī1 and Ī2 are mean values, and σI1 and σI2 are standard deviations.

The similarity between two regions of Î1(x, y) and Î2(x, y) can be measured by

normalized cross-correlation(NCC)[186],

NCC(x, y, rx, ry) =

∫∫
Î2(x+ rx, y + ry)Î1(x, y)dxdy (5.4)

where −→r = (rx, ry) represents a region flow vector at point (x, y). The range of

NCC values belongs to [−1, 1], and two regions are matched if the NCC value is

maximized. In order to fit NCC measurement into the minimization framework of

region flow computation, I transform Eq. 5.4 into 1.0−NCC(x, y, rx, ry). Similar to

optical flow computation[99], a global energy function is proposed to compute region

flow, within a minimization framework,

E(rx, ry) =
∫∫

min(|1.0−NCC(x, y, rx, ry)|, α)︸ ︷︷ ︸
Data constraint

+ λ min((|∇rx|2 + |∇ry|2), β)︸ ︷︷ ︸
Smoothness constraint

dxdy (5.5)

where α and β are truncation values to prevent over-smoothing, and λ is a parameter

to balance data and smoothness constraints.

Region flow is computed on the selected image pair. In order to reduce com-

putational cost, the selected two colonoscopy images are first down-sampled by a

factor of 4. The computation begins by calculating NCC as defined in Eq. 5.4 to

match image regions in the down-sampled source image to corresponding regions in
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the down-sampled target image at every pixel. Its computational cost is O(n4) for

N ×N sized images.

Because data constraint does not involve derivatives, the Euler-Lagrange equation

fails for Eq. 5.5. Note that the data term is represented in L1-form and the smoothness

term in L2-form. The outliers in the data term can be suppressed and Eq. 5.5 can

be alternatively minimized by Markov random field(MRF), introduced in chapter 3.

Efficient belief propagation(BP)[68], a Markov random field method, is applied to

minimize Eq. 5.5. BP is a message spreading process around the 4-connected image

graph. Messages are being iteratively passed through all graph nodes. In order to

reduce computational cost, three-level undirected graphs are constructed at the sizes

of N/4 × N/4, N/2 × N/2, and N × N . A generalized distance transform[69] is ex-

ploited to update BP messages. Each node in the undirected graph is initialized with

minimum NCC matching value, min(|1.0−NCC(x, y, rx(q), ry(q))|, α). A quadratic

distance metric[68] is used to update messages. The two-dimensional transform is

computed by first performing a one-dimensional transform along each column of the

image, and then performing a one-dimensional transform along each row of the re-

sult (or vice versa). Therefore, region flow computation can be efficiently computed

through a two-pass one-dimensional distance transform with respect to rx and ry

components.

The algorithm spreads BP messages for five iterations at the current graph level,

and uses the estimated results to initialize region flow vectors in the fine graph level.

The number of iterations(five), is experimentally determined. The same process is re-

peated through the finest level, and then region flow is computed. Fig. 5.5b illustrates

an example colonoscopy image with overlaid region flow vectors. The region flow vec-

tors represent the visual motion between Fig. 5.5b and Fig. 5.5c. Three corner points

are manually selected and indicated by white boxes in Fig. 5.5a and green boxes in

Fig. 5.5b. The white squares in Fig. 5.5c represent corresponding pairs generated by
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the optical flow field. They do not match up with the green squares, which roughly

represent the positions of the true corresponding pairs.

(a) (b) (c)

Figure 5.5: Region flow vs. optical flow for describing large motion, (a) source image
with overlaid optical flow vectors, (b) source image with overlaid region flow vectors,
(c) target image after a 20 frame blurry sequence. White and green squares in the
target image represent 3 selected regions in the image, and correspond to the white
and green squares in the source images, after application of optical and region flow
vectors. Region flow does a better job tracking the image motion. The lengths of the
vectors in the source images represent the magnitude of the motion velocity.

Fig. 5.6 illustrates the process of feature matching based on region flow. Two

sets of SIFT feature points are detected on the original sized colonoscopy image pair,

illustrated as white crosses in Fig. 5.6. The choice of SIFT algorithm[147] is because

this method usually generates a sufficient number of feature points. This property

is useful for colonoscopy tracking, considering that colonoscopy images often lack

sufficient visual cues.

Region-to-Region Matching. In this step, corresponding regions are identified

using the region flow field and a local matching procedure. The corresponding regions

of SIFT feature points in the target image are identified using the region flow vectors

and a local neighborhood search. In Fig. 5.6a, the green squares joined by the white

lines represent corresponding regions containing at least one SIFT feature point in

the source image and 0 or more SIFT feature points in the target image. In the

implementation, the mapped region is locally adjusted using NCC as a metric to find

the best region match.
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(a) (b) (c)

Figure 5.6: Corresponding pairs computation. Top and bottom images represent
images before and after the blurry image sequence, (a) Region-to-Region matching.
Green squares indicate the matched regions using the region flow field. Local search
using NCC is performed to find the best region pair. (b) Point-to-Point feature
matching. Using SIFT descriptor as a metric, the best SIFT feature point pair is
determined between source and target regions. (c) False feature match rejection
using epipolar geometry.

Point-to-Point Feature Matching. In this step, each corresponding region pair

is refined to a corresponding point pair. If the target region does not contain a

SIFT feature point, it is removed. For target regions with multiple SIFT feature

point candidates, the candidate with the closest SIFT descriptor(a distance metric)

is chosen as the best candidate. Fig. 5.6b illustrates the selected feature point pairs

after this step.

False Feature Match Rejection. With the chosen feature point pairs, epipolar

geometry is built using the RANSAC algorithm[155]. Outliers that do not satisfy the

epipolar geometry constraints are removed, as seen in Fig. 5.6c.
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5.3.2 Example Demonstration

Fig. 5.7 illustrates the comparison of the same image pair using original SIFT

feature matching and region flow based SIFT feature matching. It can be seen that

original SIFT feature matching generates significant mismatches in Fig. 5.7a because

the matching size is uncertain and the SIFT feature descriptor is indistinct. In com-

parison, region flow generates accurate SIFT feature matches in Fig. 5.7b because

region flow vectors predefine feature matching ranges and limit false feature matches.

As a result, visual motion is accurately computed by measuring relative image dis-

placements between precisely matched SIFT features.

(a) (b)

Figure 5.7: Comparison between (a) original SIFT feature matching and (b) region
flow based SIFT feature matching. Top and bottom images represent images before
and after the blurry image sequence. Obviously, original SIFT matching using only
(locally defined) SIFT feature descriptors, contains significant errors.
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5.4 Incremental Egomotion

Large visual motion computed by region flow is next imported into an incremental

egomotion estimation strategy. This strategy estimates significant camera motion

from the selected colonoscopy image pair, so as to continuously track OC images. It

is evaluated by comparing it with the FOE-based egomotion estimation algorithm

described in chapter 4.

5.4.1 Algorithm Description

Incremental egomotion estimation encompasses visual motion subdivision and ego-

motion estimation. Most existing egomotion estimation algorithms, including the

FOE-based egomotion estimation described in chapter 4, can accurately estimate

small camera motion. But they fail when camera motion is large. They are derived

from the basic equation(Eq. 3.26) relating camera motion parameters and optical

flow and this equation is valid if the camera motion is small. This property is demon-

strated in Appendix G. Unfortunately, Eq. 3.26 fails in a colonoscopy image pair

interrupted by blurry images. A better strategy, incremental egomotion estimation,

is proposed to estimate significant camera motion by artificially decomposing large

visual motion into a sequence of optical flow fields through a PDE-based framework.

Significant camera motion can thereby be incrementally estimated by using all optical

flow fields. The advantage of this PDE-based framework is that it provides a general

framework to enable existing egomotion estimation algorithms to compute significant

camera motion.

I first mathematically define this PDE-based framework. Assuming a colonoscopy

video stream I(x, y, t) has a blurry image sequence at [t0, tn], the goal is to estimate

−→
T and

−→
R between I(x, y, t0) and I(x, y, tn). Similar to optical flow computation,

two corresponding points p0 = (x0, y0, t0) and pn = (xn, yn, tn) satisfy the intensity
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constancy model.

I(pn) = I(p0) (5.6)

p0 and pn are also insensitive to the illumination variance, and fulfill

∇I(pn) = ∇I(p0) (5.7)

An additional data term is SIFT feature matches

ST (pn) = ST (p0) (5.8)

where ST (p) is a SIFT feature descriptor if p0 and pn are two matched SIFT feature

points.

Next, I introduce two smoothness terms. Let −→u = (ux, uy) be a large optical

flow vector between the selected image pair interrupted by a blurry image sequence.

−→u is the sum of a sequence of optical flow vectors during visual motion subdivision.

−→s = (sx, sy) is the visual motion vector between two matched SIFT features. The first

smoothness term assumes that large displacement optical flow vectors vary smoothly.

It is defined as

SM1 = (∇ux)2 + (∇uy)2 (5.9)

and the second term assumes that large displacement optical flow vectors approximate

the visual motion vectors from SIFT feature matches. It is defined as

SM2 = (ux − sx)2 + (uy − sy)2 (5.10)

All these data and smoothness terms are integrated into a variational function,
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which leads to

E(ux, uy) =

∫∫
Ψ((I(x+ ux, y + uy, t+ 1)− I(x, y, t))2)︸ ︷︷ ︸

Intensity constraint

+ γΨ((∇I(x+ ux, y + uy, t+ 1)−∇I(x, y, t))2)︸ ︷︷ ︸
Gradient constraint

+ δ(x, y)|ST (x+ sx, y + sy, t+ 1)− ST (x, y, t)|2︸ ︷︷ ︸
SIFT constraint

+ αΨ((∇ux)2 + (∇uy)2) + βΨ(|ux − sx|2 + |uy − sy|2)︸ ︷︷ ︸
Smoothness constraint

dxdy

(5.11)

where γ and α are constants, and

δ(x, y) =

 1 if ST (x+ sx, y + sy, t+ 1) and ST (x, y, t) are matched

0 otherwise
(5.12)

Ψ(s2) =
√
s2 + ε2, ε = 0.001 allows the computation to handle occlusions and other

non-Gaussian deviations of the matching criterion. In order to ensure the large visual

motion vector −→s is evenly decomposed into a sequence of optical flow vectors, β

has to be adjusted inversely to the difference between −→s and −→u in Eq. 5.11. The

embedding of SIFT feature matches into Eq. 5.11 is a key contributor to avoid local

minimums, while intensity and gradient assumptions preserve local details.

However, minimizing Eq. 5.11 presents many challenges. First, Eq. 5.11 contains

a discrete term, the invariance of SIFT feature correspondence, which prevents using

the Euler-Lagrange equations. Second, this equation is non-linear due to nonlinear

intensity and gradient constancy models. Finally, it is also non-convex because there

are several local minima in this energy function. In this section, I investigate some

advanced numerical techniques to tackle the minimization challenges: region-to-region

image matching to remove discrete data term, multi-scale image representation, and

sequential linearization.
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Discrete term removal: The discrete data term, SIFT feature correspondence,

must be removed from Eq. 5.11 while retaining its influence on the final minimiza-

tion results. Region-to-region image matching on every SIFT feature correspondence

serves this purpose. For each SIFT feature correspondence, two regions centered

at matched feature points are first built. The size of each region is 41 pixels × 41

pixels. Brox’s optical flow computation method[27] is employed to compute relative

image displacements between two regions, which are also called patch flow. Fig. 5.8

shows the patch flow between a SIFT feature correspondence. Fig. 5.8(a) illustrates a

colonoscopy image pair, where white crosses indicate the detected SIFT feature points

and blue lines represent the matched SIFT feature correspondences. Fig. 5.8(b) and

(c) give two regions centered at the matched SIFT features near a polyp. Fig. 5.8(d)

illustrates the warped patch of Fig. 5.8(c) in terms of the patch flow. The image dis-

placements between two regions are accurately computed because the warped region

in the target image is very similar to the region in the source image.

Large displacement optical flow is initialized by the addition of original SIFT

feature displacements and the estimated patch flow, which is −→s + −→p , where −→s is

the visual motion vector from SIFT feature matches, and −→p is the patch flow vector.

Assuming −→g = −→s +−→p to be the transformed visual motion vector from SIFT feature

matches after region-to-region image matching and removing discrete SIFT feature

matches, Eq. 5.11 is rewritten as

E(ux, uy) =

∫∫
Ψ((I(x+ ux, y + uy, t+ 1)− I(x, y, t))2)︸ ︷︷ ︸

Intensity constraint

+ γΨ((∇I(x+ ux, y + uy, t+ 1)−∇I(x, y, t))2)︸ ︷︷ ︸
Gradient constraint

+ αΨ((∇ux)2 + (∇uy)2) + βΨ(|ux − gx|2 + |uy − gy|2)︸ ︷︷ ︸
Smoothness constraint

dxdy

(5.13)

Both data and smoothness terms are continuous in Eq. 5.13 and therefore the
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Figure 5.8: Region-to-region image matching. (a) SIFT feature matches between two
OC images where white crosses indicate the detected SIFT features and blue lines
represent matched feature pairs; (b) an image region centered at the selected feature
point in the left image; (c) the corresponding image region in the right image; (d) the
warped image region in terms of the patch flow. The warped region is very similar to
the region in the left image, which means that the patch flow is accurately estimated.

Euler-Lagrange equation can be applied. Meanwhile, importing the transformed vi-

sual motion vectors into Eq. 5.13 also initializes large displacement optical flow vectors

near the actual visual motion. Region-to-region image matching can remove the dis-

crete SIFT feature match term. It also keeps the influence of this discrete term on the

final minimization results. After the discrete term is removed, I obtain a continuous

energy function shown in Eq. 5.13.

Multi-scale image representation: Multi-scale space is then constructed on the

colonoscopy images for minimizing the continuous energy function from the previous

step, in order to reduce the non-convexity influence. Non-convexity means that an

energy function has local minima, in addition to the global minimum value. If large

displacement optical flow is improperly initialized, the minimization process might

fail to steer the energy function towards the global minimum.
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Local minima are generally caused by fine image structures. Multi-scale image

representation is an efficient tool for removing fine structures. Because an optical flow

vector in Eq. 3.26 is non-linearly related to image coordinates, the two camera motion

parameters estimated from different images resolutions are non-linearly related and

thus cannot be directly added. In order to simplify the addition of two camera motion

parameters, multi-scale space is built by iteratively convolving the original-sized image

with the Gaussian function.

Let −→u k = (ukx, u
k
y) be the large displacement optical flow vector at the scale level k

and −→u 0 = (0, 0). The minimization process starts from the coarse scale and gradually

assigns optical flow results to the fine scale.

Sequential linearization: After the discrete term has been removed from Eq. 5.11,

the Euler-Lagrange equations for Eq. 5.11 with respect to −→u are given by

Ψ′((∂tI)2)∂tI∂xI + γΨ′((∂xtI)2 + (∂ytI)2)(∂xxI∂xtI + ∂xyI∂ytI)

+ βΨ′(|ux − gx|2 + |uy − gy|2)(ux − gx)− αdiv(Ψ′(|∇ux|2 + |∇uy|2)∇ux) = 0

Ψ′((∂tI)2)∂tI∂yI + γΨ′((∂xtI)2 + (∂ytI)2)(∂xyI∂xtI + ∂yyI∂ytI)

+ βΨ′(|ux − gx|2 + |uy − gy|2)(uy − gy)− αdiv(Ψ′(|∇ux|2 + |∇uy|2)∇uy) = 0

(5.14)

where

Ψ′(x2) =
1

2
√
x2 + ε2

∂xI =
∂I2(x+ ux, y + uy, t+ 1)

∂x

∂xyI =
∂2I2(x+ ux, y + uy, t+ 1)

∂x∂y
∂yI =

∂I2(x+ ux, y + uy)

∂y

∂xxI =
∂2I2(x+ ux, y + uy, t+ 1)

∂x2
∂yyI =

∂2I2(x+ ux, y + uy, t+ 1)

∂y2

∂tI = I2(x+ ux, y + uy, t+ 1)− I1(x, y, t)

∂xtI =
∂I2(x+ ux, y + uy, t+ 1)

∂x
− ∂I1(x, y, t)

∂x
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∂ytI =
∂I2(x+ ux, y + uy, t+ 1)

∂y
− ∂I1(x, y, t)

∂y

Let

ΨI = Ψ((∂tI)2)

ΨG = Ψ((∂xtI)2 + (∂ytI)2)

ΨM = Ψ((ux − gx)2 + (uy − gy)2)

ΨS = Ψ(|∇ux|2 + |∇uy|2)

(5.15)

Note that Eq. 5.14 is nonlinear because Ψ′I ,Ψ
′
G,Ψ

′
M , and Ψ′S are nonlinear terms with

respect to −→u . Sequential linearization is used to remove non-linearity from the Euler-

Lagrange equation. It is represented as two nested fixed point iterations to gradually

remove non-linearity in Eq. 5.14. Let l denote the outer iteration index and k the

current image scale level. The purpose of the outer iteration is the decomposition of

large displacement optical flow vector uk,l+1
x = uk,lx + duk,lx and uk,l+1

y = uk,ly + duk,ly

through Taylor expansion. −→u k,l+1 is subdivided into a known large displacement

optical flow vector −→u k,l in the previous iteration and an unknown incremental op-

tical flow d−→u k,l = (duk,lx , du
k,l
y ). Correspondingly, nonlinear terms, Ψ′I ,Ψ

′
G,Ψ

′
M , and

Ψ′S, are also transformed in terms of large displacement optical flow decomposition.

Let the index of inner iteration be m. The incremental optical flow vector d−→u k,l is

rewritten as d−→u k,l,m = (duk,l,mx , duk,l,my ). In the inner iteration, (Ψ′I)
k,l,m, (Ψ′G)k,l,m,

(Ψ′M)k,l,m and (Ψ′S)k,l,m are further derived and only related to incremental optical

flow (duk,l,mx , duk,l,my ) at previous iteration m. Eq. 5.14 is finally converted into a lin-

ear equation with respect to (duk,l,m+1
x , duk,l,m+1

y ) after sequential linearization. The

details of this technique can be found in Appendix H. Therefore, each image point has

two linear equations with respect to (duk,l,m+1
x , duk,l,m+1

y ), which formulates a massive

sparse linear system.
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Visual motion subdivision: After non-linearity, non-convexity, and discrete terms

have been removed, large displacement optical flow can be computed by adding a se-

quence of incremental optical flow vectors. In order to efficiently estimate incremental

optical flow, the successive over-relaxation method[236] is used to solve the massive

linear system, placing this computation in the most inner iteration. Let n indicate

the index for this iteration.

(dux)k,l,m,n+1
p = (1− ω)(dux)k,l,m,np

+ ω

0@ X
q∈N−(p)

(Ψ′S)k,l,mp∼q

“
(ux)k,l,mq + (dux)k,l,m,nq

”
+

X
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(Ψ′S)k,l,mp∼q

“
(ux)k,l,mq + (dux)k,l,m,nq

”
−
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Here, N+(p) denotes the neighbors q of p if the indices of q are larger than those of

p. N−(p) denotes the neighbors q of p if the indices of q are smaller than those of p.

