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Ray tracing is an important and popular rendering technique in computer

graphics for synthesizing photorealistic images. However, ray tracing, if not

carefully done, can be a computationally expensive technique. A great deal

of research has focused on discovering efficient ways to perform ray tracing.

An important approach to controlling the computational expense has been the

use of geometric search structures to prevent needless ray-object intersection

calculations.

Search structures in current use take advantage of scene characteris-

tics in a variety of ways to enhance ray tracing performance. Constraints in

their construction can cause inefficiencies and consequent degradation in per-

formance. Performance comparisons between search structures using timing

benchmarks have shown that no single existing search structure performs best

on all scene models. A knowledge of search structure performance prior to ren-

dering is therefore important to selecting a search structure for a given scene.
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A thorough understanding of the ways in which search structures succeed in

enhancing performance on various types of scenes can also be expected to lead

to improvements in existing techniques.

We present new results in adapting search structures to scene charac-

teristics for improving the performance of ray tracing. A cost model is devel-

oped for evaluating search structures currently being used in ray tracing. The

model has been successfully used to terminate search structure construction,

thus making it unnecessary to set termination parameters in advance. The

model has also been used with limited success to compare the performance of

different search structures for a given scene.

A detailed experimental study of some of the important properties

of search structures has been performed. This has resulted in a new adaptive

search structure that is based on k-d trees, a multi-dimensional binary search

structure which outperforms existing methods. Its high performance is primar-

ily due to the fact that it combines the advantages of such structures based

on space partitioning and those based on bounding volumes. The greater flex-

ibility of this search structure allows it to terminate automatically at a point

where further subdivision would result in no additional benefits.

Finally, this search structure has been used to render volume models

from scientific applications such as medical imaging and molecular modeling.

Its advantages over traditional volume rendering techniques have been demon-

strated.
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Chapter 1

INTRODUCTION

In recent years, ray tracing has become an important rendering tech-

nique for synthesizing photo-realistic images in computer graphics. Ray tracing

has the capability of generating lighting effects such as gloss, translucency, mo-

tion blur and penumbras [10]. The ease of implementing ray tracing has made

it a very popular method for a variety of applications. However, ray tracing,

if not carefully done, can be a computationally expensive technique. Conse-

quently a great deal of research has focused on discovering efficient ways to

perform ray tracing.

The principal expense in ray tracing lies in determining a ray’s first

(i.e., closest to the ray’s origin) intersection with an object in a scene. This

must be done several times per pixel, the exact number depending on the

effects being generated and the scene being rendered. Research on efficient al-

gorithms has quite properly focused on minimizing the cost of these intersection

calculations. Bounding volumes [26][39][54][55], space partitioning structures

[15][6][17][25][43], item buffers [54], shadow buffers [21] and ray coherence tech-

niques [1][23][44] all have proven effective at improving the efficiency of ray

tracing. Each of these methods use some form of a ‘search structure’ to orga-

nize the object primitives in the input scene. A search structure is simply a

data structure that has enough information in it to provide efficient access to

a particular data item without having to look at the entire data collection.

1
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All these methods are being used with great success. However, per-

formance evaluations of each technique until now have been achieved solely via

timing benchmarks. Comparisons between different methods have also been

difficult since each method was tested by researchers on their own set of bench-

marks, thus precluding any meaningful results. A first step has been taken

by Haines [20] to rectify this situation, in proposing a set of test scenes to be

used as benchmarks for measuring performance. Detailed specifications of the

viewing and lighting parameters as well as surface characteristics of the scenes

have been provided in his proposal. If two methods use the same test case with

identical parameter values, their rendering times are a true measure of their

respective performances. This is because the total number of rays spawned

will be the same in both cases (identical viewing parameters, image resolution

and rules on when to terminate tracing each ray ensure this). Both methods

have to trace the same number of rays and the method which does this more

efficiently will prevail.

Even this is inadequate. Some search structures, while performing

well on one scene, might perform poorly on another with totally different char-

acteristics. In this case, knowledge of the performance of a search structure is

required before rendering the scene so that a decision may be made to use it

or substitute it with another.

The search structures that are currently in use have a variety of con-

straints in their construction. For example, in the octree and BSP hierarchies

that are used for ray tracing, partitioning planes are located centrally within

the scene extents at every stage of the subdivision. Also the extents are si-

multaneously subdivided along all three dimensions. Since the input scene is

accessed through the search structure, how do these constraints affect perfor-
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mance? This is a question that is not very easily or very well answered.

In this dissertation, we study the properties of search structures that

are currently being used to accelerate ray tracing. We are particularly inter-

ested in how well they adapt themselves to the characteristics of a scene. This

will give us an idea of the strengths and weaknesses of each structure and

provide us a better understanding of their performance characteristics on any

scene. Once we achieve this, we will use this information to design new search

structures that are superior to current search structures.

We begin by developing a cost model for search structures used in ray

tracing. The cost model uses statistical characteristics of the search structure

(and hence, the underlying scene, since the scene distribution influences the

construction of most search structures) in arriving at an estimate for the cost

of tracing a ray for a particular scene. The model provides two important

optimizations to ray tracing. First, the cost model can be evaluated as the

search structure is constructed. So, an estimate of the cost of tracing each

ray is known prior to rendering. Since the construction of the search structure

usually takes a small fraction of the rendering time, it is possible to construct

several search structures, compare their costs (for a particular scene) and choose

the one with the smallest cost. We demonstrate this application in chapter 4.

The second application of the cost model deals with the termination

problem of search structures used in ray tracing. A long standing problem in

the construction of a search structure has been the determination of the correct

depth at which it should be terminated. In order to optimize performance, this

threshold must be set correctly. If it is too low, then large numbers of object

primitives end up in each region; if it is too high, getting to the leaf nodes of

the search structure is more expensive.
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One of the parameters of the cost model is the depth (or amount

of subdivision, to be more general) of the search structure in question. The

reported cost varies with the depth of the search structure. To determine the

correct depth, the cost model is evaluated each time the depth of the search

structure is increased. The correct point to terminate the search structure is

the point at which the cost becomes a minimum. We have found the model to

be a very effective means to solve the termination problem for search structures

such as the octree, BSP tree, the uniform subdivision method and the automatic

bounding volume hierarchy.

Our next step has been an experimental study of some of the common

properties of search structures currently being used in ray tracing. Character-

istics such as locations and orientations of partitioning planes, effects of using

simple volumes to surround sections of the scene (like a sphere or a rectan-

gular parallelepiped), presence of void areas (void areas refer to sections of

the environment where there are no object primitives) at the nodes of search

structures and hierarchy traversal methods are studied to determine their effect

on performance. We have implemented a testbed system where each of these

characteristics can be studied individually or in combination to see their effect

on performance.

The net result of this study has led to the the development of a new

search structure which falls under the class of k-d trees, which are multidi-

mensional binary structures introduced by [2][3]. The k-d tree, that has been

adapted to ray tracing, combines the advantageous characteristics of space-

partitioning structures such as the octree and BSP trees as well as those based

on hierarchies of bounding volumes. At the same time, it has greater flexibility

in its construction, allowing better adaptability to scene characteristics. Ex-



5

perimental results demonstrate the superior performance of the k-d tree over

search structures currently used in ray tracing. We validate these results with

the cost model that we described earlier. Finally, the greater flexibility in the

construction of the k-d tree (specifically, in locating partitioning planes) helps

it to terminate automatically at the point where further subdivision would

result in no additional benefits.

The dissertation is organized as follows. Chapter 2 describes the fun-

damentals of ray tracing. Chapter 3 describes some of the most commonly used

search structures for ray tracing, chapters 4 and 5 describe the cost model and

its applications, Chapter 6 analyzes the important characteristics that affect

performance of search structures used in ray tracing and describes in detail

the construction and use of the k-d tree. Chapter 7 describes the use of the

k-d tree in rendering volume models for scientific applications. In chapter 8,

we present our conclusions and future work in this area. Chapter 9 contains

color plates of images used in the implementation.



Chapter 2

RAY TRACING

We begin by describing the fundamentals of ray tracing in computer

graphics. We will describe the basic ray tracing algorithm in the context of

rendering and then talk about extensions of the basic algorithm that solve some

important problems as well as generate special effects. This will help us under-

stand the computations involved in ray tracing and potential for speedups.

2.1 Rendering

In rendering, we are concerned with producing realistic images of

models containing graphical objects. Graphical objects could be as simple as

points or vectors, or more complicated surfaces such as polygons, higher order

surfaces such as B Spline surfaces or even solid objects. Creation of realistic

images involves modeling the interaction of light energy with the objects in the

environment. The more accurate this is, the more realistic the images will be.

An equally important factor is visual perception. A good understanding of the

visual perception of the human eye is important to determining the intensities

that are actually sensed from an environment. Let us begin by describing the

problem we are trying to solve in realistic rendering.

The intensity I of the reflected light at a point on a surface is given

6
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by the following double integral:

I(λ, φi, θi, φr, θr) =

∫
φi

∫
θi

L(λ, φi, θi)R(λ, φi, θi, φr, θr)dφidθi (2.1)

Here light energy is incident on a surface from the direction (φi, θi). Intensity I

measures part of the reflected intensity along (φr, θr). Energy of incident light

(provided by the function L) is expressed per unit time and per unit area of

the reflecting surface, while intensity is measured per unit projected area, and,

per unit of the solid angle. R is the bidirectional reflection function, which

means that R is symmetric with respect to incidence and reflection angles.

I, L, andR are all dependent on the wavelength of light, λ. Ideally, a separate

intensity needs to be computed for each wavelength and these intensities must

be mapped into a color space that can be displayed on a workstation. It is

more common (for computational efficiency) to just compute intensities for the

red, green and blue color bands. We will adopt this simplification when we

start developing a lighting model for ray tracing.

In cases where there are objects that transmit or emit light, the re-

flection function can be replaced by a transmittance function or an emission

function. If we can determine the intensity at any point in the environment,

then the next step is to determine what fraction of it arrives at the eye. Before

we get into this, we need to define how an image is created on a screen.

2.1.1 The Camera Model

Generating three dimensional images for display on a computer screen

is similar to recording a scene onto film with a camera. An understanding of

how a camera works is useful.

Perhaps the most common and simple camera model is the pinhole

camera, as illustrated in Fig. 2.1.
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Object

Film

Pin Hole

Figure 2.1: The Pin-Hole Camera Model.

Eye

Image Plane

Hither Plane

Yon Plane

Figure 2.2: The Viewing Frustum.

In Fig. 2.1 light rays enter the pinhole from all directions and strike

the film at different points to contribute to the image. The pinhole serves to

restrict the amount of light that is received by the film, by making sure that

each point is illuminated by light energy only along the line joining that point

to the pinhole.

In computer graphics, it is customary to position the eye at the pin-

hole and move the film out in front of the pinhole. The pinhole becomes the

eye and the plane of the film becomes the image plane or screen. Just as in the

pinhole camera, all light rays in the computer graphics model are required to
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pass through the eye. Creation of an image involves projecting the scene within

the viewing frustum (the truncated pyramid in Fig. 2.2) onto the image (or pro-

jection) plane. The rectangular window shown in Fig. 2.2 is where the image

will be formed. Usually, two clipping planes called the hither and yon planes

are placed parallel to the image plane. Only objects between these planes and

contained by the four walls of the truncated pyramid are projected onto the

image plane. This is to to avoid large objects close to the view point blocking

the rest of the environment. Also, graphics workstations which contain hard-

ware for performing hidden surface removal using the z-buffer algorithm have a

limited word size for storing z depth values. Limiting the range along the line

of sight using the hither and yon planes helps increase the precision and avoids

making wrong decisions on determining the closest object seen at each pixel.

Creating an image involves sending out rays from the eye through

points in the image plane into the environment and determining their intensity.

However, there are an infinite number of points in the image plane. Instead, it

is more practical to divide up the image plane into rectangular regions and de-

termine the average intensity of each region. The number of regions into which

the image plane is divided is the resolution of the image. Each region is called a

pixel. Each pixel in the image plane represents a window into the environment.

The problem now is reduced to determining an accurate color for each pixel

in the image plane. Much of the research in computer graphics rendering has

gone into developing sophisticated techniques to answer this question.

2.2 Local Illumination Models

Solving the double integral in Equation 2.1 analytically is very diffi-

cult. What we would like is an approximation to this reflection integral.
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The earliest lighting models used to generate images made several

simplifying assumptions for computational efficiency. They include the follow-

ing:

• Only illumination from designated light sources in the environment was

considered. This means that light reflected from a point towards the eye

is only due to the reflection taking place at that point from these light

sources in the environment. Illumination arriving at this point through

reflection from other objects in the environment is ignored or approxi-

mated by a constant.

• The intensity at a point was computed only at three different wavelengths,

usually red, green and blue.

• The reflection function used is usually a constant for each wavelength.

The local reflected light usually consists of three parts, those due to

diffuse, specular and ambient reflection.

2.2.1 Diffuse Reflection

In diffuse surfaces, light, after striking a surface, is scattered equally

in all directions. Diffuse light can be considered as light that has penetrated

the surface of an object, been absorbed, and then re-emitted. This is common

in rough surfaces. The red component of the intensity of light reflected by a

perfect diffuser is given by Lambert’s cosine law:

Ir = Ilrkdrcosθ, 0 ≤ kdr ≤ 1 (2.2)

where Ir is the red component of the reflected intensity at a point on the

surface, Ilr is the red component of the incident intensity from a point light
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source, kdr is the red component of the diffuse reflection constant and θ, the

angle between the vector to the light source and the surface normal at the

point. Similar equations can be written for green and blue bands.

2.2.2 Ambient Reflection

Objects modeled with the Lambertian model appear dull and points

that do not receive light from the point sources appear black. In reality, objects

receive light scattered back from their surroundings. As a first step, this com-

ponent of reflection is approximated by a constant term. This ambient light is

combined with the diffuse component as follows:

Ir = Iarkar + Ilrkdrcosθ (2.3)

where Iar is the red component of the ambient light intensity and kar is the red

component of the ambient reflection constant (0 ≤ kar ≤ 1), used to indicate

how much of the ambient light is reflected from the surface, (0 ≤ kar ≤ 1).

2.2.3 Attenuation for Distant Objects

If we use the above model to compute the intensity of light from

two objects identically oriented but at different distances from the eye, we

obtain the same intensity. If their projections overlap, then it is not possible

to distinguish between them. It is well known [22] that light energy decreases

inversely with the distance from the light source (and hence, intensity varies

inversely with the square of the distance). However, if the light source is

assumed to be at infinity, there is no contribution from the diffuse term. 1/d

attenuation was used by Warnock [53] and (1/d)x was used by Romney [37].

Warnock was trying to account for attenuation due to atmospheric fog whereas

Romney’s function was intended to obey the inverse square law for energy
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from a point source. results have shown that x = 4 produces more realistic

results. The justification for using these functions instead of the inverse square

function suggested by theory is that the models are being applied using shading

techniques that cannot capture the information required for theoretically based

models. Global illumination models such as those used by the radiosity method

or distributed ray tracing handle light attenuation accurately since they balance

the flow of light energy within the environment.

For our simple lighting model, we will assume an inverse distance

function to model attenuation of light intensity reaching the eye.

Our lighting model becomes

Ir = Iarkar +
Ilr

d+K
kdrcosθ (2.4)

where K is an arbitrary constant.

2.2.4 Specular Reflection

Specular reflection occurs from smooth surfaces such as mirrors. The

intensity of specularly reflected light depends on angle of incidence, the wave-

length of light and surface properties. The governing equation is the Fresnel

equation. For perfect specular reflection, Snell’s law holds, stating that the

angle of incidence equals the angle of reflection. Only an observer stationed

along the reflection vector R sees any specularly reflected light, as in Fig. 2.3.

For imperfectly reflecting surfaces, the amount of light reaching an observer

depends on the spatial distribution of the specularly reflected light.

Highlights on shiny objects are due to specular reflection. Since spec-

ular reflection is concentrated around the reflection vector, highlights move as

the observer moves. Also, specularly reflected light exhibits the characteristics
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Figure 2.3: Specular Reflection

of incident light. Thus, highlights on a “blue” surface from a white light source

are white, rather than blue.

An empirical model for specular reflection is given by Phong [36],

Isr = Ilrw(i, λ)cosnα (2.5)

where Isr is the intensity of specularly reflected light. w(i, λ) is a reflection

function, giving the ratio of specularly reflected light to the incident light as a

function of the incidence angle and the wavelength of light. n is a power that

approximates the spatial distribution of the specularly reflected light. Higher

values of n yield focused spatial distribution characteristics of metals and other

shiny surfaces, while small values of n yield more distributed results, for exam-

ple, in nonmetallic surfaces. α is the angle between the reflected ray and the

line of sight, as shown in Fig. 2.3.

Including specular reflection, our lighting model becomes

Ir = Iarkar +
Ilr

d+K
(kdrcosθ + Ilrw(i, λ)cosnα) (2.6)

where d is the distance from the viewpoint to the object and K is an arbitrary

constant. In practice, w(i, λ) is replaced by a constant ksr (0 ≤ ksr ≤ 1), where



14

ksr is the specular reflection constant for the red band. This yields

Ir = Iarkar +
Ilr

d+K
(kdrcosθ + Ilrksrcos

nα) (2.7)

In the presence of m light sources, the lighting model becomes

Ir = Iarkar +
m∑
j=1

Ilrj
d+K

(kdrcos(θj) + ksrcos
nαj) (2.8)

and similarly for green and blue bands.

2.3 Global Illumination Models

Equation 2.8 is an example of a local lighting model. Only lighting

from designated light sources are taken into account in this model. It does not

consider illumination from other objects in the environment (except for light

sources). As we saw earlier, this illumination was lumped into the constant

ambient light. For synthesizing realistic images, this indirect illumination com-

ponent must be computed with more accuracy. In global illumination models,

the light that reaches a point by reflection from, or transmission through, other

objects in the scene, as well as light incident from light sources is considered

in determining the intensity of the light reflected from a surface point to the

observer.

Two important techniques that compute global illumination are ray

tracing [55][38] and radiosity [19][8][50][7].

2.3.1 Ray Tracing

Going back to Equation 2.1, we mentioned that an approximation to

this integral is necessary. The local lighting model we developed in the previous

section is a good approximation for illumination received from designated light
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sources in the environment. However, a point in the environment can also

receive illumination from another object through reflection from the object

(or transmission through the object). To model this indirect illumination, we

need to consider light coming at any surface point from points on neighboring

objects, and light coming to these neighboring points from their neighboring

points and so on. Since there could potentially be a large number of objects

in the environment, and light could arrive from any direction that contains

a surface point, this makes the problem of determining global illumination

computationally infeasible.

Traditional ray tracing makes several simplifications.

1. The surfaces in the environment are perfect reflectors. In this case, the

surface acts like a mirror and reflects light only along the mirror direction

(the angle of incidence equals the angle of reflection). This causes sharp

reflections.

In practice, surfaces are rarely perfect reflectors or transmitters. Imper-

fections in the surface could cause light to scatter. This illumination has

been modeled using different distribution functions. For instance, both

Gaussian and Beckmann functions have been used as microfacet distri-

bution functions to estimate the reflection of light from a surface, which

is modeled as a collection microfacets.

In an effort to reduce computation cost, a simple approximation to this

is used. The cosine power function that we used to model specular high-

lights from point sources (described in the previous section) is used to

account for this component of the reflected illumination. This function

tends to conentrate the reflection illumination around the mirror reflec-

tion direction.
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Thus, surfaces in the environment are perfect reflectors or transmitters

as far as other surfaces in the environment are concerned, however, they

are not so as far as the designated light sources in the environment are

concerned.

2. If a surface is transparent, transmission is only through the refraction

direction, which depends on the angle of incidence and the refractive

index of the material of the surface.

3. All light sources in the environments are point light sources. To deter-

mine if a surface point is in shadow, a ray is spawned to each point

source and tested to see if it is blocked by any object in the environment.

Approximating light sources by points results in sharp shadows.

4. All other illumination (for example, light arriving at a point due to diffuse

reflection from another point in the environment) is approximated by a

constant ambient light source.

5. In addition, if a surface point is not in shadow, then a local lighting

model like the one we developed earlier will be used to approximate direct

illumination from the light sources in the environment.

These assumptions drastically reduce the number of rays that need

to be spawned and processed to determine global illumination. The main dif-

ference in the lighting model proposed for use in traditional ray tracing is the

illumination that is received from neighboring points through the mirror reflec-

tion and transmission directions.

