
 1

��������	
������������

Breast cancer is a common form of cancer among women. Mammography is used for early

detection, but it cannot detect all instances of cancer. New magnetic resonance imaging

(MRI) protocols developed by Stanford University and used at Presbyterian Hospital have

detected breast cancer where mammography has failed. Applying post-processing computer

algorithms to these scans can semi-automate detection and classification.

Radiologists have traditionally relied on 2D grayscale images to analyze MR scans as series

of slices, but 3D visualizations can provide a much better spatial context. However, 3D

visualizations can involve large amounts of computatation, requiring hardware support to

render at interactive rates.

In the last few years, graphics hardware has made significant advances in speed and

flexibility. Expensive workstations have been replaced by inexpensive consumer graphics

hardware. Previously fixed-pipeline graphics processing units (GPUs) have gained low-level

programmability at various stages of the rendering pipeline. Shader programs are used to

override certain stages of the rendering pipeline in GPUs to allow a much greater variety of

rendering effects. While shaders have been implemented in software in the past, shader

implementations in hardware have the capability to perform much faster. As more advanced

GPUs are developed, they will likely continue to gain flexibility and programmability.

Using inexpensive consumer hardware, it is now possible to render MR data in 3D at

interactive rates. This paper presents the design of breast cancer detection and visualization

software that uses such hardware. The software is highly interactive, allowing detection and

 2

visualization settings to be modified in real time. This allows users to experiment with

settings and immediately see the results. The software provides the familiar 2D slice

visualization with the addition of a 3D view of the MR data. The 3D view provides a far more

natural and intuitive visualization that allows users to see and interact with the entire MR

dataset.

A design goal of this project was to produce reusable and easily maintainable code and to

minimize application-specific code. The software includes a scene rendering library and a set

of multi-dimensional array and dataset classes that may be used in future applications.

This paper discusses the technology, methods, and design of the software. Chapter 2 provides

a brief background of volume rendering and discusses current technologies. Chapter 3

describes the detection and rendering methods employed by the software. Chapter 4 contains

a guide to the user interface of the software. Chapter 5 describes experimentation with

rendering and detection settings and the results. Chapter 6 concludes by discussing future

work on this project. The appendices contain implementation specifics of the software and its

supporting libraries.

 3

���������
�����������

��	����������������������������������

The breast cancer detection methods employed by the software rely on data from a series of

breast MR scans, which are produced through a new MRI protocol. In this protocol, an initial

scan of the breast is taken. Gadolinium is injected, and four additional scans are taken over

the next few minutes. When present in blood vessels, gadolinium yields higher intensities in

scans. Intensities at a particular point within the breast can be represented graphically as a

time step intensity curve. This curve represents the set of intensities at a given position within

the five volumes. In cancerous cells, these curves often exhibit a high initial intensity rate and

a slow, steady washout rate.

��������������������

A volumetric dataset is a 3D array of scalar or vector values, often produced by sampling a

continuous volume. Values in a volumetric dataset are often interpreted as cubic voxels,

which are 3D versions of 2D pixels. The two primary approaches to volume rendering are

isosurface rendering and direct volume rendering.

2.2.1 Isosurface Rendering

Isosurface rendering clearly shows distinct features in a volume by extracting the surface

geometry of the desired features. An isosurface is a 2D surface, or a contour in three-space. It

represents a connected set of values that are equal to an isovalue. Isosurfaces are produced by

determining an appropriate isovalue and generating geometry. The Marching Cubes algorithm

is often used to generate isosurface geometry. While isosurface rendering is well suited for

 4

rendering easily segmented, distinct features, it works poorly with datasets containing high

amounts of noise or lacking contrast.

2.2.2 Direct Volume Rendering

Direct volume rendering does not attempt to extract isosurfaces from a dataset. All data

contributes to the final image, preventing less distinct features from being lost in the

rendering process. Direct volume rendering is a computationally expensive but precise way to

visualize volumetric data. In the past, hardware limitations have prevented it from being a

feasible way of rendering at interactive rates, but it is now possible with current hardware.

All methods of direct volume rendering attempt to evaluate the color and opacity integral

along a ray into the volume for each pixel. The process of rendering, or attempting to evaluate

this integral at each pixel of the image, can be performed by either image-based or object-

based approaches. Ray casting is an image-based approach that attempts to directly evaluate

the integral through the volume for each pixel. Object-based methods operate by applying

textures to proxy geometry such as a set of polygonal slices.

Ray casting is a highly computationally expensive image-based approach to volume rendering

that requires a ray to be evaluated for each pixel in the output image. Evaluating a ray

involves sampling the volume at intervals along the ray. While current hardware is not

designed for ray casting methods, simple ray casting can be implemented in fragment shaders.

However, it is currently an unsuitable approach for more advanced volume rendering at

interactive rates.

Common object-based rendering methods are axis-aligned and view-aligned slice rendering.

Both methods blend a series of polygonal, semi-transparent volume slices in front-to-back or

 5

back-to-front order. Axis-aligned slices are rendered along the major axis closest to the view

vector. This method is suitable for video cards without 3D texturing support because it only

requires a series of 2D textures and bilinear interpolation. However, it requires three sets of

slices to be present in video memory for the three major axes. View-aligned slices are always

rendered orthogonal to the view direction, but require 3D texturing support. Sampling at an

arbitrary location in a 3D texture requires trilinear interpolation. Because of the computation

involved, hardware support is required for rendering at interactive rates.

Figure 2.1a. Axis-Aligned Slices

Figure 2.1b. View-Aligned Slices

2.2.3 Transfer Functions

A transfer function maps a volumetric dataset value to an actual color. Volumetric data is

typically stored in its original form in a texture rather than storing color and alpha values

(RGBA values) in the texture. One advantage of storing original values is that the original

values will often take less space than the corresponding RGBA values. Another advantage is

that changing color parameters will not require RGBA values in the entire texture to be

updated. When sampling the texture, the hardware will use the texture value to obtain an

 6

RGBA value by either sampling an additional texture used as an RGBA lookup table or

through computations implemented as a shader program.

A color lookup table can be implemented as a texture with RGBA values, with original data

values used as indices (or coordinates) in the table. When color parameters change, each

value in the lookup table texture must be recomputed. However, this texture is usually much

smaller than the original volumetric data stored as a texture.

Transfer functions can also be implemented as shader programs. The shader program receives

texture coordinates for the volumetric data texture, performs a lookup to obtain the data value,

and computes an RGBA value as output.

�� �!������"�����#�

A shader program is a set of GPU instructions that are executed repeatedly at a particular

stage of the rendering pipeline. In the past few years, specifying shader instructions for GPUs

has required loading primitive assembly instructions into the video card. More recently, high

level shading languages such as Microsoft's HLSL (High Level Shading Language) and

NVIDIA's Cg (C for Graphics) have been developed to provide an easier way to write

shaders. HLSL is intended for use with DirectX, but Cg supports both OpenGL and DirectX.

Currently, the two types of shader programs are vertex and fragment shaders. Supplying a

shader to a GPU overrides the default operations of a particular pipeline stage, requiring the

shader itself to perform the appropriate operations if necessary.

 7

2.3.1 Vertex Shaders

Vertex shaders are executed for each vertex during vertex processing. In this pipeline stage, a

GPU would normally perform transform and lighting operations on each vertex. Per-vertex

input consists of a position, a normal, a color, and one or more texture coordinates. Vertex

shaders may also access constant values such as the current transform matrix, its inverse, or

other values loaded into GPU registers. Per-vertex output consists of a homogenous position

in clipping coordinates, a normal, a color, and one or more texture coordinates. Typical vertex

shaders are used to apply lighting models or to displace vertices. A vertex shader can apply

diffuse or specular Gouraud lighting or generate procedural terrain with a grid of vertices.

2.3.2 Fragment Shaders

Fragment shaders (or pixel shaders in DirectX terminology) are executed for each pixel

during fragment processing. In this pipeline stage, a GPU would normally pass through a

color or perform a texture lookup to obtain a color. Inputs to a fragment shader may include

an interpolated color, an interpolated normal, and interpolated texture coordinates. Output

consists of a single color and depth value. Typical fragment shaders are used to apply Phong

lighting models, bumpmapping, or procedural textures.

2.3.3 Cg Shading Language

Cg is NVIDIA's attempt to create a portable standard for GPU shading languages. The Cg

syntax is nearly identical to C with the addition of several built-in types and operations. New

types include vectors and matrices. New operations include dot product, cross product, and

vector "swizzling" operations. Cg programs may be precompiled or compiled at runtime using

NVIDIA's Cg runtime library. Shader profiles, which specify GPU capabilities, are used to

 8

place limitations on shaders during compilation. A GPU must support a given profile to run

programs compiled for the profile. The Cg runtime library also provides support for binding

variables to Cg shader inputs and loading shaders onto the GPU.

Shader inputs consist of varying parameters and uniform parameters. Varying parameters may

have different values in each execution of the shader program and typically include vertices,

normals, colors, or texture coordinates. Fragment shaders will receive interpolated values for

varying parameters. Uniform parameters remain constant over a batch of vertices or pixels

and typically include tranform matrices or references to textures.

The Cg runtime library provides support for assigning values to shader parameters. However,

it is often unnecessary to explicitly assign these values if the shader provides input semantics

to indicate other sources of the parameters. Other input sources may include OpenGL vertex,

color, or texture coordinate calls.

 9

��������
�$����#�

 �	���������������

3.1.1 Dataset Representation

Datasets are produced by taking a series of MRI scans. A dataset can be interpreted as a set of

3D arrays (or volumes) of intensity values, a 4D array of intensity values, or a single volume

containing vector values. Datasets may contain intensity values of either 8- or 12-bit

precision, stored as one or two bytes. For 12-bit precision, the four most significant bits are

unused.

3.1.2 Time Step Intensity Curves

A time step intensity curve is a graph of the intensity values across the time steps at a given

position in the volume. For cancerous cells, this curve is assumed to rise sharply and fall

smoothly.

Figure 3.1. Intensity Curve of a Cancerous Cell

 10

3.1.3 Confidence of Cancer Computation

To identify cancerous regions, confidence of cancer values in the range [0, 1] are computed

for each value in the breast volume. Confidence computation requires four parameters: rise

threshold, fall threshold, rise weight, and confidence threshold. The rise and fall thresholds

are in the range [-1, 1] and rise weight and confidence threshold are in the range [0, 1].

For a given position in the volume, the time step intensity curve values are used as input to

compute confidence. For these input values, rise is defined as the difference between the first

time step value and the maximum value. Fall is defined as the difference between the

maximum value and the last value. The following steps are used to compute confidence:

1. Precomputations. First, minimum and maximum intensity values are found within

the entire dataset. Actual threshold values for the rise and fall thresholds are computed

by mapping the original threshold parameters values from the range [-1, 1] to the

range [min. density - density range, min. density + density range]. Next, rise and fall

values are computed and stored for each position within the volume. Minimum and

maximum rise and fall values are found for the next stage.

