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Chapter 1 - Introduction

Demands in computer graphics have caused great advances in computer
graphics hardware over the past fifteen years. With the increasing power of
computers, visualization of three-dimensional data by a computer has become
important in various fields of science. What was once an expensive and
complicated field is now easier and more affordable as commodity hardware is
able to process data at acceptable speeds and precision.

This report documents my senior project at the University of North
Carolina at Charlotte related to a promising area of computer graphics, GPU
computation, and ways in which this can support data processing for
visualization. Convolution was chosen as a practical application of GPU
computation. A two-dimensional convolution program, and a three-dimensional
convolution program were written using Cg, a high-level language for writing
programs which execute on graphics cards.

As commodity graphics hardware is rapidly evolving, there are still many
limitations on the current generation of this hardware. This led to many
unforeseen difficulties in reaching the goal of practical GPU computation. These

problems, as well as solutions, are documented.
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Chapter 2 - Background Information

2.1 GPU Computation

A GPU, or a Graphics Processing Unit, is a processor on a graphics card
[1]. Advanced commercial GPUs, from companies such as SGI, and modern
commodity GPUs, from companies such as NVIDIA and ATI, support advanced
computation through the use of fragment and vertex programs. A fragment
program processes fragments in a frame, returning color information for a given
fragment's coordinates [2]. A vertex program performs operations on all vertices
in a given context [2]. Fragment and vertex programs are often referred to as
“shaders.”

GPUs are stream processors. They are given a list of data (fragments or
vertices), and the programs are executed on each element of the list. GPUs
have multiple pipelines so data can be processed in parallel [3]. Due to the
specialized nature of the data, GPUs are greatly optimized compared to
traditional CPUs. “Stanford's lan Buck calculates that the current GeForce FX
5900's performance peaks at 20 Gigaflops, the equivalent of a 10-GHz Pentium”

[3].
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Figure 2.1 - The Programmable Graphics Pipeline [4]

Geometry and pixel data is streamed from the application (CPU-side) to
the graphics card. In a fixed-function pipeline, geometry in the form of vertices
and texture coordinates are transformed to prepare them for rasterization [10].
Parts of this transformation process can be configured by the application, but
these capabilities are limited. The primitive assembly stage involves performing
operations to generate fragments from the geometric data in relation to the
viewport [10]. These fragments are later applied color values dependent on
variables such as light sources and textures [10].

The programmable graphics pipeline (see Fig. 2.1) is similar to the
traditional fixed-function pipeline. A vertex processor carries out the operations
as specified by a vertex program. This program processes the geometric data
and transforms vertices [4]. The primitive assembly stage performs the same

way as in a fixed-function pipeline, generating fragments for the fragment
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processor. A fragment processor carries out the operations specified by a
fragment program. The fragment program returns parameters for each fragment
[4]. Usually, as in a fixed-function pipeline, this could simply be interpolated
color values from vertices or a color value from a texture. However, due to the
programmable nature of a fragment processor, more complex operations can be
performed on fragments.

There are limitations with this kind of architecture. Some features of
general-purpose CPUs are not available on GPUs. See section 6.1 for more

information.

2.2 The Test GPU

The programs were developed for use on the NV30 GPU. This processor
was developed by NVIDIA and is used in the GeforceFX 5200 and GeforceFX
5600.

2.3 Cg Language

While commodity GPUs began to support execution of external programs,
these programs had to be written in assembly for that particular type of GPU.
High-level programmable shader languages, such as RenderMan, have been
popular in slower, off-line rendering applications [4]. The need for a high-level
shading language supporting commodity GPUs from multiple vendors led to the

creation of the Cg shading language [4].

Cg is a GPU programming language created by NVIDIA. The language
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has a C-like syntax and philosophy in that it is hardware oriented, rather than
application oriented [12]. Rather than have data types for vertices and colors,
Cg supports generic types defined by the programmer with types such as arrays,
which can be used to store vertices and colors [12]. This freedom allows for
more computation-oriented programs rather than just traditional rendering-
specific programs. The syntax is modified to an extent from C in that Cg deals
with streams of data.

