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ABSTRACT

William Vann Hasty Jr.
Interactive Segmentation of the Hippocampus from Magnetic Resonance Images Using

Deformable Shape Templates (Under the direction of Dr. KALPATHI RAMAN
SUBRAMANIAN)

It is of interest to physicians to be able to measure the hippocampus of the brain in

order to study the relationship between its size and certain pathological conditions. The

hippocampus is known to be smaller in patients with temporal lobe epilepsy and

Alzheimer’s disease. It is of clinical interest to measure large numbers of hippocampi

with a reliable semi-automatic techniques. Magnetic resonance imaging provides a non-

invasive means to study anatomical structures of the brain, and is particularly good at

capturing sharp images of soft tissues such as the hippocampus. Traditional segmentation

techniques fail with respect to segmentation of the hippocampus due to its small size,

variability of shape, and incomplete boundaries. Orthogonal curves, a form of deformable

shape templates, provide a means to segment organs with incomplete gradient boundaries

from the surrounding tissues.

We use orthogonal curves to search for the organ boundaries by applying a priori

knowledge of its shape and by using the external image energy to segment its most likely

boundary. This semi-automatic method allows us to search for the gradient boundary of

the organ while avoiding local gradient maxima that would yield inaccurate results. Once

the boundaries of the region of interest are located, its area is readily measured. We have

developed a system that can rapidly construct search spaces, orthogonal curves, and

perform segmentations of medical images. The system accurately locates the boundaries

of the hippocampus given a good prior model of the shape. The operator can scale



iv

images, construct templates, refine local parameters, segment, and measure the

hippocampus, all within a single framework. Our system provides for the study and

mensuration of the hippocampus while avoiding the error commonly produced during

manual segmentations. Our experiments show that the system proposed here yields

segmentations that are more reliable and more reproducible than manual segmentations.

With the aid of a database of pre-computed templates, our semi-automatic segmentation

system can segment the hippocampus faster, and more accurately than manual

segmentations.
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Chapter 1

INTRODUCTION

Anatomic changes in the structure of the various structures in the brain have been

associated with many chronic conditions such as aging, Alzheimer’s disease, autism, and

schizophrenia. It is possible to detect these anatomical changes by analyzing medical

imaging data such as MRI scans of the heads of patients. Some disorders affect the

structure of the brain enough that the changes caused by the affliction can be detected

within the individual without outside comparison. The hippocampus is a good example of

a brain organ that can show this type of dramatic change.

The hippocampus is an organ of the brain that has an elongated structure

extending over the floor of the horn of each lateral ventricle of the brain. It can be found

in the medial portion of the temporal lobe immediately above the lateral ventricle. The

formation is widest at its most anterior point, and grows thinner as it moves posteriorly

and superiorly toward the corpus callosum. The role of the hippocampus is not

completely understood, but strong correlations have been made between hippocampal

damage and short term memory loss [27]. See figure 1.1 for three-dimensional views of

the hippocampus. The shape and volume of the hippocampus are of interest in the

detection and prediction of some neurological disorders such as intractable temporal lobe.



2

epilepsy, and dementia of the Alzheimer’s type. In the case of temporal lobe epilepsy,

structural abnormalities within the hippocampi can be detected during the analysis of

MRI images of the regions. Unilateral or asymmetric atrophy of the hippocampus

correlates with hippocampal sclerosis, location of seizure onset, and outcome after

temporal lobectomy for correction of epilepsy [5].

Figure 1.1 The hippocampus and surrounding structures. (Reproduced from
http://neurocog.psy.tufts.edu/hippocampus_and_amygdala.htm, NeuroCognition
Laboratory, Department of Psychology, Tufts University.)

The attraction of an automatic system for the segmentation of the hippocampus is

that large numbers of patients and many different organs could be quickly and

automatically measured to produce volumes of data about the “normal” and “abnormal”
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shapes and volumes of organs. However, automatic systems are very difficult to apply in

the case of small organs with very little intensity gradient separating them from

surrounding organs, organs such as the hippocampus. To measure the organs from

imaging data, the expert operator has in the past been forced to use time-consuming and

error-prone techniques such as slice tracing and region painting in order to segment a

region of interest from the surrounding tissues [6]. All of the methods currently available

for computer aided segmentation that are capable of segmenting delicate structures such

as the hippocampus are supervised to some degree. They may require seed points,

construction of prior knowledge of the shape of the object, or expert tuning of the

parameters to the technique. Semi-automatic image processing techniques, combined

with judicious manual interaction, can provide a reliable segmentation system for

segmentation of delicate brain structures from MR data.

Although there exist many different imaging modalities used to collect data such

as: Computed Tomography (CT), X-ray, Positive Emission Tomography (PET), Single

Photon Emission Computed Tomography (SPECT), ultrasound, and Magnetic Resonance

Imaging (MRI), we have chosen to use data collected with the MRI modality because of

the high quality of the images of the hippocampus. MRI is much better for these small

delicate tissues in the brain because of its high spatial resolution and excellent

discrimination of soft tissues [3]. MRI measures the spatial distribution of the relaxation

times and proton densities of tissues in the presence of magnetic excitement and

relaxation periods [4]. The MRI data that we use for experimentation is relatively clean

and clear, and free of serious artifacts.
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 Due to the small gradient changes that delineate the boundaries between the

hippocampus and its surrounding tissues, traditional techniques that simply use edges or

grow regions are unreliable. Edge based techniques uncover very faint and incomplete

edges that are difficult to connect. Region based techniques tend to bleed out beyond the

edges of the true boundary of the region of interest, because of the lack of complete

gradient boundaries. We have based our method on a method first proposed by Hemant

Tagare called deformable 2-D template matching using orthogonal curves [7].

Orthogonal curves take advantage of a priori knowledge of the shape of the organ to be

segmented while they perform a search for its actual boundary. The orthogonal curves

define a search space that is orthogonal to the expected shape of the organ of interest. An

energy function is evaluated for the possible combinations of boundary positions within

the search space that may represent the actual boundary of the organ of interest [7]. This

technique offers us the ability to search for the edges of the organ in the image while

applying some external tension to the resultant boundary so the segmented region

resembles both the previously known general shape and size of the organ. Orthogonal

curves provide the base algorithm for the segmentation system developed for this body of

research.



Chapter 2

SEGMENTATION TECHNIQUES

2.1 Introduction

Image segmentation is the process of subdividing an image into constituent parts

or objects. Segmentation is traditionally divided into three categories: global knowledge

based segmentation; edge based segmentation; and region based segmentation. Global

knowledge based segmentation employs the global properties of the image to separate

objects, and is usually only of use in very simple situations, or as a preprocessing step to

further segmentation.

Edge based segmentation techniques represent a large family of algorithms that

employ transitions in image intensity to locate the boundaries of objects. They rely on

edge detecting operators to locate discontinuities in image intensity, but the resulting

gradient image alone does not provide enough information to yield a segmentation.

Separate methods must be employed to link edges together into sets to form object

boundaries within the image. When prior knowledge of the object of interest is employed

in conjunction with edge based segmentation techniques; reasonable segmentations can

often be obtained.

Region based techniques differ from edge based techniques in that they attempt to

directly construct regions of interest rather than simply separating regions with edges.

Region based techniques are often employed in the presence of noise, where edge based
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techniques may not find enough solid edge information with which to properly work.

Region based techniques attempt to use local homogeneity in the image to form large

areas of similar intensity. The two approaches, edge based and region based, are often

used in combination with each other to yield segmentations that are more acceptable than

either technique would yield alone [1]. Segmentation remains one of the most daunting

tasks in computer vision, and generally requires very specialized algorithms or

combinations of algorithms to solve different problems. Each new segmentation problem

may require an existing technique, a combination of existing techniques, or an entirely

new technique. Automatic, or unsupervised segmentation, is one of the most difficult

tasks in the image processing pipeline [2]. Most approaches to difficult segmentation

problems must be supervised to some degree, whether they require operator supplied

prior knowledge of the object of interest, operator parameter tuning for the technique, or

just an expert eye to determine degenerate cases of the technique.

2.2 Edge Based Segmentation

Edge detection is the search for meaningful discontinuities in image intensity

when considered in the area of image processing. Segmentation based upon edge

detection is useful when the areas under consideration are fairly homogeneous. Detection

of edges involves a local derivative operator that must be convolved with the entire

image. Convolution is the process of moving the operator about the image in a scanline

fashion, and replacing the pixel beneath the operator, or mask, with the sum of the

products of the mask terms and the pixels beneath it. A mask is shown in figure 2.1.

Z1 Z2 Z3
Z4 Z5 Z6
Z7 Z8 Z9

Figure 2.1 A mask operator.
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The operator will score high when the sum of products is high and will score low when

the sum of products is low.

Figure 2.2 Edge detection using the first derivative operator. Figure a)  shows a white
line and figure b) shows a dark line. The derivative finds the edge.