2. Normalizing rise and fall. Next, for each position within the volume, rise and fall

values are mapped from the range [actual threshold, maximum] to the range [0, 1].

Values below the threshold are set to zero.

3. Computing confidence. Next, confidence values are computed for each location in

the volume as a weighted sum of the normalized rise and fall values. Weights are rise

weight and 1 - rise weight.

 11

4. Normalizing confidence. Finally, confidence values are mapped from the range

[confidence threshold, 1] to the range [0, 1]. Values below the threshold are set to

zero.

 �������#�����#����%�����

3.2.1 Scene Object Representation

Objects within the scene may include view-aligned slices, labeled axes, selection axes, and

other objects. These objects are stored in a certain order and hierarchy using a simple scene

graph library.

3.2.2 View-Aligned Slice Generation

Given a number of slices and a camera orientation and position, slices are generated by

intersecting a unit cube with a series of planes orthogonal to the view direction. Planes are

evenly spaced between the nearest and farthest cube vertices from the camera position. An

intersection between a plane and the cube produces a set of unsorted vertices. The x, y, and z

components of each vertex are in the range [-0.5, 0.5]. These vertices are sorted to produce a

convex polygon. 3D texture coordinates are computed by offsetting the components of each

vertex by 0.5.

3.2.3 Texture Generation

3D textures with RGBA components are generated by centering volume data within a 3D

array of power-of-two dimensions. The red and green components of the texture are used to

store intensity values (red represents the MSB and green represents the LSB). The blue

component stores confidence values and the alpha value is unused. The user may specify

 12

which volume within the dataset provides intensity values. Before rendering, the entire

texture is loaded into video memory.

3.2.4 Display Controls

The software contains several controls to modify the way the volume is rendered. These

controls are applied in the transfer function stage of the rendering process. Overall opacity

controls the opacity of slices. Confidence opacity controls the weight placed on confidence

values when computing the output color. Number of slices controls rendering precision.

Higher numbers of slices will also cause the volume to appear more opaque and render

slower. Time step controls which volume is displayed.

3.2.5 Transfer Functions

Transfer functions are implemented as Cg fragment shader programs. For each pixel, the

shader program receives an interpolated 3D texture coordinate and a reference to a 3D

texture. The following steps are implemented in a shader program to compute an output color:

1. A lookup is performed on the 3D texture using the interpolated 3D texture coordinate.

2. The intensity is computed from the red and green components. These components are

interpreted as a two-byte, big endian value. Because of current fragment shader

limitations, values above 255 are truncated.

3. Window and level parameters are applied to adjust the intensity.

4. A confidence factor is computed using the blue component and the confidence opacity

parameter.

 13

5. The output red value is computed as (intensity + confidence) factor. Blue and green

values are computed as (intensity - confidence) factor. This produces a bright red

color in areas of high confidence and shades of gray in areas of low confidence.

6. The output alpha value is set to the weighted sum of intensity and the confidence

factor, multiplied by the opacity parameter. Different weights may be used for

different transparency effects.

Figure 3.2. Transfer Function Coloring

 14

��������&
�'#��������(����

&�	�)*��*��+�

This chapter contains a guide to the user interface. The interface is designed to be familiar to

users by following genre conventions. The interface consists of three 2D, axis-aligned slice

views, a single 3D view, and a control panel containing detection and visualization settings.

The interface requires a minimum of 800x600 screen resolution. No additional dialog boxes

or windows are used. Processing messages are logged to the console window for debugging

purposes and to show progress to the user. Progress bars are not yet implemented. Controls

are hierarchically organized, placed into tabs at the highest level and further organized into

framed and labeled groups according to their function. This format is consistently applied to

all controls.

Figure 4.1. User Interface

 15

To open a dataset, select File->Open and select the dataset file. Datasets must contain raw,

big endian-order data with the appropriate file header (see Appendix D).

To view header information once a dataset is open, select File->File Information. The

contents of the header will be displayed in the console window.

,����+������#��������+#�

The three 2D views show a single slice along the three principal axes. For a view along a

given axis, dotted lines indicate the positions of the slices along the other two axes. The

intersection of the dotted lines is the currently selected position. The following actions are

available in these views:

• Translation. To translate the slice, click and drag the slice with the middle mouse

button.

• Scaling. To scale the slice, rotate the mouse wheel.

• Picking. To pick a point, click on the point with the left mouse button.

,� ������������#��������+�

The 3D view shows the entire dataset, optionally with labeled axes, a bounding box,

highlighted axis-aligned slices, and stored selections. Highlighted axis-aligned slices

correspond to the axis-aligned slices in the 2D views, appearing as brighter slices with

increased opacity. Stored selections appear as wire cubes. The following actions are available

in this view:

• Translation. To translate the volume, click and drag the volume with the middle mouse

button.

 16

• Rotation. To rotate the volume about the vertical or horizontal axes, click and drag the

volume with the right mouse button.

• Scaling. To scale the volume, rotate the mouse wheel.

• Picking. To pick a stored selection, click the selection with the left mouse button.

Figure 4.2. 3D View

�

�

�

�

 17

,�&�������"�����

5.4.1 Display Tab

This tab contains settings that determine which objects are visible in the 3D view and how

slices are displayed.

Figure 5.1. Display Tab

Fast Render When Moving. This option determines whether the
number of slices is reduced when the volume is being translated,
scaled, or rotated. This will render faster at the cost of image
precision.

Show Labeled Axes. This option toggles the visibility of a set of
labeled axes.

Show Bounding Box. This option toggles the visibility of the
bounding box around the volume.

Show X-Axis Slice, Show Y-Axis Slice, Show Z-Axis Slice.
These options toggle the visibility of slices within the 3D view
that correspond to the axis-aligned slices in the 2D views.

Show Stored Selections. This option toggles the visibility of
stored curve positions. These positions will appear as wire cubes
in the 3D view.

3D View Overall Opacity. This slider determines the opacity of
3D view.

Confidence Opacity. This slider determines the opacity of
confidence.

Number of Slices. Increasing this value will increase the precision
of the 3D view at the cost of rendering speed.

Time Step. This slider determines which time step volume is used
for rendering. Changing this will require the application to update
the volume texture.

Reload Shaders. This button reloads and recompiles shader
source files.

Reset Views. This button resets all views to their original position,
orientation, and scaling.

 18

5.4.2 Dataset Tab

This tab contains settings that determine the way a dataset is interpreted. Depending on the

way a scan is taken, these settings may need to be modified to display the dataset properly.

Figure 5.2. Dataset Tab

Orientation. These options may be used to orient a dataset to the
appropriate axes.

Flipping. These checkboxes determine whether the dataset is
flipped along a given axis.

 19

5.4.3 Computation Tab

This tab contains confidence and tumor volume computation settings.

Figure 5.3. Computation Tab

Gadolinium Intensity Rate. This slider determines the minimum
rise parameter.

Gadolinium Washout Rate. This slider determines the minimum
fall parameter.

GdTPA Intensity Rate Weight. This slider determines the rise
weight parameter.

Cancer Confidence Threshold. This slider determines the
confidence threshold parameter.

Apply. This button will recompute confidence using the current
settings. Only the minimum computations necessary will occur, so
changing intensity or washout rates will cause computations to
take longer than only changing the confidence threshold.

Reset. This button will reset sliders to their original values.

 20

5.4.4 Curves Tab

This tab shows the curve at the selected position and a listing of stored curves.

Figure 5.4. Curves Tab

Add. This button stores the currently selected point. Stored curves
will appear as small wire cubes in the 3D view. They may be
selected by clicking on them in the 3D view or clicking on the
entry in the curves list.

Remove. This button removes the selected point from the list of
stored curves.

Clear. This button removes all selections from the list of stored
curves.

 21

��������,
��-�������������

During the development process, the software methods, interface, and architecture changed

many times. This chapter describes some of the changes.

,�	�'#��������(����

The original interface featured a 3D view, an axis-aligned 2D view, a time step curve plot,

and a floating control panel. Most visualization options were located in menus. The

visualization color scheme had a white background and a dark blue foreground, contrary to

existing MRI software. These issues were resolved in the current version of the software.

Settings were consolidated into a single control panel in the main window, the coloring

scheme was revised to resemble existing software, and three axis-aligned 2D views replaced

the single view.

Old Interface

Before reading a dataset, it must be converted from a series of 2D MR data files (of 12-bit

precision) or JPEG images (of 8-bit precision) to a single file containing a header and raw

 22

data (see Appendix C for header specifics). To test conversions and to view datasets on

systems without advanced hardware, a lightweight 2D viewer was developed. This

application featured window, level, zoom, and translation controls.

Figure 5.1. Two-Dimensional Viewer

,�����������������

Initially, curves were assumed to rise very quickly for cancerous cells. Rise was defined to be

the difference between the first and second intensity values in the curve. However, this was

not true for all datasets. Some datasets exhibited a delayed rise in intensity curves, and rise

was redefined to be the difference between the first value and the maximum value.

 23

Figure 5.2. Delayed Rise

Blood vessels often produce high confidence values because of their high initial rise. As a

result, the software assigned blood vessels higher confidence values than cancerous areas.

This will be resolved in future versions of the software by adding a maximum intensity rate

control.

Figure 5.3. Blood Vessels and Heart

 24

,� ���#����%�����

Differences in breast tissue and scanning conditions can cause the resulting datasets to vary

greatly. Some datasets contained low intensity values or lacked contrast. To some extent, the

opacity and slice controls enhanced the appearance of these datasets. Window and level

controls worked well in the 2D viewer, but they could not be implemented properly in the 3D

viewer due to shader constraints.

Figure 5.4. Window and Level Settings

Because the software requires entire datasets to be loaded into video memory, datasets either

had to be subsampled or textures had to be compressed to fit into video memory.

Subsampling did not cause critical data to be lost, but it required an additional step in the

process of converting datasets to a form the software could read. Texture compression often

caused noticeable artifacts to appear when rendering.

 25

��������.
������#���

The software provides an intuitive interface for navigating breast MR scans and locating

cancerous regions. The interface, color scheme, and controls were designed to be as similar as

possible to existing software. The interactivity of the software makes it appealing as a flexible

detection and visualization tool. However, there are still many features that can be

implemented to improve and expand the capabilities of the software.

Additional controls are necessary to isolate certain features. A maximum rise control would

eliminate many of the blood vessels with high initial rises. A method of computing and

thresholding a metric of rise or fall linearity could eliminate curves that do not exhibit a

steady rise or fall.

Features with distinct characteristic curves could be segmented by identifying and cataloguing

confidence parameter settings. Confidence values could be computed for certain features

using these settings. These preset parameters could be loaded or saved.

Volume rendering should employ a "brick-rendering" method. Rather than loading an entire

dataset into video memory, a series of smaller divisions of the dataset would be loaded and

rendered. This removes the limitation of video memory from the rendering process.