Later on, we will see how some of these assumptions can be relaxed

at the expense of additional rays, to obtain greater photo-realism. We next

describe the traditional ray tracing algorithm.
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2.3.1.1 Forward and Backward Ray Tracing

With the above assumptions in our mind, the problem is to determine the

color of each pixel as seen from the eye. The question is, ‘What amount of

light passes through the center of each pixel ending at the eye ?’ This gives us

a ray definition: one of the endpoints is the eye point and its direction is

defined by the vector from the center of a pixel to the eye.

Light rays originate from light sources with intensities and in directions de-

termined by their characteristics. Each ray starts with a certain intensity and

direction and may hit some object in the scene. If it does not hit any object,

then it travels through open space until its intensity reduces to zero. If it does

strike an object, several things happen. A portion of it is absorbed by the

object, another portion is reflected, and if the surface is transparent, some of

it is also transmitted. In general, light is also scattered, but conventional ray

tracing does not model this. The reflected and transmitted rays are followed

individually, and they may hit other objects in the scene, leading to more re-

flection and transmission. This process continues until each ray’s energy dies

out.

A fraction of all these rays will hit the image plane and end up at the

eye. These are the intensities we are interested in, since these are exactly the

rays that start from the eye and sample the environment. However, most of

the rays do not reach the eye and are useless for image synthesis.

What we have just described is forward ray tracing. We cannot sim-

ulate this process directly since this involves tracing potentially an infinite

number of rays, most of which is wasteful. However, we know exactly the rays

we are interested in: those that pass through the center of each pixel and end
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up at the eye. If we reverse the ray tracing process, starting from the eye

position and passing through the center of each pixel, then we are tracing rays

backward, and this is termed backward ray tracing or just ray tracing. In this

process we start with the ray connecting the eye and the center of the pixel

in question and extend this into the environment and test for an intersection

with any object in the scene. The first (closest) hit is what we are interested

in, since this is the point from which light travels to the eye through the center

of the pixel. Now this point could have obtained its illumination from sev-

eral sources: directly from the light source(s), by emission (in which case the

surface emission characteristics need to be known to compute this component

of light), by reflection, of incident light at this point into the eye, and lastly

by transmission (if the object is transparent) through this point into the eye.

There are other ways light could reach the eye, notably diffuse reflection from

nearby objects, but, as stated earlier, the reflection function R models only

pure specular reflection and transmission.

Thus, starting with the ray through the pixel in question, we have

spawned several new rays, towards the light source(s), in the reflection direc-

tion and in the transmission direction. Rays are also spawned toward each

light source from a surface point to determine if it is in shadow. Points in

shadow do not receive any light energy from the light source in question. In

Equation 2.8, this means that the diffuse and specular terms will be zero for

that particular light source. Now treating the intersection point at which these

rays are spawned as a new ray origin, we trace these rays and determine their

intensities. As can be expected, this leads to a recursive algorithm [55]. Once

the intensities from these different sources are determined, they are weighted

suitably depending on the surface properties of the object and added. Essen-
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tially, a local lighting model like the one in Equation 2.8 is applied at each

intersection point to determine the total intensity at that intersection point.

Once all intensities are computed then we have the color of the pixel. The same

process is applied to every pixel in the scene.

This recursive ray tracing algorithm was proposed by Whitted [55].

Whitted’s global lighting model is the same as Equation 2.8 with the addition

of two more terms accounting for indirect specular reflection and transmission.

The red component of the intensity is given by

Ir = Iarkar +
Ilr

d+K
(kdrcos(θ) + Ilrksrcos

n(α)) + ksS + ktT (2.9)

where ksr and ktr are reflection and transmission constants (for the red band)

that are used to weight the contributions S and T coming from the specular

reflection and transmission directions. Similar equations are written out for

the green and blue bands.

2.3.1.2 An Example Ray Trace

Fig. 2.4 illustrates an example scene in which a ray through a pixel is being

traced. In this scene, for each surface i, Ii is the intersection point, Ri is the

reflected ray, Ti is the transmitted ray and Ni is the unit normal to the

surface at the intersection point.

A ray that is spawned from the eye through the pixel hits surface 1

at I1. This point gets illumination from 2 spawned rays, R1 and T1 along the

reflection and transmission directions. T1 does not hit anything, but R1 hits

surface 2 at I2, and it gets illumination from T2 and R2. Lastly R2 hits surface

3 at I3 and gets its illumination from R3 and T3. Now we apply a shading
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Figure 2.4: A Sample Ray Trace

model at I3, I2 and I1 successively. We also need to see if any of these points

is in shadow. For this a ray is spawned from each intersection point to each

(point) light source as shown in the figure. Points in shadow will not be visible

from that particular light source and hence will not have any direct specular or

diffuse contribution due to it. The intensity computed at I3 (with contributions

from R3, T3 and the diffuse component if I3 is not in shadow) will become the

intensity of R2. The intensity of I2 will be computed in the same way and will

become the intensity of the reflected ray R1. Finally the intensity computed

at I1 will be the intensity seen at the eye.

This is the simplest form of ray tracing in computer graphics used

for synthesizing images. The question that needs to be answered over and over

again in this technique is ‘Given a ray and a scene of objects, what is the closest

object (if any) hit by the ray?’. For each pixel, we end up with a tree of rays.

Let us now look at an example to understand the amount of compu-

tation required to render a moderately complex scene using ray tracing.

2.3.1.3 Computation Expense: An example
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Consider a scene containing a thousand spheres that need to be rendered. Let

two light sources illuminate the scene. Typical workstations have a display

resolution of 1000× 1000 pixels. Assuming one ray is spawned from the eye

point for each pixel, we have one million primary rays. Let us assume that on

the average there are 4 additional rays spawned for each primary ray,

accounting for reflection and refraction rays, and rays to light sources. Thus

there are totally five million rays that need to be traced in an environment

containing a thousand object primitives. To get an idea of how many

operations it takes to compute a ray-sphere intersection, let us illustrate the

procedure [16].

2.3.1.4 Ray-Sphere Intersection

Define a ray as:

R(t) = Ro + ~Rdt, t > 0

where

Rorigin ≡ Ro = [Xo, Yo, Zo]

Rdirection ≡ ~Rd = [Xd, Yd, Zd]

where X2
d + Y 2

d + Z2
d = 1

Define a Sphere as:

Center ≡ Sc = [Xc, Yc, Zc]

Radius≡ Sr

Sphere’s surface is the set of points [Xs, Ys, Zs] where

(Xs −Xc)
2 + (Ys − Yc)2 + (Zs − Zc)2 = S2

r
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To solve for the intersection, substitute the ray equation into the

sphere equation. Solve for t.

In ray parameter space,

X = Xo +Xdt

Y = Yo + Ydt

Z = Zo + Zdt

Substitution in the sphere equation results in

(Xo +Xdt−Xc)
2 + (Yo + Ydt− Yc)2 + (Zo + Zdt− Zc)2 = S2

r

In terms of t, this is

At2 +Bt+ C = 0, where

A = X2
d + Y 2

d + Z2
d = 1

B = 2 ∗ {Xd(Xo −Xc) + Yd(Yo − Yc) + Zd(Zo − Zc)}

C = (Xo −Xc)
2 + (Yo − Yc)2 + (Zo − Zc)2 − S2

r

The quadratic has the solution

t0 = (−B −
√
B2 − 4C)/2

t1 = (−B +
√
B2 − 4C/2

If the discriminant is negative, the ray misses the sphere. Else, the

smaller, positive root is the closer intersection.

If an intersection is found, the intersection point is calculated as fol-

lows:
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Calculation Multiplies Adds/Subtr. Compares Divides sq.root
A,B,C 7 8 0 0 0
Discriminant 2 1 1 0 0
t0 1 1 1 0 1
t1 1 1 1 0 0
Inters. point 3 3 0 0 0
Normal 3 3 0 0 0

Table 2.1: Operations in Ray-Sphere Intersection.

~rintersect(xi, yi, zi) = [Xo +Xdt, Yo + Ydt, Zo + Zdt]

and the unit normal is given by

~rnormal = [(xi −Xc)/Sr, (yi − Yc)/Sr, (zi − Zc)/Sr]

The operation count for each step in the intersection calculation is

illustrated in Table 2.1. In the worst case, there is a total of 17 adds/subtracts,

17 multiplies, 1 square root and 3 compares. Let us normalize all these to

adds or subtracts. Adds, subtracts and compares cost nearly the same. Most

workstations today contain floating point hardware. This usually makes a

multiply nearly the same cost as an add. A square root takes the cost of about

12 adds. The total cost is now (17+17+12+3) 49 adds or say, 49 operations.

In the absence of any search structure, the total cost of ray tracing

this environment is given by

Total Cost (in operations)= total rays * total objects * total intersections

= 5, 000, 000 ∗ 1000 ∗ 49

= 245, 000, 000, 000

If we assume that a floating point operation takes about 1µsec., the total time
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for the ray tracing is given by

Total time =
245, 000, 000, 000 ∗ (1 ∗ 10−6)

60 ∗ 60
Hours

≈ 68 Hours!

At 30 frames per second, it would take about 2041 hours or 85 days to make 1

second of an animation sequence involving this scene!

2.3.2 Distributed Ray Tracing

Section 2.3.1 listed the assumptions made by the traditional ray trac-

ing algorithm in approximating the integral in Equation 2.1. In this section

we will describe a generalization of the standard ray tracing algorithm called

distributed ray tracing [10][9] for enhanced photo-realism. Our interest in dis-

tributed ray tracing is twofold: it demonstrates how traditional ray tracing

can be extended to simulate a variety of lighting effects that occur in real

life environments (thus obtaining a more accurate estimate of Equation 2.1),

at the expense of additional rays; and secondly, the computational expense

involved further justifies the use of search structures for performance improve-

ment. Distributed ray tracing relaxes the assumptions of standard ray tracing

by spawning multiple rays per pixel according to some probability distribution.

The exact distribution used and the origin and direction of the spawned rays

depends on the effect that is being simulated. Let us examine some of them.

2.3.2.1 Gloss

The reflection integral in Equation 2.1 is approximated by a δ function. For

specular surfaces, at each intersection point, exactly one reflection ray is
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spawned along the mirror reflection direction. In real life, reflections are hazy,

since most surfaces are not purely specular, due to surface defects, for

instance. The distinctness with which a surface reflects light is called gloss.

Gloss can be computed by distributing secondary rays about the mirror

reflection direction. The ray contributions are weighted, with directions closer

to the mirror direction contributing more to the total intensity. This intensity

replaces the specular component in Whitted’s lighting model.

2.3.2.2 Translucency

If there are objects in the environment that transmit light, then the reflection

function in Equation 2.1 is replaced by the transmittance function T , and the

integral is evaluated over the hemisphere behind the surface.

T is usually approximated by a δ function. Translucency is a char-

acteristic that will result in blurred images of objects seen through transpar-

ent objects. To achieve translucency effects, transmission rays are distributed

around the transmittance direction (defined by the refractive index of the sur-

face material and the angle of the incoming ray), just as reflection rays are

distributed around the mirror reflection direction.

2.3.2.3 Penumbras

The naive ray tracing algorithm assumes all light sources in the environment

are point sources, resulting in sharp shadows. When light sources are of finite

size, which is more common, the shadows are soft. Soft shadows occur

because points in the scene might be partially obscured from the light source
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by intervening objects. The reflected intensity due to such a light is

proportional to the solid angle of the visible portion of the light [11].

Shadows are normally calculated by spawning one ray from each in-

tersection point to each light source. Since light sources are points in the

standard ray tracing method, this is adequate. When light sources are of finite

size, this is not sufficient, since different parts of the light source contribute to

the illumination of each surface point. Penumbras can be calculated by spawn-

ing a collection of rays from each intersection point to each light source. The

distribution of the shadow rays must be weighted depending on the projected

area and the brightness of the different parts of the light source. The number

of shadow rays traced to a region of the light source should be proportional to

the amount of light energy coming from that region.

2.3.2.4 Depth of Field

Both cameras and our eyes have a finite lens aperture, and hence, a finite

depth of field. Computer graphics has been based on the pinhole camera
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model, with all objects in sharp focus. The focal point on a lens is the point

where all rays converge, after refraction through the lens. The plane

containing the focal point and orthogonal to the line of sight is the focal

plane. Fig. 2.5 illustrates this.

Depth of field occurs because of the finite lens size. Visible surfaces

and hence, shading could be different from different parts of the lens. These

are not accounted for in the pinhole camera model where each point in the

focal plane is looked at from a single point.

To account for depth of field effects, visibility calculations from parts

other than the center of the lens must also be accounted for. For this, start with

the ray from the center of the lens and determine the location on the image

plane through which the primary ray is to be traced, just as in the standard

algorithm. The focal point is located on this ray so that its distance from the

eye point is the focal distance of the lens. Let this point on the image plane

be p. A point on the lens is obtained by jittering a location selected from a

prototype pattern of lens locations. The primary ray starts at this location

and passes through the focal point. This ray is traced using the standard ray

tracing algorithm. This procedure essentially samples the lens and objects not

in focus are rendered properly.

2.4 Extensions to Ray Tracing

In addition to distributed ray tracing, there are other important ex-

tensions to ray tracing. The rendering equation proposed by Kajiya [24] gener-

alizes a variety of known rendering algorithms. Approximations to this equation

give rise to rendering techniques such as the standard scanline algorithms with

hidden surfaces removed, ray tracing, distributed ray tracing and the radiosity
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methods. Our main interest in the rendering equation is that it can be solved

using ray tracing. Kajiya points out a variety of hierarchical sampling (or

equivalently, variance reduction) techniques to solve the rendering equation.

Specifically, an enhanced version of stochastic ray tracing, using techniques

called importance sampling and path tracing, this has resulted in modeling

environments which contain surfaces with a variety of surface characteristics.

Another important rendering technique for modeling global diffuse

illumination is the radiosity method [19][8][50][7]. Ray tracing approaches to

radiosity methods have also been proposed [51][52][4].

2.5 Conclusions

We have outlined the basics of ray tracing and some of its extensions

for greater photo-realism. Although the more advanced forms of ray tracing

such as distributed ray tracing are more expensive due to the larger number of

spawned rays, the computation and complexity involved for tracing each ray

remains the same. If we can trace each ray a little faster, then the overall

performance will improve regardless of the effects we are trying to simulate. In

the following chapters, our goal will be design data structures that are able to

take advantage of scene properties to reduce the cost of tracing each ray.



Chapter 3

SEARCH STRUCTURES IN RAY TRACING

Having described the important aspects of ray tracing, we now turn

to the need for accelerating ray tracing through the use of search structures.

We will look at some of the important search structures currently being used.

3.1 Need for Accelerating Ray Tracing

In tracing each ray, we have to determine its closest intersection (if

one exists) with an object in the environment. The simplest strategy is to

test the ray for intersection with all the individual object primitives in the

environment. The total cost of rendering becomes

Ctrace = nrays ∗ nobjects ∗ Cpr

where

Ctrace : total cost of the rendering in terms of object intersections.

nrays : total number of rays spawned.

nobjects : total number of objects.

Cpr : the average cost of intersecting an object primitive.

In this equation, there are three terms that contribute to the total cost; the total

number of rays spawned, the total number of objects and the average object

29
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intersection cost. The number of spawned rays is dependent on the image

resolution, characteristics of the surfaces in the environment (highly specular

surfaces would cause a large number of higher generation rays to be spawned),

and the different lighting effects that we are trying to simulate. For instance,

to generate penumbras using distributed ray tracing, several rays need to be

spawned from each intersection point to each light source.

The total number of ray-object intersections is dependent on the total

number of objects in the environment. In the absence of any search structure,

all of them need to be examined for each spawned ray. Our goal will be to use

search structures to reduce the total ray-object intersections. Reducing this

parameter usually has the greatest advantage in performance improvement.

The cost of computing an intersection between a ray and an object

primitive depends on its geometry. While this computation is inexpensive for

object primitives such as polygons and spheres, this is not the case for higher

order surfaces such as bicubic patches, often taking up hundreds of floating

point operations. Techniques to reduce this cost include converting complex

geometric objects to a simpler representation. For instance, subdividing a

bicubic surface until each region can be approximated by a planar polygon [27]

is one method to simplify the intersection calculations. Using simple volumes

in place of object primitives is another alternative, when this substitution is

acceptable [48].

Our focus will be directed towards reducing the ray-object intersec-

tions through the use of geometric search structures. A search structure will

help us examine only a fraction of the environment at a small cost; that of

traversing it. Most often, traversing a search structure involves inexpensive

plane intersections or bounding volume tests. The advantage of these search
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structures is especially significant in complex environments containing tens of

thousands of object primitives.

The two main methods of reducing the total number of ray-object

intersections is through the use of space partitioning hierarchical structures

and those based on bounding volumes.

3.2 Space Partitioning Structures

In space-partitioning structures, 3-dimensional space is divided into a

collection of convex regions by partitioning planes, usually axis-aligned. Space

is recursively partitioned until each region contains a small number of object

primitives. The partitioning planes help determine an order of regions along

the path of any ray of arbitrary origin and direction. Only the objects in these

regions need to be examined for a possible intersection. Processing stops once

an intersection is found or there are no more regions to examine.

Let us look at some of the common space partitioning structures being

used in ray tracing.

3.2.1 Uniform Subdivision

In this method, the three-dimensional extents of the scene represented

by an axis-aligned parallelepiped are subdivided uniformly along all three di-

mensions, resulting in a grid of equal sized ‘voxels’ (abbreviation for volume

elements, each represented usually as a rectangular parallelepiped). The most

common examples of this are the ARTS method [15] and more recently, the

work of Cleary [6].

Since the subdivision creates equal sized voxels, tracing a ray through

a grid is very similar to the 2D problem of drawing a line on a raster grid.
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Figure 3.1: Uniform Subdivision (2D example).

The uniform size of the voxels permits the use of incremental techniques in

identifying the cells visited by any ray. One difference from the line drawing

algorithm is that whereas in 2D it is sufficient to identify cells that are close

to the actual line being drawn, tracing rays through a 3D grid requires all

cells visited by the ray be identified. This is because we are searching for the

closest intersection with an object in the environment, and thus, all the cells

must be visited in order. Once an intersection is determined, the search can

be terminated (and the ray discarded) since no other intersection can be closer

than the one already determined.

Fig. 3.1 illustrates uniform subdivision in 2D. The shaded cells and

objects are examined by the ray in the search for the closest intersection. Al-
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Figure 3.2: Geometry for Next Cell Calculations.

though the resolution of the grid can be increased to reduce the number of

objects examined, this increases the expense of traversing empty regions of

space and also increases the storage requirements very quickly.

The strategy used to move from cell to cell is the part that is critical to

the performance of this technique. As our implementation follows the method

described in [6], we will describe this method of cell traversal next.

3.2.1.1 Cell Traversal

Fig. 3.2 shows the geometry used in the next cell calculations (a 2D example).

The ray in Fig. 3.2 enters a new cell either by passing from top to bottom

through a horizontal wall, or by passing from left to right through a vertical
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Figure 3.3: Initalization Calculations.

wall. The distance along the ray between vertical walls is a constant, δx, and

there is a similar distance, δy, for the distance between horizontal walls. In

3D, there is also δz. The problem is to determine what type of crossing will

occur next; whether a horizontal or vertical wall will be encountered. This is

the role of dx and dy, the total distance the ray has traveled from some origin

to the next crossing of a vertical or horizontal wall respectively. If dx < dy, the

next crossing will be a vertical wall and the next cell, a horizontal neighbor.

If dy < dx, a horizontal wall will be encountered and the next cell will be a

vertical neighbor. dx is updated by adding δx when a vertical wall is crossed.

dy is updated by adding δy when a horizontal wall is crossed. The cell address

is maintained by two integers i and j. The direction flags of the ray are stored

by px and py.

For all of this to work, the values of dx, dy, dz, δx, δy, δz must all be

properly initialized. The ray is assumed to be inside the grid. This is very

much true when a ray has been reflected (or transmitted) from an object in the

environment. To adapt this to first generation rays (the view point could be

outside the grid), the point where the ray enters the grid needs to be computed.
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Secondly, all the coordinates must be scaled so that each voxel of

the grid is a 1 × 1 × 1 cube. The scaled grid will be used for the ‘next cell’

calculations. Once the new cell has been identified, it can be mapped back to

world space to identify the next cell that is visited by the ray.