Edge detection techniques use some derivative or finite differences operator to

detect discontinuities in image intensity. These discontinuities can be expressed in terms

of the first derivative of the image. See figure 2.2 for a description of edge detection

using the first derivative. Some well-known first derivative operators are the Sobel,

Prewitt, and central difference operators. These operators are most often expressed in the

form of masks that are convolved with the image. The x and y derivatives are usually

computed separately. Considering the mask in figure 2.1, the different operators can be

characterized as follows (Note: We use the central difference operator for gradient

computations in our method):

Sobel:

-Z1 0 Z3 -Z1 -2Z2 -Z3

-2Z4 0 2Z6 0 0 0
-Z7 0 Z9 Z7 2Z8 Z9

Gx Gy
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Prewitt: 

-Z1 0 Z3 -Z1 -Z2 -Z3

-Z4 0 Z6 0 0 0
-Z7 0 Z9 Z7 Z8 Z9

Gx Gy

Central Differences:

0 0 0 0 -Z2 0
-Z4 0 Z6 0 0 0
0 0 0 0 Z8 0

Gx Gy

Edge detection alone does not yield a segmentation. For a true segmentation, the

edges must be linked together using some sort of edge linking and boundary detection.

Edge linking involves chaining edges together based upon some criteria. A common

approach is to consider the pixels in a local neighborhood using some mask to determine

similarities. Similarly valued pixels are linked together. This is known as local edge

linking. Global Edge Linking can be accomplished using the Hough transform for line

detection, graph theoretic techniques, and many other approaches [2].

These edge based approaches work well for strong edges and simple shapes.

Without the presence of strong or complete edges, these techniques falter. If the object

has relatively strong gradients and has some well-known geometric shape, then these

techniques work well. The hippocampus has neither strong nor complete edges, and no

apparent analytically consistent shape.

2.3 Region Growing Segmentation Techniques

Region growing constructs regions directly as opposed to detecting edges and

attempting to find regions from sets of edges. Region growing techniques are generally
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better than edge detection in noisy images where edges are difficult to find or are

inconsequential. Some measure of region homogeneity is used as a criterion to subdivide

the image into separate regions. The measure can be texture, intensity, model, or any

combination of these measures [1]. Region growing begins with a seed pixel or a group

of seed pixels that comprise the original region. If the intensity of each neighbor falls

with some tolerance of the intensity value of the region, then it is merged with the region.

This operation proceeds recursively, considering each neighboring pixel in turn for

membership into the region [8]. Figure 2.3 illustrates the progression of the region

growing algorithm from a single seed pixel.

O
O O X O

O X O O X X X O
O O O

a b

O O O
O X O O X X X O

O X X X O O X X X X X O
X X X X O X X X X

O

c d

Figure 2.3 Region Growing Progression: a) The X indicates the seed pixel, and the o’s
represent the neighboring pixels using a 4 neighbor operator; b) The newly added X’s
indicate the neighbors that were initiated into the region, and the O’s represent the
neighbors currently under consideration; c) & d) The progression continues.
(Reproduced from [8]).
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2.4 Split and Merge Segmentation Techniques

As region growing builds regions from the bottom up, growing larger and larger

regions, region split and merge constructs regions from the top down. Region split and

merge subdivides large regions into successively smaller regions based upon some

homogeneity criteria. Split and merge operations have a very natural underlying

representation in a quadtree. A quadtree is a tree in which each node has exactly four

descendants. In this situation, if a uniform splitting approach is taken, the four children

divide the parent’s region into four equally partitioned regions. Figure 2.4 illustrates two

views on a quadtree as it is used to partition a region [2].

Figure 2.4 Split and merge hierarchies – quadtrees. The left illustration shows the spatial
relationship of the quadtree representation on the right.

The initial region for the split and merge region can be the whole image or some

sub-image. The initial region is evaluated for homogeneity. If it does not meet the

homogeneous condition, it is split into four underlying regions and they are recursively

split if they are not homogeneous. The stopping criteria for each subtree is met when the

leaves are homogeneous or the leaves consist of a single pixel. It is possible for adjacent
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regions to be homogeneous after the initial tree construction. If this is the case, a merging

pass is made on the tree to merge all adjacent homogeneous regions. The merging

operations are performed on the same underlying data structure that the split operations

are performed upon, the quadtree. Figure 2.6 illustrates a possible progression of the split

and merge algorithm.

1 2

3 4

a b

c d
Figure 2.5 Split and merge progression: a) The initial region is inhomogeneous so it is
split into four sub-regions; b) Region 1 is recursively sub-divided until the sub-regions
are homogeneous; c) Region 2 then 3 are sub-divided. Note the large areas of
homogeneity that were not split; d) All of region 4 is homogeneous so there is no split of
that node.

Region growing algorithms have the problem of growing “holes” in their

segmented regions. If a pixel falling within an otherwise homogeneous region has an

intensity above or below the threshold due to noise, artifact, or some other extraneous
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reason, then the region will grow around the pixel leaving a “hole”. Both techniques

suffer from the over segmentation and under segmentation problems depending upon the

precision in tuning the parameters [1]. A combination of the two techniques can

overcome some of the problems inherent in each of them. A combination of the region

growing and the edge based approaches can be found in [9], and a combination of the

region growing and the split and merge approaches can be found in [8].

2.5 Template Matching Segmentation

Template matching involves finding the areas of an image that correlate highly

with some a priori knowledge of the shape to be segmented. The Hough transform, first

used to locate collinear points within an image, is a versatile algorithm that has been

applied to a variety of problems. The transform can be generalized to locate shapes that

do not have simple analytical representations. If the shape to be found, the shape in the

template, is vectorized with respect to some reference point, the method can detect any

shape [9]. The Hough transform approach to template matching has the advantage of

recognizing partially occluded objects, or slightly deformed shapes. It can also be used to

measure the similarity between a template and a detected object on the basis of size. It is

insensitive to image noise and can find several occurrences of the template shape in an

image [1]. The Hough transform has been used with high degrees of success in industrial

applications when the sought after shape is known in advance and has a relatively high

correlation to the actual occurrence of the shape in the image. Since the hippocampus

changes frequently in shape and size, we decided that the Hough transform was too rigid

to be used to successfully segment anatomy like the hippocampus. For a full development

of the generalized Hough Transform, see [10] and [1].
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2.6 Statistical Techniques

Statistical approaches to segmentation are most often employed at the global level

and thus are usually not applicable to segmentation problems involving very subtle

intensities and boundaries. However, they are being used to segment and classify large

structures in medical data. Very often, they are used to segment white matter, gray

matter, and cerebral spinal fluid (CSF). These are tissues that have fairly uniform

intensities and can often be separated based upon their intensities alone.

In medical images, segmentations on broad categories of tissues can be performed

by combining statistical classification methods with morphological image processing

operations. When dealing with MRI data, conventional intensity based tissue

segmentation techniques can often be disturbed by intrascan inhomogeneities introduced

by the modality itself. These areas visually appear homogeneous, but in fact there may be

sufficient variations within each tissue that cause the boundaries between even very

distinctly different tissue classes to blur [3]. For techniques that statistically determine the

range of intensities attributable to a specific tissue class, intersection of the ranges

between two different tissue classes causes many problems. The noise introduced by the

modality can be accurately classified in three categories. Thermal or electronic noise is

mostly white noise, tends to model gaussian noise, and can be removed with filtering

techniques that do not blur edges and structural information. The second type of noise is

radio frequency (RF) noise. It results from inconsistencies in the magnetic fields, the

sensitivity of the RF receiver, and from the actual magnetization of the object being

scanned. RF noise causes inconsistencies in the intensity of objects of otherwise uniform

density. Magnetic field noise introduces slowly changing intensity gradients where there
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would otherwise be none. Low pass and homomorphic filtering techniques have been

used to correct this type of noise. Because statistical techniques use intensity to classify

tissues, the RF and the magnetic noise cause them the most problems [11]. A reasonable

example of one approach to the problem can be found in [12]. Grimson et. Al. use

statistical classification to label the anatomy from MRI image data. They then apply

morphological operations such as dilation and erosion to separate equal intensitied but

logically separate tissues that had been erroneously labeled identically.

2.7 Techniques that Employ Variability and Structure

With the exception of template matching, the techniques discussed thus far use

only the “low level” information that is actually present in the image data to perform their

segmentations. Another class of techniques cross the “low level” image data boundary

and incorporate “high level” information about the object of interest to perform their

segmentations. This “high level” information is most often prior knowledge of the

general shape to be segmented. For most of the difficult medical image segmentation

problems currently under investigation, the high level of inter-subject anatomical

variability makes most traditional techniques by themselves unacceptable. Traditional

template matching cannot accommodate the high shape variability either. The most

promising techniques utilize the structure of prior knowledge of the shape, and the

freedom to deform the prior shape knowledge in order to find a balance to accurately

represent the true boundaries of the desired object.

2.7.1 Snakes: Active Contour Models

A snake is a spline that moves through an image or volume in order to minimize

some energy function. The snake attempts to minimize an energy function that
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incorporates external constraints and external image forces that pull it toward edges,

lines, or any other selected image feature. Snakes are also active rather than passive.

They continuously attempt to minimize their energy function and exhibit dynamic

behavior. Due to the internal forces imposed them by their basis functions and the

external forces imposed by the image, these splines appear to slither while they search for

a minimum. It is due to this behavior that they are called snakes. Snakes are not global

operators; rather they rely on an operator or some other mechanism to place them near

the object of interest. Snakes are the first example explored here of a general model that

will be developed more completely: deforming a model to an image feature by

minimizing an energy function [13].