Shaders should include gradient values in color computations. Because of instruction limits in

the fragment shader profile that is currently used by the software, computations involving

gradient values could not significantly enhance the visualization. As more advanced hardware

becomes available, the use of gradient values in shaders should be revisited.

 26

��(������#�

[1] Akenine-Moller, Tomas and Eric Haines. Real-Time Rendering. Natick: A K Peters, Ltd.,

2002.

[2] Fast Light Toolkit Documentation. http://www.fltk.org.

[3] Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. New

York: Addison-Wesley, 1995.

[4] Hadwiger et al. High-Quality Graphics on Consumer PC Hardware. SIGGRAPH 2002

Course Notes, 2002.

[5] Kniss, Joe, Gordon Kindlmann, and Charles Hansen. Multi-Dimensional Transfer

Functions for Interactive Volume Rendering. IEEE Transactions on Visualization and

Computer Graphics, 2002.

[6] NVIDIA Corporation. Cg Documentation. http://developer.nvidia.com.

 27

/������-�/
���������������)*��*��+�

�����������#�

The following external libraries are used in this application:

• OpenGL: Cross-platform graphics library.

• ExtGL: Extension loading library for Windows.

• GLUT (GL Utility Toolkit): Provides a platform-independent wrapper for OpenGL
applications. Also provides functions to render simples primitives such as wireframe
or solid cubes or spheres.

• FLTK (Fast Light Toolkit): Cross-platform GUI toolkit with OpenGL support.

��*�����#�

All code adheres to the following conventions:

File Conventions

• Header files (.h extension) contain only declarations.

• Inline files (.inl extension) contain only inline function definitions. They are included
at the end of header files.

• Source files (.cpp extension) contain source code that should not or cannot be defined
inline.

Stylistic Conventions

• Lines do not exceed 80 characters.

• Indentations are four spaces.

• Comments are used only to clarify less readable code or blocks of code. Excessive
comments can otherwise simple code.

Naming Conventions

• Class names, enumeration types, typedefs, and functions start with a capital letter.

• Macros and constants are declared in all caps and may contain underscores.

 28

• Variables start with a lowercase letter.

• Hungarian notation is only used to differentiate variables of different types that could
otherwise have the same name.

• All distinct words within names start with a capital letter. To avoid ambiguity,
adjacent capital letters are avoided.

• Accessors are named after the variable they return or modify. Getting and setting
accessors are not differentiated by name.

 29

/������-��
�!�����0�1���2���#����

$�������##�#�

Math classes are used by the framework primarily for transformations, intersection testing,
and collision testing.

All math classes share the following traits:

• The components of each class are of type float.

• Each class includes operations for reading and writing to Standard Library streams.

• Angles are specified in degrees.

Math classes include vectors (Vector2, Vector3, Vector4), matrices (Matrix3, Matrix4),
Quaternion, Ray3, and Plane.

Vectors

Vector classes include vectors Vector2, Vector3, and Vector4, which represent two-, three-,
and four-vectors, respectively. They implement basic arithmetic operations and dot product
and cross product operations.

class Vector3
{
public:
 real x, y, z;

public:
 Vector3();
 Vector3(real x, real y, real z);
 Vector3(const real v[3]);
 Vector3(const Vector3 &v);

 // accessors
 const real& operator[](int i) const;
 real& operator[](int i);

 // assignment
 Vector3& operator=(const Vector3& v);

 // boolean operations
 bool operator==(const Vector3& v) const;
 bool operator!=(const Vector3& v) const;

 // arithmetic operations
 Vector3 operator*(real k) const;
 friend Vector3 operator*(real k, const Vector3& v);
 Vector3 operator/(real k) const;
 Vector3 operator+(const Vector3& v) const;
 Vector3 operator-(const Vector3& v) const;
 Vector3 operator-() const;

 Vector3& operator*=(real k);
 Vector3& operator/=(real k);
 Vector3& operator+=(const Vector3& v);
 Vector3& operator-=(const Vector3& v);

 30

 // vector operations
 real Dot(const Vector3& v) const;
 Vector3 Cross(const Vector3& v) const;
 real Length() const;
 real LengthSquared() const;
 void Normalize();

 // random vector generation
 void Random(const Vector3& vMin, const Vector3& vMax);

 // stream operations
 friend std::ostream& operator<<(
 std::ostream& stream, const Vector3& v);
 friend std::istream& operator>>(
 std::istream& stream, Vector3& v);

 // static functions
 static const Vector3& Zero();
 static const Vector3& Identity();
};

Matrices

Matrix classes include Matrix3 and Matrix4, which represent 3x3 and 4x4 matrices,
respectively. They implement basic arithmetic operations and vector and matrix
multiplications.

class Matrix3
{
protected:
 real m[9];

public:
 Matrix3();
 Matrix3(real m00, real m01, real m02,
 real m10, real m11, real m12,
 real m20, real m21, real m22);
 Matrix3(real m[9]);
 Matrix3(const Vector3& r0,
 const Vector3& r1,
 const Vector3& r2);
 Matrix3(const Matrix3& m);

 // accessors
 const real& operator[](int i) const;
 const Vector3& Row(int i) const;
 real& operator[](int i);
 Vector3& Row(int i);

 // assignment
 Matrix3& operator=(const Matrix3& m);

 // arithmetic operations
 Vector3 operator*(const Vector3& v) const;
 Matrix3 operator*(const Matrix3& m) const;

 // matrix operations
 void Transpose();

 // stream operations
 friend std::ostream& operator<<(
 std::ostream& stream, const Vector3& v);
 friend std::istream& operator>>(
 std::istream& stream, Vector3& v);

 // static functions
 static const Matrix3& Identity();
};

 31

Quaternion

A quaternion is an extension of a complex number, containing one real component and three
imaginary components. In 3D rendering, quaternions are used for efficient rotations and
spherical linear interpolation (a method of interpolating between orientations, often used for
camera motion and animation).

The Quaternion class implements basic arithmetic operations and conversions. It includes
conversions to and from Euler angle orientations, axis and angle orientations, and 3x3 matrix
orientations.

class Quaternion
{
public:
 real w, x, y, z;

public:
 Quaternion();
 Quaternion(real w, real x, real y, real z);
 Quaternion(const Quaternion &q);

 // arithmetic operations
 Quaternion operator*(const Quaternion& q) const;
 Quaternion operator*(const Vector3& v) const;
 Quaternion operator+(const Quaternion& q) const;
 Quaternion operator-() const;

 Quaternion& operator+=(const Quaternion& q);

 // conversions
 void ToEuler(Vector3& vAxes) const;
 void ToMatrix(Matrix3& m) const;
 void ToAxisAngle(Vector3& vAxis, real& angle) const;

 void FromEuler(const Vector3& vAxes);
 void FromMatrix(const Matrix3& m);
 void FromAxisAngle(const Vector3& vAxis, const real& angle);

 // quaternion operations
 real Length() const;
 real LengthSquared() const;
 void Normalize();

 // static functions
 static const Quaternion& Identity();
};

Rays

Ray classes include Ray3, which represents a ray in three-space. It is stored as an origin
vector and a direction vector.

class Ray3
{
protected:
 Vector3 vOrigin, vDirection;

public:
 Ray3();
 Ray3(Vector3 vOrigin, Vector3 vDirection);
 Ray3(const Ray3& ray);

 32

 // accessors
 const Vector3& Origin() const;
 const Vector3& Direction() const;

 Vector3& Origin();
 Vector3& Direction();

 void Origin(const Vector3& v);
 void Direction(const Vector3& v);

 // assignment
 Ray3& operator=(const Ray3& ray);

 // ray operations
 void ApplyTransformMatrix(const Matrix4& m);
};

Plane

The Plane class represents a plane in three-space, stored as a plane normal and a plane
constant. The plane constant represents the distance from the origin to the plane.

class Plane
{
protected:
 Vector3 vNormal;
 real constant;

public:
 Plane();
 Plane(Vector3 vNormal, real constant);
 Plane(const Plane& plane);

 // accessors
 const Vector3& Normal() const;
 const real& Constant() const;

 Vector3& Normal();
 real& Constant();

 void Normal(const Vector3& v);
 void Constant(real constant);

 // assignment
 Plane& operator=(const Plane& plane);

 // plane operations
 real Distance(const Vector3& vPoint) const;
};

!���������������##�#�

Supplemental classes include base classes and classes that are used internally by visitor and
node classes. They include Object, Reference, MatrixStack, Frustum, and RenderTree.

Object

The Object base class supports reference counting. Derived classes include all bounding
volumes, nodes, cameras, and visitors.

 33

class Object
{
protected:
 int refCount;

public:
 Object();
 virtual ~Object();

 void IncRef();
 void DecRef();
};

Reference

The Reference class acts as a smart pointer that manages a reference-counted Object.

template <class T>
class Reference
{
private:
 T* ptr;

public:
 Reference();
 Reference(const T* ptr);
 Reference(T* ptr);
 Reference(const T& ref);
 Reference(T& ref);
 Reference(const Reference& ref);
 ~Reference();

 void operator=(T* ptr);
 void operator=(const Reference& ref);

 T* operator->();
 T& operator*();

 const T* operator->() const;
 const T& operator*() const;

 operator T*();
 operator const T*();

 T* Pointer();

 bool operator!=(T* ptr) const;
 bool operator==(const Reference& ref) const;
};

MatrixStack

The MatrixStack class stores a stack of 4x4 matrices and their inverses. For each stack entry,
a matrix, inverse matrix, concatenated matrix, and concatenated inverse may be accessed
without requiring computation. Inverse concatenations are typically used during traversals to
convert world coordinates to object coordinates.

class MatrixStack
{
public:
 struct Entry
 {

 34

 Matrix4 mEntry,
 mEntryInverse,
 mCurrent,
 mCurrentInverse;
 };

protected:
 std::vector<Entry> entries;
 int entryCount;

public:
 MatrixStack();

 // accessors
 const Matrix4& CurrentMatrix() const;
 const Matrix4& CurrentInverseMatrix() const;
 bool Empty() const;

 // operations
 void Push(const Matrix4 &m, const Matrix4 &mInverse);
 void Pop();
};

Frustum

The Frustum class consists of a set of planes that define a frustum or volume. Typically, a
camera projection defines a view frustum consisting of six planes: left, right, top, bottom,
near, and far. This view frustum represents the space in the scene that is visible to the camera.
Frustums are also used for advanced hidden surface removal (HSR) algorithms such as
occlusion culling and portal engines.

class Frustum
{
protected:
 std::vector<Plane> planeArray;

public:
 // accessors
 const Plane& operator[](int index) const;
 Plane& operator[](int index);

 int PlaneCount() const;
 void Resize(int planeCount);
 void Clear();

 // frustum operations
 void ApplyTransformMatrix(const Matrix4& m);
};

RenderTree

The RenderTree class is a simplified, temporary tree structure designed to hold the culled
contents of scene. Each non-leaf represents a Transform node. Sortable leaf nodes represent
sortable State nodes. Unsortable leaf nodes represent renderable nodes. The RenderVisitor
class traverses a RenderTree object.

class RenderTree
{
protected:
 Node* sceneNode;

 35

 bool sortable;
 std::vector<RenderTree*> trees;

public:
 RenderTree();
 RenderTree(Node& node, bool sortable = false);
 virtual ~RenderTree();

 // accessors
 const Node& SceneNode() const;
 Node& SceneNode();
 void SceneNode(Node& node);
 bool Sortable() const;
 void Sortable(bool state);

 // traversal operations
 void Accept(Visitor& visitor);

 // tree operations
 int Size() const;
 RenderTree& Child(int index) const;
 void Add(RenderTree& tree);
 void Clear();
 int TotalSize() const;
};

�������������#�

A bounding volume is used as an approximation of the volume of space a node represents.
Bounding volumes are usually less computationally expensive and complicated to deal with
than the actual geometry contained within a node.