ω ∈ (0, 2) is the relaxation parameter to guide the convergence of the massive linear

system. As suggested by Young[236], values close to 2 give the best performance. In

my implementation, it is chosen as 1.99.
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Iteratively, large displacement optical flow −→u is incrementally estimated and rep-

resented as

−→u k,l,m+1 = −→u 0,0,0 +
∑
k,l,m

duk,l,m (5.17)

where −→u 0,0,0 = (0, 0). Eq. 5.10 implies that visual motion vectors from SIFT feature

matches approximate large displacement optical flow vectors. In other words, −→s ≈
−→u k,l,m+1. Because −→u k,l,m+1 is comprised of a sequence of incremental optical flow

vectors duk,l,m in Eq. 5.17, visual motion vectors from SIFT feature matches can be

decomposed into a set of incremental optical flow vectors.

−→s ≈ −→u 0,0,0 +
∑
k,l,m

duk,l,m (5.18)

Egomotion Estimation: A modified FOE based egomotion estimation method is

used for computing incremental camera rotation parameter d
−→
T k,l,m and incremental

camera translation parameter d
−→
R k,l,m, from incremental optical flow vectors com-

puted in the previous step. The FOE is determined by computing incremental op-

tical flow vector difference in the image regions centered at matched SIFT feature

points. The choice of these image regions is because incremental optical flow vectors

are accurate in these regions. Also, these regions are near depth discontinuities.

A polar coordinate can be constructed by using the FOE as the origin. d
−→
R k,l,m

is first estimated from the incremental optical flow vectors at matched SIFT feature

points, as was described in the previous chapter. After d
−→
R k,l,m is estimated, camera

rotation components are excluded from the incremental optical flow vectors. d
−→
T k,l,m

is next determined by using the incremental optical flow vectors resulting from camera

translation alone and depth values from a colon-like cylinder model.

Assume
−→
T k,l,m and

−→
R k,l,m to be the estimated camera motion parameters at the

previous iteration. Incremental camera motion parameters are added to the estimated
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parameters and represented as

−→
T k,l,m+1 =

−→
T k,l,m + d

−→
T k,l,m+1

−→
R k,l,m+1 =

−→
R k,l,m + d

−→
R k,l,m+1

(5.19)

After camera motion parameters are accumulated, the locations of matched SIFT

feature points are iteratively updated by adding their locations to the incremental

optical flow vectors. Meanwhile, their depth values are dynamically changed by using

bilinear interpolation.

The purpose of this step is to determine whether incremental egomotion estima-

tion should be repeated. Let the finest image scale level be K. The maximum numbers

of outer and inner iterations of sequential linearization are L and M, respectively. If

the current scale index k 6= K, or inner iteration index m 6= M, or outer iteration

index l 6= L, then repeat visual motion subdivision and incremental egomotion esti-

mation. Otherwise, output the camera motion parameters. Algorithm 2 summarizes

the complete incremental egomotion estimation.

5.4.2 Example Demonstration

I have tested incremental egomotion estimation on two clinical colonoscopy image

sequences containing significant camera motion. The estimated camera motion pa-

rameters are also compared against results from the FOE-based egomotion estimation

described in chapter 4. Because actual camera motion is unknown, the estimation

error was qualitatively evaluated by visually inspecting the co-aligned VC images.

Fig. 5.9 shows an example of a colonoscopy image pair interrupted by blurry

images. There is significant egomotion between these two images. Fig. 5.9a shows

the co-aligned OC and VC images prior to the blurry images. Fig. 5.9b illustrates

co-aligned OC and VC images after the blurry images, by using the FOE-based

egomotion estimation method. Fig. 5.9c displays the results using the incremental
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Algorithm 2: Incremental Egomotion Estimation

Data: I(x, y, t) at t0 and tn
Result: Motion parameters

−→
T and

−→
R .

Perform region-to-region image matching to initialize SIFT feature1

correspondences and update SIFT feature correspondences to obtain −→g ;
Build K-level multi-scale image representation for I(x, y, t0) and I(x, y, tn);2

for k ← 1 to K do3

Initialize k-th level large displacement optical flow;4

for l← 1 to L do5

Compute derivatives ∂tI
k,l, ∂xtI

k,l, and ∂ytI
k,l through bilinear6

interpolation;
for m← 1 to M do7

Compute diffusion terms Ψ′k,l,mI ,Ψ′k,l,mG ,Ψ′k,l,mM and Ψ′k,l,mS ;8

Initialize incremental optical flow d−→u k,l,m = 0;9

for n← 1 to N do10

Update incremental optical flow d−→u k,l,m,n in Eq. 5.16 at every11

pixel through SOR Method;

Use incremental flow field d−→u k,l,m to determine the FOE;12

Compute camera motion parameters ∆
−→
T k,l,m and ∆

−→
R k,l,m in terms13

of incremental optical flow vectors near SIFT feature points;
Update large displacement optical flow −→u k,l,m+1 = −→u k,l,m + d−→u k,l,m;14

Update camera motion parameters
−→
T k,l,m+1 =

−→
T k,l,m + ∆

−→
T k,l,m and15

−→
R k,l,m+1 =

−→
R k,l,m + ∆

−→
R k,l,m;

egomotion method. In this image sequence, there is a round polyp for reference in

the sigmoid colon, as seen in the top row of Fig. 5.9. It can be seen that the polyp

matches more closely (in position) in Fig. 5.9c, in comparison to Fig. 5.9b; thus, the

colonoscope’s motion is being tracked more closely using the incremental estimation

scheme.

Fig. 5.10 illustrates another example in the descending colon during a biopsy

procedure. The dominating visual motion between the colonoscopy image pair is

downward displacement (as seen by the marked polyps). Figs. 5.10b and 5.10c illus-

trate respectively the results using the FOE-based egomotion estimation method and

the incremental egomotion estimation method. It is clearly seen that the downward

displacement is more accurately computed and displayed in the virtual images (bot-



148

(a) (b) (c)

Figure 5.9: Egomotion estimation results on a polyp biopsy in the sigmoid colon.
Note the rightward shift of the polyp between the top OC images of (a) and (c), (a)
An OC image prior to blurry images, and its co-aligned VC image; (b) egomotion
estimation results (after blurry images), using the FOE-based egomotion estimation
method. The polyp has shifted up and a little rightward; (c) egomotion estimation
results using the incremental method. The polyp in the VC image is nearly in the
same location as in the OC image.

tom frames of Fig. 5.10b and Fig. 5.10c) by using the incremental egomotion method.

Note that there is a scale variation in the polyp size, likely due to deformation. De-

formation is a significant issue in colonoscopy tracking, reflecting changes between

the pre-acquired CT and the OC images.

5.5 Phantom Validation

Straight and curved phantom image sequences described in chapter 4 are also used

to validate the region flow based strategy for large motion estimation. This section

attempts to validate the accuracy of my algorithm in estimating significant camera

motion. Only image sequences at the speed of about 20mm/sec are utilized. In each

straight phantom image sequence, I choose 19 images to formulate a new straight

phantom image sequence. Each image represents the instant when the colonoscope
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(a) (b) (c)

Figure 5.10: Egomotion estimation results on a polyp biopsy in the descending colon.
Note the downward displacement of the marked polyp between (a) and (c), represent-
ing frames before and after blurry images. (a) Co-aligned OC and VC images before
a blurry sequence. (b) Egomotion estimation results (after blurry images) using the
FOE-based egomotion estimation method. The polyp in the VC image has hardly
moved. (c) Egomotion estimation results using the incremental estimation method.
The polyp has shifted downward, in comparison to the VC image in (a).

has just arrived at one of the 19 marked locations illustrated in Fig. 4.13a. Simi-

larly, 13 phantom images corresponding to 13 marked locations shown in Fig. 4.13b

are selected from each curved phantom image sequence, to comprise a new curved

phantom image sequence. Phantom images between two consecutive selected images

are eliminated, simulating the exclusion of blurry images. The distance between two

sequentially marked locations is 16mm in the straight phantom and 23.88mm in the

curved phantom. Therefore, the colonoscope moves 16mm between any two consec-

utive images in the new straight phantom image sequences. The colonoscope moves

23.88mm in the new curved phantom image sequences. The total displacements are

12 × 18 = 288mm in the new straight phantom and 23.88 × 12 = 286.56mm in the

new curved phantom.

Fig. 5.11a and Fig. 5.11b show the tracking results of the incremental egomotion
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estimation algorithm on the new straight phantom image sequences. Here, the camera

velocity is measured in mm/frame, not mm/second. The measurement is chosen

because region flow and incremental egomotion estimation are designed to estimate

large camera motion of an image pair, instead of tracking an entire OC video stream.

Fig. 5.11a indicates that the maximum estimated velocity error is about 5mm/frame

on both original and calibrated phantom image sequences(five each) in the straight

phantom, after 19 phantom images have been tracked. Average velocity error is less

than 3mm/frame on the original image sequences and less than 4mm/frame on

the calibrated image sequences. Average displacement error is less than 7mm on

the original image sequences and less than 8mm in the calibrated image sequences.

Maximum displacement error is less than 13mm on both original and calibrated

image sequences. Table 5.1a presents the average, maximum, and minimum estimated

camera velocity errors of each of five trials. Table 5.1b shows their average, maximum

and minimum errors of the estimated camera displacements.

In comparison with straight phantom image sequences, large camera motion pa-

rameters are more challenging to estimate in the new curved phantom image se-

quences, because the colonoscope moves 23.88mm between two successive phan-

tom images. Fig. 5.12a shows that there is a significant estimation error at frame

1 in the original phantom image sequences and at frame 2 in the calibrated se-

quences(indicated by black arrows). As a result, average velocity error is about

6mm/frame on both original and calibrated image sequences, and maximum ve-

locity error approximates 15mm/frame on both sequences. Average displacement

error is about 14mm on the original image sequences and 16mm on the calibrated

image sequences. Maximum displacement error achieves to 26mm on both original

and calibrated image sequences. Tables. 5.2a and 5.2b reveal that significant errors

of the camera velocities and displacements are caused by the second phantom image

sequence.
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(a)

(b)

Figure 5.11: Comparison between the ground-truth and estimated camera motion
parameters on the original and calibrated straight phantom image sequences. (a)
Camera velocity curves; (b) camera displacement curves. After eliminating a number
of phantom images to simulate the exclusion of blurry images, the colonoscope moves
16mm between two consecutive, selected phantom images. Here, the camera motion
parameter is either camera velocity in (a) or camera displacement in (b). The blue
line represents the ground-truth camera motion parameters, and the red and green
bands indicate the estimated camera motion parameters on the original and cali-
brated phantom image sequences, respectively. The bottom and upper curves in each
band indicate the minimum and maximum camera motion parameters of five trials,
and the solid center curve represents the average camera motion parameters. Aver-
age velocity error is less than 3mm/frame on the original image sequences after 19
phantom images have been tracked, and it is less than 4mm/frame in the calibrated
image sequences. Maximum velocity error is less than 5mm/frame on both original
and calibrated image sequences. Average displacement error is less than 7mm on the
original image sequences and less than 8mm on the calibrated image sequences. Max-
imum displacement error is less than 13mm on both original and calibrated image
sequences.
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Table 5.1: The average, maximum, and minimum estimated camera velocity and
displacement errors on the original and calibrated straight phantom image sequences
at a speed of 16mm/frame after 19 images have been tracked.

(a) Camera velocity

Image Original Images(mm/frame) Calibrated Images(mm/frame)
sequence average maximum minimum average maximum minimum

1 2.06 4.07 0.0008 3.55 4.29 0.26
2 2.2 4.33 0.024 2.08 5.0 0.05
3 2.3 4.33 0.0007 2.81 4.67 0.19
4 2.25 4.82 0.014 2.08 4.58 0.15
5 1.53 4.43 0.00076 2.12 4.16 0.0073

(b) Camera displacement

Image Original Images(mm) Calibrated Images(mm)
sequence average maximum minimum average maximum minimum

1 5.45 10.99 0.0 4.85 11.08 0.0
2 6.49 12.62 0.0 7.86 15.6 0.0
3 5.92 10.28 0.0 5.49 10.83 0.0
4 5.81 10.745 0.0 5.17 10.9 0.0
5 2.82 7.54 0.0 4.1 7.63 0.0

Frame 1 of the second sequence is chosen to investigate the estimation errors, as

illustrated in Fig. 5.13. There is a vertical curve highlighted by a red ellipse in the left

phantom image, which is located in the inner wall of the curved phantom. Several

SIFT feature points are detected at the vertical curve. They disappear in the right

image because the vertical curve no longer exists. The vertical curve is occluded in the

right image because the colonoscope is moving quickly toward the image center. There

are some false SIFT feature correspondences that chooses the feature points detected

at the vertical curve although their matched points are occluded. For instance, a

false SIFT feature correspondence is connected by a red line, where the SIFT feature

point in the left image is detected at the inner wall while its matched feature point is

located at the outer wall in the right image. The visual motion vector calculated from

this false SIFT feature match would point to the image center, corresponding to the

visual motion when the colonoscope moves backward. However, the colonoscope is
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(a)

(b)

Figure 5.12: Comparison between the ground-truth and estimated camera motion pa-
rameters on the original and calibrated curved phantom images. (a) Camera velocity
curves; (b) camera displacement curves. The colonoscope moves 23.88mm between
two consecutive, selected phantom images. The blue line represents the ground-truth
camera motion parameters of five trials. The red and green bands indicate the es-
timated camera motion parameters on the original and calibrated phantom image
sequences, respectively. The bottom and upper curves in each band indicate the
minimum and maximum camera motion parameters of five trials, and the solid cen-
ter curve represents the average camera motion parameters. Average velocity error
is less than 4mm/frame on both original and calibrated image sequences after re-
moving two drop points indicated by black arrows. The two significant estimation
errors are caused by false SIFT feature matches due to the occlusion of feature points.
Maximum velocity error is less than 8mm/frame on both image sequences. Average
displacement error is less than 6mm on the original image sequences and less than
7mm on the calibrated sequences. Maximum displacement error is less than 13mm
on both image sequences.
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Table 5.2: The average, maximum, and minimum estimated camera velocities and
displacement errors on the original and calibrated curved phantom image sequences
at a speed of 23.88mm/frame after 13 images have been tracked.

(a) Camera velocity

Image Original Images(mm/frame) Calibrated Images(mm/frame)
sequence average maximum minimum average maximum minimum

1 2.79 6.54 0.024 2.05 6.5 0.48
2 5.62 14.65 0.73 5.12 14.26 0.045
3 2.71 7.2 0.17 2.09 5.9 0.013
4 2.8 6.55 0.01 2.35 6.13 0.27
5 3.03 7.28 0.1 2.5 6.76 0.46

(b) Camera displacement

Image Original Images(mm) Calibrated Images(mm)
sequence average maximum minimum average maximum minimum

1 4.54 12.49 0.0 3.96 10.34 0.0
2 13.37 24.4 0.0 15.46 25.9 0.0
3 5.98 12.5 0.0 5.56 13.44 0.0
4 4.0 9.57 0.0 5.15 10.92 0.0
5 7.7 12.73 0.0 6.61 12.24 0.0

moving forward. All these false feature matches reduce the estimated camera motion

parameters during egomotion estimation. For this reason, there is a significant drop

of the estimated camera velocity in the original phantom image sequences, indicated

by the black arrow in Fig. 5.12a.

With the exception of the second trial, camera velocities are reasonably estimated

in all other curved phantom image sequences. Average velocity error is less than

3mm/frame in both original and curved phantom image sequences. Maximum ve-

locity error is less than 8mm/frame and 7mm/frame on the original and calibrated

phantom image sequences, respectively. Average camera displacement error is less

than 8mm on the original phantom image sequences and less than 7mm on the cal-

ibrated sequences. Maximum camera displacement error is less than 14mm on both

original and calibrated curved phantom image sequences. Similar to the straight

phantom results, there is no significant variance between the estimation results on
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Figure 5.13: SIFT feature matches between two successive phantom images (left and
right images). Some SIFT feature points enclosed by a red ellipse are detected at
a vertical curve in the left image, while all these SIFT feature points disappear in
the right image because the vertical curve is occluded. Therefore, some SIFT fea-
ture correspondence from these SIFT features are false feature matches, which cause
the estimation errors of camera motion parameters. A SIFT feature correspondence
connected by a red line gives an example.

the original and calibrated curved phantom images.

From the phantom experimental results, I can draw the following three conclu-

sions.

1. Both straight and curved phantom results demonstrate that region flow based

strategy is able to accurately recover significant camera motion. Average ve-

locity error is 3mm of 16mm traveled between two consecutive images in the

straight phantom and also 3mm of 23.88mm traveled in the curved phantom. If

the colonoscope is moving at the the speed of 10mm/second, the straight phan-

tom experiments simulate the exclusion of 16mm×30frames/second
10mm/second

= 48 frames and

the curved phantom experiments simulate the exclusion of 23.88mm×30frames/second
10mm/second

≈

72 frames. Therefore, the proposed strategy can accurately estimate large cam-

era motion within 3mm
23.88mm

= 12.6% relative error after excluding 72 blurry

images at a speed of 10mm/sec. In the real clinical situation, this strategy is

able to estimate large motion within more blurry images because a colonoscope

usually moves slightly or remains stationary during the appearance of blurry
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images. The proposed strategy is sufficient to recover most blurry interruption

in a colonoscopy video stream, because a gastroenterologist can quickly adjust

the colonoscope.

2. The accuracy of large motion estimation is dependent on the amount of the

colonoscope’s movement. Large camera motion will cause a large portion of

SIFT features to be occluded. Feature occlusion increases the possibility of

false feature matches. The occurrence of false feature matches leads to less

accuracy in estimating large motion.

3. There is no significant variance in results between the original and calibrated

colonoscopy image sequences.

5.6 Clinical Data Evaluation

Region flow based large motion estimation is also demonstrated through several

colonoscopy image sequences. Fig. 5.14 illustrates four examples of colonoscopy se-

quences with blurry images. The top rows illustrate optical images before and after

the blurry sequences. The corresponding VC images are in the bottom rows. Regions

marked by green circles indicate corresponding features, to verify accuracy.

Experiment 1: Polyp Surgery in the Sigmoid Colon. This sequence contains

520 images, with a blurry image sequence from frame 304 to 361, due to the colono-

scope touching the colon wall. In Fig. 5.14a the polyp can be clearly seen in the OC

and VC images, including scale changes in the polyp. The fold in the virtual image

is likely due to deformation.

Experiment 2: Polyp Removal in the Sigmoid Colon. This sequence repre-

sents the removal of the polyp, and contains 160 images, with a blurry image sequence

between 90 and 111. Injection of water (bright area) in the vicinity of the removed

polyp causes the blurry image. Though somewhat harder to see, the green circles
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(a) (b)

(c) (d)

Figure 5.14: Results in four colonoscopy sequences. OC-VC image pairs before and
after blurry sequences, (a) 520 image sequence of polyp surgery in the sigmoid colon
with a sequence of 57 blurry images, (b) 160 image sequence of polyp removal in the
sigmoid colon with a sequence of 21 blurry images, (c,d) 450 image sequence with 2
blurry image sequences of 9 and 19 images. The tracking system tracked successfully
through both blurry image sequences.

estimate the locations of the polyp quite well in the OC and VC images.