We next show how to initialize all the quantities being used in the

traversal calculations. The ray origin is assumed to be at (x, y, z). From

Fig. 3.3,

dx = (bxc+ 1− x) δx, if ray is going towards right,

= (x− bxc) δx, if ray is going towards left

where bxc is the greatest integer less than x. A similar procedure is followed

for dy and dz. To calculate δx, we need the direction cosines cx, cy and cz.

From Fig. 3.3,

δx =
√
cx2 + cy2/cx

This is easily extended for three dimensions. δy and δz are similarly calculated.

This results in the 2D cell traversal algorithm described in

Algorithm 3.1.

Indexing the cell array is expensive. In 3D, another index, k is needed

in addition to i and j. It is better to maintain a linear array with an index p.

p = i ∗ n2 + j ∗ n+ k

The multiplies can be avoided by maintaining p directly with appro-

priate values for px, py and pz. Each time i is incremented, p is incremented

by ±n2; each time j is incremented, p is incremented by ±n.
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Initialize px, py, δx, δy, dx, dy, i and j.
repeat

if (dx ≤ dy)
{
i = i+ px
dx = dx+ δx
}
else if (dy ≤ dx)
{
j = j + py
dy = dy + δy
}

until an intersection is found in cell(i, j)

Algorithm 3.1: Cell Traversal (2D).

A hash table is used to store the cells for efficient utilization of array

space. The hashing index is simply p mod M , where M is the size of the table.

p can be checked at the end of the loop to see if it exceeds M .

Finally, each ray has to be terminated properly. This is done by

checking to see if the ray has exited the 3D volume. Recall that dx, dy and

dz keep track of the total distance of the ray from some origin. The distances

at which the ray exits the volume (along each of the three dimensions) is

determined by intersecting the ray against the faces of the volume. Let these

distances be sx, sy and sz. To start with, sx = (n − x)δx, assume n is the

resolution of the grid along the X axis. sy and sz are similarly calculated.

The cell traversal algorithm in 3D, including termination and hashing,

is illustrated in Algorithm 3.2.

3.2.2 BSP Trees

A binary space partitioning (BSP) tree is any binary tree structure

used to recursively partition space. BSP trees have been used to determine vis-
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Initialize px, py, pz, δx, δy, δz, dx, dy, dz, sx, sy, sz and p.
repeat

if (dx ≤ dy) && (dx ≤ dz)
{

if (dx > sx) exit;
p = p+ px
dx = dx+ δx
}
else if (dy ≤ dx) && (dy ≤ dz)
{

if (dy > sy) exit;
p = p+ py
dy = dy + δy
}
else
{

if (dz > sz) exit;
p = p+ pz
dz = dz + δz
}
if (p > M)p = p−M

until an intersection is found in cell with hash key p

Algorithm 3.2: Cell Traversal (3D).

ible surfaces [46][13][35][40][14][34], polyhedral set operations [47] and shadow

generation [5].

The earliest use of BSP trees was by Shumacker [42]. Shumacker’s

algorithm partitions the environment into a set of clusters using hand-picked

partitioning planes. For this, the objects in the environment must be linearly

separable, i.e., there must exist a plane which partitions the objects into two

nonempty sets without intersecting any of the objects. With the environment

divided into two subsets, each of these sets is recursively subdivided until each

cluster contains a small number of objects. An example is shown in Fig. 3.4.

1, 2 and 3 are object clusters. A, B, C and D are the partitions created by the

two planes, indicated by the bold lines. The binary tree that is built contains
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Figure 3.4: Determining Cluster Priority.

partitioning planes in its interior nodes and clusters of objects at the leaf nodes.

Shumacker’s method involves hand-picking the partitioning planes.

The technique of Fuchs and Naylor [13][14] automates the process of choosing

the planes. This is very important for complex environments. Their method

as originally described, is, however, restricted to polygonal scenes, since the

partitioning planes are the planes of the polygons that determine the scene.

In Fuchs and Naylor’s BSP tree, the construction of the tree begins

by choosing a partitioning plane that contains a polygon from the input scene.

The remaining polygons in the scene are partitioned into three sets, those

on the partitioning plane, and those that are on the two sides of the plane.

Polygons which cross the partitioning plane are split and each piece placed in

the appropriate set. Thus the environment need not be linearly separable. As

in the earlier algorithm, the two subsets are recursively subdivided, picking at
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Figure 3.5: Determining Visible Surfaces Using BSP Tree.

each step one of the polygons as the partitioning plane. The process ends when

no polygons remain. The BSP tree thus built now contains a polygon at each

node with the left and right subtrees containing the polygons on either side of

the plane of the polygon.

An example is shown in Fig. 3.5. Here the plane at the root of the

hierarchy is the plane containing polygon 3. This intersects polygon 5, which

is split into 5a and 5b. Polygons 1, 2 and 5a are considered to be in front of

the root plane while 4 and 5b are in the back of the root plane. The direction

of the plane normal vector distinguishes the front side from the back. The

BSP tree after partitioning by plane 3 is also shown in Fig. 3.5. The process is

recursively applied to the two children of the root node.

Given a view point, the constructed BSP tree can be traversed in a

back to front or front to back order. For visible surface generation, a back

to front traversal of the polygons is used, since polygons in front of a parti-
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tioning plane (and closer to the view point) cannot be blocked by any of the

polygons on the farther side of the partitioning plane. The necessary ordering

can be determined with the help of the partitioning planes once a view point

is specified.

For instance, consider Fig. 3.5. Let us assume the viewpoint is on

the back side (the side containing the plane normal is the front side and the

other side is the back side) of polygons 4, 3 and 5b. The partitioning plane at

the root of the BSP tree is the plane of polygon 3. Since the viewpoint is on

the back side of 3. polygons on the front side of 3 (polygons 1, 2 and 5a) are

processed before those on the back side of 3. In the BSP tree in Fig. 3.5, the

left node polygons is processed, then the root polygon and finally, the polygons

on the right child node. The partitioning planes stored in the two child nodes

determine the order in which their respective polygons are processed. The

relation of the position of the viewpoint with respect to the partitioning plane

determines this order.

As long as the objects in the scene do not move, the back to front

ordering can be reconstructed for any view point.

Kaplan [25] implemented a special case of the BSP tree for ray tracing.

In this implementation, axis-aligned planes are used to partition space. At each

step of the subdivision, three partitioning planes are used to divide space into

eight equal sized octants. Each object in the scene is tested against each octant

to see if any part of its surface intersects it. If it does, then it is added to the

list of objects for that node. At the end of the first step of the subdivision, we

have eight lists of objects, one for each of the eight nodes. At the root, the

partitioning is by a plane orthogonal to the X axis, at the next level by two

planes orthogonal to the Y axis and at the last level, by four planes orthogonal
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Figure 3.6: Kaplan-BSP Tree.
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Input: obj list, bsp root, ray.
Output: inters
kaplan traverse (object list, bsp root, scene bounds)
{

while ( !inters.found && (ray.origin within scene bounds) )
{

r = bsp root
while (r == INTERNAL NODE)
{

dim = r.plane dim
if (ray.origin[dim] < r.plane val

r = r→left
else

r = r→right
}
“Test objects at LEAF node r for an intersection, update inters.found, inters.point”
If (!inters.found)
{

“Determine point through which ray exits LEAF NODE, record exit point”,
“Extend exit point along ray direction into the next region”
“compute new ray origin”

}
}
return (inters)
}

Algorithm 3.3: BSP (Kaplan) Tree Traversal.

to Z axis. The recursive subdivision continues until the leaf nodes of the tree

contain either a small number of primitives or their size becomes smaller than

a set threshold. At the end of the subdivision, all the leaf nodes contain lists of

object primitives. Note that the subdivision adapts itself to the scene structure

since only regions that contain object primitives are subdivided. A 2D example

of a Kaplan-BSP subdivision and the corresponding tree are shown in Fig. 3.6.

To determine a ray-object intersection from the BSP tree, the origin

of the ray is compared against the partitioning planes in the tree, starting from

the root of the tree. The leaf node containing this point can be determined. All
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primitives contained at this node are intersected with the ray. If an intersection

is found internal to this region, the closest of these is the required intersection.

Otherwise, the face through which the ray exits this region is determined by

performing an intersection between the ray and the six faces of the region. The

ray is then extended a small amount, depending on the size of the smallest

region in the tree. This is done as follows (the following procedure also applies

to the octree).

During the construction of the BSP tree, the length of the smallest

side of any of the voxels, say lmin, is recorded. The next voxel visited by the

ray is found by moving perpendicular to the face through which the ray exits

the current voxel. If the movement is limited to be less than lmin (for example,

lmin/2), then the next voxel will not be missed. If the exit point is on an edge,

it is necessary to move perpendicular to both faces sharing that edge, and in

three directions if it is on a corner.

Now the new point is contained in the region that is visited next by

the ray. This region is determined in a similar fashion as for the BSP tree, and

search for the closest intersection continues.

The traversal method is illustrated in Algorithm 3.3.

3.2.3 Octree

The octree hierarchy used by Glassner [17] performs a subdivision

identical to Kaplan’s BSP tree. Each level of the octree corresponds to three

levels of the BSP tree. The difference lies in the way Glassner stores the

octree. While Kaplan builds a binary tree, Glassner uses a combination of

a hash table and linked lists, which results in considerable savings in pointer

space. Each node in the hierarchy has a uniquely defined name. This name
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Figure 3.7: Octree Naming Convention.

is constructed using the convention of labeling the children of a node by the

sequence of numbers 1 through 8. When a node is subdivided, its children derive

their names by appending their single digit (identifier) to their parent’s name.

See Fig. 3.7. Given the name of a node, the name of its child is obtained by

multiplying it by 10 and adding the appropriate digit. To access data associated

with a node name (for example, accessing an object list), the name is used to

retrieve a pointer from the hash table. Glassner computed the name modulo

the size of the table as a hashing function. To retrieve an object list, determine

which of the eight octants contains the point and consult the hash table for the

status of that child. The child could have been further subdivided, or it might

be a leaf node, in which case its object list can be accessed.

Traversing an octree is almost identical to the Kaplan-BSP tree. The

main difference is in the method used to reach the leaf nodes of the octree.
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Figure 3.8: A Bounding Volume Enclosing Objects

While this is done in the octree by consulting a hash table and following link

lists, the procedure in the Kaplan-BSP tree involves comparing the coordinates

of the point (which is guaranteed to be inside the region of interest) against

the partitioning planes in the tree.

Fig. 3.6 illustrates a 2D example of an octree. The search examines

regions and objects along the ray path, with the regions examined shown by

the shaded cells and objects. The subdivision is concentrated in the regions

containing larger collections of objects.

3.3 Bounding Volume Hierarchies

Another widely used technique to reduce the ray-object intersections

is through the use of bounding volumes. A bounding volume is a volume

that surrounds one or more object primitives completely. Rays that miss a

bounding volume also miss the object(s) contained by the bounding volume.
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However, the geometry of a bounding volume must be simple so that it is not

very expensive to test a bounding volume for intersection with a ray. At the

same time, it should fit the objects inside as tightly as possible. A bounding

volume enclosing object primitives is shown in Fig. 3.8.

Carrying this further, objects can be grouped together hierarchically

[39][55] and bounding volumes constructed at each node of the hierarchy en-

compassing all the objects under that node. Thus, whole collections of objects

can be pruned from further consideration of a ray by intersecting the bound-

ing volume at any of the interior nodes of the hierarchy. This reduces not

only ray-object intersections, but also avoids most of the ray-bounding volume

intersections.

One important distinction from space partitioning structures is that

bounding volumes are, in general, not disjoint. Space-partitioning structures

create disjoint volumes, however, a partitioning plane can cross an arbitrary

number of object primitives. In bounding volume structures, the regions en-

closed by the bounding volumes can overlap but all the objects inside it are

completely contained by the volume.

3.3.1 Automatic Bounding Volume Hierarchies

Some of the earliest bounding volume hierarchies required direct spec-

ification of the objects to be grouped together at each stage. While this is not

unreasonable for small environments containing few primitives, it becomes in-

convenient for very complex scenes. The particular strategy used to cluster the

objects is critical to the performance of the hierarchy.

Goldsmith’s [18] automatic bounding volume hierarchy (ABV) takes

an important step in this direction. It provides a method to evaluate the cost
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Figure 3.9: Hitting Probability.

of the hierarchy. For rays with an endpoint at a fixed distance from a bounding

volume, the probability that a ray (whose directions are uniformly distributed)

will hit the bounding volume is proportional to the solid angle subtended by

the surface of the bounding volume. At large distances, for convex volumes like

spheres and rectangular parallelepipeds, this is approximately proportional to

the surface area [45].

We will prove this result by calculating the average projected area of

the convex volume over all possible orientations. The probability that a ray

will penetrate a volume is proportional to the area projected by the volume in

a direction orthogonal to the ray direction.

Lemma 3.1 The average projected area of a planar polygon over all possible

orientations is one-half its surface area.

Proof.

Consider a polygon P of area A and unit normal vector N . Let D be any

projection direction. The projected area Ap of P orthogonal to D is given by

Ap = A(N ·D)

= A|N ||D|cosθ

= Acosθ



48

where ·, represents dot product, θ is the angle between N and D, and |N | =

|D| = 1. To get the average projected area of the polygon, average over the

hemisphere of P .
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Theorem 3.1 The average projected area of a convex surface over all possible

orientations is one-quarter its surface area.

Proof.

Any surface can be approximated arbitrarily closely by a polygonal mesh. If the

surface is convex, projection along any direction D will be covered twice, once

by the front facing polygons and once by the back facing polygons. The average

projected area of the mesh is one-half the sum of the average projected areas

of the polygons in the mesh. Using the result from Lemma 3.1 this approaches

one-quarter the surface area of the convex surface as the number of polygons

increases. �
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Figure 3.10: A Bounding Volume Hierarchy

In Fig. 3.9, A, B, C and D are convex regions. The probability that

a ray will penetrate region B or C given that it penetrates A is given by

P (B|A) and P (B|C). From the above theorem, a formula for obtaining these

probabilities is given by

P (B|A) =
Area(B)

Area(A)
(3.1)

P (C|A) =
Area(C)

Area(A)
(3.2)

and so on. A simple hierarchy is shown in Fig. 3.10. Let us compute R, the

expected number of bounding volume intersections for this hierarchy.

Assume the ray intersects the scene extent, i.e. intersects A.

#intersections at level 0 = 1

#intersections at level 1 = 4P (A|A)

#intersections at level 2 = 2P (B|A) + 3P (C|A) + 2P (D|A).

#intersections at level 3 = 2P (E|A) + 3P (F |A) + 2P (G|A).
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and the expected number of intersections is given by

R = 1 + 4P (A|A) + 2P (B|A) + 3P (C|A) +

2P (D|A) + 2P (E|A) + 3P (F |A) + 2P (G|A).

Using the surface area formula to compute the conditional probabili-

ties, we can determine the expected number of intersections performed for each

ray.

The hierarchy is built with a view to minimizing the total bounding

volume surface area (in order to minimize the expected number of intersec-

tions). This is done by a heuristic tree search. Objects are inserted into the

hierarchy, one at a time, and the tree is searched to find a suitable place for

insertion. At any node, only the subtree that results in the smallest increase in

the node’s bounding volume area (when the object is inserted as a child of this

node) is searched. If two or more children are found to have the same increase

in bounding volume surface area, then all subtrees under these nodes have to

be searched for a possible insertion point. At each level of the tree during the

search, the new node is considered a prospective child of each node that will

be searched. When the search reaches the leaf nodes, the new node and the

leaf node are proposed as siblings of a new non-leaf node, replacing the old

leaf node. Fig. 3.11 illustrates these two cases. After the search, the object is

inserted in the tree where the increased cost of the hierarchy is minimized.

To traverse the bounding volume hierarchy, the ray is tested to see

if it has an intersection with the bounding volume at the root node. If the

ray penetrates the bounding volume, then all the node’s children have to be

examined. If not, its entire subtree can be removed from further consideration.

This process continues recursively until there are no more nodes to be consid-
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Figure 3.11: Inserting a Node into the ABV Hierarchy.

ered. Throughout the process, a record of the closest intersection, if any, is

maintained and reported at the end of the traversal. The traversal algorithm

is illustrated in Algorithm 3.4.

3.3.2 Using ‘Tight’ Bounding Volumes

We mentioned earlier that the geometry of the bounding volume must

be kept simple in order to keep its intersection cost low. While this is true

when the bounding volume encloses only a few object primitives, it might be

possible to increase the complexity of bounding volumes when they contain

large numbers of primitives, for example, at the root of a bounding volume

hierarchy. A tighter-fitting bounding volume around large collections of object

primitives could result in culling a large number of rays and eliminating them

from further consideration.
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Input: root of bounding volume hierarchy (bv root), ray.
Output: Intersection (inters.pt - coordinates of intersection point,
inters.t - parameter value at the intersection.

bv travers (bv root, ray)
{

if (root bv == LEAF NODE)
{

“Intersect with object at node, update inters.pt, inters.t”
}
else
{

for each child c of node
bv inters (root→child[c], ray)

}
return (inters)
}

Algorithm 3.4: ABV Hierarchy Traversal.

The best example of this is a method introduced by Kay and Kajiya

[26]. In this approach, objects can be made to fit convex hulls arbitrarily tightly

in exchange for a slower intersection computation. The bounding volumes used

are many-sided parallelepipeds which are constructed by pairs of parallel planes.

Each of these plane-sets is defined by a unit vector called the plane-set normal,

and each plane in it is identified by its signed distance from the origin. Given

a plane-set normal and an object primitive (bounded), there are two unique

planes that bracket the object most closely. The region in space between these

planes is called a slab and can be represented as a min-max interval associated

with a plane-set normal, as shown in Fig. 3.12a.

A bounded region can be constructed as an intersection of several

slabs appropriately oriented. An example is shown in Fig. 3.12b. In 2-space,

two slabs are sufficient while in 3-space at least three slabs with linearly inde-

pendent plane-set normals are required. Increasing the slabs makes the bound-



53

Min

Max

Plane-set
Normal

Origin

(a)

Origin

(b)

Figure 3.12: Slabs defining a Bounding Volume.

ing volume approximate the actual convex hull of the object(s) more closely,

but at the same time increases the intersection cost. If there are s slabs in a

bounding volume, a ray-bounding volume intersection test involves 2s ray-plane

intersection tests. Each ray-slab intersection calculation defines an interval. If

the intersection of all these intervals is empty, the ray misses the bounding

volume. Otherwise, this interval gives the distance from the ray origin to the

bounding volume intersection points.

If the same collection of plane-set normals is used for all objects (or

collections of objects) in the environment, there are tremendous computational

advantages in computing the bounding volume intersection.

Let the ray

R = ât+ b (3.3)

intersect a slab to yield an interval along the ray. â is the ray direction and b,

its origin. t is the ray parameter. We are interested in intersections for which

t > 0. To determine this interval, we compute the points where R intersects

the two planes that define the slab. The plane equation is given by

Ax+By + Cz − d = 0 (3.4)
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If P̂i is the normal vector (A, B, C ), then substituting Equation 3.4 into 3.3,

in terms of ray parameter t, we get the solution

t =
di − P̂i.b
P̂i.a

(3.5)

where di is the distance of the plane from the origin along the plane normal

vector. From Equation 3.5, it is seen that each ray-slab intersection (which

is two plane intersections) requires four dot products, two subtracts and two

divides. This number is multiplied by the number of slabs making up the

bounding volume.

However, if the plane-set normals are chosen in advance, all the dot

products can be computed just once. Also, at this time, the reciprocal of the

denominator of Equation 3.5 can be computed so that these divisions can be

replaced by multiplications. Now each plane intersection is given by

t = (di − S)T (3.6)

where S = P̂i.b and T = 1/P̂i.a. This computation requires two subtracts, two

multiplies and a compare for each slab contributing to the bounding volume.

Using a hierarchy is critical to performance. Constructing a bounding

volume which bounds two or more parallelepipeds involves determining the

minimum and maximum of all the plane constants associated with the plane-

set normals of all the parallelepipeds.

Lastly, the hierarchy traversal algorithm processes objects in approx-

imately the order in which they occur along the path of the ray. For this, the

results of the bounding volume intersection (minimum and maximum distance

from the ray origin) are used to keep a sorted list of objects (or bounding

volumes containing a collection of objects in a hierarchy). The sorting of the

objects is performed using a heap data structure.