The snake first proposed by Kass, Witkin, and Terzopoulos in [13] is a controlled

continuity spline. The internal continuity control of the spline imposes an internal energy

piecewise continuity constraint. The external image forces drive the snake toward local

gradient maxima, and the internal constraints hold the snake to a desired order of

continuity. The energy function in [13] is parameterized as:

∫ ∂=
1

0

* ))(( ssvEE snakesnake

∫ ∂++=
1

0 int
* ))(())(())(( ssvEsvEsvEE conimagesnake

where intE  represents the internal energy of the spline due to tension, imageE  is the image

gradient force, and conE is the external constraint forces. intE  is composed of a first order

term )(sα  that makes the snake act like a membrane, and a second order term )(sβ that

makes the snake act like a thin plate. Setting )(sβ to 0 at some point on the snake allows
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the snake to become second-order discontinuous and develop a corner. The term imageE

can be expanded to yield:

termtermedgeedgelinelineimage EwEwEwE ++=

which reflects the three external energy components: lines, edges, and terminations. The

weight linew  determines how much influence the line attraction plays in the overall

external image energy, and the sign determines whether the attraction is toward dark or

light lines. The weight edgew determines how much the image gradient edgeE , defined as

2|),(| yxIEedge ∇−= , contributes to the overall external image energy and its sign

indicates light to dark or dark to light transitions. (Note ),( yxI  is the intensity function

of the image). The term termterm Ew  gives weight to the terminations of lines and corners,

and a high value attracts the snake more to them. The last term of the energy function

conE allows the snake to seek a fixed position or another snake. The authors of [13]

introduce the concept of a spring that anchors itself from the snake to some other entity.

Creating a spring between point 1x  on the snake and point 2x elsewhere adds

2
21 )( xxk −−  to the constraint energy conE .

Snakes provide a powerful framework for a semi-automatic boundary finding

mechanism. The general form presented above has been specialized for closed boundaries

for segmentation applications. Work has also been done to deform multiple snakes in an

area of interest, and split and merge the deformed snakes to generate improved

segmentations [14]. Snakes can be finely tuned for specific tasks, and they are not overly

difficult to implement. Snakes have been used as the basis for many deformable contour
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finding techniques. The formulation of the snakes energy function as presented in [13]

and summarized above is a useful overview to many of the energy functions used in other

deformable shape techniques. However, snakes do not offer the level of semi-

autonomous segmentation that is desirable in a hippocampal segmentation system.

2.7.2 Deformable Templates

Deformable Templates first appeared in the 1980’s as global shape models.

Global shape models represent images in terms of some structure criteria in the form of a

template, and represent the variations on the images by probabilistic transformations on

the template. The transformations on the templates are affine in nature, and can be

represented by combinations of translation, scale, and rotation. This approach assumes

that the template is highly similar to the shape in the image being matched, and only

global rigid affine transformations are required to match the coarse features between the

template and the image [15]. As discussed previously, the high degree of inter-study

anatomical variability in brain images makes this approach too restrictive. In order to

account for high local variability in an image, the transforms on the template must be of

higher order. These high order transformations allow the global shape model to converge

on the appropriate areas of the image. In areas of high correlation with the image only

small transformations are needed, and in areas of low correlation more extensive

transformations are needed to make the template converge on the objects of interest in the

image. Some user defined fiducial markers and landmarks are sometimes defined as

boundary conditions for these templates, but are not required. It is only under the

condition of very high similarity between template and image that linear transformations

can yield results as accurate as non-linear optimizations. For segmentation of anatomical
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scans, non-linear transformations on global shape models, or deformable templates, is

clearly the method of choice [16].

A deformable atlas (template) is a mathematically defined template, or a

probabilistic measure of normal anatomical variation in brain structure [17]. The atlas is

normally pre-registered and labeled, and its transformation to the image yields the

transformed pre-registered atlas and the registered and labeled image. A textbook of

neuroanatomy consists of two types of images: measured images; and labeled images.

The measured images are a vector function defined on an ideal coordinate system local to

the textbook. The vector of values includes measures of the intrinsic composition of

tissues associated with the one or more imaging modalities represented in the textbook.

The labeled images include symbolic information such as location of any organs to

segment and any prominent features such as: white matter tracts, gray matter nuclei,

Brocas’s areas, and etc [16]. A textbook consists of sets of images that include

information for many slices of data, while an atlas generally represents one data slice or

series with one modality. Once the atlas or textbook is defined it is individualized by

estimating the transformations that morph the template from the atlas to the actual study

image. After the transformation is understood, the labels can be mapped from the atlas to

the study image, yielding a segmented labeled study image [18]. The construction of any

such textbook is not a trivial process. The collections of segmented, registered, and

labeled normal images are time consuming to produce. Projects such as NML’s Visible

Human project for the construction of digital libraries that catalog anatomical information

for entire humans motivate the large collections and descriptions of images that comprise

textbooks [16]. For a description of the construction of one such textbook, see [19] where
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they describe their process of filtering, semi-automatic segmentation, manual correction

of the segmentation, and region of interest definition (labeling). In [19] is also found a

truncated description of some sample landmark structures normally defined in textbooks.

The textbook is a vector mapping of the coordinate system 3ℜ⊂Ω according to

the transformation T→ΩΤ : with range space τ , assumed to be an M-fold product of

spaces MxTxxTT ...21 , where each component corresponds to a different feature of the

tissue. The triple ),,( TΤΩ  mathematically defines the anatomical textbook.

A set of transformations Η∈h is defined on the ideal coordinate system where H

is the set of homomorphic maps Ω→Ω:h . The topological maps are generated from

translation groups applied to points Ω∈x! :

)).(),(),((),,( 332211321 xuxxuxxuxxxxx !!!!
−−−→=

The vector field ))(),(),(()( 321 xuxuxuxu !!!!!
= is called the displacement field. The maps

constructed from the transformations allow for dilation, contraction, and warping of the

ideal coordinates of the template to the study coordinates at a local level. The set of

anatomies generated with the textbook ),,( TΤΩ  becomes }:{ Hhh ∈Τ " . In other

words, T composed with h where h is in the set H.

The information in a textbook is transformed into the coordinates of the study

through the transformation Η∈h on Ω  that registers the studies N
nnS 1}{ =  with the

textbook. Registration between the template and study is performed using a squared-error

distance measure for MRI images, defined as:

∫ ∑Ω =
∂−−
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which is consistent with the Gaussian models of noise in the MR imaging modality. The

distance == 0 if and only if the two are equal [16].

2.7.2.1 Elastic Models vs. Fluid Models

Anatomy is usually smooth and thus calls for smooth transformations from an

atlas to a study. Since the 1980’s, researchers have used linear models such as the

membrane or Laplacian model, the thin-plate or bi-harmonic model, and the linear elastic

model to constrain deformations in images. Of the aforementioned techniques, the linear

elastic model has seen more application [20]. It is interesting to note that the membrane

and the thin-plate models were employed in the formulation of the internal energy of

Terzopoulos’s snakes [13]. To ensure that the transformations from template space to

study space are smooth, elastic mechanics have been employed to constrain the

deformations. A full description of the use of the kinematics of elastic solids to deform

the templates can be found in [18] and a full mathematical development of the technique

can be found in [21]. In short, these transformations based on the theory of elasticity

develop restoring forces proportional to the square of the deformed distance. This is a

sound model for minor transformations, but to accommodate the high variability present

in anatomical data this model has proved too restrictive. The elastic model prevents the

textbook from being fully deformed to accommodate the study. Another model, the

viscous fluid model, allows the restorative forces to relax over time, allowing the

textbook to be more full deformed to match the studies [22]. The viscous fluid

transformation (VFST) that is used is modeled by the partial differential equation (PDE):

bvv T
!!!!!

=∇∇++∇ )()(2 λµµ
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where Ttxvtxvtxvv )],(),,(),,([ 111
!!!!

=  is the instantaneous velocity deformation field u!.

The gradient operator is defined by 
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and ∇∇=∇
!!

T2  is the

Laplacian. The v!2∇  term is the viscous term. It constrains the neighboring particles of

the displacement field to deform with approximately the same velocity by spatially

smoothing the velocity field. The mass source term allows the structures to grow and

shrink in mass, and is denoted by )( vT !!!
∇∇  in the PDE. The viscosity coefficients are the

λµ,  coefficients. More detailed descriptions of the application of the fluid dynamic PDE

above to the transformation of textbooks can be found in [18] and [22]. A complete

mathematical development of the technique can be found in [21]. An Eulerian reference

frame is used to track the deformation. It places reference points at each of the pixels of

the study to observe the deformation of the coordinate system of the textbook. As the

textbook deforms in space over time, the points (particles in the viscous fluid mechanical

system) in the textbook flow through the reference points. At any point in time, the

original position of the point can be determined. Because the transformation takes place

in an Eulerian reference frame, the velocity v of a particle can be related to its

displacement, u, by .uv
t
uv ∇⋅+
∂

∂
=  The uv ∇⋅ term provides for non-linear particle

trajectory through observation points. The system is modeled successively at many

discrete time points until the energy norm associated with the body force (the gradient of

the likelihood):

∑
=

−∇−−=
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k
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approaches zero. This technique yields the maximum a posteriori (MAP) transformation

that deforms the textbook into the study [22].

These techniques take an extended period of time to perform their segmentations,

but they can perform several simultaneous segmentations at once. Published in [22], table

2.1 yields some timing results from the application of the viscous fluid technique. The

segmentations were performed on a 4K DECmpp 12000Sx with MP-2 processors. It is a

massively parallel machine that is a remarketed version of the Maspar computer. The

Circle to “C” entry reflects the extended time that the technique can take when the

transformation must map transform textbook a very long distance from it’s original state.