Experiments 3,4: Ascending Colon. This sequence in the ascending colon con-

tains 450 images and two blurry sequences, 277-286 and 321-340. In both cases,

the colonoscope is very close to a fold. My algorithm is able to track continuously

through the two blurry sequences, as seen by the well co-aligned OC and VC images

in Figs. 5.14c and 5.14d.

The initial results are very promising. Although these sequences contain large
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changes and artifacts (especially deformation), region flow accurately represents the

global motion characteristics, facilitating the SIFT feature matching. In all these

experiments, it is possible to identify features (folds, polyps, etc.) which provide

confidence in the tracking system and qualitative accuracy.

Previous clinical results demonstrate that large motion estimation enables the

colonoscopy tracking system to function in short colonoscopy image sequences. A

1980 descending colonoscopy image sequence is chosen to illustrate that this recovery

strategy also works well in a long colonoscopy image sequence. In this sequence, the

gastroenterologist detects a round polyp in the descending colon and used a snare to

remove it. From frame 1414 to 1425, there is a short blurry sequence because the

colonoscope’s lens is covered by fluid, which is shown in Fig. 5.15b. Fig. 5.15a and

Fig. 5.15c show a pair of colonoscopy images separated by blurry images to recover the

colonoscope’s actual motion as the colonoscope moves toward the polyp. Substantial

variance in the shape of the fold indicates significant deformation between the two

images. Fig. 5.15a and Fig. 5.15c demonstrate that the polyp’s relative movement in

the VC images exactly follows the colonoscope’s motion in the OC images.

5.7 Conclusions

In this chapter, I have presented a region flow based strategy for estimating

large motion when blurry images appear. Blurry images occur when the colono-

scope touches a wall or fold, or when the colonoscope is immersed in fluid. Region

flow provides the computational basis for accurate and robust corresponding features

computation, which in turn permits estimating camera motion parameters.

An incremental egomotion estimation algorithm is designed to recover large cam-

era motion from two images interrupted by blurry images. The core idea of incre-

mental egomotion estimation is the subdivision of large visual motion into a sequence

of optical flow fields. FOE-based egomotion estimation, introduced in chapter 4, is
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(a) (b) (c)

Figure 5.15: Large motion estimation results on a descending colonoscopy sequence.
(a) A colonoscopy image before a blurry sequence; (b) a blurry image; (c) the
colonoscopy image after the blurry image sequence. The rounded polyp is highlighted
by blue circles.

used to estimate camera motion parameters from each individual optical flow field.

Combining the estimated camera motion parameters yields the final camera motion

parameters.

Phantom experiments demonstrate that the proposed strategy can estimate signif-

icant camera motion with less than 12.6% relative error, when 72 frames are excluded

at the speed of 10mm/sec. Four short clinical colonoscopy sequences demonstrate the

effectiveness of the proposed recovery strategy. It keeps the tracking system continu-

ously co-aligning OC and VC images as it encounters blurry image sequences. In my

experiments, blurry image sequences range from 9 to 57 consecutive images. A long

colonoscopy image sequence demonstrates that the proposed strategy significantly

improves upon the consecutive colonoscopy tracking algorithm, which is described in

chapter 4. Qualitative results based on visual inspection of the tracked VC images

are promising and outperform the FOE-based egomotion estimation method.



CHAPTER 6: CONTRIBUTION THREE – TEMPORAL VOLUME FLOW

“It is not knowledge, but the act of learning, not possession but the act of getting

there, which grants the greatest enjoyment.”

– Carl Friedrich Gauss

In the previous chapter, I developed a sophisticated strategy for large motion es-

timation based on region flow. It estimates large camera motion during a sequence of

blurry images, and uses the region flow method to continuously track colonoscopy im-

ages. This strategy assumes that the two selected colonoscopy images contain enough

similarity, and that significant visual motion and camera motion can be accurately

estimated from the matched visual patterns.

But the selected colonoscopy images before and after a blurry image sequence

do not always fulfill the requirement of having sufficient similarity. In this chapter,

I present a temporal volume flow(TVF) algorithm for choosing a colonoscopy image

pair with the maximum amount of similarity. The proposed algorithm is evaluated by

studying different parameters controlling the computation of TVF. The comparison

of colonoscopy tracking results, with and without TVF, is also presented.

6.1 Problem Statement

Fig. 6.1 illustrates two colonoscopy image sequences with blurry images shown in

column (c). The region flow strategy described in chapter 5 artificially chooses two

colonoscopy images, which are illustrated in columns (b) and (d) just before and after

the blurry images. The region flow based strategy fails to estimate camera motion
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parameters because there are nearly no feature correspondences between the images

in columns (b) and (d).

Figure 6.1: Temporal coherence of two colonoscopy image sequences. Column (a) and
column (d) are two selected images before and after blurry images; column (b): the
last clear colonoscopy images before the blurry sequences; column (c): blurry images.
Temporal coherence guarantees that a pair of similar colonoscopy images can always
be found.

In order to robustly estimate large motion during blurry image interruption, the

selected image pair should contain sufficient similarity, such as colonoscopy images

shown in columns (a) and (d) in Fig. 6.1. Temporal coherence in a colonoscopy

video stream is the key property that ensures visual patterns co-occur before and

after blurry images. The essential problem is thus to design an intelligent strategy to

compute temporal coherence. An image pair with a large degree of similarity can be

automatically identified, thus enhancing both stability and accuracy of large motion

estimation.

In this chapter, “temporal volume flow”, or dense voxel shifts between two tem-

poral volumes, is proposed to efficiently exploit temporal coherence and determine

the image pair, with sufficient similarity.
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Figure 6.2: Flowchart of image pair search based on temporal volume flow.

6.2 Temporal Volume Flow Based Image Pair Search

Fig. 6.2 shows the flowchart of determining a colonoscopy image pair with the

maximum amount of similarity. TVF computation is the core technique of image pair

search. TVF computation includes temporal volume formulation; multi-resolution

temporal volume pyramid construction; sequential linearization; and successive over

relaxation. After TVF is calculated, it is then used to search an image pair with

sufficient similarity. I will describe these components under two general headings:

TVF computation and image pair search, followed by a section on model parameter

tuning.
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6.2.1 Temporal Volume Flow Computation

TVF computation is a partial differential equation(PDE) based framework to

densely match two temporal volumes before and after blurry images; the number

of voxel correspondences are determined in terms of TVF. The image pair with the

maximum number of voxel correspondences are chosen as the image pair for large

motion estimation. The main contribution of this chapter, TVF computation, is

described and validated by a colonoscopy image pair in this section.

Algorithm Description

Assume there is a colonoscopy video stream I(x, y, t) interrupted by a blurry image

sequence at (t1, t2). Two temporal volumes can be built by collecting colonoscopy

images at (t1 − ∆t, t1) and (t2, t2 + ∆t), as illustrated in Fig. 6.3. Without loss of

generality, define ρ to represent the artificial time of a temporal volume stream. All

temporal volumes formulate a continuous four-dimensional temporal volume stream,

V (x, y, t, ρ). The purpose of TVF computation is to densely match V (x, y, t, ρ) at

time ρ1 and ρ2.

Figure 6.3: Process of temporal volume construction. Top row illustrates a video
stream I(x, y, t) with a blurry image sequence at (t1, t2). Bottom row shows the
construction of temporal volume stream by grouping images, for example (t1−∆t, t1)
and (t2, t2 + ∆t).

Similar to optical flow computation, TVF calculation assumes that the intensity at
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a voxel in a temporal volume at ρ1 remains invariant after this voxel shifts to another

position in the temporal volume at ρ2. The gradient of this voxel is also constant

during the voxel shift. Therefore, TVF is a visual motion field that measures relative

displacements between matched voxels in two temporal volumes at ρ1 and ρ2 with

the same intensity and gradient.

Based on TVF definition, I can mathematically describe TVF computation in

a PDE-based metric. Let me first express mathematical prototypes that comprise

this PDE metric. Assume −→w = (wx, wy, wt, wρ) to be the TVF vector at a point

p = (x, y, t, ρ). Here, wρ is a constant and equal to 1. TVF begins with the intensity

constancy assumption,

V (x, y, t, ρ) = V (x+ wx, y + wy, t+ wt, ρ+ 1) (6.1)

The linearised formulation of Eq. 6.1 is

∂xV wx + ∂yV wy + ∂tV wt + ∂ρV = 0 (6.2)

The gradient constancy model is defined as

∇3V (x, y, t, ρ) = ∇3V (x+ wx, y + wy, t+ wt, ρ+ 1) (6.3)

where ∇3 = (∂x, ∂y, ∂t).

TVF vectors vary smoothly except near visual motion boundaries, and a smooth-

ness constraint is defined as

SM = |∇3wx|2 + |∇3wy|2 + |∇3wt|2 (6.4)

Combining all these mathematical prototypes into a PDE-based metric, it leads to
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E(−→w ) =

∫∫
(x,y,t)∈R2×R+

(Ψ((V (x+ wx, y + wy, t+ wt, ρ+ 1)− V (x, y, t, ρ))2

+ γ(∇3V (x+ wx, y + wy, t+ wt, ρ+ 1)−∇3V (x, y, t, ρ))2)

+ αΨ(|∇3wx|2 + |∇3wy|2 + |∇3wt|2))dxdydt

(6.5)

where Ψ(x2) =
√
x2 + ε2, ε = 0.001 is a modified L1 norm and allows the computation

to handle occlusions and other non-Gaussian deviations of the matching criterion. α

and γ are two constants to balance different components in Eq. 6.5. Minimizing

Eq. 6.5 with respect to −→w generates TVF.

Eq. 6.5 is similar to Eq. 5.13 except that the smoothness constraint contains SIFT

feature matches in Eq. 5.13. Eq. 6.5 can be considered as the extension of a PDE-based

model used by incremental egomotion estimation to the spatial-temporal domain. It

determines relative displacements between a temporal volume pair. Eq. 6.5 is a non-

convex and non-linear equation with respect to −→w due to the nonlinear intensity

constancy model(Eq. 6.1) and the nonlinear gradient constancy model(Eq. 6.3). In

addition, Ψ(x2) is also a nonlinear equation with regards to x2. Eq. 6.5 is therefore

difficult to minimize because its non-convexity and non-linearity produce multiple

local minima. The minimization process easily becomes trapped in a local minimum

and generates inaccurate TVF results.

In order to remove non-linearity and non-convexity from Eq. 6.5, the two advanced

numerical computation strategies described in chapter 5 are employed: multi-scale

image representation and sequential linearization.

Temporal volume formulation: TVF computation starts with temporal volume

construction. Fig. 6.3 conceptualizes the construction process. For instance, an OC

video stream shown in the top image of Fig. 6.2 has blurry images from frame 1184

to frame 1220, and two temporal volumes are constructed by collecting two sequences
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of 20 colonoscopy images, 1163-1183 and 1221-1241.

Temporal volume pyramid construction: The underlying temporal volumes

identified in the previous step must be smoothed to remove small details. The small

details are responsible for local minima in Eq. 6.5, which result from non-convexity.

One strategy to handle the non-convexity is the construction of the Gaussian scale

space on the original sized temporal volume as was used in incremental egomotion

estimation in chapter 5. However, this strategy is computationally consuming and

uses memory inefficiently. Smoothing a temporal volume can be alternatively achieved

by continuously down-sampling temporal volumes to build multi-resolution temporal

volume pyramids. Down-sampling temporal volume is equivalent to using a Gaussian

function to smooth the original temporal volumes. But it significantly reduces the

computational cost. The sampling rate is akin to the Gaussian scale parameter.

The smaller the sampling rate, the coarser the temporal volumes will be. In my

implementation, the sampling rate is chosen as 0.75. Finally, two temporal volume

pyramids are constructed, based on this continuous down-sampling strategy.

Sequential linearization: Minimizing Eq. 6.5 can be mathematically solved through

the Euler-Lagrange equation. It reads, with respect to x, y and t components,

Ψ′((∂ρV )2 + γ((∂xρV )2 + (∂yρV )2 + (∂tρV )2))(∂xV ∂ρV + γ(∂xxV ∂xρV + ∂xyV ∂yρV

+ ∂xtV ∂tρV ))− αdiv3

(
Ψ′(|∇3wx|2 + |∇3wy|2 + |∇3wt|2)∇3wx

)
= 0

Ψ′((∂ρV )2 + γ((∂xρV )2 + (∂yρV )2 + (∂tρV )2))(∂yV ∂ρV + γ(∂xyV ∂xρV + ∂yyV ∂yρV

+ ∂ytV ∂tρV ))− αdiv3

(
Ψ′(|∇3wx|2 + |∇3wy|2 + |∇3wt|2)∇3wy

)
= 0

Ψ′((∂ρV )2 + γ((∂xρV )2 + (∂yρV )2 + (∂tρV )2))(∂tV ∂ρV + γ(∂xtV ∂xρV + ∂ytV ∂yρV

+ ∂ttV ∂tρV ))− αdiv3

(
Ψ′(|∇3wx|2 + |∇3wy|2 + |∇3wt|2)∇3wt

)
= 0 (6.6)
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where the derivatives related to ∂∗ρV are defined as temporal difference.

∂ρV = V (x+ wx, y + wy, t+ wt, ρ+ 1)− V (x, y, t, ρ)

∂xρV = ∂xV (x+ wx, y + wy, t+ wt, ρ+ 1)− ∂xV (x, y, t, ρ)

∂yρV = ∂yV (x+ wx, y + wy, t+ wt, ρ+ 1)− ∂yV (x, y, t, ρ)

∂tρV = ∂tV (x+ wx, y + wy, t+ wt, ρ+ 1)− ∂tV (x, y, t, ρ)

(6.7)

Let me abbreviate data and smoothness terms in Eq. 6.5 to simplify the descrip-

tion,

ΨD = Ψ((V (x+ wx, y + wy, t+ wt, ρ+ 1)− V (x, y, t, ρ))2

+ γ(∇3V (x+ wx, y + wy, t+ wt, ρ+ 1)−∇3V (x, y, t, ρ))2)

ΨS = Ψ(|∇3wx|2 + |∇3wy|2 + |∇3wt|2)

(6.8)

Non-linearity happens in Ψ′D and Ψ′S. Sequential linearization is an efficient strat-

egy to remove non-linearity in Eq. 6.6, so as to easily minimize Eq. 6.5. Sequential

linearization involves two nested fixed point iterations[27]. Let l denote the outer iter-

ation index at temporal volume pyramid level k, and define −→w k,l = (wk,lx , w
k,l
y , w

k,l
t , 1).

This iteration subdivides the TVF vector −→w k,l+1 = −→w k,l + d−→w k,l, where d−→w k,l =

(dwk,lx , dw
k,l
y , dw

k,l
t , 0). It also removes non-linearity from intensity and gradient con-

stancy constraints in Eq. 6.5. The estimation of −→w k,l+1 is converted into the compu-

tation of the incremental TVF vector d−→w k,l.

However, Eq. 6.6 still remains nonlinear with respect to d−→w k,l, which is caused by

Ψ′k,lD and Ψ′k,lS . Another inner iteration is introduced to remove their non-linearity.

Assume m to be the iteration index, and let Ψ′k,l,mD and Ψ′k,l,mS denote the updated

abbreviation parameters and d−→w k,l,m = (dwk,l,mx , dwk,l,my , dwk,l,mt , 0) be the updated

incremental temporal volume flow vector. The inner iteration removes dwk,l,m+1
x ,

dwk,l,m+1
y and dwk,l,m+1

t from Ψ′k,l,mD and Ψ′k,l,mS . Eq. 6.6 is finally converted into a
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linear equation with respect to dwk,l,m+1
x , dwk,l,m+1

y and dwk,l,m+1
t . The details of

sequential linearization are described in Appendix H. Finally, each voxel has three

linear equations, which leads to a massive sparse linear system to compute TVF.

Numerical Calculation: This massive sparse linear system system is again ef-

ficiently solved by applying the successive over-relaxation method[236] in the most

inner iteration. Let n be the index for this iteration. We can obtain the following

equation to explicitly compute the incremental TVF vector d−→w k,l,m,n+1

(dwx)k,l,m,n+1
p = (1− ω)(dwx)k,l,m,np

+ ω

0@ X
q∈N+(p)

(Ψ′S)k,l,mp∼q

“
(wx)k,lq + (dwx)k,l,m,nq

”
+

X
q∈N−(p)

(Ψ′S)k,l,mp∼q

“
(wx)k,lq + (dwx)k,l,m,n+1

q

”
−

X
q∈N (p)

(Ψ′S)k,l,mp∼q (wx)k,lp

−
1

α
(Ψ′D)k,l,mp

“
(∂xV

k,l)p
“

(∂yV
k,l)p(dwy)k,l,m,np + (∂tV

k,l)p(dwt)
k,l,m,n
p + (∂ρV

k,l)p
”

+ γ(∂xxV
k,l)p

“
(∂xyV

k,l)p(dwy)k,l,m,np + (∂xtV
k,l)p(dwt)

k,l,m,n
p + (∂xρV

k,l)p
”

+ γ(∂xyV
k,l)p

“
(∂yyV

k,l)p(dwy)k,l,m,np + (∂ytV
k,l)p(dwt)

k,l,m,n
p + (∂yρV

k,l)p
”

+γ(∂xtV
k,l)p

“
(∂ytV

k,l)p(dwy)k,l,m,np + (∂ttV
k,l)p(dwt)

k,l,m,n
p + (∂tρV

k,l)p
”””

/

0@ X
q∈N (p)

(Ψ′S)k,l,mp∼q +
1

α
(Ψ′D)k,l,mp

“
(∂xV

k,l)2p + γ
“

(∂xxV
k,l)2p + (∂xyV

k,l)2p + (∂xtV
k,l)2p

””1A
(dwy)k,l,m,n+1

p = (1− ω)(dwy)k,l,m,np

+ ω

0@ X
q∈N+(p)

(Ψ′S)k,l,mp∼q

“
(wy)k,lq + (dwy)k,l,m,nq

”
+

X
q∈N−(p)

(Ψ′S)k,l,mp∼q

“
(wy)k,lq + (dwy)k,l,m,n+1

q

”
−

X
q∈N (p)

(Ψ′S)k,l,mp∼q (wy)k,lp

−
1

α
(Ψ′D)k,l,mp

“
(∂yV

k,l)p
“

(∂xV
k,l)p(dwx)k,l,m,np + (∂tV

k,l)p(dwt)
k,l,m,n
p + (∂ρV

k,l)p
”

+ γ(∂xyV
k,l)p

“
(∂xxV

k,l)p(dwx)k,l,m,np + (∂xtV
k,l)p(dwt)

k,l,m,n
p + (∂xρV

k,l)p
”

+ γ(∂yyV
k,l)p

“
(∂xyV

k,l)p(dwx)k,l,m,np + (∂ytV
k,l)p(dwt)

k,l,m,n
p + (∂yρV

k,l)p
”

+γ(∂ytV
k,l)p

“
(∂xtV
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p + (∂tρV

k,l)p
”””

/
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q∈N (p)

(Ψ′S)k,l,mp∼q +
1

α
(Ψ′D)k,l,mp

“
(∂yV

k,l)2p + γ
“

(∂xyV
k,l)2p + (∂yyV
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k,l)2p

””1A
(dwt)

k,l,m,n+1
p = (1− ω)(dwt)
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p

+

0@ X
q∈N+(p)
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+
X

q∈N−(p)

(Ψ′S)k,l,mp∼q

“
(wt)

k,l
q + (dwt)
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q
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−

X
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−
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α
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(∂xxV
k,l)p(dwx)k,l,m,np + (∂xyV
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k,l)p

”
+ γ(∂ytV

k,l)p
“

(∂xyV
k,l)p(dwx)k,l,m,np + (∂yyV

k,l)p(dwy)k,l,m,np + (∂yρV
k,l)p

”
+γ(∂ttV

k,l)p
“

(∂xtV
k,l)p(dwx)k,l,m,np + (∂ytV

k,l)p(dwy)k,l,m,np + (∂tρV
k,l)p

”””
/

0@ X
q∈N (p)

(Ψ′S)k,l,mp∼q +
1

α
(Ψ′D)k,l,mp

“
(∂tV

k,l)2p + γ
“

(∂xtV
k,l)2p + (∂ytV

k,l)2p + (∂ttV
k,l)2p

””1A (6.9)

Here, N+(p) denotes the neighbors q of p if the indices of q are larger than those of

p. N−(p) denotes the neighbors q of p if the indices of q are smaller than those of

p. ω ∈ (0, 2) is the relation parameter to guide the convergence of the massive linear

system. As suggested by Yong[236], values close to 2 give the best performance. In

my implementation, it is chosen as 1.99.