Bounding volumes are typically used to efficiently traverse a scene. Large parts of a scene
may be completely skipped by performing bounding volume tests. The following are common
traversals that use bounding volumes:

• View Culling. This is a method of reducing the amount of geometry that is rendered.
Bounding volumes are tested against the view frustum to determine whether they are
visible. If a bounding volume is visible, its children are tested. More complex
algorithms, such as occlusion culling or portal engines, may use multiple frustums.

• Picking. Picking occurs when a user attempts to select a visible object. Because the
user sees a 3D scene projected to a 2D surface, a point on the 2D surface represents a
ray directed into the 3D scene. Bounding volumes are used for simple intersection
tests with this ray. If the ray intersects a bounding volume, child nodes are tested. A
leaf node that intersects the ray represents an object the user has picked.

• Collision Detection. The purpose of this process is to locate collisions between
geometry that occur over a given time interval. Detecting collisions with actual
geometry can be computationally expensive, so bounding volume hierarchies are used
to quickly test for potential collisions. If an early collision test fails, no additional tests
are required.

 36

The Volume base class, derived from Object, contains redefineable functions to test for
intersections with Ray3, Plane, Sphere, AlignedBox, and OrientedBox objects. Derived
classes include Sphere, AlignedBox, and OrientedBox.

class Volume : public Object
{
protected:
 Volume *relativeVolume;
 int failedPlaneIndex;

public:
 Volume();
 virtual ~Volume();

 // accessors
 const Volume& RelativeVolume() const;
 void RelativeVolume(const Volume& volume);

 int FailedPlane() const;
 void FailedPlane(int i);

 // cloning
 virtual Volume& Clone() const = 0;

 // bound operations
 virtual void Update(const Matrix4& mCurrentTransform);
 virtual bool TestVolume(const Volume& volume) const = 0;
 virtual bool TestPoint(const Vector3& vPoint) const;
 virtual bool TestRay(const Ray3& ray) const;
 virtual bool TestHalfSpace(const Plane& plane) const;
 virtual bool TestSphere(const Sphere& sphere) const;
 virtual bool TestAlignedBox(const AlignedBox& box) const;
 virtual bool TestOrientedBox(const OrientedBox& box) const;
};

Sphere

The Sphere class represents a sphere, defined by a three-vector center position and a radius.

class Sphere : public Volume
{
protected:
 Vector3 vCenter;
 real radius;

public:
 Sphere();
 Sphere(real radius, const Vector3& vCenter = Vector3::Zero());
 Sphere(const Sphere& sphere);

 // accessors
 const Vector3& Center() const;
 real Radius() const;

 Vector3& Center();
 real& Radius();

 void Center(Vector3& v);
 void Radius(real radius);

 // cloning
 virtual Volume& Clone() const;

 // bound operations
 virtual void Update(const Matrix4& mCurrentTransform);
 virtual bool TestVolume(const Volume& volume) const;
 virtual bool TestPoint(const Vector3& vPoint) const;

 37

 virtual bool TestRay(const Ray3& ray) const;
 virtual bool TestHalfSpace(const Plane& plane) const;
 virtual bool TestSphere(const Sphere& sphere) const;
 virtual bool TestAlignedBox(const AlignedBox& box) const;
 virtual bool TestOrientedBox(const OrientedBox& box) const;
};

AlignedBox

The AlignedBox class represents a box in three-space aligned to the world axes. This
assumption makes intersection and collision testing simpler and faster. It is stored as a three-
vector center position and extent.

class AlignedBox : public Volume
{
protected:
 Vector3 vCenter, vExtent;

public:
 AlignedBox();
 AlignedBox(const Vector3& vExtent,
 const Vector3& vCenter = Vector3::Zero());
 AlignedBox(const AlignedBox& box);

 // accessors
 const Vector3& Center() const;
 const Vector3& Extent() const;

 Vector3& Center();
 Vector3& Extent();

 void Center(const Vector3& v);
 void Extent(const Vector3& v);

 // cloning
 virtual Volume& Clone() const;

 // bound operations
 virtual void Update(const Matrix4& mCurrentTransform);
 virtual bool TestVolume(const Volume& volume) const;
 virtual bool TestPoint(const Vector3& vPoint) const;
 virtual bool TestRay(const Ray3& ray) const;
 virtual bool TestHalfSpace(const Plane& plane) const;
 virtual bool TestSphere(const Sphere& sphere) const;
 virtual bool TestAlignedBox(const AlignedBox& box) const;
 virtual bool TestOrientedBox(const OrientedBox& box) const;
};

OrientedBox

The OrientedBox class represents a box in three-space aligned to anarbitrary axes. It is a
more generalized version of an AlignedBox, but it makes sacrifices in complexity, speed, and
memory. It is stored as a three-vector center position and extent and a quaternion orientation.

class OrientedBox : public AlignedBox
{
protected:
 Vector3 vCenter, vExtent;
 Matrix3 mOrientation;

public:
 OrientedBox();

 38

 OrientedBox(const Vector3& vExtent,
 const Matrix3& mOrientation = Matrix3::Identity(),
 const Vector3& vCenter = Vector3::Zero());
 OrientedBox(const OrientedBox& box);

 // accessors
 const Matrix3& Orientation() const;
 Matrix3& Orientation();
 void Orientation(const Matrix3& m);

 // cloning
 virtual Volume& Clone() const;

 // bound operations
 virtual void Update(const Matrix4& mCurrentTransform);
 virtual bool TestVolume(const Volume& volume) const;
 virtual bool TestPoint(const Vector3& vPoint) const;
 virtual bool TestRay(const Ray3& ray) const;
 virtual bool TestHalfSpace(const Plane& plane) const;
 virtual bool TestSphere(const Sphere& sphere) const;
 virtual bool TestAlignedBox(const AlignedBox& box) const;
 virtual bool TestOrientedBox(const OrientedBox& box) const;
};

3��#�

The Node base class represents the most basic type of node in the scene graph.

class Node : public Object
{
public:
 enum NodeFlags
 {
 NF_ENABLED = 0x01,
 NF_CHANGED = 0x02,
 NF_STATIC = 0x04,
 NF_PICKABLE = 0x08,
 };

protected:
 unsigned int flags;
 Volume *bounds;
 void *userData;
 char *name;

public:
 Node();
 virtual ~Node();

 // accessors
 bool HasBounds() const;
 const Volume& Bounds() const;
 unsigned int Flags() const;
 const void* UserData() const;
 const char* Name() const;

 Volume& Bounds();
 unsigned int& Flags();
 void* UserData();
 char* Name();

 void Bounds(const Volume& relativeVolume);
 void Flags(unsigned int flags);
 void UserData(void *userData);
 void Name(char *name);

 // flag access shortcuts
 bool Enabled() const;
 bool Static() const;

 39

 bool Pickable() const;

 void Enabled(bool state);
 void Static(bool state);
 void Pickable(bool state);

 // intersection calculations
 virtual bool TestRay(const Ray3& ray) const;
 virtual bool ComputeRayIntersection(real& tRay,
 Vector2& vCoord, const Ray3& ray) const;

 // node operations
 virtual void Accept(Visitor& visitor);
 virtual void Apply(Visitor& visitor);
 virtual void Update(Visitor& visitor, real interval);
};

Node contains several flags:

• Enabled. This flag determines whether a node is traversed.

• Changed. This flag indicates that a node has changed in an update.

• Static. This flag indicates that a node will never change. This will prevent it from
being traversed in updates.

• Pickable. This flag indicates that a node can be picked if it passes intersection tests.

Node contains several virtual functions:

• Apply(Visitor). This function performs a rendering operation. The Node class defines
this function to do nothing, but subclasses will redefine it depending on their purpose.
For example, the Geometry class will define it to supply geometry primitives to
render while a Transform class will push a transformation matrix to the visitor's
matrix stack.

• Update(Visitor, Interval). This function updates a node over a given time interval.
The Node class defines this function to do nothing, but dynamic subclasses may
redefine it. Some nodes, such as level-of-detail (LOD) nodes, will not use the given
time interval.

• Accept(Visitor). This function identifies the node type to the Visitor by calling an
appropriate Visitor function for the node. The Visitor function performs an
appropriate operation given the type. For example, a State node would call VisitState
and a Transform node would call VisitTransform. Depending on the subclass of
Visitor, the VisitTransform function may call Apply, Update, or neither for the node.
A visitor may continue traversal by calling Accept for each child node. This method of
identifying two unknown types is called "double dispatch." The scene graph uses this
mechanism to implement the "Visitor" design pattern.

Derived classes include Geometry, Light, State, and Compound.