The long running times of the technique reflect the time involved in solving the PDEs to

a satisfiable resolution. The problem of long convergence time of the algorithm is

compounded by the difficulty of the implementation, and those two criteria made this

technique impractical for our application. Figure 2.6 shows the transformation computed

for the circle to c transformation. Figure 2.7 shows some sample data from a textbook.

Experiment Number of Voxels in Study Time
Circle to “C” 128 x 128 3.45 minutes
2-D neuroanatomy textbook
to study

256 x 265 1.41 minutes

3-D neuroanatomy textbook
to study

256 x 256 x 64 88 minutes (estimated)

Table 2.1 Execution times for the fluid transformation algorithm
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Figure 2.6 A sample fluid transformation. The top left panel shows a circular textbook of
a circle. The middle left shows the regular rectilinear grid of the textbook space. The
bottom left and top right panels show the study, a white “C” on a black background. The
middle right panel shows the minimizing transformation applied to the regular rectilinear
grid of the textbook. Note the preservation of the topology of the textbook from the middle
left panel to the transformed middle right panel. (Reproduced from [22])

Table 2.2 shows the running times, number of iterations of the PDE, the number of

simulated time steps, and the total time to complete the transformations for the

experiment. It is reproduced from [18].
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Image Size Number of
PDE Iterations

Number of
Time Steps

Time
(sec)

Total Time
(sec)

64 x 64 250 200 33

128 x 128 250 40 27 85.3

256 x 256 250 8 24

Table 2.2 Viscous fluid transformation times. Note the greatly reduced number of time
steps for the larger images. (Reproduced from [18])

Figure 2.7 Views of the viscous fluid template technique. Panels a), e), and i) show three
components of a 2-dimensional anatomical textbook. a) is a MR spin density image, e) is
a T2 weighted image, and i) is a major nuclei segmentation. b) is a study image in the
spin density MR protocol, and f) is a T2 weighted study scan. Panel j) shows the regular
rectilinear grid of the textbook. c) shows the result of applying the estimated
transformation the spin density study, and g) the T2 study, and the resulting segmented
and labeled study in i). Panel d) shows the magnitude difference between the T2 textbook
image and the T2 study image. Panel h) illustrates the result of the transformation to the
textbook grid, and l) illustrates a manual segmentation. (Reproduced from [22])
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The deformable textbook approach has been applied specifically to the problem of

hippocampal segmentation. It has been used in studies because of the clinical importance

of automatic and semiautomatic segmentation and mensuration of it with respect to the

temporal lobe epilepsy problem. The published applications of hippocampal

segmentation employing deformable textbooks use high resolution 256 x 256 images.

They can be found in [23] and [24]. The entire volume of the hippocampus was not

segmented and measured. The studies only used one slice of the MR scans from each

patient on which to perform their segmentations. The slice chosen from each image was

comparable, and chosen from a sagittal series of images. The most lateral sagittal slice

where the amagdyla was clearly separated from the anterior hippocampus by cerebral

spinal fluid (CSF) was chosen for each segmentation. In this slice the hippocampus is

clearly separated anteriorly from surrounding tissues by CSF (which appears black in

most T1 weighted MR protocols). Posteriorly the lateral ventricle, another well defined

structure, separates the hippocampus from surrounding tissue. Inferiorly, a strip of white

tissues separates the hippocampus from the fusiform gyri and the parahippocampal gyri.

Superiorly, CSF separates the hippocampus from surrounding tissue [24]. These very

distinct boundaries cannot be considered to be an average case for the segmentation of

the hippocampus. It appears in many slices, and an accurate measurement of its volume

would have to consider all of the slices in which it is visible. Figure 2.8 shows the

location of the hippocampus in the chosen slices, and a scaled image of it. Note the

prominent edges bounding the hippocampus. Figure 2.9 shows the results of

segmentations on the template and on the template deformed to fit the study. Figure 2.10
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shows the resulting transformations after applying the same template to five different

study subjects.

Figure 2.8 Location of the hippocampus in a sagittal MRI slice. The right view is a scaled
image of the area of interest on the left denoted by the white bounding box. (Reproduced
from [24].)

Figure 2.9 Segmentation of the template and the template after deformation to a study
hippocampus. (Reproduced from [24].)
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Figure 2.10 Five resulting transformed templates after applying the same template to five
different studies. (Reproduced from [24].)



Chapter 3

DEFORMABLE TEMPLATES USING ORTHOGONAL CURVES

Deformable textbooks and atlases use the entire subject image space as the

optimization space. Every pixel in the image is used in the calculation of the energy

function at each time step. To compute the deformations, partial differential equations

must also be solved at each time step. The running times the individual time steps are

understandably long. Deformable templates using orthogonal curves restrict the search

space and simplify the energy function to greatly improve the segmentation time for an

organ. The construction of the template requires more human interaction, but the time

savings for the deformation stage are orders of magnitude greater.

3.1 Introduction

Recalling the snake technique for closed boundary segmentation, the initial snake

is the deformable template. It is parameterized as a curve ))(),((: tytxtC → , and energy

is associated with the curve. The solutions to the internal and external energy functions

are computed to determine minimums that represent the potential boundaries of the

region of interest. The energy function associated with the curve is of the form:

tyxyxyxCE
nn
∂Γ=

⋅⋅

∫ ),,...,,,,()(
1

0

where the individual terms of (...)Γ are the partial energy functions that comprise the

internal and external energy measures. For the purpose of boundary finding, the
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parameterization is unimportant. The energies are independent of the parameterization. If

the optimal deformation is relatively small, than it only needs to be normal to the

template. If the template contains a sufficiently high degree of prior shape information

the optimal deformation will be acceptably small. For a formal explanation see [7].

This technique generates curves that are perpendicular to the template and do not

intersect each other. The curves define the search space for the optimal set of energy

minimizing points and the template is restricted to movement along the orthogonal

curves. The optimal deformed template is defined by the set of points on the orthogonal

curves that minimize the energy function over the orthogonal curve space. Since the

range of the energy function is restricted to the orthogonal curve space, the number of

degrees of freedom for the search is reduced to one for each curve, the parameterization

of the curve along itself.

The prior knowledge of the shape is expressed by the shape of the template, and

preserved by energy functions that evaluate the distance with respect to the expected

shape, and the smoothness of the shape. Distance is Euclidian between the intersection of

each orthogonal curve with the template, and smoothness is the change in distance along

the deformed curve. The distance, smoothness, and external energy are the partial

functions that comprise the energy function, where the external energy function is a

measure of gradient. Figure 3.1 illustrates the relationship between the orthogonal curves,

the template, and the deformed curve or boundary.
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Figure 3.1 Smooth orthogonal curves.

3.2 Orthogonal Curves

These templates are closed curves that are guaranteed to be non-self intersecting.

If a template curve is parameterized with θ  as ))(),((: θθθ yxC → , and the space in 2ℜ

over which the template can be deformed is bounded on the interior of curve C by a non-

self intersecting closed curve inC , and on the exterior of C by a non-self intersecting

closed curve outC , then the subspace formed by space between inC and outC defines the

allowable deformable space for the template C. See figure 3.2 for an illustration of the

relationship between inC and outC .

Smooth extensions of
normals to the template

Deformed
curve

Template

Distance along
orthogonal curve

Euclidian distance from
base point to boundary
point
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Figure 3.2 Relationship between C, inC and outC .

If θR is an orthogonal curve passing through the base point ))(),(( θθ yx on the

template, the following assumptions are made:

1) Each θR begins on the interior bounding curve inC , orthogonally intersects the

base point on C, and terminates at outC .

2) Each θR has a continuous tangent.

3) No two orthogonal curves intersect.

If θR is parameterized by its arc length r (which is zero at the base point on the

intersection of θR and C, and increases as θR proceeds outwards, and decreases as

θR proceeds inwards),  then the parameterized form of θR  can be written in the

coordinate system of the template as:
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where the terms )(rxθ∆  and )(ryθ∆  give the position of θR with respect to the base point

and )0,0())0(),0(( =∆∆ θθ yx .

If the transformed template ∗C is arrived at by moving template points along the

orthogonal curves, then ∗C is formalized by:
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C

where )(θr gives the displacements of the template points along the orthogonal curves.

Since the template is placed on the image manually by translation and rotation, the set of

curves in the image obtained by deforming the template can be formalized as:
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where ))(),(( θθ II yx are the coordinates of ∗C in the image space, R is the 2x2 rotation

matrix, and T is the translation vector. See figure 3.3 for an example of orthogonal curves

and the curves C, inC ,and outC .

Figure 3.3 Curves C, inC ,and outC  with orthogonal curves.
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For the application of template matching using orthogonal curves, it is necessary

to use their discrete formulation. In the original work [7] the curves were discretized by

sampling the template curve uniformly along its arc length an N base points. From these

base points, the orthogonal curves were traced uniformly inwards and outwards and each

was sampled uniformly at 2M+1 points. The set of discrete points can therefore be

represented by the convenient notation ,,...,1,, Nix ji = and MMj ,...,−= where I

indicates the orthogonal curve that the point belongs to and j refers to the location of the

point along the orthogonal curve. The deformed curve is discretized as an N-sided

polygon whose ith vertex is constrained to fall on the ith orthogonal curve. The polygon

can be expressed as ),...,,( 2 NvvvP . Figure 3.4 illustrates the relationship between discrete

orthogonal curves, base points, and the polygonal boundary forming the deformed curve.