The creators of Cg had many goals for the language. Having a high-level
shading language simplifies the work of the programmer and increases
portability [12]. Programmers do not have to learn a different language for each
GPU, and programs written in Cg work on multiple GPUs.

To support past, present, and future GPUs and multiple computer
graphics APIs, the language makes use of a concept known as “profiles.” In the
Cg 1.2.1 release, there are six vertex profiles and eight fragment profiles [5].
Each profile has a set of supported features. This allows Cg to be expanded as
new GPUs are released, but fragments the Cg language since a developer can

not be sure what features the end-user's GPU will have.

Vertex Profiles Platform
vs_1 1 DirectX 8 and DirectX 9
vs_2_0 and vs_2_x DirectX 9
arbvpl OpenGL ARB_vertex_program
vp20, vp30 NV_Vertex_program 1.0 and 2.0
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Fragment/Pixel Profiles Platform
ps_1_1, ps_1_2 and ps_1_3 |DirectX 8 and DirectX 9
ps_2_0 and ps_2_x DirectX 9
arbfpl OpenGL ARB_fragment_program
fp20 NV_register_combiners and NV_Texture_shader
fp30 NV30 OpenGL fragment programs

Figure 2.2 - Supported profiles in Cg 1.2.1 [5]

Cg profiles can be grouped into two basic fields, differentiated by their
function and place in the pipeline: vertex profiles and fragment profiles. In the
pipeline, the vertex program is executed first, performing all geometric
operations. The fragment program is executed last, coloring the fragments in the
frame.

Cg programs can be compiled before running the CPU application, or
while the CPU application is running. Waiting to compile at CPU application
runtime slows the program, but allows for hardware and runtime dependent
settings to be set. For example, a Cg program may use features available only
on advanced GPUs. At application runtime, the application can determine what
support is available in the GPU and modify the Cg program in such a way as to
limit it to the user's GPU.

Data is passed to a Cg program in two ways. The CPU application may
pass “uniform parameters.” A uniform parameter is a constant passed to all calls
in a given fragment or vertex program. This could be the position of a light

source, the dimensions of a volume, a texture, or anything that is constant for the
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stream of data passed to the Cg program. Uniform parameters may not be
modified by a Cg program itself.

“Varying parameters” are passed to a Cg program by the GPU itself. A
Cg program accesses these by looking at registers in the graphics card. A
varying parameter could be texture coordinates, vertex coordinates, a color, or
any other data which is accessible from a Cg program through the graphics
card's registers. In general, the value of a varying parameter changes as
different elements of a stream are processed by a Cg program.

For examples of Cg fragment programs, see Appendix A.

2.4 Convolution

In general, “convolution is a mathematical operator which takes two
functions fand g and produces a third function that in a sense represents the
amount of overlap between fand a reversed and translated version of g”[7].
Image processing involves using a discreet convolution method, based on the

following functions [8]:

2D:0, =Y X1 (i+g-1,j+r-1)K (¢ ,r )

g=1 r=1
n o

3D:0,.yj,,<:ZZZI (i+g-1, j+r-1,k+s-1)K (g ,r ,s)

g=1 r=1 s=1
In this case, a kernel K is applied to an image I in the neighborhood of

(i, j, k) and returns a single value at that location. The kernel's size, and

therefore the window size,is m Xn Xo in three dimensions.
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The following example applies a 3x3, two-dimensional kernel to a single

color channel of a 4x4 image at a single point.

20 32 47 2

1 23
58 120 200 87
Image 33 8 74 7 Kernel ;1 g S -

4 2 65 3

3 3
Output 2’222 ZI (1+qg —1,24+r —1)K(q ,r )

g=1r=1
(20%1) (32%2) (47%3)
Output ,,=Y,|(58%4) (120%5) (200%6)
(33%7) (8x%8) (74%9)
Output ,,=3218

Convolution simplifies applying filtering operations to a set of data in
spatial domain. There are many well known filtering kernels. The
“VolumeViewerFilter” application generates averaging and Gaussian [9] filters.
For reference, this is how i an j are defined for the following examples:

Coordinates for a 3 x3Kernel
(—1,-1) (0,—1) (1,—1)
G,)=| (-1,0) (0,0) (1,0)
(—=1,1) (0,1) (1,1)

Averaging Filter Gaussian Filter
i+
DK, = T
(i en ) ik, —t
B 1 " 2xmxo
. 3D:K, k:e—3
3x3 Averaging Kernel e Dl
T 0

A111 1111 1111

K=[.1111 .1111 .1111
1111 1111 1111 0586 .0965 .0586

K =.0965 .1591 .0965
0586 .0965 .0586

3 x3Gaussian Kernel (o=1)
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Chapter 3 - Timing Mechanism

For accurately measuring performance of the Cg programs, special
considerations had to be made. Cg does not have access to a timer on the
video card, so all timing is performed on the CPU.

Immediately before rendering the frame, the timer is started. After the
rendering functions are called, the “glFinish” function is called to force all
operations in the OpenGL pipeline to complete. This guarantees that the Cg
program will have finished execution by the time “glFinish” returns control to the
calling function. Finally, the timer's value is recorded.

Due to the way the timer is started and stopped, it does not record only
the execution time of the Cg program. It records the time it takes to render the

entire frame (see Fig. 3.1).

Figure 3.1 - Timer and Simplified OpenGL Pipeline [10]
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Chapter 4 - The 2D Application

4.1 Description

The first application, “GPU Filters” performs filtering operations on two-
dimensional color images on the GPU. This application's purpose was to show
that GPU convolution operations are feasible.

“GPU Filters” has five built-in filtering operations, as well as a convolution

mode. The built-in filtering operations are “Average”,

Grayscale”, “Highpass”,
“High-boost”, and “Median.” The convolution mode only supports 3x3 kernels.

The “Average” filter applies a 3x3 convolution kernel which averages all
the pixels in the window together. The “Grayscale” filter simply averages the red,
green, and blue components of each pixel together, and returns the resulting
intensity value as the color of the pixel.

The “Highpass” filter applies the 3x3 convolution kernel below. This has
the effect of sharpening the image by increasing the weight of the center pixel in

relation to its surrounding pixels.

1 -1 -1 -1
HighPassK=§ -1 8 -1
-1 -1 -1

The “High-boost” filter is similar to the “Highpass” filter. The high pass
filter loses some low-frequency components of the image. To overcome this, a

weighted version of the original image is added with the filtered image.
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1 -1 -1 -1
HighBoost K =wx*I ; *——1 8 -1
9
-1 -1 -1
The “Median” filter is a complicated test for the GPU due to its non-linear
nature. This filter retrieves the 3x3 neighborhood of pixels, sorts them, then
returns the central pixel of the sorted list as the color at that location.
The “Convolution” mode simply creates a small window for the user to

enter a 3x3 kernel. The filtered image is calculated when the view window is

refreshed.

4.2 Implementation

“GPU Filters” is written in C++ and uses FLTK for window management,
OpenGL for rendering the images, Cg for GPU computation, and the timer

describe in chapter three.

User Interface

“GPU Filters” uses the Fast Light Toolkit for drawing and managing

windows and widgets. The interface is based off of “JDraw” by Joshua Foster.
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5 GPU Fitiers

File Left Filter Right Filter Debug

Left: Convolution (Matrix) Filter Ct0.232745 Rt0.01 Right: Unfiltered Image

fhome/jason/Projectsfcg/cg_2dfilters/vess.tga loaded.

Figure 4.1 - “GPU Filters” Application

Images may be opened from the “File” menu. The only image format
supported are targa (tga) files. The next two options in the menu bar are for
applying filters. The program displays the image in two different “slots.” Each
slot may have a different filtering operation performed, or none at all.

On the left of the window is a sliding bar. This is for scaling the images.
When an image is loaded, the bar will be moved so that the images are
displayed at their original resolution. Sliding the bar down increases their sizes,
while sliding the bar up decreases the image sizes.

The main area of the window contains the images themselves. Below

each image is a status display showing which filter is currently applied, the length

Chapter 4 - The 2D Application Page 12



of time it took to compile the Cg program being used, and the length of time it
took to execute the Cg program. Below these status bars is another status bar
showing the path of the currently loaded image.