Chapter 4

A COST MODEL FOR RAY TRACING
HIERARCHIES

Most of the search structures developed over the last few years have

relied on timing benchmarks to compare their performance against each other.

While this is useful, it does not allow us to choose a search structure to use

for a given input scene. What is more desirable is to have some idea of the

performance of a search structure on a scene before the ray tracing is done. The

performance of a search structure depends on the characteristics of the scene.

It is possible that a structure that performs well on a particular scene might

perform poorly against another. If this can be determined in advance, then a

different structure may be substituted in its place for improved performance.

In this chapter we will develop a model for evaluating the cost of a

space partitioning hierarchy, with a straightforward generalization to bounding

volume hierarchies. This model will help us relate the computational costs of

various techniques to appropriate parameters of the search structure. The sta-

tistical characteristics of the input scene are used in building the model. Our

aim is to get an expression for the average number of intersection operations

performed by each ray. In the next chapter, we will give two important applica-

tion of the model, in predicting automatic termination criteria for ray tracing

search structures, and in choosing a search structure for a given scene.

55
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4.1 The Cost Model

Ray tracing hierarchies are built for the sole purpose of speeding up

intersection searches for ray-object intersections. All of these structures help

in drastically reducing the search space of each ray. This is accomplished in

two different ways:

1. The search is ordered along the path of the ray, starting from its origin.

This helps in terminating the search once an intersection is found.

2. The search examines only parts of the scene that are close to the ray.

Even if no intersection is found, only a fraction of the scene would have

been examined.

However, using a search structure introduces a new expense: the cost of travers-

ing it. So long as the cost in traversing the structure is overwhelmed by the

gains in reducing the ray search space, we are improving performance. The

question is, what is the tradeoff?

4.1.1 Search Structure Costs

We can identify two major costs involved in using a search struc-

ture:

1. The cost in examining the scene, Csc(h, s)(h is the height and s is a

search structure). This is the cost of performing ray-object intersections

and ray-bounding volume intersection tests (when object primitives are

enclosed by bounding volumes).

2. The cost in traversing the search structure, Ctr(h, s). This is the cost

of going down the hierarchy to the leaf nodes. Depending on the ac-
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Figure 4.1: Search Structure Costs.

tual search structure, this could involve partitioning plane intersections,

bounding volume tests in the internal nodes of the hierarchy, or just

comparisons between ray coordinates and the partitioning planes. It also

accounts for the cost involved in determining the next region along the

path of the ray that is to be searched.

Other costs in ray tracing such as building the search structure and lighting

calculations are not significant when compared to the total cost of rendering

the scene. As we start subdividing the scene, Csc(h, s) decreases and Ctr(h, s)

increases. The rates of increase/decrease of these two costs will determine the

performance of the search structure. In Fig. 4.1, Csc(h, s) and Ctr(h, s) are

two cost functions. We are interested in terminating the search structure at a

height where the cost reaches a minimum.
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4.1.2 Determining Csc(h, s)

Our next step is to determine estimates for Csc(h, s) and Ctr(h, s).

To be of any practical use, the expressions that we obtain must be dependent

on the characteristics of the scene that we are trying to render.

Let us look at Csc(h, s), the cost involved in examining the scene.

What we want to know is, at any particular level of subdivision, what portion

of the scene is examined by each ray. One way we could determine this is to

try to compute the number of primitives examined by a ray on the average. So

Csc(h, s) =
Cpr
n

n−1∑
i=0

Ri∑
r=0

npri(i, r, h, s)

where

Cpr = cost of testing a primitive for intersection.

npr(i, r, h, s) = number of primitives examined by ray i in region r using

search structure s of height h.

n = total number of rays spawned.

Ri = number of regions examined by ray i.

h = height of search structure.

s = search structure.

Determining npr(i, r, h, s) before the rendering is not easy. However,

the dependency of npr(i, r, h, s) on region r can be removed by approximating

it by an average region primitive count.

Csc(h, s) =
Cpr
n

n−1∑
i=0

Ri∑
r=0

npr(i, h, s)

=
Cpr
n

n−1∑
i=0

Rinpr(i, h, s)
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where

npr(i, h, s) = average number of primitives per region.

Ri, the number of regions examined by ray i, is also difficult to obtain

prior to rendering the scene. Again, approximate Ri by R, the average number

of regions traversed by a ray before it terminates.

Csc(h, s) =
Cpr
n

n−1∑
i=0

Rinpr(i, h, s)

=
Cpr
n

n−1∑
i=0

Rnpr(h, s)

=
Cpr
n
nRnpr(h, s)

= CprRnpr(h, s)

where npr(h, s) = average number of primitives in a region of the search struc-

ture s.

npr can be determined by examining the regions of the search structure

containing collections of object primitives. The only other unknown quantity,

R, the expected number of regions examined by each ray, will be estimated as

follows.

In determining R, we must bear in mind that the intersection search

is ordered along the path of the ray. Once an intersection is found, processing

stops for that particular ray. How quickly this might happen depends on the

scene complexity, in terms of how dense or space filling the primitives in the

scene are. Fig. 4.2 illustrates a ray starting at its origin O and being traced in

the direction ~d. Regions 1 through 4 are in the path or close to the ray and

will be examined in this order. The question is, how many of these regions

will be examined? For this, we need some knowledge of the probability of a

ray-primitive intersection in each of these regions.



60

1
2

3
4

r(u)

u=0

u=1

O

Direction d

Figure 4.2: Ray Traversal.

Let pj represent the probability that the ray has an intersection with

a primitive in region j. Then (1− pj) will be the probability that the ray will

not intersect any primitive in region j. Also, let us assume that the ray is

within the scene of interest, so that at least one region must be examined for

intersection. So

P(1 region will be examined) = 1

P(2 regions will be examined) = (1− p1)

P(3 regions will be examined) = (1− p1)(1− p2)

..................

..................

P(k regions will be examined) = (1− p1)(1− p2)....(1− pk)

The expected number of regions examined is then

R = MAX(1,
k∑
i=1

ipi

i−1∏
j=1

(1− pj))

Again, we can use an average region probability instead of the pjs.
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Let this probability be p. p is a weighted average, accounting for the different

sizes of the regions. The above expression becomes

R = MAX(1,
k∑
i=1

ip

i−1∏
j=1

(1− p))

= MAX(1,
k∑
i=1

ip(1− p)i−1)

= MAX(1,
k∑
i=0

ip(1− p)i−1)

A closed form solution to the sum of this series can be derived as follows.

k∑
i=0

ip(1− p)(i−1)

= p
k∑
i=0

i(1− p)(i−1)

= −p
k∑
i=0

d

dp
(1− p)i

= −p d
dp

k∑
i=0

(1− p)i

= −p d
dp

[
1− (1− p)k+1

1− (1− p)

]
=

1

p

[
{1− (1− p)k+1} − p(k + 1)(1− p)k

]

For large k,

lim
k−>∞

(1− p)k+1 = 0, and

lim
k−>∞

(k + 1)(1− p)k ≈ lim
k−>∞

k(1− p)k = 0
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Therefore,

R = MAX

(
1,

1

p

[
{1− (1− p)k+1} − p(k + 1)(1− p)k

])
≈ MAX(1, 1/p)

= 1/p

4.1.3 Determining Region Probability p

The average region probability p is the probability that a primitive in

a region will be intersected by an incoming ray. Determining this accurately

is very expensive and might be impossible since it depends on the geometry

of the region, the primitives in it and the ray distribution. We need to find a

reasonable approximation.

The region probability can be estimated by enclosing the collection

of primitives by a convex bounding volume. Since most space subdivision

methods produce convex partitions, the regions are already convex. The ratio

of primitives’ bounding volume surface area to that of the region gives an

estimate of the conditional probability, using Theorem 3.1. A more accurate

value of p can be obtained by enclosing individual primitives with bounding

volumes, thus accounting for the void space between primitives. However, if

two bounding volumes overlap, then the overlap area has to be subtracted out

since it cannot be counted twice. In our implementation, we use the ratio of

bounding volume surface areas to estimate the conditional probability. Each of

the region probabilities must be weighted by the region size (again, the region

surface area can be used), when we compute the average probability. If Ai

represents the bounding volume surface area and Ei the surface area of the

extent of the same region (Ai ≤ Ei, since the tightest bounding volume of

the primitives clipped to to extent is usually less than the surface area of the
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Figure 4.3: A Bounding Volume Hierarchy

extent), then the region probability is given by

p =

∑n
i=1 Ei ∗

Ai
Ei∑n

i=1Ei

=
n∑
i=1

Ai/Ei

where n is total number of leaf node regions in the search structure.

4.1.4 Modification for Bounding Volume Hierarchies

In bounding volume hierarchies, the traversal of the hierarchy is usu-

ally not along the path of the ray (refer to Section 3.3.1 and Table 3.3.1).

The expected number of regions examined by each ray, R, is calculated in a

different way. Consider again the bounding volume hierarchy in Fig. 3.10. We

computed the expected number of intersections (or regions examined) as

R = 1 + 4 + 2P (B|A) + 3P (C|A) +

2P (D|A) + 2P (E|A) + 3P (F |A) + 2P (G|A).

where P (I|J) represents the conditional probability that node I is intersected

given that J has already been intersected. The conditional probabilities are
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determined by using the surface area formula, as described in Equations 3.2.

So the total cost is

C = CprRnpr(h, s)

where Cpr is the cost of a bounding volume test and npr(h, s), the average

number of primitives at each leaf node. In Goldsmith’s method, npr(h, s) = 1.

The above equation represents the total cost. Separating this into the scene

cost and traversal cost, we get

Csc = 1 + 3 + 1P (C|A) + 2P (D|A)

Ctr = 1 + 2[P (B|A) + 2P (C|A) + 2P (E|A) + 2P (G|A)] + 3P (F |A)

4.1.5 Determining Ctr(h, s)

The traversal cost Ctr(h, s), in general, is given by the following form:

Ctr(h, s) = R ∗ Cr(h, s)

where

R = expected number of regions examined by the ray

Cr(h, s) = average traversal cost expended per region.

Thus, the higher R is, the more Ctr(h, s) will be.

4.2 Validating the Model

We would next like to investigate how the costs computed using this

model compare to those obtained from ray tracing of real scenes. We have

implemented the uniform subdivision method, the Kaplan-BSP tree, octree,

and the ABV hierarchy. For each of these structures, the model is evaluated for
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Parameter Values
Parameter Model Experimental

With BG Rays Excluding BG Rays
Cost(floats/ray) 463.8 197.8 283.2
Hitting Prob. 0.189 0.285 0.199
Bound Vol. Test Cost 15.5 15.58
Plane Test Cost 3.5 3.6
Avg. Height 9.02 9.17
Avg. Leaf Count 3.63 2.78

Table 4.1: Tetra (BSP)

each value of the maximum height of the structure (for the uniform subdivision

method, the resolution of the grid is doubled in all three dimensions). The

scene is ray traced for each value of the maximum height. A record of the total

number of bounding volume tests and partitioning plane tests, which dominate

the computation of ray tracing is recorded. All costs are normalized to floating

point operations. Both the predicted cost (from the cost model) and the actual

cost (from the ray tracing) are plotted against the maximum height.

4.2.1 Comparing Model Parameters with Experimental Parameters

Figures 4.4, 4.5 and 4.6 illustrate the predicted and actual cost char-

acteristics for different search structures on several scenes. There are two im-

portant features to notice in these characteristics. First, the general behavior

(or shape) of the predicted characteristics matches quite well with the actual

(experimental) characteristics, showing that the cost model is tracking the ac-

tual characteristics as a function of the maximum height. This will be the key

factor in making this model a very useful tool for providing automatic termi-

nation criteria for ray tracing search structures, as we will demonstrate in the

following chapter.
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Figure 4.4: Unif. Subd. Method Characteristics (a) DNA (b) Arches.
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Figure 4.5: BSP Tree Characteristics (a) DNA (b) Arches.
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Figure 4.6: Octree Characteristics (a) DNA (b) Tetra.
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Parameter Values
Parameter Model Experimental

With BG Rays Excluding BG Rays
Cost(floats/ray) 248.7 214.3 276.4
Hitting Prob. 0.45 0.354 0.274
Bound Vol. Test Cost 15.5 17.13
Plane Test Cost 3.5 3.55
Avg. Height 8.6 8.61
Avg. Leaf Count 5.28 3.616

Table 4.2: DNA (BSP)

Parameter Values
Parameter Model Experimental

With BG Rays Excluding BG Rays
Cost(floats/ray) 753.1 356.3 522.4
Hitting Prob. 0.102 0.16 0.109
Bound Vol. Test Cost 15.5 16.35
Plane Test Cost 3.5 3.58
Avg. Height 11.44 12.18
Avg. Leaf Count 2.37 3.18

Table 4.3: Arches (BSP)

Parameter Values
Parameter Model Experimental

With BG Rays Excluding BG Rays
Cost(floats/ray) 127.33 519.3 519.3
Hitting Prob. 0.297 0.074 0.074
Bound Vol. Test Cost 15.5 13.58
Plane Test Cost 3.5 3.6
Avg. Height 7.67 15.84
Avg. Leaf Count 0.71 2.10

Table 4.4: Spd.Balls (BSP)
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Parameter Values
Parameter Model Experimental

With BG Rays Excluding BG Rays
Cost(floats/ray) 261.9 140.4 201.1
Hitting Prob. 0.08 0.122 0.085
Bound Vol. Test Cost 15.5 15.83
Cell Test Cost 6.5 6.8
Avg. Leaf Count 0.94 0.667

Table 4.5: Tetra (Uniform Subdivision)

Second, the predicted and actual cost values do not match very well in

several of these cases. To understand this better, let us look at some examples

to compare the cost parameters between the model and those obtained from the

experiments. This will help us understand better the reason why the absolute

values of the predicted costs do not match well with the experimental values.

Tables 4.1 through 4.7 illustrate the parameter values from the cost

model and those obtained from the experiment. For experimental values, some

of the parameters are illustrated with and without ‘BG Rays’, which refer to

rays that completely miss the scene extent. Tables 4.1 through 4.4 illustrate

four cases using the Kaplan-BSP method and Tables 4.5 through 4.8 illustrate

the same cases using the uniform subdivision method. All costs are measured

in floating point operations. Here ‘Cost (floats/ray) refers to the expected cost

of tracing each ray. ‘Hitting Prob’ is the probability that a ray penetrates

a leaf node region (containing object primitives) given that a ray enters its

parent region. ‘Avg. Leaf Count’ is the average number of object primitives

encountered at any leaf node of the hierarchy. For the uniform subdivision

method, leaf nodes are simply the grid voxels. ‘Cell Test Cost’ refers to the

work done in moving from one voxel to the next.
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Parameter Values
Parameter Model Experimental

With BG Rays Excluding BG Rays
Cost(floats/ray) 106.72 114.4 147.6
Hitting Prob. 0.301 0.172 0.133
Bound Vol. Test Cost 15.5 17.2
Cell Test Cost 6.5 6.53
Avg. Leaf Count 1.65 0.758

Table 4.6: DNA (Uniform Subdivision)

Parameter Values
Parameter Model Experimental

With BG Rays Excluding BG Rays
Cost(floats/ray) 421.8 320.9 470.5
Hitting Prob. 0.033 0.063 0.043
Bound Vol. Test Cost 15.5 15.72
Cell Test Cost 6.5 6.89
Avg. Leaf Count 0.49 0.86

Table 4.7: Arches (Uniform Subdivision)

Parameter Values
Parameter Model Experimental

With BG Rays Excluding BG Rays
Cost(floats/ray) 484.6 1128.3 1128.3
Hitting Prob. 0.016 0.023 0.023
Bound Vol. Test Cost 15.5 12.53
Cell Test Cost 6.5 6.91
Avg. Leaf Count 0.07 1.48

Table 4.8: Spd.Balls (Uniform Subdivision)



72

The total cost is measured by counting up the operations performed

for bounding volume tests, plane tests and those required to move from voxel

to voxel. The expected number of regions visited by each ray is measured

by counting up the total number of leaf node regions (or voxels for uniform

subdivision) visited by all rays and dividing this by the total number of rays.

The reciprocal of this figure gives the hitting probability. In a similar manner,

the average leaf node object count is determined.

The first important point to notice in all of these tables is the improve-

ment in predictions in the absence of background rays (except the Spd.Balls

case which has no background rays). This is not surprising since the cost model

was developed assuming that each ray penetrated the input scene extent. The

total cost and the hitting probability values predicted by the cost model are

closer to the experimental values when background rays are excluded.

The bounding volume test cost, cell test cost and the plane test costs

match quite well in all the cases.

The predictions are significantly off in the case of the Spd.Balls case

(Table 4.4). Both the hitting probability and the expected height are far from

the model predictions, resulting in a significant mismatch in the total cost. For

the uniform subdivision method (Table 4.8), it is the voxel object count that

causes the mismatch. All the rays in this model enter the bounding volume of

the scene. Thus, there are no ‘BG rays’ as in the other test cases.

Two different factors could account for the big mismatch in the

Spd.Balls case. The experimental value of the hitting probability shown in

Tables 4.1 through 4.8 takes into account the void spaces within the object

clusters at the leaf nodes of the hierarchy (for the uniform subdivision method,

the object clusters at each voxel of the grid). However, the cost model does
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Total Cost Hitting
Scene Model Experimental Prob.

Tetra 463.8 343.8 0.17
Dna 248.7 280.4 0.27
Arches 753.1 312.1 0.17
Spd.Balls 127.33 99.6 0.25

Table 4.9: Experiments Using Random Ray Distribution

not account for this (refer to Section 4.1.3).

The experimentally determined hitting probability takes into account

the void spaces within object clusters at the leaf nodes (or voxels). To make

sure that void spaces within object clusters are not taken into account (and

thus trying to see if it behaves like our model) all rays that enter the bounding

volumes of the object clusters are ignored. This will cause the hitting proba-

bility to increase, since a ray is now assumed to intersect an object primitive

if it penetrates the bounding volume containing it.

With this modification, for the Spd.Balls case, the hitting probability

increased from 0.074 to 0.086. This is still significantly off from the model value

of 0.297. If we had a way to take care of void spaces within object clusters, this

would result in bringing the predicted cost a little closer to the experimental

value.

Secondly, the hitting probabilities are computed under the assumption

that rays are uniformly distributed. We would also like to see experimentally if

the distribution of the rays used in the ray tracing is sufficiently close to being

uniform.

To verify this, a collection of rays with random origins (but located

within the scene extent) and directions were traced for each scene. In our
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experiment, we spawned 20,000 rays in this manner and collected the same

statistics as before. The results are shown in Table 4.9. The biggest difference

is in the results for the Spd.Balls case. The expected cost is much closer to the

model value, when compared to the figures in Table 4.4. This tells us that the

distribution of rays used in the ray tracing for this particular scene was far from

uniform, unlike the DNA case whose cost is almost the same as before. The

hitting probability for Spd.Balls case was 0.25, a big improvement from 0.074.

The figures for the Tetra are also better, but this is partly because the hitting

probability value dropped a little. The mismatch for the Tetra and DNA cases

are principally because of the average leaf object counts. All other parameter

values are fairly close. For the arches case, it is the hitting probability that is

causing the mismatch.

4.3 Conclusions

In this chapter, we have presented a cost model for search structures

commonly used in ray tracing. It is computed from the statistical characteris-

tics of the search structures that are being used to accelerate ray tracing. The

model is inexpensive to compute and can be done during a preprocessing step,

when the search structure is being built, as we will show in the next chapter.

The model has been evaluated on some of the common search structures be-

ing used in ray tracing. The model characteristics have been shown to track

the experimental characteristics as the height of the search structure is var-

ied. The assumptions made in developing the cost model causes a mismatch

in the absolute values of the predicted costs and the actual costs. The pres-

ence of ‘BackGround’ rays and the uniform ray distribution assumption are

two different factors that have been shown to cause this mismatch.
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The model as presented here is not very useful for predicting the

computational requirements for ray tracing a given scene. However, in the next

chapter, we will show that the model is useful in comparing different methods

for ray tracing a given scene. In addition, it will be shown to be a very effective

means of predicting termination criteria for these search structures.



Chapter 5

APPLICATIONS OF THE COST MODEL

Search structures such as the BSP tree, octree, uniform subdivision

and nested bounding volumes are all being used with great success. How-

ever, previous work has not revealed how deep the hierarchical data structures

(or how much subdivision in the uniform subdivision technique) should be con-

structed to achieve optimum results. Heretofore termination criteria for hierar-

chy construction algorithms have been totally ad hoc, leaving open the question

of whether methods employing hierarchical search structures have really been

exploited to their full potential.