 40

������2�

The Geometry base class represents a set of renderable primitives. Geometry is stored as an
array of vertices and an array of indexes to the vertex array. The Geometry class does not
define the type of primitives it represents.

class Geometry : public Node
{
public:
 enum NormalModeEnum
 {
 GEO_NM_NONE,
 GEO_NM_SINGLE,
 GEO_NM_FACE,
 GEO_NM_VERTEX,
 GEO_NM_FACEVERTEX
 };

 enum ColorModeEnum
 {
 GEO_CM_NONE,
 GEO_CM_SINGLE,
 GEO_CM_FACE,
 GEO_CM_VERTEX,
 GEO_CM_FACEVERTEX
 };

 enum TextureModeEnum
 {
 GEO_TM_NONE,
 GEO_TM_2DCOORDS,
 GEO_TM_3DCOORDS
 };

protected:
 // OpenGL display list
 unsigned int displayList;

 // rendering settings
 bool renderWireframe;
 NormalModeEnum normalMode;
 ColorModeEnum colorMode;
 TextureModeEnum textureMode;

 // vertex properties
 Reference<VertexArray> vertexArray;
 Reference<NormalArray> normalArray;
 Reference<TexCoord2Array> texCoord2Array;
 Reference<TexCoord3Array> texCoord3Array;
 Reference<ColorArray> colorArray;
 Reference<IndexArray> indexArray;

public:
 Geometry();

 // array accessors
 const Vector3& Vertex(int i) const;
 const Vector3& Normal(int i) const;
 const Vector2& TexCoord2(int i) const;
 const Vector3& TexCoord3(int i) const;
 const Vector3& Color(int i) const;
 const unsigned int Index(int i) const;

 Vector3& Vertex(int i);
 Vector3& Normal(int i);
 Vector2& TexCoord2(int i);
 Vector3& TexCoord3(int i);
 Vector3& Color(int i);
 unsigned int Index(int i);

 41

 void Vertices(Reference<VertexArray> ref);
 void Normals(Reference<NormalArray> ref);
 void TexCoords2(Reference<TexCoord2Array> ref);
 void TexCoords3(Reference<TexCoord3Array> ref);
 void Colors(Reference<ColorArray> ref);
 void Indexes(Reference<IndexArray> ref);

 // display list accessors
 unsigned int DisplayList() const;
 void DisplayList(unsigned int displayList);

 // render mode accessors
 bool WireFrame() const;
 void WireFrame(bool state = true);

 NormalModeEnum NormalMode() const;
 ColorModeEnum ColorMode() const;
 TextureModeEnum TextureMode() const;

 void NormalMode(NormalModeEnum mode);
 void ColorMode(ColorModeEnum mode);
 void TextureMode(TextureModeEnum mode);

 // rendering operations
 void CreateDisplayList();
 virtual void Render() const;

 // node operations
 virtual void Accept(Visitor &visitor);
 virtual void Apply(Visitor& visitor);

protected:
 // rendering operations
 virtual void RenderVertex(int i) const;
 virtual void RenderPolygon(int iPoly) const;
};

Optional arrays include color, normal, 2D texture coordinate, or 3D texture coordinate arrays.
2D and 3D texture coordinate arrays may not be used simultaneously. Array specification has
five modes:

• None: No values are supplied and the array is ignored.

• Single: A single value is supplied for the entire geometry.

• Face: Values are supplied for each face.

• Vertex: Values are supplied for each vertex.

• FaceVertex: Values are supplied for each vertex of each face. This allows faces sharing
a vertex to define different values for the vertex.

Color and normal specification includes all of these modes. Texture coordinate specification
includes only None, Vertex, and FaceVertex modes.

Derived classes include TriangleGeometry. Triangle strips and triangle fans are more
efficient but less flexible representations of triangles. They could be implemented as
additional classes derived from Geometry.

 42

TriangleGeometry

The TriangleGeometry class represents a set of triangles. It supports ray intersection testing
by testing each triangle.

class TriangleGeometry : public Geometry
{
public:
 // rendering
 virtual void Render() const;

 // intersection
 virtual bool ComputeRayIntersection(real& tRay,
 Vector2& vCoord, const Ray3& ray) const;

protected:
 virtual void RenderPolygon(int iPoly) const;
};

0�����

The Light class represents an OpenGL light with ambient, diffuse, and specular properties.
Any lights that are traversed by a RenderVisitor will be activated. If the maximum number
of lights is reached during a traversal, no additional lights will be activated.

class Light : public Node
{
protected:
 Vector4 vAmbient, vDiffuse, vSpecular;
 real specularExp;

public:
 Light();
 Light(const Light& light);

 // accessors
 const Vector4& Ambient() const;
 const Vector4& Diffuse() const;
 const Vector4& Specular() const;

 void Ambient(const Vector4& v);
 void Diffuse(const Vector4& v);
 void Specular(const Vector4& v);

 // light operations
 virtual void Configure(GLenum lightNum,
 const Vector3& vPosition) const;

 // node operations
 virtual void Accept(Visitor &visitor);
};

�

!�����

The State base class, derived from Node, represents a rendering state that applies to all nodes
visited after the State node. A specific state cannot be deactivated unless another state
overrides it. Derived classes include Material, Texture, and Shaders.

 43

class State : public Node
{
public:
 // node operations
 virtual void Accept(Visitor &visitor);
};

Material

The Material class represents the ambient, diffuse, and specular properties of a renderable
surface.

class Material : public State
{
protected:
 Vector3 vAmbient, vDiffuse, vSpecular;

public:
 // constructors
 Material();
 Material(const Material &mat);

 // accessors
 const Vector3& Ambient() const;
 const Vector3& Diffuse() const;
 const Vector3& Specular() const;

 Vector3& Ambient();
 Vector3& Diffuse();
 Vector3& Specular();

 void Ambient(const Vector3& v);
 void Diffuse(const Vector3& v);
 void Specular(const Vector3& v);

 // node operations
 virtual void Apply(Visitor &visitor);
};

Texture

The Texture class contains an OpenGL texture number and a slot number for multitexturing.
This class does not contain actual texture data or specify whether it is a 1D, 2D, or 3D texture.

class Texture : public State
{
protected:
 unsigned int texType, texNum, texSlot;

public:
 Texture();
 virtual ~Texture();

 // accessors
 unsigned int TexType() const;
 unsigned int TexNum() const;
 unsigned int TexSlot() const;

 void TexType(unsigned int type);
 void TexNum(unsigned int num);
 void TexSlot(unsigned int slot);

 // texture operations

 44

 void Generate();
 void Delete();

 // node operations
 virtual void Apply(Visitor &visitor);
};

Shader

The Shader class can represent either a vertex or fragment shader. Shaders are based on the
Cg shader language and NVIDIA's Cg runtime library.

Before using any Cg shaders, a Cg context must be created by calling CreateContext.

class Shader : public State
{
protected:
 static CGcontext context;

protected:
 CGprogram program;
 CGprofile profile;

public:
 Shader();

 // accessors
 void Profile(CGprofile profile);
 CGprofile Profile() const;

 // Cg context creation
 static void CreateContext();

 // program loading
 bool Read(const char *file);

 // node operations
 virtual void Apply(Visitor& visitor);

protected:
 // shader operations
 virtual void BindParameters();
 virtual void LoadUniformParameters();
};

�������

The Compound base class represents any node with children. It does not define the type of
storage used for children.

class Compound : public Node
{
public:
 // node operations
 virtual void Accept(Visitor& visitor);
 virtual void Revert(Visitor& visitor);
 virtual void Traverse(Visitor& visitor) = 0;
};

 45

Derived classes include Group.

�����

The Group base class stores a set of child nodes.

class Group : public Compound
{
protected:
 std::vector<Node*> nodes;

public:
 // group operations
 int Size() const;
 Node& Child(int index) const;

 void Add(Node& node);
 void Insert(int index, Node& node);
 bool Remove(Node& node);
 void Remove(int index);
 void Clear();

 bool Find(int& index, const Node& node,
 int start = 0) const;

 // node operations
 virtual void Traverse(Visitor& visitor);
};

Child nodes are stored internally as an array. The choice of an array instead of a linked list
increases access speed but decreases the speed of insertions and deletions. Applications that
make many insertions and deletions in real-time should define a more suitable node.

Derived classes include Transform.

����#(���

The Transform base class, derived from Group, represents any transformation that can be
represented by a matrix. Classes derived from Transform must define functions to convert
the transformation and its inverse to matrices. This requirement ensures that any sequence of
Transform nodes may be concatenated and that an inverse concatenation can be computed as
efficiently as possible. Derived classes include RigidTransform, ScaleTransform,
MatrixTransform, and TransformPath.

class Transform : public Group
{
public:
 // transform operations
 void Apply() const;
 void ApplyInverse() const;
 static void Revert();

 // matrix operations
 virtual void ToMatrix(Matrix4& m) const = 0;
 virtual void InverseToMatrix(Matrix4& m) const = 0;

 // node operations

 46

 virtual void Accept(Visitor &visitor);
 virtual void Apply(Visitor &visitor);
 virtual void Revert(Visitor &visitor);
};

RigidTransform

The RigidTransform class represents a rigid-body transformation, which consists of a
translation and rotation. The translation is represented as a three-vector and the rotation is
represented as a quaternion. The use of a quaternion reduces the number of arithmetic
operations involved in a rotation, avoids the problem of Gimbal lock, and allows spherical
linear interpolation.

class RigidTransform : public Transform
{
protected:
 Vector3 vTranslation;
 Quaternion qOrientation;

public:
 RigidTransform();
 RigidTransform(const RigidTransform &trans);

 // accessors
 const Vector3& Translation() const;
 const Quaternion& Orientation() const;

 Vector3& Translation();
 Quaternion& Orientation();

 void Translation(const Vector3& v);
 void Orientation(const Quaternion& q);

 // transform operations
 void Translate(const Vector3& v);
 void Rotate(const Quaternion& q);

 // matrix operations
 virtual void ToMatrix(Matrix4& m) const;
 virtual void InverseToMatrix(Matrix4& m) const;
};

ScaleTransform

The ScaleTransform class represents a scale transformation. The actual scaling is stored as a
three-vector, allowing non-uniform scaling.

class ScaleTransform : public Transform
{
protected:
 Vector3 vScale;

public:
 ScaleTransform();
 ScaleTransform(const ScaleTransform &scale);

 // accessors
 const Vector3& Scale() const;
 Vector3& Scale();
 void Scale(const Vector3& v);

 47

 // matrix operations
 virtual void ToMatrix(Matrix4& m) const;
 virtual void InverseToMatrix(Matrix4& m) const;
};

MatrixTransform

The MatrixTransform class represents an arbitrary matrix transformation. Both the matrix
and its inverse must be explicitly defined. This class may be used for shear, projection, or
other transformations that do not have their own class.

class MatrixTransform : public Transform
{
protected:
 Matrix4 m, mInverse;

public:
 // accessors
 const Matrix4& Matrix() const;
 const Matrix4& MatrixInverse() const;

 Matrix4& Matrix();
 Matrix4& MatrixInverse();

 void Matrix(const Matrix4& m);
 void MatrixInverse(const Matrix4& mInverse);

 // matrix operations
 virtual void ToMatrix(Matrix4& m) const;
 virtual void InverseToMatrix(Matrix4& m) const;
};

TransformPath

The TransformPath class contains a list of pointers to Transform nodes, but it does not
store actual transformations. This implementation allows a TransformPath node to use
Transform nodes that may be changing without requiring the TransformPath node to
update itself. This class is useful when defining a camera transformation for a camera that has
several transformations applied to it.

class TransformPath : public Transform
{
protected:
 std::list<Transform*> transformList;

public:
 // accessors
 const std::list<Transform*>& TransformList() const;
 std::list<Transform*>& TransformList();

 void PushTransform(Transform& transform);
 void PopTransform();
 void ClearTransforms();

 // matrix operations
 virtual void ToMatrix(Matrix4& m) const;
 virtual void InverseToMatrix(Matrix4& m) const;
};

 48

������#�

The Camera base class, derived from Object, represents a projection transformation. It
requires a view aspect ratio (view height divided by view width). It declares a virtual function
to apply the projection, but it does not define it. Derived classes include
OrthographicCamera and PerspectiveCamera.

class Camera : public Object
{
protected:
 real aspect, zNear, zFar;

public:
 Camera();
 Camera(real zNear, real zFar, real aspect = 1.0f);