When one of the image slots is in “Convolution” mode, a separate window
is shown containing a 3x3 list of text boxes. Each text box represents a value in
the convolution kernel to be applied to that image slot. A “-” (minus sign) may be
used to indicate negative numbers. Decimal numbers are accepted, but
fractions are not allowed. The convolution kernel is applied as soon as a request

to redraw the window is issued, such as by resizing the image or dragging the

matrix window over the image area of the main window.
4.3 Performance

All tests were performed with an NVIDIA GeForce 5600FX, which has a
NV30 GPU. Each filter was applied three times to find an average run-time for
each filter. The image operated on is the one shown in Fig. 4.1 . All times are

reported in seconds using the timer described in chapter three.
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2D Operations

0.180000

0.160000

®
+ 0.140000
38
» 0.120000
@ 0.100000
L .
@]
£ 0.080000
)
@ 0.060000
£
— 0.040000
0.020000
0.000000 T T T T T
Average Grayscale Highpass Highboost Median Convolution
Operation

Operation | First Run |Second Run| Third Run | Average
Average 0.0229 0.0119 0.0171 0.0173
Grayscale 0.0015 0.0015 0.0015 0.0015
Highpass 0.0114 0.0112 0.0118 0.0115
Highboost 0.0068 0.0064 0.0063 0.0065
Median 0.1635 0.1646 0.1643 0.1641
Convolution | 0.0113 0.0118 0.0113 0.0115

Figure 4.2 - 2D Operation Performance

The “Average”, “Highpass”, “Highboost”, and “Convolution” operations
perform roughly the same. The “Grayscale” operation is very quick because all it
does is average each color channel at a particular pixel and returns those

results. The “Median” operation takes a very long time due to its heavy use of

conditional operators for sorting.
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Chapter 5 - The 3D Application

5.1 Description

“Volume Viewer Filter” is an application written in C++ which performs
three-dimensional convolution operations on a volume using either the GPU or
the CPU. The window size can be dynamically set, from 3x3x3 to 7x7x7,
however not all kernel sizes are supported on the GPU. The values for the
kernel can be entered manually, or one of a set of default kernels can be
generated.

CPU computation is facilitated by the use of the Visualization Toolkit
(VTK). VTK is an object-oriented toolkit consisting of functions and classes used
to create, process, and visualize data [6].

GPU computation makes use of NVIDIA's Cg language in the form of
various fragment programs. One program is generic and able to, in theory,
handle any window size. Others are specialized to handle only certain window

sizes, but are faster compared to the generic version.
5.2 Application Implementation

There are two parts to the application: the CPU executable, and the GPU
fragment shaders. The GPU shaders are executed by the CPU program.

User Interface
“Volume Viewer Filter” is based from code by William Carruthers. The

“Fast Light Toolkit” is used for drawing windows. There are two windows: the
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render window and the convolution matrix window.

‘ File  Window Size Renderer Filters Render Kemels

b P
e o o |
e o |

P o o
b o
P o o

o o
F P F
F P F

t=1/1, win=255, level=0

Figure 5.1 - “Volume Viewer Filter” Application

From the render window, datasets may be loaded, the window size can be
set, the filter can be turned on and off, and the convolution method can be
switched between CPU and GPU computation.

The render window is represented by the “ConvolutionViewer” class. This
class is a subclass of the “Viewer” class, and is similar to the “VolumeViewer”
class.

The matrix window can generate default kernels, or the user can set
values for the kernel. The “Gaussian” option generates a three-dimensional

Gaussian kernel. The “Default’ option fills the kernel with zeros, except for the
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center value. This has the effect of displaying the unfiltered volume. The
“Average” option generates a simple averaging filter, equally averaging all voxels

in the volume.

Core

| ShaderFilter | | VikFilter |

The “Convolution” class is the primary class which groups convolution
methods with the user interface. This class stores the window size and the
convolution kernel. Since all convolution methods are subclassed from this
class, it contains a generic interface for all convolution methods.

One function of the “Convolution” class is to display the window for

managing the convolution matrix, through the use of the “MatrixWindow” class.