Assume the current pyramid level be k, and the outer and inner iteration indices

be l and m+1, respectively. The TVF vectors are sequentially accumulated by adding

incremental TVF vectors

−→w k,l,m+1 = −→w k,l,m + d−→w k,l,m (6.10)

TVF computation starts from the coarsest level and gradually assigns TVF vectors

through the finer level. The up-sampling of the TVF vectors is performed by using

bilinear interpolation.

The purpose of this step is to determine when the accumulation of TVF vectors

may stop. Let the finest temporal volume pyramid level be K. The maximum numbers

of the outer and inner sequential linearization iteration are L and M, respectively. If

the temporal volume pyramid index k 6= K, or the inner iteration index m 6= M, or

the outer iteration index l 6= L, then repeat the sequential linearization and numerical

calculation. Otherwise, output the final TVF.

TVF computation is summarized in algorithm 3.
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Algorithm 3: Temporal Volume Flow Computation

Data: V (x, y, t, ρ) at ρ1 and ρ2

Result: Temporal volume flow −→w (x, y, t, ρ).
Build K level temporal volume pyramids for V (x, y, t, ρ1) and V (x, y, t, ρ2);1

for k ← 1 to K do2

Initialize k-th level TVF vectors;3

for l← 1 to L do4

Compute derivatives ∂ρV
k,l, ∂xρV

k,l, ∂yρV
k,l and ∂tρV

k,l through bilinear5

interpolation;
for m← 1 to M do6

Compute diffusion terms Ψ′k,l,mD and Ψ′k,l,mS ;7

Initialize incremental TVF vector d−→w k,l,m = 0;8

for n← 1 to N do9

Compute incremental TVF vector d−→w k,l,m,n based on Eq. 6.9 at10

every voxel through successive over-relaxation method;

Update TVF vector −→w k,l,m+1 = −→w k,l,m + d−→w k,l,m;11

Example Demonstration

Volume rendering techniques are used to visualize two temporal volumes and to

composite the two images illustrated in Fig. 6.4. Arrows in the left image show the

TVF results. The gastroenterologist attempted to rotate the colonoscope towards the

colon wall in the left temporal volume. A blurry sequence was produced because the

colonoscope touched the colon wall. This blurry image sequence disappeared when

the gastroenterologist rotated the colonoscope back in the right temporal volume.

Note the folds’ movements between two temporal volumes. Flow vectors accurately

capture relative movements between two folds(point in the up direction).

6.2.2 Image Pair Search

The following two subsections describe the image pair selection algorithm and

present an example.
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Figure 6.4: TVF results of two temporal volumes before and after a blurry image
sequence. Here, volume rendering techniques are used to visualize temporal volumes
and to composite left and right images. TVF pointing in the up direction accurately
reflects relative displacements between colon folds in the left and right images.

Algorithm Description

After TVF is computed, I track all possible voxel displacements between two

temporal volumes. Then I count the number of all possible voxel correspondences

connected by TVF vectors, between any image pairs in two temporal volumes. Thus,

if there are N images in both temporal volumes, there are N × N pairs of images

that will be considered. I select the image pair that has the largest number of voxel

correspondences. These frames are then input to the region flow algorithm described

in chapter 5.

Example Demonstration

Fig. 6.5 shows an image pair in the descending colon. The image pair, which

is separated by 10 blurry images, was selected by the TVF vectors illustrated in

Fig. 6.4. These two images have 1) similar intensity distribution; 2) similar scale

variance; and 3) the appearance of important features like folds in the bottom left

image regions. They are very useful for computing large visual motion, which is

described in Chapter. 5.
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(a) (b)

Figure 6.5: Image pair selected by TVF. These two images have similar intensity
distribution, and main structures such as folds appear in both images. They are
critical features for visual motion computation.

6.2.3 Model Parameter Tuning

TVF computation is a time-consuming process, due to solving the huge linear

system defined in Eq. 6.9. However, clinical applications require colonoscopy tracking

recovery to be as quick as possible. It is desirable that the size of this linear system

be reduced while the accuracy of TVF results is maintained. There are two important

parameters which serve these goals: 1) the number of colonoscopy images to form a

temporal volume; and 2) the down-sampling rate to build a temporal volume pyramid.

The trade-off between these two parameters is empirically designed to obtain sufficient

accuracy while minimizing computational complexity.

Let me first investigate the influence of the size of temporal volume. I build

temporal volumes with 10, 20, 40 and 60 colonoscopy images. The resolution of a

colonoscopy image is 500× 390. Fig. 6.6 shows the selected image pairs from tempo-

ral volumes of different size. Images in the top row are selected before a blurry image

sequence. Images in the bottom row are selected after the blurry image sequence.

The two images are quite different in Fig. 6.6a when a temporal volume is comprised

of 10 frames. This improper selection result is because there are insufficient frames
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to search for an accurate image pair. The selected images are also quite different in

Fig. 6.6d, where the size of the temporal volume is 60. At this point, TVF is inaccu-

rate, because the TVF computation becomes trapped in local minima when the size

of the temporal volume is too large. Fig. 6.6b and Fig. 6.6c show the selection results

when the size of the temporal volume is equal to 20 and 40, respectively. Now the

image pair selection results are more reasonable for large motion estimation, because

visual features such as folds are maintained in both images. For example, an impor-

tant geometric feature, a “T”-junction fold, indicated by red rectangles, is presented

in the image pairs. Visual motion between these two images is relatively small. Two

selected images in Fig. 6.6c are more similar than in Fig. 6.6b, but at the cost of

more computational efforts. The computational timing is listed in table 6.1. Based

on these experimental results, 20 is an optimal experimental parameter for TVF com-

putation. This parameter selects two similar images, while conserving computational

cost. Therefore, my TVF computation selects 20 colonoscopy images to formulate a

temporal volume.

(a) 10 images (b) 20 images (c) 40 images (d) 60 images

Figure 6.6: Image pairs selected by TVF on the same colonoscopy image sequence
by varying frame numbers to formulate temporal volumes. The top row shows the
selected images before blurry images. The bottom row shows the images after the
blurry image sequence.

Another important parameter in TVF computation is the down-sampling rate to
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Table 6.1: The time required for TVF computation, for various numbers of frames in
the temporal volume.

Temporal Volume Size 10 20 40 60
Timing 64.32s 121.13s 260.65s 375.24s

construct a temporal volume pyramid. Down-sampling the temporal volume reduces

computational cost. It also smoothes temporal volumes, similar to constructing a

Gaussian scale space. Therefore, the sampling rate can be considered as a scale

parameter. The smaller the sampling rate, the more coarsely the temporal volume is

smoothed.

An ascending colonoscopy image sequence is chosen to show how image pair se-

lection results are affected by sampling rates, as shown in Fig. 6.7. Fig. 6.7a shows

the selected image pair when the sampling rate is 0.9, which is equivalent to using

the fine scale to smooth temporal volumes. A triangular fold appears in the bot-

tom image, while it only partly shows up in the top image. Small image structures

are not smoothed, causing the TVF computation to become trapped in local min-

ima. Fig. 6.7c gives another improper selection result, where the sampling rate is 0.5.

This rate is akin to using the coarse scale to smooth the temporal volume. At this

point, some important image structures are over-smoothed in temporal volumes, and

the TVF computation is improperly initialized. Compared to the previous selection

results, 0.75 selects two similar images, illustrated in Fig. 6.7b. This value is ex-

perimentally determined to be optimal and is used in constructing temporal volume

pyramids. Table 6.2 reports the computational time required with different sampling

rates. It takes about 2 minutes to compute TVF when the down-sampling rate is

0.75.
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(a) 0.9 (b) 0.75 (c) 0.5

Figure 6.7: Image pairs selected by TVF on the same colonoscopy image sequence by
varying sampling rates to construct temporal volume pyramids. The top row shows
the selected images before blurry images. The bottom row shows the images after
the blurry image sequence.

Table 6.2: The time required for TVF computation, for various sampling rates in
constructing temporal volume pyramids.

Down-sampling rate 0.5 0.75 0.9
Timing 67.72s 121.13s 220.28s

6.3 Clinical Data Evaluation

I have tested the TVF algorithm on three OC image sequences from three patients,

and have shown tracking accuracy improvements over region flow method.

Sequence 1: Ascending Colon. This sequence contained 235 images in the as-

cending colon and had 12 blurry images between 77 and 88. Frames 73 and 89 are two

colonoscopy images just before and after the blurry image sequence. They are chosen

by the region flow method in chapter 5 for computing camera motion parameters.

TVF selected a better image pair – Frame 68 and Frame 109. The tracking system

can continuously co-align OC and VC images by using both image pairs. Correspond-

ing folds appear in OC and VC images after the blurry image sequence, as seen in
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the yellow lines in Fig. 6.8. However, the image pair not selected by TVF resulted in

a large rotation error illustrated in Fig. 6.8a. In contrast, the image pair selected by

using TVF exhibited no such error, as seen in Fig. 6.8b.

(a) (b)

Figure 6.8: Comparison of tracking results using the image pair not selected by TVF
vs. selected by TVF in the ascending colon. (a) Original image pair (73 and 89), (b)
TVF image pair (68 and 109). Corresponding folds are connected by yellow lines in
OC and VC images. There is significant rotation error in the left image, in contrast
to the right image.

Sequence 2: Descending Colon. Similar results are observed in a 535-image

sequence with a rounded polyp in the descending colon, shown in Fig. 6.9. This

sequence contains 24 blurry images, caused by fluid, from frame 130 to 153. The

colon also undergoes contraction as well as expansion in this sequence. The tracking

system can continuously co-align OC and VC images after blurry images. At frame

535, although the polyp is visible in both OC and VC images, TVF had less error.

The polyp in the VC image is more similar to that in the OC image in Fig. 6.9c.

Sequence 3: Descending Colon. Fig. 6.10 illustrates a 580-image sequence in the

descending colon after polyp removal. There is a long blurry image sequence from

82 to 353. The locations of the polyp are highlighted by red rectangles in Fig. 6.10a.

Region flow fails to recover the motion parameters if two colonoscopy images are

not selected by TVF, because there are insufficient feature correspondences from
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Comparison of the tracking results with TVF(top row, a-c) and without
TVF(bottom row, d-f) in the descending colon with a rounded polyp. (a,b) Frames
116 and 173 selected by TVF, (c) tracking results at frame 535. Tracking accuracy
is improved since polyp is close to the bottom of image, (d,e) tracking results of the
selected image pair at frames 128 and 164, (f) tracking results at frame 535, polyp
highlighted by red circles in OC and VC images.

the selected frames, 30 and 356. By contrast, TVF successfully continues to track,

selecting frames 30 and 374, as seen in in Fig. 6.10c. Note the same folds inside the
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rectangles appear in both OC and VC images.

(a) (b) (c)

Figure 6.10: Comparison of the tracking results with and without TVF in the de-
scending colon after polyp removal. (a) OC and VC images at frame 30 before a
blurry sequence; red rectangles indicate polyp locations, (b) region flow fails to track
after the blurry sequence, selecting frame 356 to match frame 30, (c) TVF chooses
frame 374 to successfully continue tracking, because the same folds (red rectangles)
appear in both OC and VC images.

6.4 Summary

In this chapter, I have presented a TVF approach to continue tracking in colonoscopy

video sequences which encounter blurry images. TVF computation employs nonlinear

intensity and gradient constancy models, which are combined into an energy function.

The energy function is minimized through multi-resolution temporal volume pyramid

and sequential linearization schemes. The image pair with the maximum amount of

voxel correspondences, before and after a blurry image sequence, is identified and

used to compute camera motion parameters.

I have evaluated several important parameters related to TVF computation. I

first studied the influence of the number of frames to formulate temporal volume.
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Experimental results indicated that 20 frames optimized the performance with respect

to search accuracy and computational time. Another parameter was sampling rate to

construct temporal volume pyramids. Experiments showed that 0.75 is the optimal

value to maintain important image structures during image smoothing and to reduce

computational cost.

Three clinical sequences were chosen to evaluate the TVF algorithm. The first

two clinical sequences demonstrate that accuracy can be improved through the TVF.

The third sequence showed that improper choice of image pair can cause the region

flow algorithm to fail. The improper image pair could be the two colonoscopy images

just before and after a blurry image sequence. By contrast, the image pair chosen by

TVF contained sufficient corresponding features, and the system continued to track

through the end of the sequence.



CHAPTER 7: SUMMARY AND FUTURE WORK

“Whenever a new finding is reported to the world people say: It is probably not

true. Later on, when the reliability of a new finding has been fully confirmed, people

say: OK, it may be true but it has no real significance. At last, when even the

significance of the finding is obvious to everybody, people say: Well, it might have

some significance, but the idea is not new.”

– Michel de Montaigne

This dissertation focuses on development of a robust visually-guided navigation

system, showing its application to the co-alignment of virtual and optical colonoscopy

images. It presents visual motion processing framework from pixel to region to tem-

poral volume, to develop a robust visually-guided navigation system to accurately

co-align real and virtual navigation. Phantom experiments validated that the pro-

posed visually-guided navigation system can successfully track an optical colonoscope

moving 288mm inside a straight phantom and 286.56mm curved paths, with less than

10mm error. Clinical data evaluation demonstrated that the proposed colonoscopy

tracking system could track the most portion of the sigmoid(top row) and descending

colons(bottom row), as illustrated in Fig. 7.1. There are several blurry image se-

quences in these two examples, and my tracking system can recover from these blurry

interruptions and achieve accurate co-alignment of optical colonoscopy(OC) and vir-

tual colonoscopy(VC) images. In the descending colonoscopy image sequence, both

OC and VC reach the same fold; in the sigmoid colonoscopy image sequence, the polyp

enclosed by green circles appears in both OC and VC images. These results show

that the ultimate goal of tracking an entire colonoscopy sequence, is solvable in the
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future, through combining the proposed tracking system with manual reinitialization,

plus strategies to recover from tracking failures.

(a) (b)

(c) (d)

Figure 7.1: Tracking results of the descending and sigmoid colonoscopy image se-
quences. (a,b) tracking results in the descending colon; (c,d) the sigmoid colon. (a,c)
the first co-aligned OC(top left image) and VC(bottom left image) images, as well as
external view(right image); (b,d) the last co-aligned OC and VC images. My tracking
algorithm can track the most portion of the descending colon(top row) and sigmoid
colon(bottom row). Important features, the polyp, have been highlighted by green
circles.

Chapters 4 through 6 presented my contributions to this dissertation work. In

chapter 4, I described the problem of tracking consecutive optical colonoscopy im-

ages. I presented a colonoscopy tracking algorithm that combines sparse and dense

optical flows. I then introduced a multi-scale optical flow algorithm to accurately
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compute visual motion from consecutive colonoscopy images. I developed an FOE-

based egomotion estimation strategy to compute camera motion parameters. Finally,

I used both phantom and clinical experiments to validate the proposed multi-scale

optical flow and the FOE-based egomotion estimation methods.

In Chapter 5, I described the problem of estimating large motion to continu-

ously co-align OC and VC images when blurry images appear. I then presented an

estimation algorithm which uses region flow computation and incremental egomo-

tion estimation. Region flow densely matched all possible region pairs between two

colonoscopy images interrupted by blurry images, and it measured significant image

displacements. Accurate SIFT feature correspondences are generated by exploiting

estimated image displacements to limit the search space of SIFT feature matching.

Incremental egomotion estimation made use of SIFT feature correspondences to es-

timate large camera motion between the selected image pair. SIFT feature corre-

spondences were integrated into a PDE-based scheme and artificially subdivided into

a sequence of small optical flow fields. Small optical flow fields were employed to

estimate camera motion parameters. Large camera motion can thus be incrementally

recovered by accumulating all camera motion parameters. Continuous co-alignment

of OC and VC images could be addressed by using substantial camera motion param-

eters to guide the virtual camera. Finally, I presented phantom validation as well as

clinical demonstration of the proposed large motion estimation method.

In Chapter 6, I developed an enhancement to the region flow techniques in chap-

ter 5, involving selection of an optimal image pair from before and after the blurry

image sequence. This enhancement involves calculating temporal volume flow and

using it to search for an image pair with sufficient similarity. I provided several

examples demonstrating the effectiveness of this technique.

In the next part of this chapter, I discuss the results and challenges of my contri-

butions and then conclude with areas for future work.
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7.1 Discussion

In this section, I discuss the results and challenges of my work. My contributions

are represented as a three-level visual motion processing framework, described in

chapter 4 through 6. They include tracking of consecutive colonoscopy images based

on multi-scale optical flow; large motion estimation based on region flow; and image

pair search using temporal volume flow(TVF).

7.1.1 Results and Challenges of Multi-scale Optical Flow

Chapter 4 concentrates on the tracking of consecutive colonoscopy images, yield-

ing two main contributions. The first contribution is multi-scale optical flow com-

putation. A multi-scale selection strategy determines the optimized spatial-temporal

scales, for sparse and dense optical flow computation. Sparse and dense optical flows

can be computed accurately because spatial-temporal derivatives are calculated us-

ing the optimized scales. Another contribution is the determination of the FOE and

its usage to sequentially compute the parameters of camera rotation and transla-

tion. Computations are stable because the FOE has the most stable camera motion

information in the optical flow field.

Efficacy of the proposed colonoscopy tracking framework was demonstrated on

both phantom and clinical colonoscopy image sequences. Straight and curved phan-

tom image sequences were used to validate statistically the accuracy of tracking.

Average estimated velocity error is less than 3mm/sec on the original and calibrated

phantom image sequences at speeds of 10mm/sec, 15mm/sec, and 20mm/sec. Av-

erage displacement error is less than 7mm as opposed to 288mm, the actual trans-

lation distance of the colonoscope in the straight phantom, and 7mm as opposed to

286.56mm in the curved phantom. Several OC image sequences were used to demon-

strate that the tracking algorithm based on optical flow was insensitive to the issues
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of local deformation, artifacts, polyp removal, and multi-object motion.