Performance evaluations of these structures through the use of timing

benchmarks show that no search structure seems to be best on all scenes. Thus,

if an idea of the performance of a search structure on a given scene is known

before rendering, then a decision could be made as to use it or substitute it

with another search structure.

In this chapter, we demonstrate two important applications of the

cost model we developed in the previous chapter; determining automatic ter-

mination criteria for ray tracing hierarchies, and in choosing a search structure

for a scene for providing the best performance. In both of these applications,

the model evaluation can be built into the preprocessing step. For the hier-

archy termination problem, the model is evaluated as the hierarchy is being

constructed so that it may be terminated when the cost reaches a minimum.
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For choosing a search structure, it is necessary to build several of these search

structures and determine their costs using the cost model. The structure with

the smallest cost will then be used for the ray tracing.

5.1 Automatic Termination Criteria for Ray Tracing Search
Structures

5.1.1 The Problem

We will be concerned with several of the common search structures

being used in ray tracing, including BSP trees [25], octrees [17], bounding

volume hierarchies [39][18] and the uniform subdivision method. Among BSP

trees, we will specifically be concerned with the structure used by Kaplan for

ray tracing. We will begin with a description of the hierarchy termination

problem associated with each of these methods.

As we described in chapter 3, Kaplan’s [25] implementation of the

BSP tree uses axis-aligned planes to recursively partition space. The subdi-

vision continues until the subdivided nodes contain either a small number of

primitives or their size becomes smaller than a set threshold. In order to opti-

mize performance, this threshold must be set correctly. If the threshold is too

high, then large numbers of primitives end up in each voxel; if it is too low,

getting to the leaf nodes from the root node of the tree is more expensive.

The octree hierarchy used by Glassner [17] performs a subdivision

identical to Kaplan’s BSP tree. Each level of the octree corresponds to three

levels of the BSP tree. The termination problem in the octree is thus the same

as in the BSP tree.

The uniform subdivision method subdivides space like the octree, but

the subdivision is uniform, resulting in a 3-d grid of equal sized voxels. The
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non-adaptive property of this structure can potentially result in large regions

of empty voxels, which will be expensive to traverse. However, restricting the

subdivision can also put large numbers of primitives in some of the voxels.

Thus, it is difficult to know the correct amount of subdivision without any

knowledge of the scene characteristics.

In the previous chapter, we showed that the model used by Gold-

smith’s ABV hierarchy is a special case of the cost model that we developed.

We will apply the cost model to the ABV hierarchy, which is the best known

bounding volume hierarchy to date, principally because it is built automatically,

which is very convenient for scenes containing large numbers of primitives.

5.1.2 Evaluating the Cost Model

We will next describe how to use the cost model in helping us termi-

nate a search structure. The two costs that need to be computed during the

preprocess are

Csc(h, s) = CprRnpr(h, s)

Ctr(h, s) = RCr(h, s)

All the terms in the above expression can be computed. Cpr is taken as the

cost of intersecting the bounding volume around an object primitive. This is a

reasonable approximation since quite a few of the rays will miss the bounding

volume, in which case the primitive inside need not be examined. Csc(h, s) is

typically an exponential function of the height of the hierarchy. R is computed

as described in the previous chapter. npr(h, s) can be determined by summing

up the primitive counts at the leaf nodes of the hierarchy. The leaf node counts

are weighted by the size of their regions. The bounding volume surface area
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of the region is used to weight the primitive counts. Lastly, Cr(h, s), has to be

calculated. For this, the cost of reaching the leaf nodes from the root has to

be determined. This is found by multiplying the work done per node by the

average height of the hierarchy. The average height of the hierarchy is also a

weighted quantity, since paths leading to nodes which are larger in size will be

visited more often by rays when compared to paths leading to smaller sized

regions. For the uniform subdivision method, Cr(h, s) is determined by the

work done in moving from the current voxel to the next voxel visited by the

ray.

As we start building the hierarchy, the two costs are computed for each

value of the maximum height. Initially, the decrease in Csc(h, s) will overwhelm

the increase in Ctr(h, s). What we are looking for is the point where the cost

reaches a minimum. To determine this, we may have to build the hierarchy a

few extra levels to make sure we have reached the minimum. This increases the

cost of the preprocess. In general, this is not very significant when compared to

the total rendering time, especially when the environments are very complex.

It is also possible that there might be several local minima (for example, the

BSP and octree structures exhibit this characteristic). If these are all close

to each other, we could pick any one of the minima with little difference on

performance.

5.1.3 Implementation and Experimental Results

We have implemented the BSP tree, octree, uniform subdivision and

the ABV Hierarchy methods to test the cost model. All experiments were
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Ray counts are in thousands

Scene Tetra DNA Arches Balls Geo58

Objects 1024(P) 410(S) 4818(P) 7382(PS) 306(P)
Lights 1 1 2 3 3
Total rays 299 445 437 1819 847
Visual rays 262 323 317 722 392
Shadow rays 37 122 120 1097 455
Hit rays 44 75 73 873 278

Table 5.1: Statistics of Test Scenes.

conducted on a Sun 4/280 workstation running SunOS UNIX1 4.0.3. Five

different data sets were used as test cases. Details of these data sets are given

in Table 5.1. P stands for polygons and S for spheres. ‘Objects’ refer to

the total primitive objects in the scene, ‘Lights’ refer to the total light sources

in the scene, all of which are point sources. ‘Visual Rays’ are rays spawned

from eye position (primary rays), ‘Total rays’ include primary and all higher

generation rays and rays to light sources for computing shadows, ‘Shadow’ rays

are rays spawned toward light sources for computing shadows. ‘Hit rays’ are

the total number of rays that intersected some object primitive in the scene.

Images of these models are shown in the color plates of chapter 9.

The termination parameter used in all these methods except uniform subdivi-

sion is the maximum height. For the uniform subdivision method, the termi-

nation parameter is the grid resolution n grid.

Before we get into the results for each method, some general notes

need to be made. In our implementation, each primitive is surrounded by a

bounding volume which is an axis-aligned parallelepiped. Bounding volumes

around collections of primitives are also axis-aligned parallelepipeds. In our

1UNIX is a trademark of AT&T Bell Laboratories.



81

implementation Cpr = 15.5 floating point operations. In the BSP tree, octree,

and uniform subdivision methods, the search can be stopped prematurely once

an intersection is found because objects are examined along the path of the

ray, starting from its origin. This is not true in bounding volume hierarchies,

although a partial ordering can be obtained by sorting the bounding volume

intersection points obtained during ray tracing. Duplicate object intersection

tests are avoided by maintaining ray signatures in all object records. An object

is tested for intersection only if it has not been examined by the current ray.

For each method, we plot both predicted and actual performance

characteristics as a function of the termination parameter. For the predicted

characteristic, the total cost = Csc+Ctr. This is plotted against the termination

parameter. The actual (or experimental) characteristic is a plot of the running

time (which is a measure of the total cost) versus the termination parameter.

The total cost has been normalized from 0.0 to 1.0 so as to fit all the test cases

in the same graph plot.

5.1.3.1 Uniform Subdivision

Our implementation of uniform subdivision method follows the algorithms

outlined in [6] and described in chapter 3. In our implementation, it takes

about 6.5 floating point operations to move from one voxel to the next, on the

average. Thus Cr = 6.5.

Fig. 5.1 and Table 5.2 show the performance characteristics and re-

sults for the uniform subdivision method. Here n grid is the resolution of the

grid in each of the three dimensions. For testing the cost model, the resolution

is doubled in all three dimensions each time we subdivide. In our implemen-

tation, we used polyhedral bounding boxes [26] to enclose the primitives when



82

Tetra
Dna
Arches
Balls
Geo58

Total Cost

n_grid
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 50.00 100.00

(a)

Tetra
Dna
Arches
Balls
Geo58

Time

n_grid

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 50.00 100.00

(b)

Figure 5.1: Unif. Subd. Method Characteristics (a) Predicted (b) Actual.
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Scene Optimal Height Time(min.)
Predicted Actual

Tetra 16,32 16,32 3.04
DNA 32 16 5.16
Arches 32 32 8.37
Balls 32 64 92.0
Geo58 16 32,64 22.47

Table 5.2: Unif. Subd. Predictions.

clipping it to the voxels. The clipped points were used in computing an axis-

aligned bounding box within the voxel. The surface area of this box was used

in computing the region probability. More accurate methods of determining

the surface area of the primitive within the voxel will improve the predictions.

5.1.3.2 BSP Tree

Our implementation of the BSP tree hierarchy is very similar to that of

Kaplan’s [25]. One difference is that each subdivision step does not

necessarily produce eight octants. If for example, a plane has subdivided the

original space into two equal sized voxels and one of them does not contain

any primitives, then it is not subdivided by the remaining two planes. This

results in a smaller number of empty regions, thus making the structure more

adaptive to the scene.

The traversal method used in our implementation is the k-d tree

traversal, which we will describe in the next chapter (Section 6.2.5). For now,

it is to be noted that it identifies the regions along the path of the ray just

as the BSP/octree traversal, but is computationally more efficient. Cr = 4.5

in our implementation, on the average. This has to be multiplied by the av-
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Figure 5.2: BSP Tree Characteristics (a) Predicted (b) Actual.
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Scene Optimal Height Time(min.)
Predicted Actual

Tetra 13 11-13 3.50
DNA 13-15 9,10 6.41
Arches 15 15-19 9.64
Balls 20,23 20,22,23 67.61
Geo58 13 16,18,19 25.95

Table 5.3: BSP Tree Predictions.

erage height of the hierarchy, to account for the work done to reach the leaf

nodes. Fig. 5.2 shows the performance characteristics for the BSP tree struc-

ture for several scenes. Table 5.3 illustrates the results of using the cost model

to predict the height at which the subdivision has to be stopped for optimal per-

formance. Overall, the predicted heights are very close to the optimal heights

obtained by the experiments. In general, for the BSP tree structure, there is a

small range of heights at which the performance stays relatively constant. It is

interesting to note that in several of these cases, optimal performance occurs

well beyond the logarithm of the number of objects, which would have been

the logical choice for termination of the hierarchy, if the scene primitives were

uniformly distributed. This further justifies the need for a cost model to help

terminate the BSP hierarchy.

5.1.3.3 Octree

To implement the octree, we modified our BSP tree implementation so that

at each step of the subdivision, eight equal sized voxels were created. The

data were then collected as in the BSP tree case. The traversal method used

is the same as in the BSP tree method. Fig. 5.3 and Table 5.4 show the

performance characteristics and results of using the cost model. As expected,

the performance is slightly worse (Balls and Geo58 scenes) than the BSP tree
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Figure 5.3: Octree Characteristics (a) Predicted (b) Actual.
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Scene Optimal Height Time(min.)
Predicted Actual

Tetra 4 4 3.5
DNA 5 3,4 6.41
Arches 5 5 9.54
Balls 7,8 7,8 74.00
Geo58 4 5,6 26.62

Table 5.4: Octree Predictions.

case because of the additional empty voxels that need to be processed in the

octree. Note that each level of the octree corresponds to three levels of the

BSP tree.

5.1.3.4 Automatic Bounding Volume Hierarchy method

Goldsmith’s automatic bounding volume hierarchy also stops building the

hierarchy beyond a certain height since a heuristic search determines an

insertion point in the hierarchy for each object primitive. Fig. 5.4 and

Table 5.5 illustrate the characteristics and results of using the cost model. In

the DNA model, there is a height at which the cost reaches a minimum, while

in all the other cases, the cost remains flat after a certain height. Since all the

scenes except Tetra have large numbers of secondary rays, the cost of going

down the hierarchy has to be added to the predicted cost.

5.2 Choosing a Search Structure for a Given Scene

Once a search structure has been constructed, the cost model gives

us an estimate of the expected number of operations performed by each ray.

Since the construction of the search structure usually takes a small fraction of
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Figure 5.4: ABV Hierarchy Characteristics (a) Predicted (b) Actual.
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Scene Optimal Height Time(min.)
Predicted Actual

Tetra 6 5,6 4.14
DNA 5 5 11.90
Arches 9 9 14.16
Balls 7,8 8 55.33
Geo58 6 6 16.06

Table 5.5: ABV Hierarchy Predictions.

Search Predicted Cost Time(min.)
Structure (float ops./ray)

Unif. Subd. 261.9 3.1
BSP 426.3 3.5
Octree 438.7 3.5
ABV 669.8 4.14

Table 5.6: Tetra

the total rendering time, it is possible to build several of these search structures

and choose the one with the smallest estimated cost. We will proceed to do

this and show how the cost model is effective in choosing a search structure for

a given scene.

Search Predicted Cost Time(min.)
Structure (float ops./ray)

Unif. Subd. 79.8 8.4
BSP 174.2 6.4
Octree 175.2 6.4
ABV 884.8 11.9

Table 5.7: DNA
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Search Predicted Cost Time(min.)
Structure (float ops./ray)

Unif. Subd. 421.7 8.4
BSP 778.4 9.6
Octree 753.1 9.5
ABV 941.5 14.2

Table 5.8: Arches

Search Predicted Cost Time(min.)
Structure (float ops./ray)

Unif. Subd. 393.1 92.0
BSP 128.4 67.6
Octree 147.1 74.0
ABV 562.0 55.3

Table 5.9: Spd.Balls

5.2.1 Experimental Results

Tables 5.6, 5.7, 5.8, 5.9 and 5.10 show the predicted costs (from the

cost model) and run times (from the ray tracing) for each scene using the five

different search structures. There are several important points to be noted

from these statistics.

• A look at the results shows that there is no one structure that performs

consistently better than the others. In the Tetra and Arches models, the

Search Predicted Cost Time(min.)
Structure (float ops./ray)

Unif. Subd. 125.9 22.5
BSP 174.7 25.6
Octree 157.7 26.6
ABV 128.6 16.1

Table 5.10: Geo58



91

uniform subdivision method performs better than the BSP, Octree and

ABV hierarchies. In the DNA model, the BSP and Octree structures

perform better than the uniform subdivision and ABV structures. In

the Spd.balls and Geo58 models, the ABV structure wins over the BSP,

Octree and Uniform Subdivision methods.

• The cost model predicts the relative performance of each of the search

structures for the Tetra and Arches scene models. In the remaining cases,

the model makes a wrong choice. If the BSP/Octree methods had been

chosen, the performance for the DNA scene would have been about 23%

better. For the Spd.Balls model, if the ABV hierarchy had been chosen,

the performance would have improved by 18%. In the Geo58 model, if

the ABV hierarchy had been the choice, the performance would have

improved by 28%.

However, using the model is better than not using it all. In the DNA

model, the ABV hierarchy might very well have been the choice, which

takes almost twice as long to render the scene when compared to the

BSP/Octree methods. Similarly, for the Spd.Balls model, if uniform sub-

division had been used, the performance would have suffered by nearly

36%.

• While the choice of search structure to be used is being made with rea-

sonable accuracy, it must be noted that the absolute values of the costs

are not quite proportional to the run times. Such a result would be use-

ful in estimating the rendering time and help one allocate computational

resources for a particular application. More sophisticated methods of

estimating the model parameters would bring us closer to this goal.
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5.3 Conclusions

In this chapter, we have presented two important applications of the

cost model that we developed in the previous chapter. The model has been

shown to provide an effective means of building automatic termination criteria

into subdivision techniques such as the BSP tree, octree, uniform subdivision

method and the ABV hierarchy methods. This has resulted in optimal or near

optimal performance in all the test cases. In cases where the prediction is off the

actual optimal point for subdivision termination, the difference in performance

is usually quite small. Thus a major unknown factor affecting the performance

of such techniques has been eliminated, allowing them to tune themselves for

optimal performance with high confidence.

In the second application, the model has been shown to be only weakly

useful in selecting a search structure to be used for a given input scene. In its

present form, it is not very useful in predicting the computational requirements

for rendering a given input scene. Experimental results on a set of test scenes

demonstrate the model is useful in saving computation costs although it does

not choose the correct search structure on all the test cases.



Chapter 6

CHARACTERISTICS OF SEARCH STRUCTURES:
AN EXPERIMENTAL STUDY

We will next take a close look at some of the properties of hierarchical

search structures being used in ray tracing. We are particularly interested in

how well these data structures can adapt themselves to scene characteristics.

We are also interested in getting an in-depth knowledge of the strengths and

weaknesses of each structure. Some of the characteristics that are important to

search structures (which are studied here) include the location and orientation

of space partitioning planes, the partitioning dimension, effects of bounding

volumes, presence of void areas in hierarchies and hierarchy traversal methods.

The most commonly used search structures are then described in the context

of these characteristics. This has enabled us to get an insight into the charac-

teristics exploited (or not exploited) by each search structure and help us relate

performance to scene characteristics.

In this chapter, we present an experimental study of some of the crit-

ical properties of search structures being used in ray tracing. We demonstrate

how some of these characteristics can be combined to good advantage. This

has resulted in the development of a new search structure that is based on

k-d trees, which are multidimensional binary structures introduced by Bentley

[2][3]. We will describe in detail the construction and use of this new search

structure. The superior performance of this structure will be validated with

93
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the cost model developed in chapter 4. We will also show that the hierarchy

termination problem that plagues current search structures is solved by this

search structure’s greater flexibility in its construction algorithm and as such

does not require any special treatment, unlike other search structures.

6.1 The Test-bed

We begin by describing the test-bed upon which all experiments were

performed to investigate the different characteristics. We have implemented a

general space partitioning hierarchical structure. In this system, the partition-

ing planes are axis-aligned. They can be located anywhere within the scene

extents on any of the three dimensions. Bounding volumes, which are rect-

angular parallelepipeds, can be placed at any node of the hierarchy, enclosing

the set of primitives under that node. Both the BSP/octree traversal and the

k-d tree traversal can be used with this system. The k-d tree traversal will be

described in a later section. This will be one of the characteristics that will be

investigated.

All experiments were conducted on a Sun 4 (SPARC) workstation

running 4.0.3 UNIX1. Six different scenes were used as test cases, all of which

are standard benchmarks (except for the DNA model) available in the public

domain [20]. Ray statistics of these benchmarks are described in Table 6.1. All

the images were computed at 512 by 512 resolution. Images are illustrated in

the color plates of chapter 9. Run times are reported in minutes of cpu time.

1UNIX is a trademark of AT&T Bell Laboratories.
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Ray counts are in thousands

Scene Tetra DNA Arches spd.balls spd.tree spd.mount
Objects 1024(P) 410(S) 4818(P) 7382(PS) 8191(PSC) 8196(PS)
Lights 1 1 2 3 7 1
Total rays 299 445 437 1819 1676 1393
Visual rays 262 323 317 722 452 977
Shadow rays 37 122 120 1097 1224 416
Hit rays 44 75 73 873 242 683

Table 6.1: Test Scenes

6.2 Characteristics of Search Structures

6.2.1 Space Partitioning

In space partitioning structures, object space is divided up into a

collection of convex regions using axis-aligned planes. The search for the closest

intersection usually involves testing the partitioning planes for an intersection.

The process is recursive, i.e., the regions are recursively partitioned so long as

they satisfy the termination criteria used. An example is shown in in Fig. 6.1,

with two levels of partitioning.

There are important advantages to using a space-partitioning struc-

ture.

1. It enables the use of an ordered search for the closest ray-object intersec-

tion. The preferred order is along the path of the ray, so that the search

can be terminated as soon as an intersection is found.

2. The partitioning planes help identify the regions visited by each ray. This

is a small fraction of the total number of regions in the search structure.

Thus large sections of the scene remote from the ray are never examined.

In Fig. 6.1, ray r1(t) examines region 1, while r2(t) examines regions 1,

4 and 3. With increased partitioning, the number of regions actually

examined will be a small fraction of the total.
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3. The structure is direction independent. With the help of the partitioning

planes, an ordering can be determined for a ray with arbitrary origin and

direction. Thus all kinds of spawned rays like shadow rays and reflection

rays can be traced with no change in the search structure. In Fig. 6.1, ray

r1(t) finds an intersection I1 and terminates, while r2(t) examines regions

1, 4 and 3 and terminates without finding an intersection.

4. The partitioning is adaptive, i.e. only parts of the scene that contain

large collections of primitives are subdivided. This is important when

the object distribution is not uniform. If space was subdivided uniformly,

then there would be large collections of empty voxels, and traversal costs

would become prohibitively high.