 // accessors
 const real& Near() const;
 const real& Far() const;
 const real& Aspect() const;

 real& Near();
 real& Far();
 real& Aspect();

 void Clipping(real zNear, real zFar);
 void Near(real zNear);
 void Far(real zFar);
 void Aspect(real aspect);

 // camera operations
 virtual void ComputeFrustum(Frustum& frustum) const;
 virtual void ComputeRay(Ray3& ray, real x, real y) const;
 virtual void ComputeProjection(Matrix4& m) const;
 virtual void ApplyProjection() const;
};

OrthographicCamera

The OrthographicCamera class represents an orthographic (or parallel) projection. In this
type of projection, parallel lines remain parallel rather than converging as the distance from
the camera approaches infinity. This class contains the width of the projection in local
coordinates.

class OrthographicCamera : public Camera
{
protected:
 real width;

public:
 // constructors
 OrthographicCamera();
 OrthographicCamera(const OrthographicCamera &cam);
 OrthographicCamera(real zNear, real zFar, real width,
 real aspect = 1.0f);

 // accessors
 real Width() const;
 real& Width();
 void Width(real width);

 // camera operations
 real HalfWidth() const;

 49

 real HalfHeight() const;

 // camera operations
 virtual void ComputeFrustum(Frustum& frustum) const;
 virtual void ComputeRay(Ray3& ray, real x, real y) const;
 virtual void ComputeProjection(Matrix4& m) const;
 virtual void ApplyProjection() const;
};

PerspectiveCamera

The PerspectiveCamera class represents a perspective projection, defined by a horizontal
field-of-view (FOV) angle.

class PerspectiveCamera : public Camera
{
protected:
 real yFov;

public:
 PerspectiveCamera();
 PerspectiveCamera(real zNear, real zFar, real yFov,
 real aspect = 1.0f);
 PerspectiveCamera(const PerspectiveCamera &cam);

 // accessors
 const real& FieldOfView() const;
 real& FieldOfView();
 void FieldOfView(real yFov);

 // camera operations
 virtual void ComputeFrustum(Frustum& frustum) const;
 virtual void ComputeRay(Ray3& ray, real x, real y) const;
 virtual void ComputeProjection(Matrix4& m) const;
 virtual void ApplyProjection() const;
};

��#���#�

The Visitor virtual base class represents a scene graph traversal based on the "Visitor" design
pattern. This design pattern allows custom traversals to be defined without modifying existing
node classes.

The Visitor class contains redefinable functions to traverse Node, Geometry, Light, State,
Group, and Transform classes. Derived classes include CullVisitor, RenderVisitor,
PickVisitor, UpdateVisitor, and CollisionVisitor.

class Visitor : public Object
{
protected:
 std::vector<Compound*> parentStack;
 int parentCount;
 MatrixStack viewMatrixStack;
 MatrixStack objectMatrixStack;

public:
 Visitor();

 // accessors
 bool ValidParent() const;

 50

 Compound& CurrentParent() const;

 const MatrixStack& ViewMatrixStack() const;
 const MatrixStack& ObjectMatrixStack() const;
 MatrixStack& ViewMatrixStack();
 MatrixStack& ObjectMatrixStack();

 // matrix operations
 void ComputeMatrix(Matrix4& m) const;
 void ComputeInverseMatrix(Matrix4& m) const;

 // overrides
 virtual bool TestBounds(Volume& bounds);
 virtual void VisitChild(Node& node);
 virtual void VisitNode(Node& node);
 virtual void VisitGeometry(Geometry& geometry);
 virtual void VisitLight(Light& light);
 virtual void VisitState(State& state);
 virtual void VisitCompound(Compound& compound);
 virtual void VisitTransform(Transform& transform);
};

CullVisitor

The CullVisitor class traverses a scene, testing node bounding volumes against a frustum.
Nodes without bounding volumes are assumed to be in the frustum. This traversal produces a
simpler scene tree consisting of Transform, State, and Geometry nodes.

class CullVisitor : public Visitor
{
protected:
 std::stack<Frustum*> frustumStack;
 RenderTree *currentTree;

public:
 // accessors
 std::stack<Frustum*>& FrustumStack();
 void CurrentTree(RenderTree& tree);

 // cull operations
 virtual void Cull(RenderTree& tree, const Node& node);
 virtual void Cull(RenderTree& tree, const Node& node,
 const Camera& camera, const Transform& viewTransform);

 // visitor operations
 virtual bool TestBounds(Volume& bounds);
 virtual void VisitNode(Node& node);
 virtual void VisitGeometry(Geometry& geometry);
 virtual void VisitLight(Light& light);
 virtual void VisitState(State& state);
 virtual void VisitCompound(Compound& compound);
 virtual void VisitTransform(Transform& transform);
};

RenderVisitor

The RenderVisitor class traverses a RenderTree object. Any lights that are encountered are
activated.

class RenderVisitor : public Visitor
{
protected:

 51

 RenderTree* currentTree;
 int lightCount;

public:
 RenderVisitor();

 // accessors
 int LightCount() const;
 void LightCount(int lightCount);

 // operations
 virtual void Render(const RenderTree& tree);
 virtual void Render(const RenderTree& tree,
 const Transform& viewTransform);

 // overrides
 virtual void VisitNode(Node& node);
 virtual void VisitGeometry(Geometry& geometry);
 virtual void VisitLight(Light& light);
 virtual void VisitState(State& state);
 virtual void VisitCompound(Compound& compound);
 virtual void VisitTransform(Transform& transform);
};

PickVisitor

The PickVisitor class traverses a scene, testing for intersections with a given ray and placing
intersection data in a given list.

class PickVisitor : public Visitor
{
public:
 struct Intersection
 {
 bool operator<(const Intersection& intersect) const;
 bool operator>(const Intersection& intersect) const;

 TransformPath transformPath;
 Node *node;
 Compound *parent;
 real tRay;
 Vector3 vPosition;
 Vector2 vCoord;
 };

 typedef std::list<Intersection> PickList;

protected:
 PickList *pickList;
 TransformPath transformPath;
 Ray3 pickRay;

public:
 // operations
 virtual void Pick(PickList& pickList,
 Node& node, const Ray3& ray);

 // overrides
 virtual bool TestBounds(Volume& bounds);
 virtual void VisitNode(Node& node);
 virtual void VisitGeometry(Geometry& geometry);
 virtual void VisitLight(Light& light);
 virtual void VisitState(State& state);
 virtual void VisitCompound(Compound& compound);
 virtual void VisitTransform(Transform& transform);

protected:
 virtual bool PickNode(Node& node);
};

 52

UpdateVisitor

The UpdateVisitor class traverses a scene, calling node update functions with a given time
interval.

class UpdateVisitor : public Visitor
{
protected:
 real interval;

public:
 // accessors
 real Interval() const;
 void Interval(real interval);

 // update operations
 void Update(Node& node, real interval);
 void Update(Node& node, real interval,
 Transform& viewTransform);

 // visitor operations
 virtual void VisitNode(Node& node);
 virtual void VisitGeometry(Geometry& geometry);
 virtual void VisitLight(Light& light);
 virtual void VisitState(State& state);
 virtual void VisitCompound(Compound& compound);
 virtual void VisitTransform(Transform& transform);
};

 53

/������-��
�����#�����#����

$����������#�����/���2����##�#�

Multi-dimensional array classes include Vector, MultiIndex, MultiArray, and
MultiIterator. These classes are templated to ensure that low-level, per-element operations
are performed without function calls.

Vector

The Vector class represents a fixed-size vector. It requires number of elements and element
type template parameters.

template <class T, int S>
class Vector
{
protected:
 T v[S];

public:
 Vector();
 Vector(const T v[S]);
 Vector(const Vector& v);
 Vector(const T& value);

 // accessors
 const T& operator[](int i) const;
 T& operator[](int i);

 // assignment
 Vector& operator=(const Vector& v);

 // boolean operations
 bool operator==(const Vector& v) const;
 bool operator!=(const Vector& v) const;

 // arithmetic operations
 Vector operator*(const T& k) const;

 template <class T2, int S2>
 friend Vector<T2, S2> operator*(T2 k,
 const Vector<T2, S2>& v);

 Vector operator/(const T& k) const;
 Vector operator+(const Vector& v) const;
 Vector operator-(const Vector& v) const;
 Vector operator-() const;

 Vector& operator*=(const T& k);
 Vector& operator/=(const T& k);
 Vector& operator+=(const Vector& v);
 Vector& operator-=(const Vector& v);

 // miscellaneous operations
 void Fill(const T& k);

 // stream operations
 template <class T2, int S2>
 friend std::ostream& operator<<(
 std::ostream& stream,
 const Vector<T2, S2>& v);

 template <class T2, int S2>

 54

 friend std::istream& operator>>(
 std::istream& stream,
 Vector<T2, S2>& v);
};

MultiIndex

The MultiIndex class contains a single function to compute an index within a multi-
dimensional array, given a Vector location and a Vector containing array bounds. It requires
a number of dimensions template parameter. This class is templated to allow index
computation within any number of dimensions without using loops or function calls.

template <int D>
struct MultiIndex
{
 static unsigned int Compute(
 const Vector<int, D>& location,
 const Vector<int, D>& dims);
};

MultiArray

The MultiArray class represents a multi-dimensional array. It requires number of dimensions
and element type template parameters. To resize a MultiArray, a Vector containing the
dimensions of the array is required.

template <class T, int D>
class MultiArray
{
public:
 typedef MultiIterator<D> Iterator;

protected:
 Vector<int, D> dims;
 std::vector<T> array;

public:
 MultiArray();
 MultiArray(const Vector<int, D>& dims);

 // accessors
 const Vector<int, D>& Dims() const;
 const T& operator[](int i) const;
 T& operator[](int i);

 // array operations
 unsigned int Size() const;
 unsigned int ByteSize() const;
 bool Empty() const;
 virtual void Clear();
 void Resize(const Vector<int, D>& dims);
 void Fill(const T& value);

 // stream operations
 template <class T2, int D2>
 friend std::ostream& operator<<(
 std::ostream& stream,
 const MultiArray<T2, D2>& array);

 template <class T2, int D2>
 friend std::istream& operator>>(

 55

 std::istream& stream,
 MultiArray<T2, D2>& array);
};

MultiIterator

The MultiIterator class represents an iteration through a multi-dimensional array. It requires
a number of bytes template parameter. The purpose of this class is to automate efficient array
iteration.