However, there are several problems that limit the applicability of the algorithm

to real-world clinical settings. First, the search for optimized spatial-temporal scales

is a time-consuming process. The construction of a multi-scale image representa-

tion involves smoothing an image sequence several times by the Gaussian function.

Therefore, the computational time of the tracking algorithm is 4sec/frame, while

the actual application requires the tracking time be at least 1
30
sec/frame. The com-

putational cost must be reduced to fulfill the actual clinical requirements. Graphics

processing unit(GPU) computing[152] and program optimization are two approaches

that could accelerate the computation. Second, there is no metric to measure and

control the accumulated tracking errors. As the errors accumulate, OC and VC im-

ages will vary significantly, causing a tracking failure. The third issue is that the

first OC and VC images require manual co-alignment in order to start the tracking

pipeline. However, manual co-alignment depends highly on the user’s expertise. And

the search for VC images to match with an OC image is nontrivial, because of shape

variance between the real and virtual colons. Fourth, although insensitive to local

deformation, the tracking algorithm is still sensitive to large deformation, such as

stretching of the colon by a colonoscope. Resulting differences between the virtual

and real colons cause the OC and VC images to be quite different, even if camera

motion parameters are accurately estimated. Finally, the tracking algorithm needs a

more realistic phantom to evaluate the accuracy, compared to simple Lego models.

7.1.2 Results and Challenges of Region Flow

Large motion caused by the appearance of blurry images is investigated in chap-

ter 5. Similar to chapter 4, the main contributions can be summarized in two parts.

The first contribution is the use of region flow to estimate visual motion. Because

colonoscopy images fail to produce distinctive feature descriptors, many false feature
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matches are generated. Region flow is developed by using a robust region descriptor to

estimate all possible pixel shifts between colonoscopy images interrupted by a blurry

sequence. It predefines sparse feature matching ranges, with significant improvement

in the resulting accuracy. The second contribution is incremental egomotion esti-

mation to compute large camera motion. The essential idea is the subdivision of

large visual motion into a sequence of small optical flow fields, then incrementally

recovering camera motion from optical flow fields.

Region flow method has been evaluated on both phantom and clinical colonoscopy

image sequences. Straight and curved phantom image sequences, used in chapter 4,

were again exploited to statistically evaluate accuracy of large motion estimation.

Average velocity error is 3mm of 16mm traveled between two consecutive images in

the straight phantom and also 3mm of 23.88mm traveled in the curved phantom. If

the colonoscope is displaced at the the speed of 10mm/second, the proposed strategy

can accurately estimate large camera motion less than 12.6% relative error after

excluding 72 blurry images. The region flow technique is combined with multi-scale

optical flow to successfully track different colon segments and across multiple blurry

images.

Unfortunately, like the tracking of consecutive images, the region flow technique

cannot estimate large motion in real-time. It takes about 2 minutes, which is far be-

hind the needed real-time performance. It is still difficult to measure the accumulated

tracking errors caused by region flow method. It is also difficult to propose a metric to

compensate for tracking errors. Finally, significant colon deformation affects region

flow method because of shape differences between the actual and virtual colons. For

example, there may be a sharp turn in the virtual colon, but it may be deformed into

a straight segment in the actual colon, due to insertion of the colonoscope. If camera

motion parameters from optical images are used to directly drive the virtual camera,

without accounting for deformation, then the virtual camera might jump out of the



186

virtual colon and result in tracking failure.

7.1.3 Results and Challenges of Temporal Volume Flow

In chapter 6, a TVF method was proposed by extending the intensity and gradient

constancy models, used in optical flow computation, for use in the spatial-temporal

domain and by integrating them into a variational function. A variational function

was numerically computed by exploiting sequential linearization and multi-resolution

temporal volume pyramids, which generates an accurate TVF. Temporal coherence

was measured by counting the number of voxel correspondences connected by TVF

vectors. An image pair with sufficient similarity was defined as two images with

the maximum number of voxel correspondences. This intelligent image pair selection

greatly enhanced region flow based large motion estimation.

Because the colonoscope’s motion is unknown in OC images, the TVF algorithm

was validated by visually inspecting the similarity of co-aligned OC and VC image

pairs, with and without the TVF strategy. Three colonoscopy image sequences having

blurry images were used to demonstrate accuracy and robustness of large motion

estimation. Two image sequences demonstrated that the accuracy was improved

using the TVF algorithm. The co-aligned OC and VC images were more similar than

when not using TVF. The third image sequence showed that TVF also enhanced

stability of large motion estimation. The original region flow algorithm had failed if

two images were randomly selected.

However, like other techniques, the TVF calculation is computationally intensive,

requiring approximately 2 minute to complete. The biggest challenge in validating the

TVF technique was that quantifiable metrics were difficult to develop, for objectively

confirmation that the optimal image pair was selected. It was necessary to inspect

visually the selected image pair.
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7.2 Future Work

In the previous sections, I highlighted several challenges and limitations of my

contributions. In this section, I will point out areas of future work to address them.

Furthermore, I will discuss ways to generalize the results of my work.

Computational issue: The current tracking system cannot achieve real-time per-

formance, especially when estimating large motion during blurry image interruption.

There are two possible approaches to enhance performance. First, the current imple-

mentation should be optimized. All computations were performed in C++ on Linux,

using ITK[235] and VTK[189] for image/volume processing and visualization. All

these packages are good for algorithm development, but not optimized for software

application. The performance of colonoscopy tracking can be improved by optimiz-

ing codes especially for colonoscopy tracking. Second, GPU computing[152] can be

investigated to accelerate colonoscopy tracking.

Accumulated tracking errors: In this dissertation, I have not yet designed a

metric to measure accumulated tracking errors of the tracking system. The accumu-

lated errors are represented as the visual difference between co-aligned OC and VC

images. Measuring the visual difference is a critical step in compensating for accumu-

lated tracking errors. However, the current tracking system is able only to estimate

camera motion parameters from the OC video stream, to drive the virtual camera

and to co-align OC and VC images. A feedback strategy is needed to evaluate the

difference between OC and VC images, so as to reduce accumulated tracking errors.

Matching OC and VC images can serve this purpose. We need to find some

common attributes between OC and VC images and design a metric based on these

attributes to measure image variance. There are two possible attribute candidates.

One is the gradient distribution, which allows distinguishing between fold and non-fold

image regions. The other is the depth value. Here, depth values of OC images can be
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estimated though structure-from-motion techniques. Depth values of virtual images

can be obtained from the Z-buffer of graphics cards. Consequently, the similarity

between OC and VC images can be measured by comparing these two properties.

Manual alignment: The current tracking system assumes that the first OC image

has been well co-aligned with a corresponding VC image. This manual adjustment

severely limits its use in clinical applications. Automatic co-alignment of OC and VC

images is critical in a clinical application.

Matching OC and VC images can also achieve this purpose. OC always starts

from the cecum colon, which reduces the possible search space when performing

image matching. Another solution is based on an external device. For example,

careful location of the magnetic sensors can help reduce uncertainty of the VC camera

location during image matching.

Colon deformation: Colon deformation is the main challenge that hinders the

development of tracking OC images. A potential strategy is to reconstruct the tra-

jectory of the OC camera, and to match this trajectory with local centerline segments

in the VC, to understand the extent of deformation. Shape difference between real

and virtual colons can therefore be measured and used to reduce the tracking errors.

Magnetic sensors can serve this purpose. We can bind multiple sensors with the

colonoscope, and all these sensors would report the location information in real-time.

Using a B-spline to fit the location information produces a profile of the colonoscope’s

movement. Assuming this profile is near the colon’s centerline, it can be compared

with the local centerline of a VC model to measure shape difference. After shape

difference is accounted for, OC and VC image matching can be used to refine the OC

and VC image co-alignment.

Realistic phantom design: The current phantom based on Lego bricks can pro-

duce accurate ground-truth values in the case of rigid motion. However, the colon is
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a non-rigid organ. Therefore, a more realistic phantom should be designed, capable

of undergoing deformation.

Quantifiable metrics for validating the search for an image pair: An image

pair selected by TVF was validated by visual inspection in chapter 6. A quantifiable

metric is needed to measure the selection results. There are two possible approaches to

develop such a quantifiable metric. One strategy is to randomly select several pairs

of temporal volumes. Then the most similar image pairs will be manually chosen

from corresponding temporal volume pairs. These manually selected image pairs are

used as the ground-truth. Next, the TVF algorithm is performed on these temporal

volumes to select the image pairs. The comparison between the two sets of image

pairs can be used to validate the image pair search.

An alternative approach is based on machine learning techniques[16], automati-

cally analyzing the selected image pairs from the TVF algorithm. First, I select a set

of temporal volume pairs as the training datasets. The TVF algorithm is performed

on the training datasets to select a set of image pairs. Then SIFT feature correspon-

dences are built on these selected image pairs, by using the region flow algorithm

described in chapter 5. A good image pair contains a large amount of SIFT feature

correspondences. Therefore, the evaluation of an image pair is equivalent to assess

SIFT feature correspondences. A function that measures the number of accurate

SIFT feature correspondences can be constructed[157]. The parameters of this func-

tion are determined by using machine learning techniques on the training datasets.

After the parameters of the function are known, the image selection results can thus

be automatically evaluated.

Generalization of the colonoscopy tracking system: Another important as-

pect of future work is to broaden the proposed colonoscopy tracking framework. For

instance, multi-scale optical flow computation and FOE-based egomotion estimation

can be used in many navigation applications. Examples include city and building nav-
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igation and unmanned vehicle navigation. Both phantom and clinical experiments

demonstrate that this egomotion estimation strategy can accurately estimate camera

motion by using a simplified virtual model. This requirement can be easily fulfilled by

using virtual building models in Google Earth. This technique can also be combined

with GPS systems to enhance navigation accuracy.

Wide-baseline image matching[155, 147, 215] is an ad-hoc topic in the computer

vision field. Traditional computer vision tasks, such as structure-from-motion[38], re-

quire many images to understand the current scene. These tasks now need only a few

high-quality images, thanks to improvements in imaging devices. Most proposed al-

gorithms are focusing on the development of robust feature descriptors, to avoid false

feature matches. But many false feature matches still exist if the current image does

not contain dominant feature points. The region flow algorithm concentrates on im-

proving another important factor that affects feature matching accuracy—matching

size. Based on my study in chapter 5, predefined matching size from region flow

calculation can significantly improve accuracy of feature matching, even though the

response of feature descriptors is indistinct. The application of region flow can im-

prove feature matching accuracy on other types of images, such as natural images.

TVF has potential application to medical volume registration, because it estimates

all voxel shifts. One important task in medical image analysis is the comparison

between two CT volumes captured at different periods. These two CT volumes can

be considered as two temporal volumes, and TVF can be applied to measure relative

voxel movements between these two volumes. Thus, the progression of disease areas

in CT data can be analyzed in terms of TVF vectors.
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APPENDIX A: CALCULUS OF VARIATIONS

Here, I describe the minimization of variational function through calculus of vari-

ations. Consider the following energy function,

E(−→u (p)) =

∫
Ω

( M(DkF,−→u )︸ ︷︷ ︸
Data constraint

+ αS(∇F,∇−→u )︸ ︷︷ ︸
Smoothness constraint

)dp (A.1)

where p = (x1, x2, · · · , xn) denotes a n-coordinate point and −→u = (u1, u2, · · · , um)

is a m-tuple to be estimated. Assume DkF is the set of all partial derivatives of F

of order k. M(DkF,−→u ) is a data assumption and S(∇F,∇−→u ) is a data smoothness

constraint. α is a constant to balance data and smoothness terms.

Let me simplify Eq. A.1 into

E(y(x)) =

∫ b

a

F (x, y(x), y′(x))dx (A.2)

and derive its Euler-Lagrange equations to really understand the property of min-

imization through calculus of variations. Here, the end points y(x0) = y0 and

y(x1) = y1 of admissible curves are fixed. Assuming that an extremum occurs along

a curve y = y(x), we take any admissible curve y = y∗(x), neighboring to y = y(x),

and set up a one-parameter family of curves

y(x, α) = y(x) + α(y∗(x)− y(x))

δy = y∗(x)− y(x)

(δy)′ = y∗′(x)− y′(x) = δy′

Assume

E(y(x, α)) = ϕ(α) (A.3)



211

we have

ϕ′(0) = 0 (A.4)

Since

ϕ(α) =

∫ x1

x0

F (x, y(x, α), y′(x, α))dx (A.5)

we have

ϕ′(α) =

∫ x1

x0

[∂yF∂αy(x, α) + ∂y′F∂αy
′(x, α)] dx (A.6)

where

∂yF =
∂

∂y
F (x, y(x, α), y′(x, α))

∂y′F =
∂

∂y′
F (x, y(x, α), y′(x, α))

(A.7)

Because of the relations

∂αy(x, α) =
∂

∂α
(y(x) + αδy) = δy

∂αy
′(x, α) =

∂

∂α
(y′(x) + αδy′) = δy′

(A.8)

it follows that

ϕ′(α) =

∫ x1

x0

[∂yF (x, y(x, α), y′(x, α))δy + ∂y′F (x, y(x, α), y′(x, α))δy′] dx

ϕ′(0) =

∫ x1

x0

[∂yF (x, y(x), y′(x))δy + ∂y′F (x, y(x), y′(x))δy′] dx

(A.9)

The condition of the extremum is therefore

∫ x1

x0

(∂yFδy + ∂y′Fδy
′)dx = 0 (A.10)
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As δy′ = (δy)′, we have

δE = [∂y′Fδy]x1
x0

+

∫ x1

x0

(∂yF −
d

dx
∂y′F )δydx (A.11)

Because

δy|x=x0 = y∗(x0)− y(x0) = 0

δy|x=x1 = y∗(x1)− y(x1) = 0

(A.12)

we can obtain

δE =

∫ x1

x0

(∂yF −
d

dx
∂y′F )δydx (A.13)

Therefore, the necessary condition for an extremum takes the following form

∫ x1

x0

(∂yF −
d

dx
∂y′F )δydx = 0 (A.14)

As δy ≡ 0 only occurs in the boundary points in Eq. A.12,

∂yF −
d

dx
∂y′F = 0 (A.15)

This is the Euler-Lagrange equation of Eq. A.2. High order energy function can be

derived based on the same procedure.
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APPENDIX B: LINEAR ISOTROPIC SCALE SPACE

This appendix describes some important properties of linear isotropic scale space.

They are important for early computer vision problems. Linear isotropic scale space

is defined as

L(p; τ) = I(p) ∗G(p;σ2) (B.1)

where p = (x1, x2, · · · , xn) denotes a n-coordinate point. Linear isotropic scale space

has several useful properties.

Causality: No new level surfaces are created when the scale parameter σ2 is in-

creased.

Isotropy and Homogeneity: Spatial positions and scale levels can be treated in

a similar manner.

Semi-group:

G(·;σ2
1) ∗G(·;σ2

2) ∗ I(·) = G(·;σ2
1 + σ2

2) ∗ I(·) (B.2)

Scaling:

L(p;σ2) = L̃(sp; s2σ2) (B.3)

L̃(sp; s2σ2) = Ĩ(sp) ∗G(sp; s2σ2), Ĩ(sp) = I(p)

Semi-group and scaling properties express that scale response L(p;σ2) is linearly

dependent on the scale parameter σ2. Thus, the Gaussian scale space is also called

linear scale space.

Commutative:

(
∂nI

∂xn
) ∗G =

∂n(I ∗G)

∂xn
= (

∂nG

∂xn
) ∗ I (B.4)
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Instead of computing derivatives of a possibly discontinuous I, we can differenti-

ate the continuous Gaussian function and convolve I by the Gaussian derivative.

The semi-group property is reformulated as

∂mG(·;σ2
1)

∂xm
∗ ∂

nG(·;σ2
2)

∂yn
∗ I(·) =

∂n+mG(·;σ2
1 + σ2

2)

∂xm∂yn
∗ I(·), (B.5)

and the scaling property

∂nL(p;σ2)

∂xn
= sn

∂nL̃(p̃; σ̃2)

∂x̃n
(B.6)

p̃ = sp, σ̃ = sσ

where n, m denote the order of differentiation. As we can see, the scaling

property for scale-space derivatives of Eq. B.6 differs from Eq. B.3 by a factor

sn in the amplitude.

Scale-normalized derivative operators: In order to compensate for this varia-

tion, Lindeberg[135] introduce dimensionless coordinates p̄ = (x̄1, x̄2, · · · , x̄n)

and q̄ = (ȳ1, ȳ2, · · · , ȳn)

x̄1 = x1/σ, · · · x̄n = xn/σ,

ȳ1 = x̃1/σ̃, · · · ȳn = x̃n/σ̃

(B.7)

and correspondingly

∂x̄m1 = σm∂xm1 , · · · , ∂x̄mn = σm∂xmn ,

∂ȳm1 = σ̃m∂x̃m1 , · · · , ∂ȳmn = σ̃m∂x̃mn

(B.8)

The scaling property of scale-space derivatives is thereby exactly the same as
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the scaling property of the scale-space representation L.

∂x̄m1 L(p;σ) = ∂ȳm1 L̃(p̃; σ̃), · · · , ∂x̄mn L(p;σ) = ∂ȳmn L̃(p̃; σ̃) (B.9)
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APPENDIX C: NONLINEAR ANISOTROPIC SCALE SPACE

In order to better retain local image structures, anisotropic Gaussian scale space

is used to detect image features. The scale parameter Σ should be related to the

anisotropy of the local image structure. In the two dimensional image domain, the

anisotropy is measured in terms of the structure tensor J(x, y; Σs,Σw)[138, 226].

J(·; Σs,Σw) = G(·; Σw) ∗ (∇L⊗∇L) = G(·; Σs) ∗ (∇L∇LT )

=

∫∫
(ξ,ζ)∈R2

(∇L(ξ, ζ; Σs))(∇L(ξ, ζ; Σs))
TG(x− ξ, y − ζ; Σw)dξdζ

=

∫∫
(ξ,ζ)∈R2

 (∂ξL)2 (∂ξL)(∂ζL)

(∂ξL)(∂ζL) (∂ζL)2

G(x− ξ, y − ζ; Σw)dξdζ

(C.1)

The gradient derivatives are smoothed by a Gaussian function with a local spatial

scale Σs (derivative scale). All derivatives are also averaged in a neighborhood by a

Gaussian window function with variance Σw (integration scale).

An important property of anisotropic-Gaussian scale space is the commutative

property. Let IL, IR : R2 → R denote two intensity patterns related by an invertible

linear transformation q = Bp, i.e.,

IL(p) = IR(Bp) (C.2)

and define the anisotropic-Gaussian scale-space representations by

L(·; ΣL) = G(·; ΣL) ∗ IL(·) (C.3)

R(·; ΣR) = G(·; ΣR) ∗ IR(·) (C.4)

where ΣL,ΣR are symmetric positive semi-definite matrices. Then L and R are
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related by

L(p; ΣL) = R(q; ΣR) (C.5)

where

ΣR = BΣLBT (C.6)

Hence, for any matrix ΣL there exists a matrix ΣR such that anisotropic-Gaussian

scale-space representations of IL and IR are equal. Structure tensors JL and JR are

related according to Eq. C.6

JR(q; ΣR
s ,Σ

R
w) = BJL(p; ΣL

s ,Σ
L
w)BT (C.7)

The deduction details of Eq. C.7 can be referred to in Lindeberg’s work[135, 138].