5.3 CPU Computation
| DatasetHeader| | DatasetFileFormat
h f 4
I TheWindow ' header ,,'/JﬁleFl:urmats
| ! __.r"..'
| I
| Convolution | | Renderer| | Dataset|
// TheDset

¢
A

-

YWikFilter
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The “VikFilter” class handles software computation through the use of the
Visualization Toolkit. Itis subclassed from the “Convolution” class and the
“Renderer” class.

The first step in the CPU computation is to convert the dataset into a
format VTK can understand. The dataset is converted into a VtkimageData as a
series of unsigned characters. At this stage, the convolution operation may be
performed using VTK functionality. The VtkimageConvolve class can apply
convolution kernels with window sizes 3x3x3, 5x5x5, or 7x7x7. The resulting
image is rendered using VTK's rendering capabilities.

5.4 GPU Computation
Application
The first component of GPU computation is the “ShaderFilter” class. This class is

subclassed from the “Convolution” class and the “Shader” class.

I TheWindow
|

|
| Shader | | Cnnvnlutinn|

All of the Cg convolution programs have similar interfaces. Each retrieves the

current texture coordinate from the GPU. Also, each is passed a series of uniform
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parameters: the texture, the estimated size of a fragment, and the convolution matrix.

Each program also has a single output: the calculated value of the fragment.

Component Convolution

The first Cg convolution program, “ConvolutionFilter3”, supports variable
size kernels. Since current generations of GPUs do not support loops in
fragment programs, this is accomplished by setting the window size at shader
compile time. Loops may then be unrolled by the Cg Compiler. In theory, any
odd-numbered window size is supported, but in practice, due to the limits of the
GPU in regards to the number of instructions, the only window size supported
with this Cg program is 3x3x3.

“ConvolutionFilter3” works by performing NxNxN texture lookups, where
“N” is the size of the window. As each fragment is retrieved, it is multiplied by
the applicable value in the convolution matrix. The resulting value is added to a

variable which is used to output the final color.

I o550 5,0 55 LRV ARTY AN
Convolve (I ,4,)=|1 sl gad 45| K=\ 500 550 5,
I sl s, s I 5,0 5,0 5,

I 33%K,,=0, I ;,*%K,,=0, I ;%K ,3=0,

I %K, ;=04 I ;K ,=05 I ;5K ;=0

I 3%K, =0, I ;%K ,,=05 I 4s%K,3;=0,

Convolve (I ,,)=0,+0,+0;+0,+0;+0,+0,+0,+0,
Figure 5.2 - Per-component Convolution (3x3 represented)

This method is extremely inefficient. Not only are there NA3 texture
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lookups per fragment, there are NA3 multiplications for applying the kernel. For a
3x3x3 kernel, this translates to twenty seven texture lookups and twenty seven
multiplications, generating a fragment program that is 183 instructions long. For
a 5x5x5 kernel, 125 texture lookups and multiplications are needed, generating a
fragment program 1063 instructions long. This is too long as the NV30 only

supports fragment programs 1024 instructions long.

Vectorized Convolution

“ConvolutionFilter3v” is a more optimized version of “ConvolutionFilter3.”
Rather than immediately multiplying values retrieved from the texture with the
kernel, it stores each value in a vector. Cg supports a maximum vector size of
four values, so the kernel is broken into a series of vectors. Finally, the dot

product is calculated between the vectors.
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I 331 3,41 3,5 K1,1K1,2K1,3
Convolve (I, )=|1 451 441 45| K=|K, KK,
I 531 5,41 55 K3,1K3,2K3,3
I 33 I 4.4 I 5,5
vi =Ll vi =l es| v =] O
I 3,5 I 53 0
-I 4,3- -I 5,4. L 0 d
Kl,l K2,2 K3,3
v =%l v =Ko i =] O
K1,3 K3,1 0
.KZ,I. .K3,2. L 0 J
Convolve (I ,,)=Vi | . Vk \+Vi , . Vk ,+Vi ;. Vk ,

Figure 5.3 - Vectorized Convolution (3x3 represented)

Vector manipulation is highly optimized in the GPU. Four-component
vector multiplication takes roughly as much time as simply multiplying two
floating point numbers. For a 3x3x3 kernel, this program still requires twenty
seven texture lookups per fragment, but decreases the number of multiplications
to seven. The resulting assembly program is 119 instructions.