6.2.2 Location and Orientation of Partitioning Planes

In space partitioning structures, the location and orientation of par-

titioning planes can influence performance. Hierarchical structures like the

octree and the Kaplan-BSP tree use axis-aligned partitioning planes which bi-

sect the node extents in each dimension at all nodes of the hierarchy. The

node extent is simply the extents of the region represented by the node on all

three dimensions. In the octree all three dimensions are partitioned simulta-

neously, while in the Kaplan-BSP structure the partitioning dimension cycles

through the X,Y and Z axes. For further details and differences between these

structures, refer to Sections 3.2.2 and 3.2.3.

While it is less expensive to test an axis-aligned plane for an inter-

section with a ray, this restriction causes it to cross a large number of object

primitives. Object primitives that cross a partitioning plane must considered

to be on both sides of the plane, since an intersection with this primitive could
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be either side of the plane. Restricting the plane locations to be at the cen-

ter of the node extents has the advantage that it is inexpensive to determine

the plane location and thus contributes towards a faster hierarchy construction

algorithm. However, it also assumes that objects are uniformly distributed.

If they are not, this constraint has the unfortunate effect of creating a large

number of empty regions (voxels). This means traversing empty regions, an

expense to be avoided, since no intersection can be found in these regions. But

the partitioning is adaptive in two respects; a region is not partitioned if it

contains less than a small number of objects (which has to be decided in ad-

vance), thus avoiding the creation of large numbers of regions containing few or

no object primitives, and regions smaller than a preset size are not subdivided

any further. The size (for instance, the bounding volume surface area) of the

region determines the number of rays that will penetrate it. The smaller it is,

the fewer rays that will penetrate the region. Thus, it is not very beneficial to

create extremely small regions in the hierarchy.

To sum things up, the creation of empty voxels is itself a source of

inefficiency in the first place since no ray-object intersection can be found in

such voxels, but the fact that they are not subdivided any further is a desirable

factor since it helps the structure adapt itself to the locations and densities of

the primitives in the input scene.

Now, let us look at experimental results of using this search structure

on the test scenes. In our test-bed, planes are centrally located at each node of

the hierarchy. The implementation is very close to the Kaplan-BSP tree. Since

the subdivision is identical to the octree, the results should carry over to the

latter. Table 6.2 shows statistics for all the scenes. The important figures in

this table are the average height of the hierarchy, the total void space in the
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Scene Avg. Ht Void Area flops/ray Run time

Tetra 11.45 43388.03 153.20 2.90
DNA 11.70 32552.10 240.86 6.67
Arches 14.41 59.12 428.22 9.60
spd.balls 20.07 3034.28 547.93 69.93
spd.tree 24.52 48611.76 484.42 73.22
spd.mount 19.53 344.31 273.61 31.58

Table 6.2: BSP subdivision, no bounding volumes, k-d traversal.

hierarchy and of course, the run times. The void space represents a measure of

three dimensional space that contain no useful information. Either the volume

of the space or the surface area of the bounding volume that encloses this space

can be used for measuring void space. We choose to use the area measure. Our

aim is to reduce the void space in a hierarchy so that rays that penetrate these

spaces can be pruned from further processing.

To compute the void area in the hierarchy, the area of a node in the

hierarchy is first determined by computing a bounding volume that encloses

all its children in the hierarchy. The surface area of this bounding volume is

then calculated. Once a partitioning plane subdivides this node, we have two

sub-nodes. The tightest bounding volume enclosing all the primitives in each

sub-node is computed, clipped to the bounding volume (or the region extent,

if no bounding volume is stored at the node) of the original node and to the

partitioning plane. The void area is the difference between the area of the

original node and the sum of the areas of its two children. This computation is

carried out at each node that is subdivided and summed up to determine the

total void area.

The average height in Table 6.2 is rather high, especially for the larger

scene models, well beyond the logarithm of the total number of primitives in
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Scene Avg. Ht Void Area flops/ray Run time

Tetra 8.78 105095.42 200.33 3.27
DNA 11.14 60220.91 268.71 7.21
Arches 13.56 252.38 894.52 20.35
spd.balls 14.97 43655.13 708.05 84.39
spd.tree 14.02 716925.55 1097.19 108.88
spd.mount 13.97 1617.71 600.70 43.38

Table 6.3: median-cut subdivision, no bounding volumes, k-d traversal.

the environment. This is important, since all primitives in the hierarchy are

stored at the leaf nodes, and reaching them becomes more expensive with

increase in the average height. So the first modification we will make is to

relax the restriction that partitioning planes have to be located at the centers

of the node extents. Instead, in an effort to reduce the average height of the

hierarchy, we will place them so as to balance the number of primitives on

either side of the partition. The partitioning is thus, along the median of the

object primitives. We mentioned earlier the problem of planes crossing large

numbers of primitives, something that was unavoidable because there was no

other choice for the plane location. Since this is no longer the case, we can take

care of this problem by not only trying to obtain a more balanced partition

but also minimize crossing primitives. The following figure of merit (fom)

accomplishes this.

fom = lcnt − rcnt + shrcnt (6.1)

where lcnt, rcnt and shrcnt are object counts to the left, right and across the

partitioning plane. We want to minimize fom.

Results of using this strategy to locate the plane are shown in

Table 6.3. They are not very encouraging. Although the average height of the

hierarchy has improved, the new plane locating strategy performs consistently
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Figure 6.2: Kaplan-BSP vs. median-cut subdivision

worse than the Kaplan-BSP strategy. But a simple explanation is provided by

the void area figures in the two tables. By trying to make the locations of the

planes more flexible and closer to regions containing object primitives, we have

opened up large void spaces.

Consider the simple scene in Fig. 6.2. In 6.2a, the Kaplan-BSP sub-

division with two planes creates the void space marked V . This space is not

subdivided any further since it does not contain any object primitives. In 6.2b,

the median-cut approach tries to balance the primitives across the partition.

Thus the void space that appeared in the BSP subdivision will never be isolated

by the median-cut scheme because planes are always located in the vicinity of

the objects. While this is advantageous in cutting down the cost of reaching

the leaf nodes during hierarchy traversal, it allows large collections of the rays

to penetrate these void spaces without intersecting any objects, thus nullifying

the benefits obtained by the smaller average height of the hierarchy.

One other approach proposed by Macdonald and Booth [32] tries to
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Scene Avg. Ht Void Area flops/ray Run time

Tetra 8.72 99964.82 195.02 3.20
DNA 12.47 31183.64 243.20 6.26
Arches 14.60 153.63 858.33 15.29
spd.balls 15.57 568.55 296.89 33.80
spd.tree 15.20 2243.42 162.93 18.17
spd.mount 14.01 930.41 428.87 30.65

Table 6.4: SA subdivision, no bounding volumes, k-d traversal.

strike a balance between the two strategies considered so far. They try to locate

the plane between the spatial median (middle of node extents) and the object

median (balanced partition of object primitives). Let b be a partitioning plane

of a hierarchy. SAl(b) and SAr(b) represent the surface areas on the left and

right sides of the hierarchy. nl and nr are the object counts on the two sides

of the hierarchy. The function to minimize is given by

f(b) = SAl(b).nl + SAr(b).nr (6.2)

A good feature of this heuristic is that it takes into account the size of objects.

The idea is to strike a balance between surface area and the number of objects

that make up that area on each side of the plane. However, this heuristic also

fails to address the problem of void area. Once a partitioning plane is located

at a node, both sides of the plane can potentially contain large void areas.

These areas must be pruned from the hierarchy.

Table 6.4 shows the results of using this plane choosing approach.

The void areas are somewhat lower than the median-cut strategy, but still

much higher than the Kaplan-BSP strategy. Although performance improves

on two of the scenes, on the rest they are nearly the same or worse.
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6.2.3 Role of Bounding Volumes

There are important advantages to using bounding volumes to opti-

mize ray tracing.

1. Around object primitives, bounding volumes provide a simple and inex-

pensive non-intersection test. Only if the ray penetrates the bounding

volume does the primitive inside it needs to be tested for intersection.

2. By surrounding a collection of objects completely with a bounding vol-

ume, large sections of object space can be pruned away, drastically re-

ducing the ray search space. This is because if a ray misses this bounding

volume, the entire collection of objects inside need not be examined at all.

Bounding volumes are more effective than space partitioning structures

in this respect, since, in general, they provide tighter enclosures around

object collections. Also, a bounding volume can be made arbitrarily tight

[26], although the cost of testing the bounding volume for an intersection

also increases, as we saw in Section 3.3.2. Grouping objects into clusters

of increasing size and surrounding them with bounding volumes results

in a bounding volume hierarchy. Any node in this hierarchy represents a

cluster of objects contained in its subtree.

3. The algorithms used to construct bounding volumes are critical to per-

formance. The best known hierarchy to date is the ABV hierarchy, which

was described in Section 3.3.1. Its biggest advantage is the automatic

construction of the hierarchy, which facilitates rendering complex envi-

ronments. It also makes it the fastest method for constructing a bounding

volume hierarchy.
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Scene Time(min.)

Tetra 4.14
DNA 11.90
Arches 14.16
spd.balls 55.33

Table 6.5: ABV Hierarchy Performance.

Table 6.5 shows results of using the ABV hierarchy on the test scenes.

In general, its performance is worse than the BSP subdivision but better than

the median-cut strategy. The major problem in bounding volume hierarchies is

that while void space is not a problem (the bounding volumes in the hierarchy

cull most of it out) the ray intersection search is not performed along the path

of the ray. All bounding volumes in the hierarchy that that are in the path of

a ray have to be queried for an intersection before the closest intersection can

be reported.

6.2.4 Adding Bounding Volumes to Space Partitioning Structures

Space partitioning hierarchies optimize ray tracing by providing an

ordering of regions visited by the ray independent of the ray origin or direc-

tion. This ordering also makes it easy to terminate the search once the closest

intersection is determined. Since only regions visited by the ray are examined

for intersection, the structure helps avoid examining regions that are far from

the path of the ray. Space partitioning structures are adaptive, concentrating

the partitioning in the vicinity of objects. Since all the partitioning planes are

axis-aligned, they have the potential to create large void spaces which are a

source of inefficiency. Bounding volume hierarchies, on the other hand, opti-

mize ray tracing by culling away large sections of object space and provide a

compact representation for the objects at every node of the hierarchy. They
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Figure 6.3: Bounding Volumes

are more effective than space partitioning hierarchies in this because of the

greater freedom available in choosing the location, orientation and shape of the

bounding volume. Also, they can be made to fit as tight as possible around

object clusters, thus reducing the ray search space even further. Rays that

do not intersect a bounding volume in the hierarchy will not need its subtree

(containing bounding volumes and/or object primitives) to be examined any

further. Lastly, unlike space partitioning hierarchies, the bounding volume hi-

erarchy traversal is not along the path of the ray, although a partial ordering

can be obtained by sorting and processing bounding volume intersections in

sorted order [26].

Current search structures have not exploited the advantages of using

bounding volumes in space partitioning structures. Yet, this seems to be the

most natural thing to do, since the advantage of one overcomes the disadvantage

of the other. The problem of void areas in space partitioning structures can be

overcome by enclosing objects at nodes of the hierarchy with bounding volumes.

Bounding volume hierarchies are inefficient because rays are not traced along

their path and hence do unnecessary intersection calculations. Although adding

bounding volumes to space partitioning structures does introduce additional

bounding volume tests, we will show that their benefits in culling void space
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will easily outweigh the additional cost.

To avoid unnecessary bounding volume tests, bounding volumes

should not be used at every node of a space partitioning structure. Refer to

Fig. 6.3. In 6.3a, bounding volumes are required on both sides of the partition

(dotted lines indicate bounding volumes, in 6.3b, no bounding volumes are

required and in 6.3c, only the left side needs it. Thus bounding volumes should

be used only where they result in culling a large amount of void space.

This is then our next strategy. We will add bounding volumes to

space partitioning structures where they will result in cutting down void space.

Tables 6.6, 6.7 and 6.8 show results of the search structures using the three

plane choosing strategies with bounding volumes added. The performance im-

proves for all three techniques. The performance improvement is the most

dramatic for the median-cut scheme. The improvement in performance is val-

idated by the large decrease in void areas (brought forth by the bounding vol-

umes, understandably). The performance of the SA scheme is better than the

median-cut scheme. However, these timings do not include the search structure

construction times. It must be remembered that the plane choosing strategy

using the SA heuristic is more expensive. In addition to the binary search that

needs to be performed to determine the object median, a linear search between

the spatial and object medians is required in order to minimize the function in

Equation 6.2. Including the construction times, Table 6.9 illustrate the timing

results on all the test cases. It is seen that the SA method is still better than

the median-cut scheme three out of five times. This is not surprising since the

median-cut subdivision strategy is a special case of the SA heuristic. The SA

heuristic in addition to considering object counts on both sides tries to mini-

mize the surface area (of the bounding volumes of the two object sets in our
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Scene Avg. Ht Void Area flops/ray Run time

Tetra 11.47 0.07 144.45 2.48
DNA 11.91 723.45 229.10 6.26
Arches 15.79 0.95 304.17 8.17
spd.balls 15.74 1.95 260.74 33.32
spd.tree 13.77 61.26 155.97 21.40
spd.mount 13.91 5.09 272.00 25.98

Table 6.6: BSP subdivision, bounding volumes, k-d traversal.

Scene Avg. Ht Void Area flops/ray Run time

Tetra 8.78 960.63 152.55 2.56
DNA 11.14 1363.29 216.40 5.87
Arches 13.72 1.442 320.21 8.02
spd.balls 14.97 4.47 259.53 30.42
spd.tree 14.02 6.77 125.15 13.50
spd.mount 13.97 1617.71 282.45 24.60

Table 6.7: median-cut subdivision, bounding volumes, k-d traversal.

implementation) which directly corresponds to reducing void space.

6.2.5 Traversal Methods

We next take a look at two different traversal methods that can be

used in space partitioning hierarchies. The BSP/Octree traversal has already

been described (Section 3.2.2). The second traversal method that we have

developed will be called the k-d tree traversal. This will now be described.

Scene Avg. Ht Void Area flops/ray Run time

Tetra 8.72 735.80 144.84 2.23
DNA 10.98 866.59 212.11 5.58
Arches 14.60 1.00 286.01 7.08
spd.balls 15.20 3.99 244.51 26.71
spd.tree 14.51 5.52 127.55 12.92
spd.mount 14.40 4.63 244.63 19.36

Table 6.8: SA subdivision, bounding volumes, k-d traversal.
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Scene Run time

k-d SA

Tetra 2.6 2.45
DNA 5.93 6.37
Arches 9.11 8.75
spd.balls 31.02 28.05
spd.tree 14.31 14.87
spd.mount 25.35 20.74

Table 6.9: Total run times: k-d versus SA

6.2.5.1 The k-d Tree Traversal Algorithm

Given a ray and the root to a space partitioning hierarchy, the first step is to

compute an intersection with the bounding volume of the objects under this

node (if there is no bounding volume at the node, the node extent can be used).

If there is an intersection, then we need to determine if this node is a leaf or

an internal node of the hierarchy. If it is a leaf node, then all the objects in

its list will be tested for intersection, and the closest of these (if any) will be

reported. If primitive objects contain bounding volumes, then the primitive is

tested for intersection only if the ray penetrates the bounding volume. On the

other hand, if this is an internal node, we have two different cases:

1. The ray lies entirely on one side of the partitioning plane.

2. The ray crosses the plane.

For case 1 the region containing the ray segment (the ray has now

been clipped to the bounding volume of this node) needs to be searched. For

case 2, the intersection point between the ray and the partitioning plane is

determined. The ray is then split into two parts. Both regions could possibly

be examined, but the region close is closer to the ray origin is examined first. If
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Figure 6.4: Ray Traversal.

an object intersection is found in this region, then we are done, else the second

region has to be examined. This process is recursively applied until we find a

ray-object intersection or run out of regions (and hence, objects).

Some examples are shown in Fig. 6.4. Here r1(t), r2(t) and r3(t)

are three different rays. t1 and t2 are the parametric intersection points with

the region, and t, the intersection with the partitioning plane x = c1. The

top ray visits only one of the 2 regions, which is recognized by the fact that

t1 < t2 < t. The actual region visited by the ray is determined by the x

component of the ray direction. For the top ray, the direction along the x axis

is positive, i.e. x increases along the path of the ray, thus identifying region

1. Otherwise, region 2 will be visited. The middle and bottom rays visit both

regions, because t1 < t < t2. The x component of the ray direction determines

the traversal order. For the middle ray, the direction is positive, so the order
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is region 1 followed by 2, while it is 2 followed by 1 for the bottom ray because

its x direction is negative. A similar strategy holds for identifying the traversal

order when the partitioning dimension is y or z.

Case 2 has a complicating factor. An intersection from the first of the

two regions could be in the second region, as the intersected object could be

part of several regions. Before claiming this as the closest intersection point,

we must make sure that the t value at this intersection is within the t interval

defined by the ray segment end points. Fig. 6.5 illustrates such a case with a

partitioning plane x = c1.

P1 and P2 are two polygons. P1 is part of both regions whereas P2

is entirely to the right of the partitioning plane x = c1. P1 will be examined

first, since it is partly on the side containing the ray origin. But the closer

intersection is at t2 with P2. The intersection t1 with P1 will be greater than

t, the intersection with x = c1. This will result in examining the the region
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x > c1 and hence, P2.

It is possible for an object primitive to occupy several adjoining re-

gions. To avoid examining an object primitive more than once, ray signatures

are maintained in all the object records. Each object is examined for intersec-

tion only if its signature is different from that of the current ray. If not, it is

tested for intersection and the ray signature is written onto its record.

Note that this traversal algorithm differs significantly from that of

Kaplan-BSP tree traversal. The traversal algorithm is described in

Algorithm 6.1.

6.2.5.2 Comparing the Two Traversal Methods

The regions identified by both traversal methods in tracing any ray are identi-

cal. The difference lies in how this is accomplished. Let us look more closely at

the operations performed by the two methods (the numbers given in Tables 6.10

and 6.11 pertain to our implementation and can be replaced by equivalent quan-

tities for other implementations).

Tables 6.10 and 6.11 show the operations performed in both of these

traversal methods. havg is the average height of the hierarchy. For the

BSP/Octree traversal, the total operations is an average count while in the

k-d tree traversal, the total operations is a worst case count. For the k-d tree

traversal, very often, neighboring regions will be close to each other in the

hierarchy. Thus, if the next region to be processed is close to the region just

processed in the hierarchy, then both regions will have a common ancestor that

is relatively deep in the hierarchy. Hence the number of plane intersections and

branching decisions done to get to the new region will be much smaller than
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Input: root of the k-d tree, ray end points.
Output: true/false from the function and if true the intersection.

traverse (root,ray,tstart,tend,inters)
{

if (inters volume (root→vol))
{

if (root→type == LEAF)
return (list inters (root→list,tstart,tend,inters))

else
{

rayclip (root→vol, &t start, &t end)
path = ray path (root,ray,tstart,tend,&tmid)
switch (path)
{

LR : if (traverse (root→left,ray,tstart,tmid,inters))
return (TRUE)

return (traverse (root→right,ray,tmid,tend, inters))
RL : if (traverse (root→right,ray,tmid,tend, inters))

return (TRUE)
return (traverse (root→left,ray,tmid,tend, inters))

L : return (traverse (root→left,ray,tstart,tend, inters))
R : return (traverse (root→right,ray,tstart,tend, inters))

}
}

}
return (FALSE)

}
Algorithm 6.1: k-d Tree traversal.

havg.

Looking at the expressions for the two methods, it is not clear which

method is better. The BSP/octree traversal does more work in moving from

voxel to voxel while the k-d tree traversal is doing more work reaching the leaf

nodes. For very dense scenes, if an intersection is found within the first few

regions the ray encounters, then the BSP/octree method does less work. This

is because the k-d tree method determines the order (in advance) for regions

that may never be visited by the ray because of early termination. If the



113

Operation flops

Reaching leaf node havg
Determining face through which ray exits 15
Computing exit point 6
Extending ray into the next region 9

Total cost/region examined 30 + havg

Table 6.10: BSP/octree Traversal Operations

Operation flops

Plane intersection at each node 2
Branching decision at each node 1.5

Total cost to get to leaf node 3.5havg

Table 6.11: K-d Traversal Operations

ray travels a number of regions and if there are locality properties between

successive regions in the hierarchy, then the k-d tree method will do better

because all its computation is done in ray parametric space and no coordinates

are computed. One other restriction for the BSP/octree traversal is that all the

regions visited must be contiguous, since the ray is ‘extended’ from region to

region. The amount by which the ray is extended is determined by the smallest

voxel in the hierarchy. If there were gaps between voxels, this traversal could

put a ray origin in a gap, and there would be no corresponding voxel containing

the origin. The k-d tree traversal has no such restriction.