However, it is difficult to construct anisotropic-Gaussian scale space by convolving

anisotropic Gaussian function with an image using Eq. 3.8. An alternative method

is to first remove image’s affinities by transforming an original image into a normal-

ized image. Linear Gaussian function is then executed on the normalized image to

achieve the same purpose. This property is very useful and has been used in many

applications, such as corner detection[11, 155, 156] and shape from shading[138]. Let

me mathematically derive this transformation process. Assume

ΣL
s = σ2

sJ
−1
L ΣL

w = σ2
wJ−1

L (C.8)

where the scalars σ2
s and σ2

w are differentiation and integration constants, respectively.

ΣR
s = BΣL

s BT = σ2
s(BJ−1

L BT) = σ2
s(B

−TJLB−1)−1 = σ2
sJ
−1
R

ΣR
w = BΣL

wBT = σ2
w(BJ−1

L BT) = σ2
w(B−TJLB−1)−1 = σ2

wJ−1
R

(C.9)

We can obtain,

J−1
R = BJ−1

L BT =⇒ B = J
−1/2
R MJ

1/2
L (C.10)
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where M is an arbitrary rotation matrix. We can derive

q = Bp = J
−1/2
R MJ

1/2
L p

⇒J
1/2
R q = MJ

1/2
L p

(C.11)
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APPENDIX D: EGOMOTION ESTIMATION SENSITIVITY

In this appendix I analyze the stability of egomotion estimation approach that si-

multaneously computes camera translation and rotation velocities. Bruss and Horn’s

method was considered to be one of the superior methods[209] for egomotion esti-

mation if optical flow is accurately estimated; it is a typically representative ego-

motion estimation method that minimizes estimated optical flow and visual motion

flow to simultaneously estimate camera translation and rotation parameters, as ex-

pressed in Eq. 3.27. Its computation is independent on Focus of Expansion(FOE).

I reimplemented this algorithm in C++ with the help of Matlab codes provided by

Heeger[209].1 I compared my FOE based approach to this method. Fig. D.1 il-

lustrates the application of both methods on a 750 frame virtual colonoscopy (CT)

image sequence. Because the actual camera motion parameters are known in this VC

sequence, the sensitivity of this non-FOE method can be quantitatively analyzed by

comparing estimated and known camera motion parameters. It can be seen that the

first 127 frames produce very little error. After 127 frames, the error starts increasing

(magenta curve) to about 80mm at the end of the sequence, while the error using my

method (blue curve) remains at around 10mm. The first 150 VC images are chosen

to perform error analysis. Fig. D.2a shows the absolute translation error with respect

to X, Y, and Z axes in the world coordinate. Camera translation error is significantly

large at point A (frame 129), which means that the non-FOE based method is very

sensitive to optical flow errors.

Let me mathematically analyze the difficulties of Bruss and Horn’s method in

estimating camera motion parameters. Basically, their method attempts to esti-

mate camera motion parameters in a 6 × 6 linear system, A−→x =
−→
b , where −→x =

1http://www.cns.nyu.edu/heegerlab/index.php?page=software&id=egomotionalgo

http://www.cns.nyu.edu/heegerlab/index.php?page=software&id=egomotionalgo
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Figure D.1: Comparison to Bruss and Horn’s method on a 750 frame virtual
colonoscopy sequence. Absolute error along Z axis. My method results in an ac-
cumulated error of about 10mm, while Horn’s method is nearly 80mm.

(TX , TY , TZ , RX , RY , RZ). The estimation errors can be modeled as

A−→x =
−→
b +
−→
δ (D.1)

where
−→
δ is a perturbation vector. In terms of matrix perturbation theory[201, 42],

the bound of the relative error is

1

n
κ(A)

‖
−→
b ‖

‖A‖‖−→x ‖
εbµ ≤

‖x−−→x ‖
‖−→x ‖

≤
√
nκ(A)

‖
−→
b ‖

‖A‖‖−→x ‖
εb (D.2)

where κ(A) is the condition number and εb = ‖
−→
δ ‖/‖

−→
b ‖. x is the estimated value

of −→x . Assume A−1 = (−→r 1 . . .
−→r n) and ψi is the angle between −→r i and

−→
δ , then

µ = maxi{‖−→r i‖|cosψi|}
maxk ‖−→r k‖

.

Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of A, the lower bound of Eq. D.2 can

be converted into

1

n
κ(A)

‖
−→
b ‖

‖A‖‖−→x ‖
εbµ =

1

n

|λn|
|λ1|

‖
−→
b ‖

|λn|‖−→x ‖
εbµ =

1

n

µ

|λ1|
‖
−→
b ‖
‖−→x ‖

εb
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(a)

(b)

Figure D.2: Relationship between absolute translation errors and the sensitivity mea-
surement ζ = µ

|λ1| of the estimation system. (a) The absolute estimated translation

errors of 150 frames of a CT colonoscopy sequence. (b) Corresponding sensitivity
measurement .

as κ(A) = |λn|
|λ1| and ‖A‖ = |λn|[201]. ‖

−→
b ‖
‖−→x ‖ can be treated as a constant since −→x and

−→
b are the actual input and output signals, and do not affect the estimation process.

εb relies on the measured signal and the output signal. Therefore, ζ = µ
|λ1| is solely

related to the linear system. If it is stable, the estimated error will be small even if
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the perturbation ratio εb is high. Fig. D.2 shows the relationship between the absolute

translation error of the selected VC image sequence and ζ. Large translation errors

are seen in X and Z on the frames close to the point marked A because λ1 ≈ 3×10−4.

λ1 increases the lower bound, although εb = 0.31 is small. At the point B, a small

error along Y-axis is due to the perturbation error, εb = 0.85 and ζ = 89. Although it

might be possible to model the optical flow estimation error, it is considerably harder

to model ζ. ζ is challenging to model because it is dependent on the distribution of

the feature points as well as the relationship between the perturbation vector and the

estimation matrix. In addition, the perturbation effect is difficult to predict, as seen

in point C, where the X translation error initially increases, then decreases near B.



223

APPENDIX E: LMS BASED EGOMOTION ESTIMATION

Here, I describe the least median of squares(LMS) estimator to estimate camera

translation and rotation parameters. Let me first introduce some basic concepts

of LMS estimation, as described in Rousseeuw[185]. The classical linear model is

represented as

yi = xi1θ1 + · · ·+ xipθp + ei for i = 1, . . . ,m, (E.1)

where m is the sample size. The variables xi1, . . . , xip are called the explanatory

variables, whereas the variable yi is called the response variable. ei is the error term

when a normal distribution is assumed. The aim of linear regression is to estimate

θ = [θ1, · · · , θp]T . Applying a regression technique like the least sum of squares to

yield θ̂ = [θ̂1, · · · , θ̂p]T , the following formula can be obtained

ŷi = xi1θ̂1 + · · ·+ xipθ̂p, (E.2)

The residual ri of the ith case is the difference between what is actually observed and

what is estimated:

ri = yi − ŷi (E.3)

In terms of Eq. E.3, the LMS is defined as

min
θ̂

medir
2
i (E.4)

Next, I elaborate the application of the LMS estimator to compute camera rotation

parameters. It consists of 6 steps:

1. Randomly choose three linear equations from Eq. 4.16 to compute rotation

parameters,
−→
R .

2. Substitute
−→
R for Eq. 4.16 and determine the median of the squared residuals,
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Mk, where k is the current iteration number.

Mk = medi∈[1,n](r
R
i )2 (E.5)

n is the number of sparse optical flow vectors, and residual rRi is the difference

between what is actually observed and what is estimated in ith equation of

Eq. 4.16.

3. Iterate previous two steps K times until all possible input data distributions are

investigated and choose the minimum Mk, k ∈ (1,K). Report the corresponding

rotation,
−→
R .

4. Compute the scale of the minimum residual[185] as

s = 1.4826(1 +
5

n− 3
)
√

min−→
R

medi(rRi )2 (E.6)

where 1/Φ−1(0.75) ≈ 1.4826 is an asymptotic correction factor for the case of

normal errors. Φ denotes the cumulative distribution function of the standard

normal distribution. More details can be found in Rousseeuw[184, 185].

5. The residuals are next normalized, (rRi )/s, and used to weight the ith observa-

tion,

wi =


1 if |rRi | ≤ 2.5|s|

0 otherwise

(E.7)

6. The final rotation parameters
−→
R can be recomputed according to reweighed

least squares (RLS) regression.

min−→
R

n∑
i=1

wi(r
R
i )2 (E.8)
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LMS estimator is also used in the camera translation computation. Camera trans-

lation estimation is similar to camera rotation computation, except that the squared

residual (rTi )2 is not from a single equation but from the sum of the residuals resulting

from three equations in each group in Eq. 4.18. Assuming T̂ = (T̂X , T̂Y , T̂Z) be the

estimated translation velocities at a particular iteration, then (rTi )2 is given by

(rTi )2 = (uxi − uRxi − (− 1

Zi
T̂X +

xi
Zi
T̂Z))2 + (uyi − uRyi − (− 1

Zi
T̂Y +

yi
Zi
T̂Z))2

+ (xi(uxi − uRxi + yi(uyi − uRyi)− (−xi
Zi
T̂X −

yi
Zi
T̂Y +

x2
i + y2

i

Zi
T̂Z))2

(E.9)
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APPENDIX F: CAMERA TRANSFORMATION MATRIX

This appendix derives the mathematical relationship between camera translation

velocity in the camera coordinate and world coordinate systems. Let
−→
T be the velocity

in camera coordinate and
−→
T W in world coordinate. It consists of sequential rotations

around X, Y , and Z axes. Assuming the camera orientation at t is Θ = (ΘX ,ΘY ,ΘZ),

MT =


1 0 0

0 C(ΘX) −S(ΘX)

0 −S(ΘX) C(ΘX)




C(ΘY ) 0 S(ΘY )

0 1 0

−S(ΘY ) 0 C(ΘY )



C(ΘZ) −S(ΘZ) 0

S(ΘZ) C(ΘZ) 0

0 0 1


(F.1)

where C = cos and, S = sin.

The transformation between camera rotation velocities
−→
R and

−→
RW can be per-

formed by first align Z axis of both camera and world coordinates followed by rotating

the XY plane.

−→
RW =


C(ΘZ) S(ΘZ) 0

−S(ΘZ) C(ΘZ) 0

0 0 1



C(ΘY ) 0 −S(ΘY )

0 1 0

S(ΘY ) 0 C(ΘY )



RX

0

0



+


C(ΘZ) S(ΘZ) 0

−S(ΘZ) C(ΘZ) 0

0 0 1




0

RY

0

+


0

0

RZ



=


C(ΘY )C(ΘZ) S(ΘZ) 0

−C(ΘY )S(ΘZ) C(ΘZ) 0

S(ΘY ) 0 1



RX

RY

RZ



(F.2)
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Thus,

MR =


C(ΘY )C(ΘZ) S(ΘZ) 0

−C(ΘY )S(ΘZ) C(ΘZ) 0

S(ΘY ) 0 1

 (F.3)
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APPENDIX G: EGOMOTION ESTIMATION CONDITION

Here, I derive the equation relating egomotion and optical flow, and analyze why

egomotion estimation fails in the case of significant camera motion.

Assume an instantaneous point P = (X, Y, Z) in the camera coordinate. Because

of camera motion, this point moves into P1 = (X1, Y1, Z1). So the 3D rigid motion

of P can be represented as


X1

Y1

Z1

 = M


X

Y

Z

−−→T = MZMY MX


X

Y

Z

−−→T (G.1)

Where MX ,MY and MZ are rotation matrices around X−, Y− and Z− axes. The

rotation matrix M is defined as

26664
C(RY )C(RZ) S(RX)S(RY )C(RZ) + C(RX)S(RZ) −C(RX)S(RY )C(RZ) + S(RX)S(RZ)

−C(RY )S(RZ) −S(RX)S(RY )S(RZ) + C(RX)C(RZ) C(RX)S(RY )S(RZ) + S(RX)C(RZ)

S(RY ) −S(RX)C(RY ) C(RX)C(RY )

37775 (G.2)

Here, C(θ) = cos(θ) and S(θ) = sin(θ).

If θ is small (usually less than 100), then cos(θ) ≈ 1 and sin(θ) ≈ θ. Simulta-

neously, I disregarded the higher order terms in Eq. G.1 and derived the following

equation.
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X1

Y1

Z1

 ≈


1 RZ −RY

−RZ 1 RX

RY −RX 1



X

Y

Z

−

TX

TY

TZ



=




0 RZ −RY

−RZ 0 RX

RY −RX 0

+


1 0 0

0 1 0

0 0 1




X

Y

Z

−

TX

TY

TZ


Then the velocity

−→
V of the object point P with respect to the X, Y, Z coordinates

is

−→
V =


X1 −X

Y1 − Y

Z1 − Z

 =


0 RZ −RY

−RZ 0 RX

RY −RX 0



X

Y

Z

−

TX

TY

TZ

 = −
−→
T −

−→
R ×P

(G.3)

Rewrite Eq. G.3 in the component form:

X ′ = −TX −RYZ +RZY

Y ′ = −TY −RZX +RXZ

Z ′ = −TZ −RXY +RYX

(G.4)

Let p = (x, y) denote the coordinate of a projection point of P in the image plane.

Their spatial relationship is

x = f
X

Z
, y = f

Y

Z
(G.5)

where f is the focal length. Differentiating Eq. G.5 with respect to time and using
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Eq. G.4, a visual motion vector, denoted by −→v = (vx, vy), at p is given by

vx = x′ = f(
X
′

Z
− XZ

′

Z2
) =
−TXf + TZx

Z
+RX

xy

f
−RY (f +

x2

f
) +RZy

vy = y′ = f(
Y
′

Z
− Y Z

′

Z2
) =
−TY f + TZy

Z
+RX(f +

y2

f
)−RY

xy

f
−RZx

(G.6)

This derivation clearly illustrates that the geometrical representation of visual

motion flow has been greatly simplified. The accuracy of this equation is governed

by the amount of translation and rotation velocities. The smaller the camera mo-

tion, the less the simulation error. Because camera motion is usually small in the

case of consecutive frames, egomotion estimation generates accurate results based on

Eq. G.6. Unfortunately, significant visual motion selected from region flow gener-

ates substantial camera motion, and Eq. G.6 is being violated. It causes significant

estimation errors.
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APPENDIX H: SEQUENTIAL LINEARIZATION

In this appendix, I will discuss sequential linearization used in incremental ego-

motion estimation as well as temporal volume flow computation.

H.1 Sequential Linearization in Incremental Egomotion Estimation

After removing the SIFT constraint found in Eq. 5.11, let me rewrite the energy

function.

E(ux, uy) =

∫∫
Ψ((I(x+ ux, y + uy, t+ 1)− I(x, y, t))2)︸ ︷︷ ︸

Intensity constraint

+ γΨ((∇I(x+ ux, y + uy, t+ 1)−∇I(x, y, t))2)︸ ︷︷ ︸
Gradient constraint

+ αΨ((∇ux)2 + (∇uy)2) + βΨ(|ux − gx|2 + |uy − gy|2)︸ ︷︷ ︸
Smoothness constraint

dxdy

(H.1)

The Euler-Lagrane equations for Eq. H.1, with respect to −→u , read

Ψ′((∂tI)2)∂tI∂xI + γΨ′((∂xtI)2 + (∂ytI)2)(∂xxI∂xtI + ∂xyI∂ytI)

+ βΨ′(|ux − gx|2 + |uy − gy|2)(ux − gx)− αdiv(Ψ′(|∇ux|2 + |∇uy|2)∇ux) = 0

Ψ′((∂tI)2)∂tI∂yI + γΨ′((∂xtI)2 + (∂ytI)2)(∂xyI∂xtI + ∂yyI∂ytI)

+ βΨ′(|ux − gx|2 + |uy − gy|2)(uy − gy)− αdiv(Ψ′(|∇ux|2 + |∇uy|2)∇uy) = 0 (H.2)

where

Ψ′(x2) =
1

2
√
x2 + ε2

∂xI =
∂I2(x+ ux, y + uy, t+ 1)

∂x

∂xyI =
∂2I2(x+ ux, y + uy, t+ 1)

∂x∂y
∂yI =

∂I2(x+ ux, y + uy)

∂y

∂xxI =
∂2I2(x+ ux, y + uy, t+ 1)

∂x2
∂yyI =

∂2I2(x+ ux, y + uy, t+ 1)

∂y2
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∂tI = I2(x+ ux, y + uy, t+ 1)− I1(x, y, t)

∂xtI =
∂I2(x+ ux, y + uy, t+ 1)

∂x
− ∂I1(x, y, t)

∂x

∂ytI =
∂I2(x+ ux, y + uy, t+ 1)

∂y
− ∂I1(x, y, t)

∂y

Sequential linearization is used to remove non-linearity from the Euler-Lagrange

equations. It is represented as two nested fixed point iterations to gradually remove

non-linearity in Eq. H.2. Let l denote the outer iteration index and k the current

image scale level. Eq. H.2 is rewritten as

Ψ′((∂tI
k,l+1)2)∂xI

k,l∂tI
k,l+1 + γΨ′((∂xtI

k,l+1)2 + (∂ytI
k,l+1)2)(∂xxI

k,l∂xtI
k,l+1 + ∂xyI

k,l∂ytI
k,l+1)

+ βΨ′(|uk,l+1
x − gx|2 + |uk,l+1

y − gy|2)(uk,l+1
x − gx)− αdiv(Ψ′(|∇uk,l+1

x |2 + |∇uk,l+1
y |2)∇uk,l+1

x ) = 0

Ψ′((∂tI
k,l+1)2)∂yI

k,l∂tI
k,l+1 + γΨ′((∂xtI

k,l+1)2 + (∂ytI
k,l+1)2)(∂xyI

k,l∂xtI
k,l+1 + ∂yyI

k,l∂ytI
k,l+1)

+ βΨ′(|uk,l+1
x − gx|2 + |uk,l+1

y − gy|2)(uk,l+1
y − gy)− αdiv(Ψ′(|∇uk,l+1

x |2 + |∇uk,l+1
y |2)∇uk,l+1

y ) = 0

(H.3)

At iteration l + 1, we can approximate, through Talyor expansion, the following:

∂tI
k,l+1 ≈ ∂tI

k,l + ∂xI
k,lduk,lx + ∂yI

k,lduk,ly

∂xtI
k,l+1 ≈ ∂xtI

k,l + ∂xxI
k,lduk,lx + ∂xyI

k,lduk,ly

∂ytI
k,l+1 ≈ ∂ytI

k,l + ∂xyI
k,lduk,lx + ∂yyI

k,lduk,ly (H.4)

In Eq. H.4, d−→u k,l = (duk,lx , du
k,l
y ) is an incremental optical flow vector, and uk,l+1

x =

uk,lx + duk,lx and uk,l+1
y = uk,ly + duk,ly . Let me define four terms to abbreviate the

descriptions of the Euler-Lagrange equations

(Ψ′I)
k,l = Ψ′((∂tI

k,l + ∂xI
k,lduk,lx + ∂yI

k,lduk,ly )2)