Figure 3.4 Discrete orthogonal curves, base points, and the vertices that form the
boundaries of the deformed curve.

The orthogonal curves exist if there exists a function ),( yxφ whose range is the

subspace of 2ℜ between inC and C such that:
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1),( cyx =φ , on inC

2),( cyx =φ , on C

with 21 cc > , and ),( yxφ has well defined gradients. If the function ),( yxφ is defined as

Laplace’s equation:

02

2

2

2

=
∂

∂
+

∂

∂

y
t

y
t

and it is solved for the space between inC and C, then the gradients of ),( yxφ can be

determined using the central differences operators across the results of ),( yxφ . Starting

at the base points and following the trajectory of the gradient of the function ),( yxφ , the

orthogonal curves are formed by the resulting path. By construction, the path is

orthogonal to C. By repeating the same procedure between inC and outC , and joining the

resulting orthogonal curves at the base points, the entire set of orthogonal curves can be

obtained that intersect C, inC , and outC . For a more complete description of the existence

and relevance of orthogonal curves, see [7].

3.3 Energy Functions

The energy function of a deformed curve has three components, distance,

smoothness, and external energy functions. The distance and smoothness together

compose the internal energy representation. The distance energy )(1 PI  is a measure of the

scale of the deformed shape with respect to the original template shape. The distance

energy integrates the Euclidian displacements of the vertices of the deformed curve from

their base points and is characterized by:
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The smoothness energy )(2 PI measures the distances in successive vertices that form the

deformed boundary. It is a measure of how close the shape of the deformation is to the

original template shape, and is characterized by:

.|)()(|)),...,(( 0,11
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The external energy )(PX is the net component of the image gradients along the

orthogonal outward pointing normals to the polygon constructing the deformed curve. It

is characterized by:

∑ ∫
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where kn is the orthogonal outwards pointing normal and kL is the length of the line

segment joining the vertices kv and 1+kv . The integrand is the dot product between the

image gradient and the orthogonal outwards pointing normal. The coefficient δ

determines the sign of the gradient transition (-1 for light to dark transitions, and +1 for

dark to light transitions). The entire energy function can be expressed together in the

form:

)),...,(()),...,(()),...,(()),...,(( 2123211221121 vvPIvvPIvvPXvvPE ρρρ ++−=

where the ρ  terms are non-negative weights use to tune the function for particular

behavior with different data sets [7].
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3.4 Optimization

The optimal deformed curve will minimize the energy function E(P). An

exhaustive search for the actual minimization of the function would be too

computationally expensive, so another search algorithm must be used. If the energy

function E(P) is reformulated to stress the relationships between successive vertices in

the boundary, it can take the form:
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With E(P) in this form, dynamic programming can be used to obtain a search space

minimum solution. Note that dynamic programming will not guarantee all unique search

space energy minima if there exist multiple solution sets. The dynamic programming

procedure proposed in [7] is outlined as follows:

1) For every 3v , tabulate the 2v  that minimizes partial energy 1ε .

2) For every 4v , tabulate the 3v that minimizes the partial energy

1

min

32432 ,),( εφε vvvv += . Where 1

min

32 , Evv is the minimum value of 1ε  with

respect to 2v for a given 3v .

3) For every 5v , tabulate the 4v  that minimizes 2

min

23453 ,),( εφε vvvv += .
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4) For every Nv , tabulate the 1−Nv that minimizes the partial energy

3

min

3212 ,),( −−−−− += NNNNNN vvvv εφε .

5) For every 1v , repeat the calculations of the partial energy minimums to find

the global minimum value, and identify a minimizing set.

For the version presented in [7] the cost of the minimizing function is )( 3NMO . This is

not as prohibitive as the upper bound seems because M and N tend not to be excessively

high.



Chapter 4

A SYSTEM FOR THE CONSTRUCTION OF ORTHOGONAL CURVES AND THE
SEMI-AUTOMATIC SEGMENTATION OF IMAGES

4.1 Introduction

We have constructed an application to serve as a framework to explore the use of

orthogonal curves to segment the hippocampus from its surrounding tissues. The

application allows the user to construct the curves C, inC ,and outC  interactively. It allows

the orthogonal curves θR to be automatically generated from the curves C, inC , and outC .

It then provides the user dialog boxes to interactively choose the parameters 1ρ , 2ρ , 3ρ ,

and δ , as formulated by:
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for the energy optimization step. The resulting deformed template, or segmentation, is

displayed in the application superimposed over the original image. Its area can then be

measured, and the segmentation, the curves, and the orthogonal curves can be saved for

later reference and use. In addition to the core functionality, the application also provides

dialog boxes to aid in batch processing of the data files, renumbering and renaming data

files, and the preprocessing of the images. The user interface is implemented in the Java



39

programming language utilizing the widget set provided by version 1.2 of the Abstract

Window Toolkit (AWT). Some of the processing of the application is handled by Java’s

main thread, but most of the computation is performed in a separate Java thread. Threads

are spawned that call corresponding C++ object methods compiled natively. The C++

code is invoked through the Java Native Interface (JNI), and compiled into dynamic

shared libraries. This organization combines the ease and convenience of the Java

programming language and packages with the speed of the natively compiled C++ code.

Figure 4.1 shows the applications main widget. Figure 4.2 shows a block diagram of the

system.

Figure 4.1 Main application widget. The left panel displays the current curves (none
shown here) and current orthogonal curves (none shown here) and the right panel
displays the current segmentation (none shown here).
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Figure 4.2 Application organization.

4.2 Preprocessing

The preprocessing stage of this segmentation pipeline consists of a semi-

automatic scaling operation. When the scale option is selected from the “Image Edit

Mode” group of radio buttons on the left of the main application window, the user can

draw a uniformly square bounding box by dragging the mouse with the left button

depressed. The interior of the bounding box identifies the region to be scaled. The scaling

operation itself is a native function.

A bi-cubic spline interpolation is performed to scale the region of to an operable

size. This operation is implemented in C++ using the cardinal spline implementation of

the Visualization ToolKit (VTK) [28]. This is a one-dimensional spline. The two

dimensional transformation is performed by creating splines on each of the rows of the

region to be scaled. Then the splines are sampled at the new resolution to create N new

splines where N will be the number of columns in the original and the scaled image.

When the splines are evaluated at the resolution of the width of the original image, the
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scaled image is reproduced. Since the cardinal spline family is first derivative continuous,

the edge pixels and derivatives are reproduced for the boundary conditions. The bi-cubic

spline interpolation has a smoothing effect on the data, and no other smoothing is

performed in this pipeline. It would be valuable to utilize the statistical noise suppression

method used by Christensen et. al. in future applications.

There is a menu option “Scale: Make Scale Persist” that leaves the scale bounding

box intact after the scaling operation is performed. This allows entire sequences of

images to be scaled using the same bounding box. The “Scale: Cease Scale Persist” menu

item ends the persistence of the bounding box, and it will disappear after the next scaling

operation. The “Scale: Image Scale” menu option invokes the scaling algorithm on the

region of interest in the current bounding box. Figure 4.2 shows the scale bounding box

in place. All of the data used in our experiments has been scaled using this method. The

typical scaling factor is 450%-650%.

Figure 4.3 Image scale bounding box. The box in the image above identifies the region
that the scaling operation will act upon.
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4.3 Boundary Curves Construction

The boundary curve construction is the next step in the pipeline if there does not

already exist a set of boundary curves that are sufficient for the shape to be segmented.

The boundary curves are C, inC , and outC , and are constructed one at a time. To construct

the boundary curves the user selects the “Construct” radio button from the “Image Edit

Mode” radio group on the lower left of the main application window (Default). The radio

buttons in the “Current Curve” radio group box determine which curve the operations

will be applied to.

If inC  is the current curve and the current “Image Edit Mode” is “Construct”, then

the user uses mouse clicks to plot vertices in a bounding polygon of the desired shape.

The polygon is always closed. This operation can be repeated for each of the bounding

curves to generate a complete set of polygons representing the curves C, inC , and outC

simply by changing the current curve. By changing the “Image Edit Mode” to “Edit”, the

user may alter the currently plotted points in the current curve by picking them and

dragging the mouse.  Figure 4.3 displays the result of the construction of the three

bounding curves.
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Figure 4.4 Bounding curves C, inC , and outC  that define the template.

There also exists a “Curve Construction Dialog” that can be invoked from the

menu item Curves: Invoke Curves Construction Box. This utility allows the user to

construct the inC  curve, and scale it to the correct inner bounding size. The other curves

can then be generated by scaling duplicates of the inner curve. This allows the operator to

construct C, inC , and outC curves that are very similar. In our experimentation, the more

similar the curves C, inC , and outC were, the more uniform our orthogonal curves were.

The dialog also allows the user to delete curves. Each of the entered scale factors is a

function of the current inC  curve. Shown in figure 4.4 is the “Construct Curves Dialog”.
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Figure 4.5 “Construct Curves” dialog box.

4.4 Generations of Orthogonal Curves

Once the application has a complete set of curves, it can compute the orthogonal

curves. The polygons that form the curves are discretized into points by using the

“Curves:  Discretize Curves” menu item. Next, the invocation of the Curves: Make O

Curves menu item will display a dialog box titled “Make O Curves Dialog”. This dialog

is designed to give the user control over the generation of the orthogonal curves. Here the

operator can enter the percentage of curves to generate, and the number of iterations to

evaluate the PDE that determines the trajectory of he orthogonal curves. The percentage

refers to the number of the discrete points that fall on the discrete curve inC  that will

generate orthogonal curves. If the percentage is 100% then every point will start an

orthogonal curve. If it is 10%, then every 10th point will generate an orthogonal curve.