Let us now look at experimental results obtained by using the two

traversal methods on the same set of test cases. Table 6.12 shows the results of

using the Kaplan-BSP traversal on the test cases. When compared to Table 6.2,

which uses the k-d tree traversal, it is clear that the k-d tree traversal is superior

in practice.
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Scene Avg. Ht Void Area flops/ray Run time

Tetra 11.46 433388.03 249.42 3.46
DNA 11.71 32552.10 339.36 7.62
Arches 15.37 59.12 593.98 12.05
spd.balls 20.06 3034.28 1053.52 102.45
spd.tree 24.52 48611.76 1146.51 108.58

Table 6.12: BSP Subdivision, no bounding volumes, BSP Traversal.

6.3 A New Search Structure for Efficient Ray Tracing
Based on k-d Trees

Our experimental study has pointed us towards several new strategies

for building a new search structure for efficient ray tracing.

1. The surface area (SA) heuristic defined by Equation 6.2 is to used to

locate the partitioning plane at every node of the hierarchy.

2. Bounding volumes are used at nodes of the hierarchy where they result

in cutting down void space (we have already explained how to compute

a measure of the void space at a node).

3. The k-d tree traversal method must be used to trace rays through the

search structure.

A search structure with the above features falls under the classifica-

tions of k-d trees, which are multidimensional binary search structures, origi-

nally proposed by Bentley [2][3] for applications in range searching.

Henceforth, when we refer to the k-d tree, it is to be understood that

we are referring to the search structure (with characteristics described above)

that is being used for ray tracing.
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A 2D example of a k-d tree subdivision and the corresponding tree is

shown in Fig. 6.6.

We have already described the traversal of the k-d tree. We will now

describe the construction of the k-d tree.

6.3.1 Construction of the k-d Tree

There are four parts to this preprocessing step:

• Determining the object median.

• Determining the spatial median.

• Determining the plane that minimizes the function in Equation 6.2.

• Partitioning the object set across the chosen plane.

6.3.1.1 Determining the Object Median

This process involves a binary search along the three coordinate axes within

the scene extent. Algorithm 6.2 illustrates the procedure. It consists of the

following steps:

1. Choose the plane midway between the scene maximum and minimum

along the particular coordinate axis.

2. Classify each object primitive of the scene according to its position on

the left, right or both sides of the chosen plane. To determine how good

this partition is, compute a figure of merit as defined by Equation 6.1 If

this is unsatisfactory (determined by the termination conditions in step

4), we will need to move the plane to the region that contains the larger
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number of objects. Whichever region is chosen, only the objects in that

region need to be partitioned for the new plane choice. To make this

clearer, refer to Fig. 6.7.

Here the plane x = c1 partitions the object set into l cnt, r cnt and

shr cnt. Plane x = c2 is the new plane choice since l cnt > r cnt. Only

objects to the left of x = c1 need to be partitioned with respect to x = c2

since objects to the right of x = c1 form a subset of objects to the right

of x = c2. A similar argument applies when lcnt < rcnt.

3. To choose the new plane as in step 1, we need to update the interval

bounds. If the new plane is to be located to the left of the present plane,

then the latter becomes the right bound; if it is to the right, then the

newly chosen plane becomes the left bound. In Fig. 6.7, x = c2 is to the

left of x = c1 and so x = c1 is the new right bound.

4. If the figure of merit computed above is less than a threshold, then we

are done. Else we must determine whether we still need to continue the

binary search in this coordinate direction. As illustrated in Algorithm 6.2,

there are three conditions:

• The left and right bounds differ by less than a chosen resolution.

• All objects are shared between the two regions (i.e. no suitable

plane can be found for subdivision). In this case the figure of merit

will equal the original number of objects.

• The number of objects in both regions are equal. This will not

necessarily give us the best partition in this dimension since the

number of objects crossing this plane could be large. As we do

not know the side of the plane in which to continue the search, we
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Figure 6.7: Object Classification

stop the search in this dimension and continue with the remaining

dimensions.

6.3.1.2 Determining the Spatial Median

This is the plane that partitions the region or space under consideration into

two equal sized subspaces. If no bounding volumes are being used in the search

structure to enclose collections of objects, then the plane that is located mid-

way between the extent bounds for the partitioning dimension is the spatial

median. If bounding volumes are being used in the structure, then this plane

does not necessarily partition the original space into two equal subspaces. In

Fig. 6.8A the spatial median is at the center of the extent. The same region

shown with bounding volumes in 6.8B does not partition the space into two
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Input: list of objects, number of objects, scene volume.
Output: partitioning plane, divisible flag.

choose plane (object list, object cnt, vol, plane, divisible)
{

i = X
fom = best fom = +∞
while (fom > threshold && i ε (X,Y,Z))
{

choice = (volimin
+ volimax

)/2
classify (obj list, choice, &new side, &fom)
if (new side == LEFT)
volimax = choice

else (if new side == RIGHT)
volimin

= choice
else i++
if (fom < best fom)
{

best fom = fom
plane→value = choice
plane→indx = i
}
if (|volimin

− volimax
| < Resolutioni)

or (fom == object cnt)
i++

}
*divisible = (fom == object cnt)
}

Algorithm 6.2: Choosing a Partitioning Plane.

equal sized regions. The size of the two subspaces is determined by the sizes

of the bounding volumes, which, in turn, is determined by the objects they

enclose.

In the presence of bounding volumes, the spatial median can be de-

termined by a binary search, in a manner similar to the search for the object

median. In this case, the goal is to determined the plane that best balances the

surface areas of the bounding volumes on both sides of the partitioning plane.

The partitioning plane is successively located in the region (or half-space) that
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Input: object list, object cnt, scene volume.
Output: root of the k-d tree.

TREE PTR build k-d (object list, object cnt, volume)
{

choose plane (obj list, object cnt, volume, &plane, &divisible)
if (divisible)
{

create ‘root node’
classify (obj list, plane, &l list,&r list &l cnt, &r cnt)
if (left cnt > threshold)

root→left = build k-d (l list, l cnt, getvol(l list))
if (root→left == NULL)

root→left = obj list
if (right cnt > threshold)

root→right = build k-d (r list, r cnt, getvol(r list))
if (root→right == NULL)

root→right = obj list
return (root)
}
return (NULL)
}

Algorithm 6.3: Building the k-d Tree.

has the larger bounding volume surface area, until the areas are very close to

each other. The figure of merit for this search is simply the absolute value of

the difference between the two bounding volume surface areas. Minimizing this

will balance the surface areas.

6.3.1.3 Determining the Partitioning Plane

A linear search is performed between the object and spatial medians. For each

plane choice, Equation 6.2 is evaluated This is compared against the currently

store minimum value. A record of the plane with the minimum function value

is maintained. This will be the chosen plane at the end of the search.
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Figure 6.8: Determining Spatial Median.

6.3.1.4 Building the k-d Tree

Once a partitioning plane has been determined, the object primitives are par-

titioned into two subsets. Objects that cross the plane are counted in both

regions (which can be maintained by pointers to the object record). The par-

titioned subsets are recursively partitioned until the termination criteria are

satisfied. The procedure is outlined in Algorithm 6.3.

6.3.2 Validating the Results of the k-d Tree Using the Cost model

With the desirable characteristics incorporated into our new search

structure, we will next like to validate its superiority over current search struc-

tures. The first result that we would like to demonstrate is the automatic

termination criteria built into the construction of the k-d tree is sufficient for it

to operate at the correct subdivision depth for obtaining the best performance.

Secondly, we will compute the cost model at this subdivision depth and show

that the predicted cost is less than current seach structures.

In the k-d tree (using either a median-cut plane choosing strategy or
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Figure 6.9: K-d Tree Performance Characteristics

the SA heuristic) the flexibility in plane locations allow us to stop subdividing

when its not possible to place at least one object on either side of the partition-

ing plane. Continuing subdivision beyond this point only serves to increase the

traversal cost, since the same number of objects will remain at each of the new

nodes that are created by this additional subdivision. However, it is possible

that stopping subdivision before this condition is reached might be more opti-

mal. We will demonstrate that this is not so by experimental characteristics.

Fig. 6.9 shows the experimental characteristics of the k-d tree for

three different scenes. It is clear from these characteristics the performance

is best at the point where the hierarchy construction would not have subdi-

vided any further. Fig. 6.9 illustrates the k-d tree performance characteristics

on different scenes for predicting termination criteria. In each case, optimal

performance is reached only at the height at which the k-d tree would not have

subdivided any further. Because of the greater flexibility in the construction in
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the k-d tree, its construction algorithm is able to set termination criteria in the

tree building algorithm. When the plane choosing algorithm determines that

it is not possible to place at least one object primitive on one side of the par-

titioning plane completely, the algorithm terminates subdivision (at any node

of the tree). Thus, the model confirms these results. One difference in the

model evaluation for the k-d tree from the octree and BSP hierarchies is that

the cost of processing bounding volumes has to be added to the traversal cost.

For this, we need to determine the average number of bounding volumes along

any path of the k-d tree. During the preprocess, all paths of k-d tree have to

be examined to determine the average number of bounding volumes per path.

This is again a weighted average, since leaf nodes which are smaller in size will

be visited less often. This value is multiplied by the cost of a bounding volume

test and then added to traversal cost.

The fact that the k-d tree stops subdivision after a certain depth is

reached is indicated by the curves remaining flat after this point. Although the

construction algorithm allows subdivision beyond this point (this will cause the

octree and BSP structures to subdivide) the k-d tree terminates itself when it

realizes that no more benefits can be obtained by further subdivision.

Table 6.13 shows the predicted costs of all the test scenes using the

cost model. Comparing this to the figures in Tables 5.6 5.7, 5.8, 5.9 and 5.10,

it is seen that in all the cases except the DNA, the model predicts the superior

performance of the k-d tree. The experimental results k-d tree with the SA

heuristic have been shown earlier in Table 6.8
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Scene Predicted Cost
(float ops./ray)

Tetra 69.8
DNA 90.2
Arches 131.1

Table 6.13: k-d Tree Predictions.

6.4 Conclusions

In this chapter, we have performed an extensive study of some of

the important characteristics of search structures currently being used in ray

tracing. Their strengths and weaknesses have been analyzed. We have used

results from this study in developing the k-d tree, a new search structure that

combines the advantages of both space-partitioning structures and those based

on bounding volumes alone. The superior performance of the k-d tree over

previously developed search structures has been demonstrated experimentally.

These results have been validated by the cost model that we developed and

used successfully for other search structures. The k-d tree has been shown to

be a more flexible search structure with better properties for adapting itself to

scene characteristics. It does not suffer from the termination problem common

to other search structures. Its flexibility allows it to terminate itself at the

point where no additional benefits can be obtained from further subdivision.



Chapter 7

APPLYING SPACE SUBDIVISION TECHNIQUES
TO VOLUME RENDERING

In this chapter, we will apply the k-d tree search structure that we pro-

posed in the previous chapter to an important application of computer graphics:

visualization of data from scientific applications. We present a new ray-tracing

algorithm for volume rendering which is designed to work efficiently when the

data of interest is distributed sparsely through the volume. A simple prepro-

cessing step identifies the voxels representing features of interest. Frequently

this set of voxels, arbitrarily distributed in three dimensional space, is a small

fraction of the original voxel grid. The voxels are then stored in a k-d tree. The

tree is then efficiently ray-traced to render the voxel data. The k-d tree is view

independent and can be used for animation sequences involving changes in po-

sitions of the viewer or positions of lights. We have applied this search structure

to render voxel data from MRI, CAT Scan and electron density distributions.

7.1 Introduction

An increasingly important application of computer graphics technol-

ogy is in providing visualization tools to help scientists in a number of fields

understand massive amounts of data. Some of these fields include medical imag-

ing, molecular modeling, computational fluid dynamics, seismology, weather

models and oceanography. In most of these applications, the data generated
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are usually too large to interpret directly in their raw form. Also, the data

models usually contain a large number of features which are difficult to study

all at once. A visual representation of these features, either individually or

in some reasonable combination, is desirable for a better understanding of the

underlying phenomena.

Many of these data-sets are scalar or vector fields of functions sam-

pled in three spatial dimensions. For example, medical imaging data consists of

scalar density values at each vertex of a three dimensional grid. These ‘voxel’

data are either input directly to a rendering program, in which case the visual-

ization procedure is termed ‘volume rendering’, or converted to an intermediate

representation, for example a surface model, before rendering.

The advantage of creating a surface model from a volumetric repre-

sentation is that it is often a compact encoding of the characteristic that is

being visualized. A surface model, built of polygonal primitives, for instance,

can be rendered efficiently with special purpose graphics hardware. The model

needs to be created only once and can be viewed from any direction. If the

number of surface primitives is not too large, rendering can often be performed

in real time, a very useful feature in scientific visualization. A popular method

for creating surface models from voxel data is the Marching Cubes method [31].

Most often, creating a surface model involves making a binary clas-

sification decision of whether a surface passes through a voxel or not. This

leads to introduction of artifacts in the image. Also, it may not make sense to

create surfaces for certain kinds of volume data. In these cases, an alternate

solution such as the direct rendering of volumetric data is preferred. Direct vol-

ume rendering techniques are generally based either on a ray-casting approach

[41][28][29][30][49] or on the projection and compositing of preprocessed voxels
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onto the image plane [49][12]

Ray-casting techniques sample points along the path of each ray (as

often as needed) that is cast into the volume. A weighted sum of the contribu-

tions of all these points is projected onto the view plane. The images obtained

using this method typically have fewer artifacts than surface modeling methods

because no binary classifications need to be made, although the point sampling

involved can also be a source of errors due to undersampling. Also the grid

is sampled at a greater level of detail, thus providing a more accurate picture

of the volume data. Similar advantages can be obtained with projection and

compositing methods.

Unfortunately, direct volume rendering using ray tracing is generally

more time consuming than surface rendering. Such methods, in general, do not

take advantage of standard graphics hardware. Though the images produced

are of higher quality than those generated from surface models, each image is

more expensive to compute. It can be quite expensive to generate animation

sequences, which are often a key to understanding scientific phenomena.

Surface modeling approaches to visualizing volumetric data take ad-

vantage of the fact that very often the features of interest to a scientist are con-

tained in only a small portion of the original voxel data. By suitably identifying

this subset of voxels and representing them as a set of surfaces, considerable

savings in computation and space can sometimes be obtained. A surface may

be an effective way to visualize data in cases in which a single type of real sur-

face is being identified in the volume data. Frequently, however, either many

different surfaces are of interest or the data actually contains no real surfaces.

In these situations, direct volume rendering may provide a more useful way for

investigators to understand the information of interest in the data.



128

In this chapter, we present a volume rendering algorithm which takes

advantage of the lack of interesting information in a large fraction of voxel

data in many applications without representing the interesting voxels as sur-

faces. Our goal is to achieve the benefits of the relatively fast rendering and

compact representations of surface models while retaining the ability to effec-

tively represent data which are poorly suited to surface modeling.

Our strategy is to first identify the voxels which do not contain in-

teresting data and remove them, rather than attempting to identify a set of

interesting voxels which can constitute a surface. After this initial step, we

are left with clumps of interesting voxels distributed throughout the original

volume. We incorporate this data into a k-d tree. The construction and use of

the k-d tree is the same as was done for rendering surface models. For regular

grids, axis-aligned planes allow us to construct the tree entirely using integer

arithmentic. These and other optimizations due to the special nature of the

data that is being rendered will be described later.

The motivation for applying space subdivision techniques to volumet-

ric rendering comes from their success in accelerating the ray tracing of surface

models [17][25][39][18][1][13]. Levoy [29] and Meagher [33] have used octrees for

rendering volume models. In the previous chapter an extensive investigation

of different characteristics of ray tracing hierarchies showed that for surface

models, the k-d tree is a more adaptive and flexible data structure, principally

because it combines the advantages of pure space partitioning structures such

as the octree and those based on bounding volumes.

An important advantage of this search structure is its view indepen-

dence. Animation sequences involving changes in viewer locations or positions

of lights require no change in the search structure. Slicing the volume data to
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Figure 7.1: Triangulated Cubes.

look at the internals of a feature also can use the same search structure with a

minor modification in the preprocessing step. We have used this structure to

efficiently render animation sequences of a human heart (from an MRI data-set)

and scalar fields of electron density distributions.

The remainder of the chapter is organized as follows. First, we survey

some major existing surface rendering and ray-tracing techniques for volume

data in order to identify techniques for identifying and processing interesting

voxels which we will also make use of. Subsequently, we present a detailed

description of our algorithm, and then examine implementation results on the

data mentioned above.

7.2 Visualizing Volumetric Data

Among the different methods of visualizing volumetric data, two tech-

niques are commonly used in medical imaging and molecular modeling appli-

cations. The first is the Marching Cubes method, which outputs polygonal

surfaces of a certain density threshold value. The second method is based on

ray tracing and directly samples the voxel grid.

The Marching Cubes method builds triangle models of constant data

value surfaces from 3-D scalar fields. A threshold density value (or surface

constant) is first selected. This value is compared with the density values at
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the eight corners of each voxel. If it falls within the density range of any of

the edges of the voxel, then the surface intersects that edge. The intersection

points, determined by linear interpolation from the edge densities define one

or more planar surfaces. These surfaces are then triangulated. Two examples

are shown in Fig. 7.1. Before rendering, a unit normal is computed for each

triangle vertex. For a constant data value surface, the gradient vector is normal

to the surface. The gradient at each vertex (i, j, k) of the grid is computed using

central differences. Let this be 5f(~xi). It is given by

5f(~xi) = 5f(xi, yj, zk)

=



1
2∆x

[f(xi+1, yj, zk)− f(xi−1, yj, zk)],

1
2∆y

[f(xi, yj+1, zk)− f(xi, yj−1, zk)],

1
2∆z

[f(xi, yj, zk+1)− f(xi, yj, zk−1)]


and the unit normal is given by

N(~xi) =
5f(~xi)

| 5 f(~xi)|

where

f(xi, yj, zk) = density at location (xi, yj, zk).

∆x,∆y,∆z = grid spacing along the three

dimensions.

Normals at the vertices of the triangles are calculated by linear inter-

polation from the corner gradients. Once the normals for the vertices of all the

triangles are computed, the triangles can be rendered on any standard graphics

workstation.
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In the ray tracing approach, rays are cast into the voxel grid, through

an imaginary projection plane. Each of these rays is sampled at equal intervals

along its path through the grid. This can exploit the use of incremental tech-

niques [6][15]. At each sample location, the voxel density, opacity and local

gradient are determined. The voxel density is usually obtained by linear inter-

polation from the corner density values. The opacity can be a made a function

of the density, although this is not necessary. Theoretically, the opacity can

be any meaningful function. For instance, if it were a step function peaking at

a certain density value, then we end up with iso-surfaces, as in the Marching

Cubes method. A method proposed by Levoy [28] to compute opacity is as

follows:

α(~xi) = αv ∗



1 if | 5 f(~xi)| = 0
and

f(~xi) = fv

1− 1
r

∣∣∣fv−f(~xi)
|5f(~xi)|

∣∣∣ if | 5 f(~xi)| > 0

and
f(~xi)− r| 5 f(~xi)|
≤ fv ≤

f(~xi) + r| 5 f(~xi)|

0 otherwise

(7.1)
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where

~xi = i th sample location.

fv = surface threshold constant.

αv = opacity of voxels having density of fv.

f(~xi) = density at sample ~xi.

5f(~xi) = local gradient vector.

r = voxel thickness of the transition region.

α(~xi) = opacity at sample ~xi.

What the above equation does is to assign the opacity αv when the density

value is the selected threshold, fv. It is also desirable to have opacities close

to αv for densities close to fv. A constant thickness over the transition region

also makes a more pleasing image. This is achieved by letting the opacity fall

off at a rate inversely proportional to the local gradient vector. When we need

to visualize multiple surfaces, each having a different surface constant fv, each

surface can be classified separately using Equation 7.1.