The iteration must be initialized by supplying a Vector containing the dimensions of an array.
A range may be set by supplying minimum and maximum Vector positions within the array.
A Vector step value may also be supplied. Before iteration occurs, the Start function must be
called. This function performs precomputations to ensure maximum efficiency during
iteration. The ++ operation is overloaded for iteration.

template <int D>
class MultiIterator
{
protected:
 Vector<int, D> dims, first, last, step;
 Vector<int, D> skip, current;
 unsigned int index;

public:
 MultiIterator();
 MultiIterator(const MultiIterator& i);
 MultiIterator(const Vector<int, D>& dims);
 MultiIterator(const Vector<int, D>& dims,
 const Vector<int, D>& first,
 const Vector<int, D>& last);

 // accessors
 const Vector<int, D>& Dims() const;
 const Vector<int, D>& First() const;
 const Vector<int, D>& Last() const;
 const Vector<int, D>& Step() const;
 const Vector<int, D>& Skip() const;
 const Vector<int, D>& Current() const;
 unsigned int Index() const;

 Vector<int, D> Extent() const;

 void Limits(const Vector<int, D>& dims);
 void Limits(const Vector<int, D>& dims,
 const Vector<int, D>& first,
 const Vector<int, D>& last);
 void Step(const Vector<int, D>& step);

 // operations
 void Clear();

 // iteration
 void Start();
 bool Valid() const;
 void operator++(int);

 static void Iterate(
 const Vector<int, D>& first,
 const Vector<int, D>& last,
 const Vector<int, D>& step,
 const Vector<int, D>& skip,
 Vector<int, D>& current,
 unsigned int& index);

 56

};

$����������#�����/���2�)�������#�

Several common operations are provided for use with the multi-dimensional array classes.
These operations are implemented as templated functions, requiring four template parameters:
input type, input dimensions, output type, and output dimensions.

These operations include the following:

• CopyArray. This operation simply copies input values to output values. To perform a
subsampling operation, the input iterator step values may be used.

• FindMinMax. This operation determines the minimum and maximum input values.

• ApplyThreshold. This operation compares input values against a threshold value.
Values less than the threshold will produce a minimum value. Values greater than or
equal to the threshold will produce a maximum value.

• ApplyLinearMap. Given an input range and an output range, this operation linearly
maps input values in the input range to the output range. Values below the input
minimum will map to the output minimum. Values above the input maximum will
map to the output maximum.

• ComputeWeightedSum. Given two input arrays and two weightings, this operation
computes weighted sums and stores the results in the output array.

• ComputeGradient. This operations performs simple gradient computations. For a
given location, delta values are defined as

����#������##�#�

Dataset

The Dataset class represents a five-dimensional array of bytes, organized into sets of three-
dimensional arrays of cells. The dimensions are step count, depth, height, width, and cell size.
This class is not templated to allow the cell size to be determined at run-time.

Dataset declares the virtual functions Read, Write, ReadHeader, and WriteHeader. By
default, Read and Write immediately call ReadHeader or WriteHeader and then read or write
the dataset.

class Dataset : public MultiArray<unsigned char, 5>
{
public:
 Dataset();
 Dataset(int cellSize, int width, int height,

 57

 int depth, int stepCount);

 // accessors
 int CellSize() const;
 int Width() const;
 int Height() const;
 int Depth() const;
 int StepCount() const;

 // array operations
 void Resize(const Vector<int, 5>& dims);
 void Resize(int cellSize, int width,
 int height, int depth, int stepCount);

 // dataset computations
 int VolumeCellCount() const;
 int VolumeSize() const;
 int VolumeOffset(int i) const;
 int PositionOffset(int x, int y, int z) const;

 // file operations
 virtual bool ReadHeader(std::istream& is);
 virtual bool WriteHeader(std::ostream& os) const;
 bool Read(const char file[]);
 bool Write(const char file[]) const;
 static bool SeekKey(std::istream& is, const char key[]);
};

MrDataset

The MrDataset class represents a special type of dataset. It contains X and Y field of view
values, a slice thickness value, and a skip value. It overrides the ReadHeader and
WriteHeader functions declared in Dataset.

class MrDataset : public Dataset
{
protected:
 float xFov, yFov, thickness, skip;

public:
 MrDataset();
 MrDataset(int cellSize, int width,
 int height, int depth, int stepCount);

 // accessors
 float FovX() const;
 float FovY() const;
 float Thickness() const;
 float Skip() const;

 void FovX(float xFov);
 void FovY(float yFov);
 void Thickness(float thickness);
 void Skip(float skip);

 // general operations
 virtual void Clear();

 // dataset computations
 float CellWidth() const;
 float CellHeight() const;
 float CellDepth() const;

 // file operations
 virtual bool ReadHeader(std::istream& is);
 virtual bool WriteHeader(std::ostream& os) const;
};

 58

MrDataset file headers take the following form:

3.0.0 BINARY DISCRETE_SET
NUM_DIMS 4
SIZE [width] height] [depth] [steps]
FOV [x fov] [y fov]
THICKNESS [z thickness]
SKIP [z skip]
BYTES_PER_CELL [bytes per cell]
TYPE RAW

BigEndian

The BigEndian class represents a set of bytes in big endian order. It requires a number of
bytes template parameter. Cast and assignment operations are overloaded to allow this class to
behave the same as an unsigned integer.

template <int S>
class BigEndian
{
protected:
 unsigned char bytes[S];

public:
 // accessors
 unsigned char operator[](int i) const;
 unsigned char& operator[](int i);

 // conversions
 operator unsigned int() const;
 BigEndian<S>& operator=(unsigned int value);
};

Datasets are assumed to contain values in big endian order. To use these values, an array of
unsigned char values within a dataset should be interpreted as an array of BigEndian values.

 59

/������-��
�/������������#����

�'�����##�#�

Director

The "Director" pattern is used to consolidate interactions among GUI objects.

The Director abstract base class implements the "Director" pattern. It contains the single
virtual function Changed(Fl_Widget).

class Director
{
public:
 // interface creation
 virtual void CreateInterface();

 // director operations
 virtual void Changed(Fl_Widget& widget);
};

A subclass of Director would implement Changed to determine which member object called
it, what changed, and what actions should be taken. It identifies the object by comparing
memory addresses of member objects and the object that called Change. The Director may
then query the object to determine what changed.

CallbackWindow

The CallbackWindow class, derived from Fl_Gl_Window, provides a wrapper for an
OpenGL window that supports rendering, mouse, and initialization callbacks. Defining these
callbacks can avoid having to derive new window types to extend functionality. This class
also tracks mouse motion and may be managed with a Director.

class CallbackWindow : public Fl_Gl_Window
{
public:
 typedef void Callback(CallbackWindow&, void*);

protected:
 Director *director;
 float clearColor[4];
 int xMouse,
 yMouse;
 unsigned int eventState;
 Callback *onSetDefaults,
 *onPreRender,
 *onPostRender,
 *onMouseDown[3],
 *onMouseUp[3],
 *onMouseMove,
 *onMouseDrag[3],
 *onMouseWheel;

public:
 CallbackWindow(int x, int y, int w, int h,

 60

 Director& director, const char *label = 0);

 // accessors
 void ClearColor(float r, float g, float b);

 int MouseX() const;
 int MouseY() const;
 int MouseDX() const;
 int MouseDY() const;

 void Changed();

 // callback initialization
 void OnSetDefaults(Callback *cb);
 void OnPreRender(Callback *cb);
 void OnPostRender(Callback *cb);
 void OnMouse1Down(Callback *cb);
 void OnMouse2Down(Callback *cb);
 void OnMouse3Down(Callback *cb);
 void OnMouse1Up(Callback *cb);
 void OnMouse2Up(Callback *cb);
 void OnMouse3Up(Callback *cb);
 void OnMouse1Drag(Callback *cb);
 void OnMouse2Drag(Callback *cb);
 void OnMouse3Drag(Callback *cb);
 void OnMouseMove(Callback *cb);
 void OnMouseWheel(Callback *cb);

 // window operations
 virtual int handle(int event);

protected:
 // window operations
 virtual void SetDefaults();
 virtual void Render();

private:
 void draw();
};

The following callbacks may be defined:

• OnSetDefaults. This function is called when the window must be initialized. This
function may be used to load OpenGL extensions.

• OnPreRender. This function is called before the window renders.

• OnPostRender. This function is called after the window renders.

• OnMouse1Down, OnMouse2Down, OnMouse3Down. These functions are called
when the appropriate mouse button has been pressed. They will be called unless the
mouse button was previously up.

• OnMouse1Up, OnMouse2Up, OnMouse3Up. These functions are called when the
appropriate mouse button has been released. They will be called unless the mouse
button was previously down.

• OnMouse1Drag, OnMouse2Drag, OnMouse3Drag. These functions are called
when the mouse is moved while the appropriate mouse button is down.

 61

• OnMouseMove. This function is called when the mouse moves.

• OnMouseWheel. This function is called when the mouse wheel rotates.

SceneWindow

The SceneWindow class, derived from CallbackWindow, represents a 3D scene that may be
translated, rotated, or scaled. It provides default input callbacks that may be used for these
operations.

It contains a root node within a RigidTransform within a ScaleTransform. It requires a
subclass of Camera to be defined.

SceneWindow contains a PickVisitor::PickList object.

class SceneWindow : public CallbackWindow
{
protected:
 Camera *camera;
 RigidTransform cameraTransform;
 ScaleTransform scaleTransform;
 RigidTransform rigidTransform;
 PickVisitor picker;
 PickVisitor::PickList pickList;

public:
 SceneWindow(int x, int y, int w, int h,
 Director& director, const char *label = 0);

 // accessors
 PickVisitor::PickList& PickList();

 void SceneCamera(Camera& camera);
 void AddNode(Node& node);
 void Position(const Vector3& v);
 void Orientation(const Quaternion& q);
 void Scale(const Vector3& v);
 void CameraPosition(const Vector3& v);
 void CameraOrientation(const Quaternion& q);

 void Update(real interval = 1);

 // default control callbacks
 static void MouseDownPick(CallbackWindow& win, void*);
 static void MouseDragTranslate(CallbackWindow& win, void*);
 static void MouseDragRotate(CallbackWindow& win, void*);
 static void MouseDragScale(CallbackWindow& win, void*);
 static void MouseWheelScale(CallbackWindow& win, void*);

protected:
 // window operations
 virtual void SetDefaults();
 virtual void Render();
};

�

�

�

 62

��(�������)�������#�

ComputeRiseFall

This operation computes a rise and fall value at each location in a dataset volume. Given a
location with a time step intensity curve, rise is defined as the difference between the first
intensity value and the maximum intensity value in the curve. Fall is defined as the difference
between the maximum intensity value in the curve and the last intensity value.

��(����������##�#�

ConfidenceData

The ConfidenceData contains a volume of confidence values, precomputed values, and
intermediate values. It contains an Update function that recomputes confidence values,
requiring rise threshold, fall threshold, rise weight, and confidence threshold parameters. It
contains a dirty state that determines what computations are performed when Update is
called, ensuring that the fewest possible operations are performed. Dirty states roughly
represent the stages of confidence computation.

Dirty states include the following:

• Current. Nothing has changed since the last update.

• ConThreshold. Confidence threshold has changed.

• RiseWeight. Rise weight has changed.

• RiseFallThreshold. Rise and fall thresholds have changed.