Once the user has chosen the “Ok” button, the native C++ function to generate the

orthogonal curves is invoked with the appropriate parameters. The “Make O Curves

Dialog” box is displayed in figure 4.5.
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Figure 4.6 “Make O Curves Dialog” box.

The discrete curves are passed from Java to C++ in flattened arrays. Once they are

expanded back in C++, the generation can proceed. The method of the curve generation

begins by constructing an image of the two curves C and inC . inC  and its interior are

represented in the image by real valued 0.0s, and the curve C and everything outside of it

is represented by real valued 1.0s. all of the points between the two curves in the image

are represented by 0.5s. This image is then input into a numerical method published in

[25] for the solution of boundary value elliptical partial differential equations, Laplace’s

equation:
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as previously discussed in section 3.3 is the elliptical equation that yields our result.  The

number of iterations parameter from the “Make O Curves Construction Box” indicates

the number of iterations the method will perform as it successively refines its result. For

most of our experiments, 5 iterations were sufficient. If the deformation is small, a

parameter of 1 is sufficient. Once this image is produced, another analogous image is
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created for the curves C and outC . The image is solved with respect to the above equation,

and the resultant images are kept.

From the solution images, gradient images are produced. The central difference

operator, as described in section 2.1, is used to generate the x and y components of the

gradient images. Boundary pixels are duplicated for boundary conditions. When the

gradient images have been generated, the orthogonal curves can be formed.

According to the user defined percentage parameter, candidate points on the curve

inC  are chosen to initiate the orthogonal curves. From the initial orthogonal curve points,

each curve moves from pixel to pixel according to the gradient trajectory. The decision to

choose one pixel over another is made by using a variation of the Liang-Barsky line-

clipping algorithm. At each point the linearly interpolated gradient direction is

determined, and a line is generated from that point through an imaginary 1x1 bounding

box. The intersection of the line with the bounding box is computed, and that determines

the location of the next decision position. The algorithm moves to the next position and

makes the next decision. The real valued decisions are then clamped to pixel positions to

determine the components of the discrete orthogonal curve. The curve terminates on the

C curve. When it reaches the C curve, the gradient image of the solution of Laplace’s

equation between C and  outC  is then used to make the trajectory decisions. The

terminating condition of the growth of these curves along the gradient trajectory is the

boundary outC . This process is repeated for each orthogonal curve initial point. The result

is a set of orthogonal curves that is passed back to Java and displayed over the image in

the left frame of the main image. The main application window with the orthogonal
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curves displayed on the left is illustrated in figures 4.6, 4.7, and 4.8. The three figures

have curves generated with a percent parameter of 8, 25, and 50 percent respectively.

Figure 4.7 Orthogonal curves generated with 8% of the points on inC .

Figure 4.8 Orthogonal curves generated with 25% of the points on inC .
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Figure 4.9 Orthogonal curves generated with 50% of the points on inC .

4.5 Segmentation

Once the orthogonal curves have been generated, there exists a space for the

template to deform across while attempting to minimize the energy formalized in 3.3.

The operator should next designate the parameters for the optimization. The menu item

“Optimize: Optimize” will invoke the “Energy Functions Coefficients” dialog box. This

dialog box allows the user to enter the parameters 1ρ , 2ρ , 3ρ , and δ . They are named

“External Energy Weight”, “Distance Energy Weight”, “Smoothness Energy Weight”,

and “Transition” respectively in the dialog box. The parameters 1ρ , 2ρ , 3ρ , and δ

control the energy function in the manner described in 3.3-3.4. Once they have been

designated, the “Ok” button will begin the optimization procedure. Figure 4.8 shows the

“External Energy Coefficients” dialog box.
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Figure 4.10 “Energy Function Coefficients” dialog box.

The optimization procedure is a native function that accepts its data and

parameters from Java and executes natively in a Java thread. The dynamic programming

procedure outlined in section 3.4 is used to optimize the segmentation. The Euclidian

distance measure and the smoothness measure can be assumed to be implemented

directly from the description in section 3.4. The external energy function computes the

discrete line segment between each successive vertex using the midpoint line drawing

algorithm [29]. For each discrete point on the line, the dot product between the unit

normal orthogonal to the line and the image gradient is taken and summed. The sum

becomes the external gradient energy for those two pixels. Once the minimum has been

found, the resulting minimizing set of vertices nvv ,...,1 that form the bounding polygon

),...,( 1 NvvP are returned to the main Java application. The resulting boundary, or

segmentation, is displayed in the right image panel of the main application window as
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well as in the left image panel over the set of orthogonal curves. Figures 4.10 and 4.11

shows the results of segmentations using 8% and 25% of the points on inC respectively.

Figure 4.11 Result of a segmentation using 8% of the points on inC .

Figure 4.12 Result of a segmentation using 25% of the points on inC .
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Manual segmentations can be performed by choosing “Manual Seg.” Radio

button from the “Current Curve” radio group in the upper left corner of the main

application window. This will set the current curve mode to manual. Constructing and

editing is performed in the same manner as the boundary curves were constructed.

4.6 Measurement

Once a segmentation has been performed and displayed in the right panel of the

application window, it can be measured. A dialog box entitled “Calculate Area” can be

invoked using the “Statistics: Calculate Area for Segmentation” menu item. The user

clicks on the “Calculate Area” button to invoke the Java implementation of the area

measurement algorithm. The measurement of the area of the polygon is done analytically

on the polygon as opposed to pixel counting. A technique found in [26] uses the formula:
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to compute the area of a simple polygon. The orthogonal curves guarantee that the

polygon generated for the boundary will be simple. The resulting area is displayed in the

text box in square pixel units. Figure 4.12 shows the “Compute Area” dialog box. The

compute area dialog also measures the manual segmentations.

Figure 4.13 “Compute Area” dialog box.
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4.7 Miscellaneous Utilities

The application allows the user to perform some tedious operations in batches.

Some frequently needed operations include: the conversion of file formats from the raw

machine output of the MRI machine to rgb format; and the renumbering of files so their

order is correctly interpreted by the operating system in use. These operations were

implemented so they can be performed in batches. The “Batch: Perform Batch

Operations” menu item invokes a “Batch” dialog box. This dialog box allows the

operator to select groups of files to operate on, and destination directories in which to

place the processed files. It contains a “Status:” text area that the status of operations is

posted into in its upper left corner. Figure 4.13 shows the “Batch” dialog box.

Figure 4.14 The “Batch” dialog box.
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EXPERIMENTATION AND RESULTS

The images used for the segmentations were acquired from a General Electric

Signa Horizon Echo-Planar 1.5 Tesla scanner. They were acquired with the SPGR

protocol using a 256x256 matrix, 2mm slices/0.0Sp (Skip Zero), and an unknown pixel

size. The field of view (FOV) was 20x20, and the TR and TE parameters were variable.

The subjects were normal, and were scanned through the volunteer research protocol of

Dr. John Brockway at Presbyterian Hospital located in Charlotte, NC.

Data from two individuals were used, treating the left side and right side of the

image scans as separate data sets. Only slices that our expert manual segmenter, Dr. John

Brockway, selected as containing hippocampus were chosen for segmentation. Our data

sets numbered 1 through 4 consisted of 5, 5, 11, and 8 slices respectively. The original

size of each slice was 256x256, but the regions of interest were scaled up to facilitate the

segmentation. The system described in chapter 4 was used to perform the semi-automatic

batch scaling of the data sets. The same scaling window was used on all intra data set

images without translation. The scaling method used was a bi-cubic spline interpolation

based on the cardinal spline. The smoothing of the data was performed by the scaling

operation itself. For data sets 1 and 2, a scale factor of 692% was used to enlarge the

regions of interest. For data sets 3 and 4 a scale factor of 474% was used to enlarge the
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regions of interest. Intra-rater error in the manual segmentations was measured by having

the expert manual segmenter repeat each segmentation twice over a two-week period.

The semi-automatic segmentations were performed by first constructing a

template that accurately represented the shape of the organ of interest. The templates

were not constructed to duplicate the manual segmentations, rather they simply

approximated the shapes. Once the template for an image was obtained it was applied to

the image. The optimization step was performed with numerous combinations of

parameters as we explored the nature of the algorithm, and it was determined that a set of

three combinations of energy function parameters were most suitable for all of the data

sets. These parameters are 1-3-3, 1-5-5, 1-7-7, where the three quantities respectively are

the weights given to the external energy term, the distance energy term, and the

smoothness energy term. See section 3.3 for a more complete description of these

parameters. Initial experimentation yielded segmented boundaries that were caught in

local gradient maxima and were not smooth when distance and smoothness parameters

were less than three. Distance and smoothness weights greater than seven placed too

much emphasis on the prior shape, and used too little gradient information. All of the

transitions were considered to be light to dark transitions across the boundary of the

hippocampus.