(Ψ′G)k,l = Ψ′((∂xtI
k,l + ∂xxI

k,lduk,lx + ∂xyI
k,lduk,ly )2

+ (∂ytI
k,l + ∂xyI

k,lduk,lx + ∂yyI
k,lduk,ly )2)



233

(Ψ′M)k,l = Ψ′((uk,lx − gx)2 + (uk,ly − gy)2)

(Ψ′S)k,l = Ψ′(|∇uk,lx |2 + |∇uk,ly |2) (H.5)

Therefore, Eq. H.3 is derived as

(Ψ′I)
k,l∂xI

k,l(∂tIk,l + ∂xI
k,lduk,lx + ∂yI

k,lduk,ly ) + β(Ψ′M )k,l(uk,lx + duk,lx − gx)

+ γ(Ψ′G)k,l∂xxIk,l(∂xtIk,l + ∂xxI
k,lduk,lx + ∂xyI

k,lduk,ly )

+ γ(Ψ′G)k,l∂xyIk,l(∂ytIk,l + ∂xyI
k,lduk,lx + ∂yyI

k,lduk,ly )

− αdiv((Ψ′S)k,l∇(uk,lx + duk,lx )) = 0

(Ψ′I)
k,l∂yI

k,l(∂tIk,l + ∂xI
k,lduk,lx + ∂yI

k,lduk,ly ) + β(Ψ′M )k,l(uk,ly + duk,ly − gy)

+ γ(Ψ′G)k,l∂xyIk,l(∂xtIk,l + ∂xxI
k,lduk,lx + ∂xyI

k,lduk,ly )

+ γ(Ψ′G)k,l∂yyIk,l(∂ytIk,l + ∂xyI
k,lduk,lx + ∂yyI

k,lduk,ly )

− αdiv((Ψ′S)k,l∇(uk,ly + duk,ly )) = 0

(H.6)

Another inner iteration is introduced to remove non-linearity in (Ψ′I)
k,l, (Ψ′G)k,l,

(Ψ′M)k,l and (Ψ′S)k,l. Assuming m be the iteration index and incremental optical flow

vector d−→u k,l rewritten as d−→u k,l,m = (duk,l,mx , duk,l,my ), Eq. H.6 is linearized as

(Ψ′I)
k,l,m∂xI

k,l,m(∂tI
k,l,m + ∂xI

k,l,mduk,l,m+1
x + ∂yI

k,l,mduk,l,m+1
y )

+ γ(Ψ′G)k,l,m∂xxI
k,l,m(∂xtI

k,l,m + ∂xxI
k,l,mduk,l,m+1

x + ∂xyI
k,l,mduk,l,m+1

y )

+ γ(Ψ′G)k,l,m∂xyI
k,l,m(∂ytI

k,l,m + ∂xyI
k,l,mduk,l,m+1

x + ∂yyI
k,l,mduk,l,m+1

y )

+ β(Ψ′M)k,l,m(uk,l,mx + duk,l,m+1
x − gx)− αdiv((Ψ′S)k,l,m∇(uk,l,mx + duk,l,m+1

x )) = 0

(Ψ′I)
k,l,m∂yI

k,l,m(∂tI
k,l,m + ∂xI

k,l,mduk,l,m+1
x + ∂yI

k,l,mduk,l,m+1
y )

+ γ(Ψ′G)k,l,m∂xyI
k,l,m(∂xtI

k,l,m + ∂xxI
k,l,mduk,l,m+1

x + ∂xyI
k,l,mduk,l,m+1

y )

+ γ(Ψ′G)k,l,m∂yyI
k,l,m(∂ytI

k,l,m + ∂xyI
k,l,mduk,l,m+1

x + ∂yyI
k,l,mduk,l,m+1

y )

+ β(Ψ′M)k,l,m(uk,l,my + duk,l,m+1
y − gy)− αdiv((Ψ′S)k,l,m∇(uk,l,my + duk,l,m+1

y )) = 0

(H.7)
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where (duk,l,0x , duk,l,0y ) = (0, 0). Note that (Ψ′I)
k,l,m, (Ψ′G)k,l,m, (Ψ′M)k,l,m and (Ψ′S)k,l,m

are related to incremental optical flow (duk,l,mx , duk,l,my ) at previous iteration m, while

Eq. H.7 is estimating the current incremental optical flow at iteration m+ 1. For this

reason, Eq. H.7 is a linear equation with respect to (duk,l,m+1
x , duk,l,m+1

y ).

However, the relationship between diffusion terms and incremental optical flow

vectors is still implicitly linear. In order to eliminate this ambiguity, a four-pixel

scheme[229, 26] is described to serve this purpose, which is shown in Fig. H.1.

(a) (b)

Figure H.1: Numerical computation using 4-neighborhood. This figure is reproduced
from Brox[26].

Fig. H.1a indicates that diffusion only takes effect between the current pixel at

(i, j) and its four-neighbor pixels at (i, j − 1), (i − 1, j), (i + 1, j), and (i, j + 1).

They are represented as four dark plates in Fig. H.1a, and defined as Ψ′S(i, j − 1/2),

Ψ′S(i − 1/2, j), Ψ′S(i + 1/2, j), and Ψ′S(i, j + 1/2). Fig. H.1b shows an example of

Ψ′S(i+ 1/2, j). Ψ′S defined in Eq. H.5 expresses that we need to define ∇ux and ∇uy

in four locations illustrated as black plates in Fig. H.1a, such as (i + 1/2, j). Let u

represent either ux or uy, and ∇u(i+ 1/2, j) is calculated as

|∇u(i+
1
2
, j)| ≈

√
(u(i+ 1, j)− u(i, j))2 +

(
1
2

(
u(i+1,j+1)−u(i+1,j−1)

2 + u(i,j+1)−u(i,j−1)
2

))2

(H.8)
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Similarly, ∇u is also computed at (i− 1/2, j), (i, j − 1/2) and (i, j + 1/2),

|∇u(i− 1
2
, j)| ≈

√
(u(i, j)− u(i− 1, j))2 +

(
1
2

(
u(i−1,j+1)−u(i−1,j−1)

2 + u(i,j+1)−u(i,j−1)
2

))2

|∇u(i, j +
1
2

)| ≈
√

(u(i, j + 1)− u(i, j))2 +
(

1
2

(
u(i+1,j+1)−u(i−1,j+1)

2 + u(i+1,j)−u(i−1,j)
2

))2

|∇u(i, j − 1
2

)| ≈
√

(u(i, j)− u(i, j − 1))2 +
(

1
2

(
u(i+1,j−1)−u(i−1,j−1)

2 + u(i+1,j)−u(i−1,j)
2

))2

(H.9)

In order to clarify the diffusion relationship between the current point and its four

neighbor points, Ψ′S is alternatively rewritten as (Ψ′S)(i,j)∼(i−1,j), (Ψ′S)(i,j)∼(i+1,j), (Ψ′S)(i,j)∼(i,j−1),

and (Ψ′S)(i,j)∼(i,j+1). They are generalized as (Ψ′S)p∼q, where p = (i, j) and q ∈ N (p)

are two image points, and N (p) is p’s 4-neighborhood. div(Ψ′S(|∇ux|2 + |∇uy|2)∇ux)

is derived as

div(Ψ′S(|∇ux|2 + |∇uy|2)∇ux)

= Ψ′S(|∇ux(i+
1

2
, j)|2 + |∇uy(i+

1

2
, j)|2)(ux(i+ 1, j)− ux(i, j))

−Ψ′S(|∇ux(i−
1

2
, j)|2 + |∇uy(i−

1

2
, j)|2)(ux(i, j)− ux(i− 1, j))

+ Ψ′S(|∇ux(i, j +
1

2
)|2 + |∇uy(i, j +

1

2
)|2)(ux(i, j + 1)− ux(i, j))

−Ψ′S(|∇ux(i, j −
1

2
)|2 + |∇uy(i, j −

1

2
)|2)(ux(i, j)− ux(i, j − 1))

= (Ψ′S)(i,j)∼(i−1,j)ux(i− 1, j) + (Ψ′S)(i,j)∼(i,j−1)ux(i, j − 1)

+ (Ψ′S)(i,j)∼(i+1,j)ux(i+ 1, y) + (Ψ′S)(i,j)∼(i,j+1)ux(i, j + 1)

− ((Ψ′S)(i,j)∼(i−1,j) + (Ψ′S)(i,j)∼(i,j−1) + (Ψ′S)(i,j)∼(i+1,j) + (Ψ′S)(i,j)∼(i,j+1))ux(i, j)

=
∑

q∈N (p)

(Ψ′S)p∼qux(q)−
∑

q∈N (p)

(Ψ′S)p∼qux(p) (H.10)

The same deduction can be used to compute div(Ψ′S(|∇ux|2 + |∇uy|2)∇uy).

div(Ψ′S(|∇ux|2 + |∇uy|2)∇uy) =
∑

q∈N (p)

(Ψ′S)p∼quy(q)−
∑

q∈N (p)

(Ψ′S)p∼quy(p) (H.11)

Substituting Eq. H.10 and Eq. H.11 for Eq. H.7, we obtain the following linear Euler-
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Lagrange equation at p.

(Ψ′I)k,l,m
p (∂xI

k,l,m)p(∂tI
k,l,m)p + γ(Ψ′G)k,l,m

p (∂xxI
k,l,m)p(∂xtI

k,l,m)p

+ γ(Ψ′G)k,l,m
p (∂xyI

k,l,m)p(∂ytI
k,l,m)p + β(Ψ′M )k,l,m

p ((uk,l,m
x )p − (gx)p)

+ (Ψ′I)k,l,m
p (∂xI

k,l,m)p(∂yI
k,l,m)p(duy)k,l,m+1

p + γ(Ψ′G)k,l,m
p (∂xxI

k,l,m)p(∂xyI
k,l,m)p(duy)k,l,m+1

p

+ γ(Ψ′G)k,l,m
p (∂xyI

k,l,m)p(∂yyI
k,l,m)p(duy)k,l,m+1

p + (Ψ′I)k,l,m
p (∂xI

k,l,m)2p(dux)k,l,m+1
p

+ β(Φ′M )k,l,m
p (dux)k,l,m+1

p + γ(Ψ′G)k,l,m
p (∂xxI

k,l,m)2p(dux)k,l,m+1
p

+ γ(Ψ′G)k,l,m
p (∂xyI

k,l,m)2p(dux)k,l,m+1
p − α

∑
q∈N (p)

(Ψ′S)k,l,m
p∼q ((ux)k,l,m

q + (dux)k,l,m+1
q )

+ α
∑

q∈N (p)

(Ψ′S)k,l,m
p∼q ((ux)k,l,m

p + (dux)k,l,m+1
p ) = 0

(Ψ′I)k,l,m
p (∂yI

k,l,m)p(∂tI
k,l,m)p + γ(Ψ′G)k,l,m

p (∂xyI
k,l,m)p(∂xtI

k,l,m)p

+ γ(Ψ′G)k,l,m
p (∂yyI

k,l,m)p(∂ytI
k,l,m)p + β(Ψ′M )k,l,m

p ((uk,l,m
y )p − (gy)p)

+ (Ψ′I)k,l,m
p (∂yI

k,l,m)p(∂xI
k,l,m)p(dux)k,l,m+1

p + γ(Ψ′G)k,l,m
p (∂xyI

k,l,m)p(∂xxI
k,l,m)p(dux)k,l,m+1

p

+ γ(Ψ′G)k,l,m
p (∂yyI

k,l,m)p(∂xyI
k,l,m)p(dux)k,l,m+1

p + (Ψ′I)k,l,m
p (∂yI

k,l,m)2p(duy)k,l,m+1
p

+ β(Φ′M )k,l,m
p (duy)k,l,m+1

p + γ(Ψ′G)k,l,m
p (∂xyI

k,l,m)2p(duy)k,l,m+1
p

+ γ(Ψ′G)k,l,m
p (∂yyI

k,l,m)2p(duy)k,l,m+1
p − α

∑
q∈N (p)

(Ψ′S)k,l,m
p∼q ((uy)k,l,m

q + (duy)k,l,m+1
q )

+ α
∑

q∈N (p)

(Ψ′S)k,l,m
p∼q ((uy)k

p + (duy)k,l,m+1
p ) = 0 (H.12)

H.2 Sequential Linearization in Temporal Volume Flow Computation

The previous section illustrates sequential linearizaiton used by incremental ego-

motion estimation in the image domain. In this section, I present sequential lineariza-

tion in computing temporal volume flow(TVF) in the temporal volume domain. Let
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me rewrite the PDE metric shown in Eq. 6.5 that estimates TVF.

E(−→w ) =

∫∫
(x,y,t)∈R2×R+

(Ψ((V (x+ wx, y + wy, t+ wt, ρ+ 1)− V (x, y, t, ρ))2

+ γ(∇3V (x+ wx, y + wy, t+ wt, ρ+ 1)−∇3V (x, y, t, ρ))2)

+ αΨ(|∇3wx|2 + |∇3wy|2 + |∇3wt|2))dxdydt

(H.13)

Minimizing Eq. H.13 can be mathematically solved through the Euler-Lagrange

equations. With respect to x, y and t components, it reads

Ψ′((∂ρV )2 + γ((∂xρV )2 + (∂yρV )2 + (∂tρV )2))(∂xV ∂ρV + γ(∂xxV ∂xρV + ∂xyV ∂yρV

+ ∂xtV ∂tρV ))− αdiv3

(
Ψ′(|∇3wx|2 + |∇3wy|2 + |∇3wt|2)∇3wx

)
= 0

Ψ′((∂ρV )2 + γ((∂xρV )2 + (∂yρV )2 + (∂tρV )2))(∂yV ∂ρV + γ(∂xyV ∂xρV + ∂yyV ∂yρV

+ ∂ytV ∂tρV ))− αdiv3

(
Ψ′(|∇3wx|2 + |∇3wy|2 + |∇3wt|2)∇3wy

)
= 0

Ψ′((∂ρV )2 + γ((∂xρV )2 + (∂yρV )2 + (∂tρV )2))(∂tV ∂ρV + γ(∂xtV ∂xρV + ∂ytV ∂yρV

+ ∂ttV ∂tρV ))− αdiv3

(
Ψ′(|∇3wx|2 + |∇3wy|2 + |∇3wt|2)∇3wt

)
= 0 (H.14)

where the derivatives related to ∂∗ρV are defined as temporal difference.

∂ρV = V (x+ wx, y + wy, t+ wt, ρ+ 1)− V (x, y, t, ρ)

∂xρV = ∂xV (x+ wx, y + wy, t+ wt, ρ+ 1)− ∂xV (x, y, t, ρ)

∂yρV = ∂yV (x+ wx, y + wy, t+ wt, ρ+ 1)− ∂yV (x, y, t, ρ)

∂tρV = ∂tV (x+ wx, y + wy, t+ wt, ρ+ 1)− ∂tV (x, y, t, ρ)

(H.15)

Let me abbreviate data and smoothness terms in Eq. H.13 to simplify the descrip-
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tion,

ΨD = Ψ((V (x+ wx, y + wy, t+ wt, ρ+ 1)− V (x, y, t, ρ))2

+ γ(∇3V (x+ wx, y + wy, t+ wt, ρ+ 1)−∇3V (x, y, t, ρ))2)

ΨS = Ψ(|∇3wx|2 + |∇3wy|2 + |∇3wt|2)

(H.16)

Non-linearity happens in Ψ′D and Ψ′S. Sequential linearization is an efficient strat-

egy to remove non-linearity in Eq. H.14, so as to easily minimize Eq. H.13. Sequential

linearization involves two nested fixed point iterations. Let l denote the outer iteration

index at temporal volume pyramid level k, and define −→w k,l = (wk,lx , w
k,l
y , w

k,l
t , 1). This

iteration is performed to remove non-linearity from intensity and gradient constancy

constraints. −→w k,l is computed through

Ψ′((∂ρV
k,l+1)2 + γ((∂xρV

k,l+1)2 + (∂yρV
k,l+1)2 + (∂tρV

k,l+1)2))

(∂xV
k,l∂ρV

k,l+1 + γ(∂xxV
k,l∂xρV

k,l+1 + ∂xyV
k,l∂yρV

k,l+1 + ∂xtV
k,l∂tρV

k,l+1))

− αdiv3

(
Ψ′(|∇3w

k,l+1
x |2 + |∇3w

k,l+1
y |2 + |∇3w

k,l+1
t |2)∇3w

k,l+1
x

)
= 0

Ψ′((∂ρV
k,l+1)2 + γ((∂xρV

k,l+1)2 + (∂yρV
k,l+1)2 + (∂tρV

k,l+1)2))

(∂yV
k,l∂ρV

k,l+1 + γ(∂xyV
k,l∂xρV

k,l+1 + ∂yyV
k,l∂yρV

k,l+1 + ∂ytV
k,l∂tρV

k,l+1))

− αdiv3

(
Ψ′(|∇3w

k,l+1
x |2 + |∇3w

k,l+1
y |2 + |∇3w

k,l+1
t |2)∇3w

k,l+1
y

)
= 0

Ψ′((∂ρV
k,l+1)2 + γ((∂xρV

k,l+1)2 + (∂yρV
k,l+1)2 + (∂tρV

k,l+1)2))

(∂tV
k,l∂ρV

k,l+1 + γ(∂xtV
k,l∂xρV

k,l+1 + ∂ytV
k,l∂yρV

k,l+1 + ∂ttV
k,l∂tρV

k,l+1))

− αdiv3

(
Ψ′(|∇3w

k,l+1
x |2 + |∇3w

k,l+1
y |2 + |∇3w

k,l+1
t |2)∇3w

k,l+1
t

)
= 0 (H.17)

Notice that Eq. H.17 is fully implicit non-linearity in the smoothness term and semi-

implicit non-linearity in the data term. At iteration l + 1, temporal derivatives can
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be approximated through Taylor expansions,

∂ρV
k,l+1 ≈ ∂ρV

k,l + ∂xV
k,ldwk,lx + ∂yV

k,ldwk,ly + ∂tV
k,ldwk,lt

∂xρV
k,l+1 ≈ ∂xρV

k,l + ∂xxV
k,ldwk,lx + ∂xyV

k,ldwk,ly + ∂xtV
k,ldwk,lt

∂yρV
k,l+1 ≈ ∂yρV

k,l + ∂xyV
k,ldwk,lx + ∂yyV

k,ldwk,ly + ∂ytV
k,ldwk,lt

∂tρV
k,l+1 ≈ ∂tρV

k,l + ∂xtV
k,ldwk,lx + ∂ytV

k,ldwk,ly + ∂ttV
k,ldwk,lt

(H.18)

Here, let d−→w k,l = (dwk,lx , dw
k,l
y , dw

k,l
t ), wk,l+1

x = wk,lx + dwk,lx , wk,l+1
y = wk,ly + dwk,ly ,

and wk,l+1
t = wk,lt + dwk,lt . Note that this linearization is performed when a fixed

iteration is done, instead of explicitly putting Eq. 6.2 into computation. Therefore,

Eq. 6.1 is imitated by a sequence of linear approximations replacing one single linear

approximation. This strategy is thereby called sequential linearization.