• Precomputations. The original dataset has changed. When a new dataset is loaded,
this state should be set.

class ConfidenceData
{
public:
 // these states are in the order of the computations
 enum DirtyState
 {
 DDS_CURRENT,
 DDS_CONTHRESHOLD,
 DDS_RISEWEIGHT,
 DDS_RISEFALLTHRESHOLD,
 DDS_MINSTEPMAX,
 DDS_LINEARRISEWEIGHT,
 DDS_PRECOMPUTATIONS
 };

 typedef MultiArray<short, 3> ShortArray3;
 typedef MultiArray<unsigned char, 3> ByteArray3;

public:
 ShortArray3 rise, fall,

 63

 gradient;
 ByteArray3 maxSteps,
 riseNorm,
 fallNorm,
 linearDiff,
 stepStates,
 confidence;
 int minIntensity,
 maxIntensity,
 minRise,
 maxRise,
 minFall,
 maxFall,
 minLinearDiff,
 maxLinearDiff,
 minConfidence,
 maxConfidence;

protected:
 DirtyState dirtyState;

public:
 ConfidenceData();

 // accessors
 void Dirty(DirtyState state);
 DirtyState Dirty() const;

 // operations
 void Update(const Dataset& intensity,
 ByteArray3& confidenceNorm,
 float riseThreshold,
 float fallThreshold,
 float riseWeight,
 float linearDiffWeight,
 float conThreshold);
};

�������������##�#�

CubeSlices

The CubeSlices class, derived from TriangleGeometry, represents a series of plane slices
through a unit cube.

class CubeSlices : public TriangleGeometry
{
protected:
 int sliceCount;
 bool facingCamera;
 Vector3 vNormal;
 Matrix3 mTexOrientation;
 Vector3 vTexOffset;
 real zNear, zFar;

public:
 CubeSlices();

 // accessors
 void SliceCount(int sliceCount);
 void FaceCamera(bool state);
 void Clipping(real zNear, real zFar);
 void Normal(const Vector3& v);
 void TexOrientation(const Matrix3& m);
 void TexOffset(const Vector3& v);

 // node operations

 64

 virtual void Update(Visitor& visitor, real interval);

protected:
 // slice generation
 static void FindNearestVertex(Vector3& vNearest,
 const Vector3& vNormal);
 static real GetDistance(const Vector3& v1, const Vector3& v2,
 const Vector3& vCenter);

 static void SortSlice(Vector3 verts[], int poly[],
 int vertexCount);
 static void GetSlice(Vector3 vNormal, Vector3 vPoint,
 Vector3 verts[6], int &vertexCount);
};

Primitives

The following classes are derived from Node:

• SelectionAxes. This node renders three dotted lines within a unit cube, intersecting at
a selected position.

• LabeledAxes. This node renders three axes with letters to indicate the orientation of
the axes.

• WireCube. This node renders a unit wire cube.

class SelectionAxes : public Node
{
public:
 Vector3 vPosition;
 virtual void Apply(Visitor &visitor);
};
class LabelledAxes : public Node
{
public:
 virtual void Apply(Visitor &visitor);
 static void RenderString(std::string str);
};
class WireCube : public Node
{
public:
 // intersection calculations
 virtual bool TestRay(const Ray3& ray) const;
 virtual bool ComputeRayIntersection(real& tRay,
 Vector2& vCoord, const Ray3& ray) const;

 // node operations
 virtual void Apply(Visitor &visitor);
};

ConfidenceShader

The Confidence class, derived from Shader, represents a Cg fragment shader node with
window, level, opacity, and confidence opacity parameters. This node binds these parameters
to Cg shader parameters when rendering.

class ConfidenceShader : public Shader

 65

{
public:
 float window, level,
 opacity, conOpacity;

protected:
 CGparameter paramWindow, paramLevel,
 paramOpacity, paramConOpacity;

public:
 ConfidenceShader();

protected:
 // shader operations
 virtual void BindParameters();
 virtual void LoadUniformParameters();
};

�����(�������!������"�����#�

Three shader programs are used in the application: a 3D view shader, a 2D view shader, and a
highlight shader. The 3D view shader is used to render semi-transparent slices in the 3D view.
The 2D view shader is used to render the single, opaque slices in the 2D views. The highlight
shader is used to render the highlighted slices that appear in the 3D view that represent the 2D
view slices. These shaders generally perform the same operations, but differ in the way they
compute transparency.

The following is the entire 3D view shader program:

float4 main(in float3 texCoord : TEXCOORD0,
 uniform float window,
 uniform float level,
 uniform float opacity,
 uniform float conOpacity,
 uniform sampler3D tex0,
 uniform sampler2D tex1) : COLOR0
{
 float4 cell = tex3D(tex0, texCoord.xyz);

 // get truncated intensity
 float intensity = cell.g;
 intensity = (cell.r > 0.001) ? 1 : intensity;
 intensity *= 2;

 // apply window and level
 intensity -= level;
 intensity *= window;

 // compute confidence factor
 float confidence = cell.b;
 confidence *= confidence;
 confidence *= 4;
 confidence *= 4;
 confidence *= conOpacity;

 float alpha = (intensity * 0.1 + confidence) * opacity;

 // return color
 return float4(
 intensity + confidence,
 intensity - confidence,
 intensity - confidence,
 alpha);
}

 66

/�������������##�#�

MainDirector

The MainDirector class, derived from Director, contains all GUI components and data
associated with the main interface of the application.

The following classes are defined within MainDirector:

• WheelScroll. This class, derived from Fl_Scroll, overrides event handling so mouse
wheel events will only be handled when the cursor is within the window. The default
event handling behavior will only allow the window in focus to handle events.

• ShaderDisabler. This class, derived from State, disables any shaders when traversed.
This allows the labeled axis, bounding box, and selections to render properly when
they are traversed after the ShaderDisabler.

class MainDirector : public Director
{
public:
 // WheelGroup: Overrides handle to only take mouse wheel events
 // if the mouse is within the group bounds. This is necessary for
 // the viewports to work with scroll views.
 class WheelScroll : public Fl_Scroll
 {
 public:
 WheelScroll(int x, int y, int w, int h,
 const char *label = 0);
 virtual int handle(int event);
 };

 // ShaderDisabler: Disables 3D texturing and shaders so normal
 // lines may be drawn.
 class ShaderDisabler : public State
 {
 public:
 virtual void Apply(Visitor &visitor);
 };

 typedef MultiArray<unsigned char, 3> ByteArray3;

protected:
 // datasets
 MrDataset intensity;
 ByteArray3 confidenceNorm;
 ConfidenceData conData;
 int texWidth,
 texHeight,
 texDepth;

 // scene objects
 OrthographicCamera orthoCams[3];
 ScaleTransform voxelScale[4];
 Texture volumeTex;
 Texture transferTex;
 ConfidenceShader conShader2d,
 conShader3d,
 conShaderHighlight;
 RigidTransform volumeOrientation;
 CubeSlices cubeSlices[4];
 LabelledAxes labelledAxes;
 WireCube boundingBox;
 SelectionAxes selectionAxes;
 Material selectionMat;

 67

 Group cubeGroup,
 selectionAxes3D,
 selectionGroup,
 axisSliceGroup3D,
 axisSlices3D[3];
 RigidTransform axisSlicesPos3d[3];
 WireCube selectionBox3D;
 Vector3 vTexCoordScale;
 Matrix3 mTexOrientation;

 // interface
 Fl_Window *mainWin;
 char szWinTitle[64];
 SceneWindow *winScenes[4];
 Fl_Button *btnReset,
 *btnAddSelection,
 *btnRemoveSelection,
 *btnClearCurvesList;
 Fl_Round_Button *btnSwizzles[6];
 Fl_Value_Slider *sdrRiseThreshold,
 *sdrFallThreshold,
 *sdrRiseWeight,
 *sdrConThreshold,
 *sdrLinearRiseWeight,
 *sdrTimeStep;
 WheelScroll *scrCurvesList;
 Fl_Box *boxPositionInfo,
 *boxVolumeInfo;
 CallbackWindow *winPlot;
 Fl_Menu_Item popupMenu[11];
 std::list<Vector3> curvesList;

 // settings
 float window,
 level;

public:
 MainDirector();

 // accessors
 static MainDirector& Instance();

 // interface creation
 virtual void CreateInterface();

 // director operations
 virtual void Changed(Fl_Widget& widget);

 // application operations
 void ResetSettings();
 void OpenDataset(const char *file);
 void PickPoint(const Vector3& vPoint);
 void AddPoint(const Vector3& vPoint);
 void RefreshViews();
 void ResetViews();

protected:
 // interface operations
 void CreateSceneGroup();
 void CreateControlGroup();
 void CreateNavigationGroup();
 void CreateMainMenu();
 void CreatePopupMenu();

 // updates
 void UpdateWindowLevel();
 void UpdateConfidence();
 void UpdateVolumeTex();
 void UpdateVolumeScale();
 void ReloadShaders();

 // menu callbacks
 static void MnuOpenDataset (Fl_Widget*, void*);
 static void MnuCloseDataset (Fl_Widget*, void*);

 68

 static void MnuFileInformation (Fl_Widget*, void*);
 static void MnuExitApplication (Fl_Widget*, void*);

 // display tab callbacks
 static void ChkFastRender (Fl_Widget*, void*);
 static void ChkLocalVolume (Fl_Widget*, void*);
 static void ChkLabelledAxes (Fl_Widget*, void*);
 static void ChkBoundingBox (Fl_Widget*, void*);
 static void ChkSlicePositions (Fl_Widget*, void*);
 static void ChkStoredSelections (Fl_Widget*, void*);
 static void SdrOpacityChange (Fl_Widget*, void*);
 static void SdrConOpacityChange (Fl_Widget*, void*);
 static void SdrSliceCountChange (Fl_Widget*, void*);
 static void SdrTimeStepChange (Fl_Widget*, void*);
 static void BtnReloadShaders (Fl_Widget*, void*);
 static void BtnResetViews (Fl_Widget*, void*);

 // dataset tab callbacks
 static void BtnSetOrientation (Fl_Widget*, void*);
 static void ChkFlipAxis (Fl_Widget*, void*);

 // computation tab callbacks
 static void SdrSetConDirtyState (Fl_Widget*, void*);
 static void BtnApplyConfidence (Fl_Widget*, void*);
 static void BtnResetConfidence (Fl_Widget*, void*);

 // curves tab callbacks
 static void BtnAddSelection (Fl_Widget*, void*);
 static void BtnRemoveSelection (Fl_Widget*, void*);
 static void BtnClearSelections (Fl_Widget*, void*);
 static void BtnSelectCurve (Fl_Widget*, void*);

 // view callbacks
 static void MouseDragWindowLevel (CallbackWindow&, void*);
 static void ViewPostRender0 (CallbackWindow&, void*);
 static void ViewPostRender1 (CallbackWindow&, void*);
 static void ViewPostRender2 (CallbackWindow&, void*);
 static void CurveWindowRender (CallbackWindow&, void*);
 static void LoadExtensions (CallbackWindow&, void*);
 static void SetBlending (CallbackWindow&, void*);
};

 69