The results of the segmentations are listed in table 5.1. It shows the resulting areas

from all of the manual and semi-automatic segmentations, as well as the scale factors for

each image.
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Data
Set

Slice Scale
Percent

Image
Width

Image
Height

Study
1-3-3
Area

Study
1-5-5
Area

Study
1-7-7
Area

Manual
1

Area

Manual
2

Area
1 1 691.89 256 256 3145 3288 3250 2573 1576
1 2 691.89 256 256 1775 2088 2113 1750 2306
1 3 691.89 256 256 2616 2872 2877 2609 2495
1 4 691.89 256 256 4581 4551 4551 4596 3841
1 5 691.89 256 256 5695 5627 5534 4838 4580

2 1 691.89 256 256 2241 2586 2609 2318 2886
2 2 691.89 256 256 2245 2195 2198 2046 2678
2 3 691.89 256 256 3103 3066 3130 2633 2914
2 4 691.89 256 256 4900 4897 5012 4068 4590
2 5 691.89 256 256 4754 4748 4616 4031 4494

3 1 474.07 256 256 4192 4106 4046 4029 4233
3 2 474.07 256 256 3841 4094 3953 2959 2888
3 3 474.07 256 256 3363 3425 3405 3094 2222
3 4 474.07 256 256 2866 2948 2712 2606 1507
3 5 474.07 256 256 2661 2648 2607 1677 1690
3 6 474.07 256 256 1796 1925 1939 1328 1055
3 7 474.07 256 256 2214 2147 2050 1281 1107
3 8 474.07 256 256 2241 2158 2006 1191 900
3 9 474.07 256 256 1987 1922 1933 1185 852
3 10 474.07 256 256 2469 2408 2239 1626 871

4 1 474.07 256 256 310 310 416 316 433
4 2 474.07 256 256 920 948 961 734 701
4 3 474.07 256 256 1130 1069 1069 951 863
4 4 474.07 256 256 1752 1708 1632 1151 774
4 5 474.07 256 256 1662 1583 1659 1439 628
4 6 474.07 256 256 1771 1739 1725 1153 823
4 7 474.07 256 256 1530 1327 1218 756 518
4 8 474.07 256 256 1064 1086 1082 848 827

Table 5.1 Segmentation Results. Areas are measure in square pixels.

Table 5.2 lists the percent differences between all the slices segmented using

external energy, distance energy, and smoothness energy parameters of 1,3,3

respectively.
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Data
Set

Slice Study
1-3-3

Manual
1

Manual
2

Percent
Difference

between the
Study and
Manual 1

Percent
Difference

between the
Study and
Manual 2

1 1 3145 2573 1576 18.19 49.89
1 2 1775 1750 2306 1.41 29.92
1 3 2616 2609 2495 0.27 4.63
1 4 4581 4596 3841 0.33 16.15
1 5 5695 4838 4580 15.05 19.58

2 1 2241 2318 2886 3.44 28.78
2 2 2245 2046 2678 8.86 19.29
2 3 3103 2633 2914 15.15 6.09
2 4 4900 4068 4590 16.98 6.33
2 5 4754 4031 4494 15.21 5.47

3 1 4192 4029 4233 3.89 0.98
3 2 3841 2959 2888 22.96 24.81
3 3 3363 3094 2222 8.00 33.93
3 4 2866 2606 1507 9.07 47.42
3 5 2661 1677 1690 36.98 36.49
3 6 1796 1328 1055 26.06 41.26
3 7 2214 1281 1107 42.14 50.00
3 8 2241 1191 900 46.85 59.84
3 9 1987 1185 852 40.36 57.12
3 10 2469 1626 871 34.14 64.72

4 1 310 316 433 1.94 39.68
4 2 920 734 701 20.22 23.80
4 3 1130 951 863 15.84 23.63
4 4 1752 1151 774 34.30 55.82
4 5 1662 1439 628 13.42 62.21
4 6 1771 1153 823 34.90 53.53
4 7 1530 756 518 50.59 66.14
4 8 1064 848 827 20.30 22.27

Table 5.2 The percent differences between study 1-3-3 and the manual segmentations.

Table 5.3 lists the percent differences between all the slices segmented using

external energy, distance energy, and smoothness energy parameters of 1,5,5

respectively.
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Data
Set

Slice Study
1-5-5

Manual
1

Manual
2

Percent
Difference

between the
Study and
Manual 1

Percent
Difference

between the
Study and
Manual 2

1 1 3288 2573 1576 21.75 52.07
1 2 2088 1750 2306 16.19 10.44
1 3 2872 2609 2495 9.16 13.13
1 4 4551 4596 3841 -0.99 15.60
1 5 5627 4838 4580 14.02 18.61

2 1 2586 2318 2886 10.36 11.60
2 2 2195 2046 2678 6.79 22.00
2 3 3066 2633 2914 14.12 4.96
2 4 4897 4068 4590 16.93 6.27
2 5 4748 4031 4494 15.10 5.35

3 1 4106 4029 4233 1.88 3.09
3 2 4094 2959 2888 27.72 29.46
3 3 3425 3094 2222 9.66 35.12
3 4 2948 2606 1507 11.60 48.88
3 5 2648 1677 1690 36.67 36.18
3 6 1925 1328 1055 31.01 45.19
3 7 2147 1281 1107 40.34 48.44
3 8 2158 1191 900 44.81 58.29
3 9 1922 1185 852 38.35 55.67
3 10 2408 1626 871 32.48 63.83

4 1 310 316 433 1.94 39.68
4 2 948 734 701 22.57 26.05
4 3 1069 951 863 11.04 19.27
4 4 1708 1151 774 32.61 54.68
4 5 1583 1439 628 9.10 60.33
4 6 1739 1153 823 33.70 52.67
4 7 1327 756 518 43.03 60.96
4 8 1086 848 827 21.92 23.85

Table 5.3 The percent differences between study 1-5-5 and the manual segmentations.

Table 5.4 lists the percent differences between all the slices segmented using

external energy, distance energy, and smoothness energy parameters of 1,7,7

respectively.
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Data
Set

Slice Study 1-
7-7

Manual
1

Manual
2

Percent
Difference

between the
Study and
Manual 1

Percent
Difference

between the
Study and
Manual 2

1 1 3250 2573 1576 20.83 51.51
1 2 2113 1750 2306 17.18 9.13
1 3 2877 2609 2495 9.32 13.28
1 4 4551 4596 3841 0.99 15.60
1 5 5534 4838 4580 12.58 17.24

2 1 2609 2318 2886 11.15 10.62
2 2 2198 2046 2678 6.92 21.84
2 3 3130 2633 2914 15.88 6.90
2 4 5012 4068 4590 18.83 8.42
2 5 4616 4031 4494 12.67 2.64

3 1 4046 4029 4233 0.42 4.62
3 2 3953 2959 2888 25.15 26.94
3 3 3405 3094 2222 9.13 34.74
3 4 2712 2606 1507 3.91 44.43
3 5 2607 1677 1690 35.67 35.17
3 6 1939 1328 1055 31.51 45.59
3 7 2050 1281 1107 37.51 46.00
3 8 2006 1191 900 40.63 55.13
3 9 1933 1185 852 38.70 55.92
3 10 2239 1626 871 27.38 61.10

4 1 416 316 433 24.04 4.09
4 2 961 734 701 23.62 27.06
4 3 1069 951 863 11.04 19.27
4 4 1632 1151 774 29.47 52.57
4 5 1659 1439 628 13.26 62.15
4 6 1725 1153 823 33.16 52.29
4 7 1218 756 518 37.93 57.47
4 8 1082 848 827 21.63 23.57

Table 5.4 The percent differences between study 1-7-7 and the manual segmentations.

Table 5.5 lists the percent differences between all the manually segmented slices

in the first group of manual segmentations, and the slices manually segmented in the

second group.
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Data Set Slice Manual
1

Manual
2

Percent
Difference

1 vs. 2

1 1 2573 1576 38.748543 high
1 2 1750 2306 31.771429
1 3 2609 2495 4.3694902 low
1 4 4596 3841 16.427328
1 5 4838 4580 5.3327821

2 1 2318 2886 24.503883 high
2 2 2046 2678 30.889541
2 3 2633 2914 10.672237 low
2 4 4068 4590 12.831858
2 5 4031 4494 11.485984

3 1 4029 4233 5.0632911
3 2 2959 2888 2.3994593
3 3 3094 2222 28.183581
3 4 2606 1507 42.171911
3 5 1677 1690 0.7751938 low
3 6 1328 1055 20.557229
3 7 1281 1107 13.583138
3 8 1191 900 24.433249
3 9 1185 852 28.101266
3 10 1626 871 46.432964 high

4 1 316 433 37.025316
4 2 734 701 4.4959128
4 3 951 863 9.2534175
4 4 1151 774 32.754127
4 5 1439 628 56.358582 high
4 6 1153 823 28.620989
4 7 756 518 31.481481
4 8 848 827 2.4764151 low

Table 5.5 The percent differences between the two manual segmentation groups. The
high and low labels to the right indicate the high and low percentages for each data set.

.
Table 5.6 lists the average percent differences between the areas derived by

manual segmentation and semi-automatic segmentation by data set.
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Data Set Study Average Percent
Difference

Between Study
and Manual 1

Segmentations

Average Percent
Difference

Between Study
and Manual 2

Segmentations

Average Percent
Differences

between Manual
Segmentations

1&2

1 1-3-3 7.05 24.03
1 1-5-5 12.42 21.97 19.33
1 1-7-7 12.18 21.35

2 1-3-3 11.93 13.19
2 1-5-5 12.66 10.04 18.08
2 1-7-7 13.09 10.08

3 1-3-3 27.05 41.66
3 1-5-5 27.45 42.42 21.17
3 1-7-7 25.00 40.97

4 1-3-3 23.94 43.39
4 1-5-5 21.99 42.19 25.31
4 1-7-7 24.27 37.31

Table 5.7 Average percent differences between manual and semi-automatic
segmentations by data set.