A unit normal is computed as in the Marching Cubes method. A

lighting model is then applied at this sample location to compute a color. A

running sum of the accumulated opacity is maintained and used to weight the

color of each sample location. Processing terminates when the accumulated

opacity reaches unity or there are no more voxels left to process. The sum of

all the weighted sample colors is the final color for the ray.

Let αi, (0 < i < k) represent the opacity of the i th sample. Refer

to Fig. 7.2. Since x0 is the first sample, there is no material of the volume

that is blocking it, and contribution from this sample is α(x0) ∗ I(x0), where

I(x0) is obtained by a local lighting model like that described by Equation 2.8.
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Figure 7.2: Computing Intensity of a Ray.

For the next sample, the amount of material of the volume blocked is α(x1).

The transparency of the volume at sample location x1 is (1 − α(x0)), and the

intensity contribution from sample location 1 is therefore I(x1) ∗ α(x1) ∗ (1 −

α(x0)). For the third sample, the intensity is I(x2)∗α(x2)∗(1−α(x0))(1−α(x1))

and so on.

So the total intensity is given by

I = I(x0)α(x0) +

I(x1)α(x1)(1− α(x0)) +

I(x2)α(x2)(1− α(x0))(1− α(x1)) + . . . . .

=
k−1∑
i=0

I(~xi)α(~xi)
i−1∏
j=0

(1− α(~xj)) (7.2)

where

~xi = i th sample.

I(~xi) = Intensity at sample ~xi.

α(~xi) = opacity at sample ~xi.

k = total number of samples along the ray.
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7.3 Building the k-d Tree

As indicated in the introduction, our goal is to create a data struc-

ture which represents interesting volume data in a way that supports fast ray

tracing. We do this in two steps.

In the first step, we design a culling function that identifies voxels that

can be eliminated from any consideration since they do not contribute to the

current view. This step depends on the opacity function used. We demonstrate

a culling function to be used when Equation 7.1 computes the opacity. The

output of this step is a list of voxels representing the characteristic that will be

visualized.

Next we build the k-d tree similar to the procedure that we followed

for surface models. The partitioning is highly flexible in adapting the partition-

ing planes to the distribution of the voxels in the hierarchy. For early detection

of rays that do not intersect any interesting voxels, bounding volumes are stored

at nodes of the hierarchy to make the data structure even more compact.

The k-d tree will be used to efficiently access the voxels of interest

during ray tracing. The remainder of this section is devoted to a detailed

description of the building of the data structure. The next section describes its

use in ray tracing.

7.3.1 Identifying ‘Relevant’ Voxels

The inequalities at the right of Equation 7.1 are the key to determin-

ing a culling function for identifying voxels of zero opacity. The culling function
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is given by

{(fmax(voxi,j,k) + r| 5 fmax(voxi,j,k)|) < fv}

OR

{(fmin(voxi,j,k) − r| 5 fmax(voxi,j,k)|) > fv}

where

fmin(voxi,j,k) = min. voxel density at (i, j, k).

fmax(voxi,j,k) = max. voxel density at (i, j, k).

5fmax(voxi,j,k) = max. voxel gradient at (i, j, k).

If the above function is TRUE for a voxel at (i, j, k), it is discarded; otherwise,

it is added to the list of relevant voxels.

Since linear interpolations are used for determining densities as well

as gradients within each voxel, the range of densities within each voxel as

well as the maximum density gradient of each voxel can be determined. This

immediately lets us design a culling function which checks to see if any density

in a voxel is within the range of density values that could possibly contribute

to the final image. That is exactly what the inequalities in the above function

test for. A voxel is irrelevant if its range of densities does not contain the

surface threshold density and its density and gradients are such that the opacity

function lies completely outside its range. The two parts to the function (on

either side of the OR operator) consider the density ranges on either side of fv,

the selected threshold.

This process is repeated for each voxel in the grid and a list of ‘rel-

evant’ voxels is recorded. All other voxels are not of interest until a different

feature or characteristic needs to be studied. The output from the preprocess-

ing step is a list of voxels representing the characteristic of interest.
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Figure 7.3: A k-d Tree Subdivision.

7.3.2 Building the k-d Tree Hierarchy

Having identified the voxels of interest, the next step is to build a

hierarchy to store them. The procedure follows the construction of the k-d tree

for surface models, described in Section 6.3 and the algorithms in 6.2 and 6.3.

As before, two binary searches are performed in each dimension to determine

the object and spatial medians. A linear search is performed between the two

medians to determine the partitioning plane that minimizes Equation 6.2.

The main difference here is that we are dealing with volume elements

instead of surface primitives like polygons or spheres. Also, voxels cannot

straddle a partitioning plane since they are aligned with all the partitioning

planes. An example is shown in Fig. 7.3 with five levels of partitioning. The

dotted lines are partitioning planes and the rectangles represent voxels.

Each time we partition a set of voxels, we need to determine if bound-

ing volumes are required to cull void space. A 2D example is shown in Fig. 7.4.
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a b c

Figure 7.4: Using Bounding Volumes.

In 7.4a, bounding volumes are required on both sides of the plane. In 7.4b, no

bounding volumes are required as this results in no reduction in void space,

whereas in 7.4c only the left side needs it. The reasoning behind using bounding

volumes is that many of the rays will intersect the void areas without inter-

secting the surface areas, in which case they can be quickly eliminated from

further consideration with a simple bounding volume intersection test.

Some important optimizations in this preprocessing step include the

following:

When we are dealing with regular grids (common in medical imaging

and molecular modeling applications), partitioning planes need be located only

on voxel boundaries, which means the entire search can be performed using

integer arithmetic.

Since the partitioning planes are axis-aligned and there are only a

finite number of locations for each of them, voxels that fall in each of these

locations can be summed up. These partial sums can be used to determine

the best plane choice. Thus, when we need to determine a plane that best

balances the voxels in a region, the partial sums are first computed parallel to

the orientation of the plane. These sums can be used to determine the best
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Figure 7.5: Optimizing the Preprocess.

plane as the binary search is conducted. In Fig. 7.5, vertical columns of voxels

are added up when we are determining a plane orthogonal to the horizontal

axis. In 3-D, if we are searching along the X axis, voxel counts in Y Z plane

will be summed up at each possible location of the partitioning plane.

A similar strategy can be followed for determining bounding volumes.

It is not necessary to consider the entire set of voxels for each location of the

partitioning plane. We can precompute bounding volumes of voxels for each

location of the partitioning plane. For instance, when the search is along the X

axis, bounding volumes of voxels in the Y Z plane (these can be thought of as

2D bounding volumes each 1 voxel thick) for each location of the partitioning

plane are precomputed. During the plane search, these bounding volumes can

be used to determine the actual 3D bounding volume on either side of the

plane.

During the binary search, when we move the plane towards a location



139

that tends to give a better balance of voxels, the side we are moving away

from need not have its voxels examined any further. Thus the total number of

voxels in this region just needs to be remembered and taken into consideration

when the figure of merit is computed. In Fig. 7.5 the plane x = c1 results in

a partition with more voxels to its left (lcnt > rcnt). The next plane choice is

at x = c′1, midway between c1 and the left bound. To determine the number

of voxels on either side of x = c′1, its enough to examine the voxels between

the left bound and c1. The number of voxels to the right of c1 is rcnt and just

needs to be remembered. A similar argument holds if lcnt < rcnt.

7.4 Casting a Ray

The ray traversal algorithm follows the description in Section 6.2.5

and the algorithm outlined in Table 6.2.5.1 and will not be repeated here. One

difference when rendering volume models of regular 3-D grids is that voxels

do not straddle partitioning planes and hence, the sampling process is always

ordered along the path of the ray, unlike surface models (refer to Fig. 6.5)

where a primitive intersection point could turn out to be outside the region

being examined. Each time a leaf node is encountered during the traversal

process, a sample is picked midway between the intersections of the ray with

the voxel. The contribution of this sample is integrated using Equation 7.2.

7.5 Implementation and Results

We have implemented our algorithm in C on an Ardent Titan 1500

running Ardent UNIX1 2.1.1 and tested the implementation on three different

1UNIX is a trademark of AT&T Bell Laboratories
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Total Relevant Memory
Scene Voxels Voxels % Reduction (Mbytes)

Heart 1245184 61681 95.0 4.5
Heart(sliced) 1245184 38198 96.9 2.5
SOD at 80 1091444 63533 94.2 3.0
SOD at 100 1091444 27427 97.5 1.3
HIPIP 262144 24628 90.6 1.2

Table 7.1: Voxel Statistics.

Timings (minutes)
Scene median-cut k-d

Preprocess Render Preprocess Render
Cull Build Cull Build

Heart 2.73 0.28 6.26 2.73 0.74 5.78
Heart(sliced) 2.38 0.17 5.93 2.38 0.45 5.56
SOD at 80 2.48 0.29 11.60 2.47 0.78 11.43
SOD at 100 2.33 0.13 8.09 2.33 0.33 7.48
HIPIP 0.61 0.10 6.75 0.62 0.28 6.51

Table 7.2: Timing Statistics.

test cases. The first case is an MRI data-set of a cadaver heart that has been

autopsied; during autopsy, cuts were made into the ventricles. The heart was

in a bucket of preservative and was imaged from three orthogonal directions.

The data consists of 76 slices, each of resolution 128x128 Color plates 9.11a and

9.11b show two different views of the heart. Next the heart is sliced vertically

(by a plane) and the voxels in front of the slicing plane are removed so as to

get a better view of the heart chambers. Plates 9.12a and 9.12b are the result.

The next example is an electron density map of the active site of

superoxide dismutase (SOD) enzyme as determined by x-ray crystallography at

1.8 angstrom resolution. The data-set consists of 116 slices, each of size 97x97.

Plate 10.13 shows one frame of an animation sequence when centered around

a threshold of 80. At this level, teardrop shapes and clumps of atomic density

are seen. At a level of 100, we start seeing individual atoms, as illustrated in
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plate 9.14.

The last example is a quantum mechanical calculation of one electron

orbital of a four-iron, eight-sulphur cluster found in many natural proteins.

This particular data-set is a high potential iron protein (HIPIP). The data

represents the scalar field of the wave-function at each point. The resolution of

the data is 64x64x64. Scientists are interested in seeing ‘nodal’ surfaces, where

the data value crosses zero. Plate 9.15 attempts to demonstrates this.

Table 7.1 illustrates the reduction in voxel data after the preprocess.

In all cases, less than 10% of the total voxels are relevant to the final image.

This demonstrates the importance of culling irrelevant voxels and working with

only voxels of interest. In the heart images, slicing causes further culling of the

data. All timings are for a resolution of 640x480, with one ray cast per pixel.

In this implementation, we have not taken advantage of either vectorization or

parallelization to optimize performance.

Table 7.2 shows the run times for all the test cases. Two sets of tim-

ings are shown; the first using the median-cut partitioning strategy and second,

timings using the k-d tree search structure. The preprocess times using the

k-d tree are a little higher because of the extra work involved in the hierarchy

construction. However the rendering times are faster using the k-d tree (for all

the test cases). These savings will accumulate in a long animation sequence

since the search structure needs to be constructed only once.

In order to compare our method with the traditional algorithm which

directly samples the three dimensional grid, we have an implementation that

does not perform any culling or use any form of space partitioning. Results of

rendering the same datasets are shown in Table 7.3. In all these cases, there

is at least a factor of 20 or more in performance advantage with the use of the
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Scene Time (min)
Preprocess Render

Heart 0.90 289.64
Heart(sliced) 0.88 226.68
SOD at 80 0.45 228.57
SOD at 100 0.45 278.75
HIPIP 0.11 98.51

Table 7.3: Results Using the Traditional Algorithm.

k-d tree partitioning.

We are presently adapting this technique to be useful for users located

remote from the supercomputer center. Our strategy is to preprocess the data,

whereby the voxels representing a given characteristic is identified. This set of

voxels is then transmitted over the network to the researcher’s workstation for

rendering. In filtering the voxels of interest from the original three-dimensional

grid, a large reduction in the number of voxels transmitted over the network

will result in a natural compression of the original data-set. Since building the

k-d tree search structure usually takes a fraction of the rendering time, it can be

performed remote from the supercomputer center, thus making it unnecessary

to transmit the search structure over the network.

7.6 Conclusions

We have presented an algorithm which uses space partitioning tech-

niques to support efficient volume rendering. A cull function prunes voxels

from the original data that are irrelevant to the characteristic being studied. A

search structure based on k-d trees is used as a data structure for storing the

relevant voxels so that they may be accessed efficiently during rendering. This

data structure has important advantages for rendering volumetric data:
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1. It provides a compact representation of voxels. The partitioning planes

in the hierarchy help in determining a traversal order that identifies only

voxels close to the path of each ray. The bounding volumes used in

the internal nodes of the hierarchy help in identifying rays that do not

intersect any relevant voxel by simple bounding volume intersection tests.

2. Since the tree can be traversed along the path of a ray, the search can be

terminated once the accumulated opacity reaches unity.

3. The search structure is direction independent. With the help of the par-

titioning planes, a traversal order can be determined for any ray with

arbitrary origin and direction. Changes in viewing or lighting parameters

require no change in the search structure.

4. The choice and location of the partitioning planes is flexible. The plane

that best balances the voxel counts on either side of the partition is

chosen. The plane can be aligned with any of the three dimensions.

5. Since partitioning planes need to be located only on voxel boundaries,

the entire plane search can be performed using integer arithmetic.

Surface modeling approaches to visualizing volumetric data work best

when few surfaces are involved. Existing ray-tracing approaches exploit the

regular nature of three-dimensional grids through the use of incremental tech-

niques for volume traversal. These techniques are most efficient when the voxels

of interest are distributed sufficiently densely through the volume. In the data

that we have worked with, this has not been the case. Visualizing multiple

features increases the number of voxels participating in the view, but there is

a point beyond which visualizing multiple characteristics (thereby increasing
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the number of relevant voxels) only makes it increasingly difficult to interpret

the data. Our approach is targeted at producing images of intermediate com-

plexity, i.e. those which may contain more than one type of surface but not so

much relevant data that the majority of the volume is involved. The technique

should thus be complementary to existing incremental ray-tracing approaches

which work best on very dense data and surface modeling techniques which

work best on data with few surfaces of interest.



Chapter 8

CONCLUSIONS

Although ray tracing is one of the most popular rendering techniques

for realistic image generation, its major difficulty has been its demand for

tremendous computational resources. This has prompted a great deal of re-

search into developing novel search structures for accelerating ray tracing.

Most of the search structures in use today take advantage of the char-

acteristics of the input scene in different ways. They also have constraints in

their construction, leading to inefficiencies in the data structure. The perfor-

mance of existing data structures is evaluated purely by timing benchmarks.

If a search structure performs poorly on a given input scene, then there is

no mechanism for detecting this prior to rendering. A key advantage to hav-

ing some idea of the performance before rendering is that a different search

structure may be substituted for better performance.

In this dissertation, we have presented new results for significantly

increasing the adaptivity of search structures to scene characteristics leading

to improved performance of ray tracing. We have shown the importance of the

knowledge of a search structure’s performance prior to rendering. A cost model

has been built and applied to a variety of search structures (both hierarchical

and non-hierarchical) based on space partitioning and bounding volumes. The

model is built using statistical properties of the search structures. What is more

145
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important is that the model evaluation can be built into the preprocessing step,

thus permitting a technique’s performance to be evaluated before rendering.

The model has been demonstrated to be a very effective means for

predicting automatic termination criteria for existing search structures such as

the BSP tree, octree, ABV hierarchy and the uniform subdivision techniques.

This has improved the performance of all these search structures, at the same

time making it unnecessary to set termination conditions in advance without

any knowledge of the input scene characteristics. Experimental results have

been presented to validate the effectiveness of the model in solving this problem.

Secondly, the model has also been found to be reasonably accurate in

choosing a search structure for ray tracing a particular input scene. While the

assumptions in the cost model cause it to make wrong decisions, it has been

shown that it is useful in performance improvement by virtue of the fact that

the model never picks the worst method on all the test cases.

An extensive experimental study has been made of some important

properties of search structures based on space partitioning as well as those

based on bounding volumes. Characteristics such as location and orientation

of partitioning planes, effects of bounding volumes in search structures, pres-

ence of void spaces at the nodes of search structures, size of the hierarchy

(for example, its average height) and hierarchy traversal methods have been

examined in detail.

A combination of the advantageous characteristics of all these search

structures has led to the development of the k-d tree, a new search structure for

accelerating ray tracing. Its advantages stem mainly from its greater flexibility

in its construction. The partitioning planes are axis-aligned, but they can

be located anywhere within the region extent and oriented along any of the
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principal axes. The void spaces that are created by this partitioning are pruned

by using simple bounding volumes at nodes of the hierarchy where its reduction

results in a significant performance advantage.

As an example of its adaptivity to a variety of scene models, the

k-d tree structure has been used successfully to render volumetric models from

scientific applications. Models from such diverse applications as medical imag-

ing, molecular modeling and x-ray crystallography have been rendered with

this search structure. The benefits of space subdivision techniques in rendering

volumetric data are especially important when the features of interest occupy

a small fraction of the original data and can be extracted from it efficiently

during the preprocess. In the scientific applications mentioned, this has been

found to be the case. Thus, it is highly beneficial to understand the character-

istics of the data set prior to rendering. For instance, if it is determined that

most of the original volume model participates in the rendering, then it can be

quickly determined that the benefits of space subdivision techniques are less

advantageous and hence, its use not recommended. In this case, the traditional

ray casting technique could be substituted for better performance.

8.1 Future Work

An important parameter involved in the evaluation of the cost model

is the expected number of regions visited by each ray. This quantity is com-

puted with the knowledge of the region hitting probability of any node in the

search structure, given that the ray intersects the scene extent. Under the as-

sumption that rays are uniformly distributed, this probability was shown to be

directly related to the area of the convex hull of the objects stored at node of

the hierarchy.
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The cost model that we have developed while being adequate for

predicting termination criteria, is not accurate enough for predicting the com-

putational requirements necessary for rendering a particular scene. A more

sophisticated model is required to determine accurate cost values to match ex-

perimental results. For this, distributions of the ray directions and those of the

primitives in the scene have to be taken into account. Void spaces in collections

of objects surrounded by bounding volumes have to be taken into account when

computing the hitting probabilities. The model assumes that if the bounding

volume is penetrated by an incoming ray, an object intersection is found within

the cluster of primitives contained by the volume.

In our work, study of scene characteristics has been through the in-

vestigation of parameters that directly affect the construction of object clusters

by different search structures. Another approach that might be worth looking

at is to directly start at the object primitive level and examine various object

distributions. How search structures will handle or partition such object dis-

tributions could give valuable information as to their characteristics and as a

result, performance.

Direct volume rendering using a ray tracing approach is becoming

a common technique for sampling 3D scalar fields. While we have shown a

solution using space subdivision techniques, much remains to be done. We

mentioned earlier that space subdivision structures like the k-d tree provide an

efficient representation of volumetric data. Before they can be used to render

the volume models, the voxels in the volume data need to be classified as inter-

esting or not. This is not an easy problem and is being actively investigated.

The problem here is no one technique can prove to be the best. This is because

volume datasets come from a variety of applications and thus could represent
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characteristics that are very different from each other.

Regular 3D grids are the only kind of volumetric data that has been

investigated so far. However, irregular grids are widely used in applications

such as computational fluid dynamics. We are currently extending the use

of the k-d tree to render data from such applications as computational fluid

dynamics where the data is usually not in a regular grid. This looks very

promising since the the high degree of adaptivity of the k-d tree makes it a

good candidate for visualizing data stored in irregular grids.



Chapter 9

COLOR PLATES

Plate 9.1. Tetrahedra

Plate 9.2. Caltech Tree (Branches)
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Plate 9.3. Caltech Tree

Plate 9.4. DNA
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Plate 9.5. Teapot

Plate 9.6. Arches
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Plate 9.7. Spd Balls

Plate 9.8. Spd Tree
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Plate 9.9. Spd Mountain

Plate 9.10. Spd Rings
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Plate 9.11. Geo 58
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Plate 9.12. Heart (View 1)

Plate 9.13. Heart (View 2)
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Plate 9.14. Heart (Sliced View 1)

Plate 9.15. Heart (Sliced View 2)
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Plate 9.16. SOD (Isovalue = 80)

Plate 9.17. SOD (Isovalue = 100)



159

Plate 9.18. HIPIP (Nodal Surfaces)
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