Ψ′D and Ψ′S are rewritten as

Ψ′k,lD = Ψ′((∂ρV
k,l + ∂xV

k,ldwk,lx + ∂yV
k,ldwk,ly + ∂tV

k,ldwk,lt )2

+ γ((∂xρV
k,l + ∂xxV

k,ldwk,lx + ∂xyV
k,ldwk,ly + ∂xtV

k,ldwk,lt )2

+ (∂yρV
k,l + ∂xyV

k,ldwk,lx + ∂yyV
k,ldwk,ly + ∂ytV

k,ldwk,lt )2

+ (∂tρV
k,l + ∂xtV

k,ldwk,lx + ∂ytV
k,ldwk,ly + ∂ttV

k,ldwk,lt )2))

Ψ′k,lS = Ψ′(|∇3(wk,lx + dwk,lx )|2 + |∇3(wk,ly + dwk,ly )|2 + |∇3(wk,lt + dwk,lt )|2)

(H.19)

So Eq. H.17 reads

Ψ′k,lD (∂xV
k,l(∂ρV

k,l + ∂xV
k,ldwk,lx + ∂yV

k,ldwk,ly + ∂tV
k,ldwk,lt )

+ γ(∂xxV
k,l(∂xρV

k,l + ∂xxV
k,ldwk,lx + ∂xyV

k,ldwk,ly + ∂xtV
k,ldwk,lt )

+ ∂xyV
k,l(∂yρV

k,l + ∂xyV
k,ldwk,lx + ∂yyV

k,ldwk,ly + ∂ytV
k,ldwk,lt )

+ ∂xtV
k,l(∂tρV

k,l + ∂xtV
k,ldwk,lx + ∂ytV

k,ldwk,ly + ∂ttV
k,ldwk,lt )))

− αdiv3

(
Ψ′k,lS ∇3(wk,lx + dwk,lx )

)
= 0
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Ψ′k,lD (∂yV
k,l(∂ρV

k,l + ∂xV
k,ldwk,lx + ∂yV

k,ldwk,ly + ∂tV
k,ldwk,lt )

+ γ(∂xyV
k,l(∂xρV

k,l + ∂xxV
k,ldwk,lx + ∂xyV

k,ldwk,ly + ∂xtV
k,ldwk,lt )

+ ∂yyV
k,l(∂yρV

k,l + ∂xyV
k,ldwk,lx + ∂yyV

k,ldwk,ly + ∂ytV
k,ldwk,lt )

+ ∂ytV
k,l(∂tρV

k,l + ∂xtV
k,ldwk,lx + ∂ytV

k,ldwk,ly + ∂ttV
k,ldwk,lt )))

− αdiv3

(
Ψ′k,lS ∇3(wk,ly + dwk,ly )

)
= 0

Ψ′k,lD (∂tV
k,l(∂ρV

k,l + ∂xV
k,ldwk,lx + ∂yV

k,ldwk,ly + ∂tV
k,ldwk,lt )

+ γ(∂xtV
k,l(∂xρV

k,l + ∂xxV
k,ldwk,lx + ∂xyV

k,ldwk,ly + ∂xtV
k,ldwk,lt )

+ ∂ytV
k,l(∂yρV

k,l + ∂xyV
k,ldwk,lx + ∂yyV

k,ldwk,ly + ∂ytV
k,ldwk,lt )

+ ∂ttV
k,l(∂tρV

k,l + ∂xtV
k,ldwk,lx + ∂ytV

k,ldwk,ly + ∂ttV
k,ldwk,lt )))

− αdiv3

(
Ψ′k,lS ∇3(wk,lt + dwk,lt )

)
= 0 (H.20)

However, Eq. H.20 still remains nonlinear with respect to incremental TVF vectors

d−→w k,l, which is caused by Ψ′k,lD and Ψ′k,lS . Another inner iteration is introduced to

remove their non-linearity. Assume m be the iteration index and let Ψ′k,l,mD and Ψ′k,l,mS

denote the updated abbreviation parameters. Assuming d−→w k,l,m = (dwk,l,mx , dwk,l,my , dwk,l,mt ),

it becomes the updated incremental temporal volume flow vector. Eq. H.20 is lin-

earized as

Ψ′k,l,mD (∂xV
k,l(∂ρV

k,l + ∂xV
k,ldwk,l,m+1

x + ∂yV
k,ldwk,l,m+1

y + ∂tV
k,ldwk,l,m+1

t )

+ γ(∂xxV
k,l(∂xρV

k,l + ∂xxV
k,ldwk,l,m+1

x + ∂xyV
k,ldwk,l,m+1

y + ∂xtV
k,ldwk,l,m+1

t )

+ ∂xyV
k,l(∂yρV

k,l + ∂xyV
k,ldwk,l,m+1

x + ∂yyV
k,ldwk,l,m+1

y + ∂ytV
k,ldwk,l,m+1

t )

+ ∂xtV
k,l(∂tρV

k,l + ∂xtV
k,ldwk,l,m+1

x + ∂ytV
k,ldwk,l,m+1

y + ∂ttV
k,ldwk,l,m+1

t )))

− αdiv3

(
Ψ′k,l,mS ∇3(wk,lx + dwk,l,m+1

x )
)

= 0

Ψ′k,l,mD (∂yV
k,l(∂ρV

k,l + ∂xV
k,ldwk,l,m+1

x + ∂yV
k,ldwk,l,m+1

y + ∂tV
k,ldwk,l,m+1

t )

+ α(∂xyV
k,l(∂xρV

k,l + ∂xxV
k,ldwk,l,m+1

x + ∂xyV
k,ldwk,l,m+1

y + ∂xtV
k,ldwk,l,m+1

t )
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+ ∂yyV
k,l(∂yρV

k,l + ∂xyV
k,ldwk,l,m+1

x + ∂yyV
k,ldwk,l,m+1

y + ∂ytV
k,ldwk,l,m+1

t )

+ ∂ytV
k,l(∂tρV

k,l + ∂xtV
k,ldwk,l,m+1

x + ∂ytV
k,ldwk,l,m+1

y + ∂ttV
k,ldwk,l,m+1

t )))

− αdiv3

(
Ψ′k,l,mS ∇3(wk,ly + dwk,l,m+1

y )
)

= 0

Ψ′k,l,mD (∂tV
k,l(∂ρV

k,l + ∂xV
k,ldwk,l,m+1

x + ∂yV
k,ldwk,l,m+1

y + ∂tV
k,ldwk,l,m+1

t )

+ γ(∂xtV
k,l(V k

xρ + V k,l
xx dw

k,l,m+1
x + V k,l

xy dw
k,l,m+1
y + V k,l

xt dw
k,l,m+1
t )

+ ∂ytV
k,l(∂yρV

k,l + ∂xyV
k,ldwk,l,m+1

x + ∂yyV
k,ldwk,l,m+1

y + ∂ytV
k,ldwk,l,m+1

t )

+ ∂ttV
k,l(∂tρV

k,l + ∂xtV
k,ldwk,l,m+1

x + ∂ytV
k,ldwk,l,m+1

y + ∂ttV
k,ldwk,l,m+1

t )))

− αdiv3

(
Ψ′k,l,mS ∇3(wk,lt + dwk,l,m+1

t )
)

= 0 (H.21)

where (dwk,l,0x , dwk,l,0y , dwk,l,0t ) = (0, 0, 0). dwk,l,m+1
x , dwk,l,m+1

y and dwk,l,m+1
t have

been removed from Ψ′k,l,mD and Ψ′k,l,mS . Eq. H.21 is a linear equation with respect

to dwk,l,m+1
x , dwk,l,m+1

y and dwk,l,m+1
t .

Figure H.2: Numerical divergence computation between a voxel p shown in a green
cube and its 6-neighborhood voxels illustrated in blue cubes. The divergence term
between p and its neighborhood voxels are defined at locations indicated by red
spheres.
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Next, let me investigate how to compute divergence terms at a voxel p in Eq. H.21.

div3

(
Ψ′k,l,mS ∇3(wk,lx + dwk,l,m+1

x )
)

div3

(
Ψ′k,l,mS ∇3(wk,ly + dwk,l,m+1

y )
)

div3

(
Ψ′k,l,mS ∇3(wk,lt + dwk,l,m+1

t )
) (H.22)

Similar to the 4-neighborhood used in incremental egomotion estimation, the 6-

neighborhood is employed to compute divergence terms in the temporal volume do-

main, as illustrated in Fig. H.2. Assuming the indices of the current voxel p be

(x, y, z), indicated by a green cube in Fig. H.2, the divergence terms between this

voxel and its 6-neighborhood voxels in blue cubes((x + 1
2
, y, z), (x − 1

2
, y, z), (x, y +

1
2
, z), (x, y− 1

2
, z), (x, y, z+ 1

2
), and (x, y, z− 1

2
)) are represented as red spheres. Because

the divergence terms in Eq. H.22 involve TVF vector differences, let me investigate

their computations. Assuming w is the abbreviation of wx, wy or wt, TVF vector

difference is defined as

|∇w(x+
1

2
, y, z)| ≈

√√√√√√√√√
(w(x+ 1, y, z)− w(x, y, z))2

+
(

1
2

(
w(x+1,y+1,z)−w(x+1,y−1,z)

2
+ w(x,y+1,z)−w(x,y−1,z)

2

))2

+
(

1
2

(
w(x+1,y,z+1)−w(x+1,y,z−1)

2
+ w(x,y,z+1)−w(x,y,z−1)

2

))2

|∇w(x− 1

2
, y, z)| ≈

√√√√√√√√√
(w(x, y, z)− w(x− 1, y, z))2

+
(

1
2

(
w(x−1,y+1,z)−w(x−1,y−1,z)

2
+ w(x,y+1,z)−w(x,y−1,z)

2

))2

+
(

1
2

(
w(x−1,y,z+1)−w(x−1,y,z−1)

2
+ w(x,y,z+1)−w(x,y,z−1)

2

))2

|∇w(x, y +
1

2
, z)| ≈

√√√√√√√√√
(w(x, y + 1, z)− w(x, y, z))2

+
(

1
2

(
w(x+1,y+1,z)−w(x−1,y+1,z)

2
+ w(x+1,y,z)−w(x−1,y,z)

2

))2

+
(

1
2

(
w(x,y+1,z+1)−w(x,y+1,z−1)

2
+ w(x,y,z+1)−w(x,y,z−1)

2

))2
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|∇w(x, y − 1

2
, z)| ≈

√√√√√√√√√
(w(x, y, z)− w(x, y − 1, z))2

+
(

1
2

(
w(x+1,y−1,z)−w(x−1,y−1,z)

2
+ w(x+1,y,z)−w(x−1,y,z)

2

))2

+
(

1
2

(
w(x,y−1,z+1)−w(x,y−1,z−1)

2
+ w(x,y,z+1)−w(x,y,z−1)

2

))2

|∇w(x, y, z +
1

2
)| ≈

√√√√√√√√√
(w(x, y, z + 1)− w(x, y, z))2

+
(

1
2

(
w(x+1,y,z+1)−w(x−1,y,z+1)

2
+ w(x+1,y,z)−w(x−1,y,z)

2

))2

+
(

1
2

(
w(x,y+1,z)−w(x,y−1,z)

2
+ w(x,y+1,z+1)−w(x,y−1,z+1)

2

))2

|∇w(x, y, z − 1

2
)| ≈

√√√√√√√√√
(w(x, y, z)− w(x, y, z − 1))2

+
(

1
2

(
w(x+1,y,z)−w(x−1,y,z)

2
+ w(x+1,y,z−1)−w(x−1,y,z−1)

2

))2

+
(

1
2

(
w(x,y+1,z)−w(x,y−1,z)

2
+ w(x,y+1,z−1)−w(x,y−1,z−1)

2

))2

(H.23)

Next, I use div3(Ψ′S(|∇wx|2 + |∇wy|2 + |∇wt|2)∇wx) as an example to illustrate

the divergence computation.

div3(Ψ′S(|∇3wx|2 + |∇3wy |2 + |∇3wt|2)∇wx)

= Ψ′S(|∇3wx(x+
1

2
, y, z)|2 + |∇3wy(x+

1

2
, y, z)|2 + |∇3wt(x+

1

2
, y, z)|2)(wx(x+ 1, y, z)− wx(x, y, z))

−Ψ′S(|∇3wx(x−
1

2
, y, z)|2 + |∇3wy(x−

1

2
, y, z)|2 + |∇3wt(x−

1

2
, y, z)|2)(wx(x, y, z)− wx(x− 1, y, z))

+ Ψ′S(|∇3wx(x, y +
1

2
, z)|2 + |∇3wy(x, y +

1

2
, z)|2 + |∇3wt(x, y +

1

2
, z)|2)(wx(x, y + 1, z)− wx(x, y, z))

−Ψ′S(|∇3wx(x, y −
1

2
, z)|2 + |∇3wy(x, y −

1

2
, z)|2 + |∇3wt(x, y −

1

2
, z)|2)(wx(x, y, z)− wx(x, y − 1, z))

+ Ψ′S(|∇3wx(x, y, z +
1

2
)|2 + |∇3wy(x, y, z +

1

2
)|2 + |∇3wt(x, y, z +

1

2
)|2)(wx(x, y, z + 1)− wx(x, y, z))

−Ψ′S(|∇3wx(x, y, z −
1

2
)|2 + |∇3wy(x, y, z −

1

2
)|2 + |∇3wt(x, y, z −

1

2
)|2)(wx(x, y, z)− wx(x, y, z − 1))

= (Ψ′S)(x,y,z)∼(x−1,y,z)wx(x− 1, y, z) + (Ψ′S)(x,y,z)∼(x,y−1,z)wx(x, y − 1, z)

+ (Ψ′S)(x,y,z)∼(x+1,y,z)wx(x+ 1, y, z) + (Ψ′S)(x,y,z)∼(x,y+1,z)wx(x, y + 1, z)

+ (Ψ′S)(x,y,z)∼(x,y,z+1)wx(x, y, z + 1) + (Ψ′S)(x,y,z)∼(x,y,z−1)wx(x, y, z − 1)

− ((Ψ′S)(x,y,z)∼(x−1,y,z) + (Ψ′S)(x,y,z)∼(x,y−1,z) + (Ψ′S)(x,y,z)∼(x+1,y,z)

+ (Ψ′S)(x,y,z)∼(x,y+1,z) + (Ψ′S)(x,y,z)∼(x,y,z−1) + (Ψ′S)(x,y,z)∼(x,y,z+1))wx(x, y, z)

=
X

q∈N (p)

(Ψ′S)p∼qwx(q)−
X

q∈N (p)

(Ψ′S)p∼qwx(p) (H.24)

where q ∈ N (p) is a 6-neighborhood voxel of p. (Ψ′S)p∼q denotes the diffusivity

between points p and q. The same derivation can be used to compute the other two
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divergence terms in Eq. H.22. Substituting Eq. H.24 for Eq. H.21, we can explicitly

express (dwk,l,m+1
x , dwk,l,m+1

y , dwk,l,m+1
t ) at p as

(dwx)k,l,m+1
p =

0@ X
q∈N (p)

(Ψ′S)k,l,mp∼q

“
(wx)k,lq + (dwx)k,l,m+1

q

”
−

X
q∈N (p)

(Ψ′S)k,l,mp∼q (wx)k,lp

−
1

α
(Ψ′D)k,l,mp

“
(∂xV

k,l)p
“

(∂yV
k,l)p(dwy)k,l,m+1

p + (∂tV
k,l)p(dwt)

k,l,m+1
p + (∂ρV

k,l)p
”

+ γ(∂xxV
k,l)p

“
(∂xyV

k,l)p(dwy)k,l,m+1
p + (∂xtV

k,l)p(dwt)
k,l,m+1
p + (∂xρV

k,l)p
”

+ γ(∂xyV
k,l)p

“
(∂yyV

k,l)p(dwy)k,l,m+1
p + (∂ytV

k,l)p(dwt)
k,l,m+1
p + (∂yρV

k,l)p
”

+γ(∂xtV
k,l)p

“
(∂ytV

k,l)p(dwy)k,l,m+1
p + (∂ttV

k,l)p(dwt)
k,l,m+1
p + (∂tρV

k,l)p
”””

/

0@ X
q∈N (p)

(Ψ′S)k,l,mp∼q +
1

α
(Ψ′D)k,l,mp

“
(∂xV

k,l)2p + γ
“

(∂xxV
k,l)2p + (∂xyV

k,l)2p + (∂xtV
k,l)2p

””1A
(dwy)k,l,m+1

p =

0@ X
q∈N (p)

(Ψ′S)k,l,mp∼q

“
(wy)k,lq + (dwy)k,l,m+1

q

”
−

X
q∈N (p)

(Ψ′S)k,l,mp∼q (wy)k,lp

−
1

α
(Ψ′D)k,l,mp

“
(∂yV

k,l)p
“

(∂xV
k,l)p(dwx)k,l,m+1

p + (∂tV
k,l)p(dwt)

k,l,m+1
p + (∂ρV

k,l)p
”

+ γ(∂xyV
k,l)p

“
(∂xxV

k,l)p(dwx)k,l,m+1
p + (∂xtV

k,l)p(dwt)
k,l,m+1
p + (∂xρV

k,l)p
”

+ γ(∂yyV
k,l)p

“
(∂xyV

k,l)p(dwx)k,l,m+1
p + (∂ytV

k,l)p(dwt)
k,l,m+1
p + (∂yρV

k,l)p
”

+γ(∂ytV
k,l)p

“
(∂xtV

k,l)p(dwx)k,l,m+1
p + (∂ttV

k,l)p(dwt)
k,l,m+1
p + (∂tρV

k,l)p
”””

/

0@ X
q∈N (p)

(Ψ′S)k,l,mp∼q +
1

α
(Ψ′D)k,l,mp

“
(∂yV

k,l)2p + γ
“

(∂xyV
k,l)2p + (∂yyV

k,l)2p + (∂ytV
k,l)2p

””1A
(dwt)

k,l,m+1
p =

0@ X
q∈N (p)

(Ψ′S)k,l,mp∼q

“
(wt)

k,l
q + (dwt)

k,l,m+1
q

”
−

X
q∈N (p)

(Ψ′S)k,l,mp∼q (wt)
k,l
p

−
1

α
(Ψ′D)k,l,mp

“
(∂tV

k,l)p
“

(∂xV
k,l)p(dwx)k,l,m+1

p + (∂yV
k,l)p(dwy)k,l,m+1

p + (∂ρV
k,l)p

”
+ γ(∂xtV

k,l)p
“

(∂xxV
k,l)p(dwx)k,l,m+1

p + (∂xyV
k,l)p(dwy)k,l,m+1

p + (∂xρV
k,l)p

”
+ γ(∂ytV

k,l)p
“

(∂xyV
k,l)p(dwx)k,l,m+1

p + (∂yyV
k,l)p(dwy)k,l,m+1

p + (∂yρV
k,l)p

”
+γ(∂ttV

k,l)p
“

(∂xtV
k,l)p(dwx)k,l,m+1

p + (∂ytV
k,l)p(dwy)k,l,m+1

p + (∂tρV
k,l)p

”””
/

0@ X
q∈N (p)

(Ψ′S)k,l,mp∼q +
1

α
(Ψ′D)k,l,mp

“
(∂tV

k,l)2p + γ
“

(∂xtV
k,l)2p + (∂ytV

k,l)2p + (∂ttV
k,l)2p

””1A (H.25)
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