Table 5.7 is perhaps the most important for the interpretation of our results. Data

sets 1 and 2 have the largest scaling factor, 692% versus 474% for data sets 3 and 4. This

results in the hippocampus having larger image area in these images. The percent error

between the semi-automatic segmentation and both of the manual segmentations is lower

for the data sets with the larger hippocampus images present. From the percent

differences  it appears that there is more agreement between successive manual

segmentations than between semi-automatic and manual segmentations. However this

can be deceiving if the percentages are large positive and large negative numbers. Large

errors may be being canceled out. The mean squared error of the areas tells a more



61

accurate story. Figure 5.8 shows the mean squared error of study versus both manual

segmentations, and between the manual segmentations.

Data Set Study Mean Squared
Error Study vs.1

Mean Squared
Error Study vs.2

Mean Squared
Error 1 vs. 2

1 1-3-3 212506.4 909837.6
1 1-5-5 263836.8 944181.2
1 1-7-7 229672.6 879933.0

390546.0

2 1-3-3 296276.6 160587.0
2 1-5-5 296568.8 101031.6
2 1-7-7 317631.0 109350.6

257572.4

3 1-3-3 545857.6 1241613.3
3 1-5-5 565966.7 1284035.2
3 1-7-7 452536.2 1079552.3

288541.1

4 1-3-3 188157.4 517379.5
4 1-5-5 139602.8 432946.6
4 1-7-7 118824.8 409759.9

123544.6

Table 5.8 The mean squared error of study versus both manual segmentations, and
between the manual segmentations.

The automatic segmentation is at least as accurate as the manual segmentations. It

is difficult to measure the error because it must be evaluated with respect to the manual

segmentations. The manual segmentations vary widely with respect to their area and size.

This only highlights the high variability in measurement accuracy from the same rater,

and stresses the need for a good semi-automatic technique. The mean squared errors in

table 5.8 suggest that the semi-automatic technique produces lower error with respect to

one manual segmentation for each data set, than do the two manual segmentations with

respect to each other.
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CONCLUSIONS

 Orthogonal curve based deformable templates provide a quick segmentation

technique that can escape moderate local gradient maxima with the right parameters. We

have found that it is acceptable to apply the same parameters to most of the slices in a

data set. But there exist some slices within each data set that need fine tuning for a variety

of reasons. The technique must be supervised to detect these cases. Each segmentation

must be visually inspected to assure its reliability, and adjusted to accommodate artifacts

and unusually high gradients that may occur local to the area of the hippocampus.

The presence of a very strong gradient local to the object of interest, but not

belonging to its boundary, will cause the template to deform improperly. The strong local

gradient in essence “fools” the technique. In order to pull the template back into shape,

the smoothness and distance parameters often have to be raised unnaturally high. Very

often the result of overemphasizing the distance and smoothness parameters is a

rubberband effect. The template will conform to most of the boundary of the shape with

the exception of the strong gradient in its search space that does not belong to the

hippocampus. It will naturally be highly attracted to the strong gradient. By incrementally

increasing the smoothness and distance parameters, the template can eventually be
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snapped out of this maxima; and it will conform to the actual boundary of the organ. The

real trouble is that it often takes very high distance and smoothness parameters to snap

the template back into shape. If the parameters are too exaggerated, then distance and

smoothness energies will overpower the external image energy, and the deformed

template simply becomes a duplicate of the original C curve. In this case, the technique

reduces to manual segmentation. See figure 6.1 for a sequence of images that illustrate

the rubberband phenomenon.

Figure 6.1 A strong gradient stretching the boundary. The upper left frame contains the
orthogonal curves. The upper middle frame shows a manual segmentation (Note the
white arrow indicating the string gradient that will fool the technique). The upper right
frame shows the automatic segmentation with smoothness and distance parameters of 5.
The gradient has caught the vertex of the boundary nearest it while the rest of the
boundary is relatively close to the hippocampus. The lower left frame shows the
segmentation with smoothness and distance parameters of 7 (Note the boundary is still
being stretched). In the lower right frame, the parameters at 10 have finally snapped the
boundary into place around the shape.

The orthogonal curves technique does not perform well when the organ has a

large part of its boundary with a light to dark gradient transition and another sizeable part
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demonstrating a dark to light transition. This has occurred in experimentation. The

template behaves by skipping one of the transitions and seeking some other gradient

marker.  But when the incomplete gradient boundary is not large, the template will bridge

the gradient gap with even modest distance and smoothness parameters. For the small

gradient inconsistencies, this technique will correctly identify the boundary of the

hippocampus. Even so, the large gradient inconsistencies are not easily or gracefully

accommodated. The possibility of their presence demands supervision. A reformulation

of the energy function may be able to solve this problem.

In a clinical environment, it is unreasonable to expect an expert rater to spend

time constructing templates when manual segmentation is much quicker. But it is

reasonable for an expert rater to select a template from a few well-known templates and

place it over an organ of interest if the time for the automatic stage of the segmentation is

very small (the search phase). This is a reasonable approach if the organ of interest

displays a relatively high degree of inter-subject shape and size coherence. In the case of

the hippocampus, we have seen little evidence that this is the case.

The execution time of other deformable template segmentation techniques is too

prohibitive to be considered for implementation in a clinical environment. Even with

large numbers of curves, up to 50%, and hippocampal images that have been scaled up

600% to fill a quarter of a 256x256 image, the orthogonal curves technique still can

perform its segmentation on an Intel 200mhz Pentium II or an 180mhz MIPS r5000 O2 in

less than 5 seconds. Combined with the time to select a template, this amount of time is

reasonable for a clinical setting if it means that a higher degree of accuracy can be

obtained during the measurement. If it is necessary to construct a new template, the
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technique takes too much time for practical application in a clinical environment. A

database of templates that can be transformed into family of templates may help speed up

the template acquisition time to an acceptable rate.

This technique would perform well with organs that displayed some degree of

inter-slice shape or size coherence. In that case, the same template could be applied to

adjacent image slices. The hippocampus has neither inter-slice shape nor size coherence.

In fact the organ frequently varies tremendously from slice to slice. This demands that a

new template be selected or constructed for each image.

When the organ of interest is of relatively smooth shape, the smooth templates

generate more uniform orthogonal curves than in the case of shapes with expected high

degrees of curvature. The hippocampus appears in the data as both. In the anterior portion

of the hippocampus (coronal view) the hippocampus has a large smooth shape. In the

most posterior portion of the hippocampus, the organ begins to acquire a thin “S” shape

that is very difficult to segment with orthogonal curves. If there is too much curvature

and too many curves are generated, the risk of singular points in orthogonal curves arises

and the segmentation is not possible. It is not reasonable for a manual rater to be expected

to know and apply these restrictions about the application of the algorithm during a

segmentation.

The orthogonal curves technique by itself is not reliable enough to be applied in a

clinical environment. It requires careful curve construction that takes longer than manual

segmentation. It requires fine-tuning of parameters, and constant supervision for the

avoidance of degenerate boundaries. It also requires some knowledge of the nature of the

orthogonal curves for the operator to avoid the singular points created by orthogonal
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curve intersection. The extremely high inter and intra subject anatomical variability of the

hippocampus makes the generation of a predefined database set of templates a less

attractive approach, but its feasibility has yet to be determined.  The most alluring facet

of the orthogonal curves approach is the execution time with respect to the alternative

deformable template approaches. The high shape variability of the hippocampus makes

the orthogonal curves technique impractical if new templates must be constructed for

each data slice. However, other brain structures with higher slice to slice coherence may

be effectively segmented using orthogonal curves. The increased coherence may make it

possible to apply the same template across many data slices. This would minimize the

template construction time, and make the technique more clinically applicable. Organs

with more well-defined gradients are also better candidates for segmentation with this

technique.



Chapter 7

FUTURE WORK

There are several approaches that can be taken to improve this system. Since the

major problems for clinical application lie in the: curve construction time, the possibility

of strong non-hippocampal gradients local to the organ, the fine tuning of parameters, the

nature of the orthogonal curves, and the high degree of anatomical variability; these are

the natural place for extensions and research.

A database of orthogonal curve based templates with thumbnail identification

images could greatly facilitate the selection of orthogonal curves. If the database

contained a curve of the same approximate shape as the region of interest, the template

could be scaled and translated to fit the image. This would for the most part eliminate the

time needed for curve construction.

An improved energy function may be able to eliminate the possibility of grossly

inaccurate boundaries by displaying more tolerance for certain types of artifacts and

gradients. An improved energy function may be able to avoid the tuning of the

parameters. If there were some pre-processing step that examined the gradients within the

search space, it is possible that the technique could be self-tuning.

The orthogonal curves run the risk of intersection in areas of high concave

curvature. If the number of curves were reduced in these areas, it would greatly reduce
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the risk of singular points and make the algorithm more robust with respect to the curve

construction. In areas of high convex curvature, radial error is introduced. The opposite

approach can be taken in these cases. If the number of orthogonal curves is increased in

these areas of high convex curvature, then the radial error can be reduced. This adaptive

sampling of the orthogonal curves based on degree and inflection of curvature will most

likely lead to templates with more uniform sampling coverage across the template space.
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