Vectorizing the program gives a great performance increase, but due to
the number of texture lookups, the speed is still much slower than the CPU
method. This also decreases the number of instructions, which is important if
larger kernel sizes are required. Another problem is vectorizing does not reduce
the total number of instructions enough to support kernels larger than 3x3x3.
Packed Textures

The limiting factor up to this point is texture lookups. They slow the

Chapter 5 - The 3D Application Page 21



fragment shader down and they increase the program size. Texture lookups
return a four component vector. Each component represents a color: red, green,
blue, and alpha. The test volume is read assuming the “GL_LUMINANCE”
format in OpenGL. This format assumes each value as the same across the red,
green, and blue channels. Since the volumes being used store only intensity
values, and are therefore gray-scale volumes, each component returned by a
texture lookup contains the same value. The green, blue, and alpha
components are ignored.

Original Image I =[I I ,I 1 1 (I I I ]

GL_LUMINASITY Texture

O =1 1,1 ,1] 0,=[I,1,],1]
O,=[1 31 ;1 ;1] O,=[1 1,1 ,1]
Os=[I I I ;1] O¢=[I (I (I (1]
O,=[1 ;1 ;1 ;1]  Og=[I {1 I 41]

Figure 5.4 - Original Texture Representation in OpenGL

To decrease the number of texture lookups, multiple voxels could be
packed into a single voxel and be represented using the “GL_RGBA” format.
Under such conditions, the best case is texture lookups could be reduced to one
texture lookup for every four voxels. For a 3x3x3 volume, the best case is seven
texture lookups per fragment rather than twenty-seven, assuming an optimal
packing method. Efficiency would be dependent on the packing method, and the

dimensions of the volume.
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Original Image I =[I I ,I ;1 0 I JI I ]

GL_RGBA Texture
01:[1 Y 4] 02:[1 sl ol 1 8]

Figure 5.5 - Packed Texture Representation in OpenGL

With the packing method shown in Fig. 5.5, the best case for a texture
lookup in a three-dimensional texture with a 3x3x3 kernel is nine texture lookups.
The worst case with this method is eighteen texture lookups. If the edges are
not filtered, 57% of the time it will perform nine texture lookups. The other 42%
of the time, it will perform eighteen texture lookups. On average, that is about
thirteen texture lookups per voxel. This is less than half of the texture lookups
required when not using packing.

A 5x5x5 kernel size will require more texture lookups. If ignoring the
edges, it will always require thirty texture lookups to shade a single voxel. This is
a great improvement over the required lookups for an unpacked texture, 125

texture lookups.
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A 7x7x7 kernel size would be similar to a 3x3x3 kernel in that the number
of texture lookups would be variable depending on the location of the fragment in
the volume. If ignoring times when the window would overlap the edges, roughly
60% of the time it would require forty-two texture lookups. The other 40% of the
time it would perform sixty-three texture lookups. This means that, on average, it
would perform fifty-one texture lookup per fragment. This is much better than the
343 lookups required for an unpacked texture. As the size of the window

increases, the efficiency of packing becomes more apparent (see Fig. 5.6).

Packing
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* e 0l O

0 T T
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Figure 5.6 - Packing, Window Size Comparison

When such a texture is passed to the fragment program, the fragment
program has to unpack the texture, otherwise the texture will be rendered
incorrectly. The math involved in unpacking a three-dimensional, packed texture
is rather complex. To simplify the process, the coordinates are converted to a

one-dimensional representation. Unpacking operations are performed on this
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value, such as finding neighbors, and the results are converted back to three-
dimensions to retrieve the appropriate fragments from the texture. This process
could be further simplified by using a one-dimensional texture rather than a
three-dimensional texture.
Convert from 3D space to 1D: 1= x +y*TextureHeight+z*TextureDepth*TextureHeight
Convert from 1D space to 3D:
x=Index%TextureWidth

Index
TextureWidth

y =floor( %TextureHeight )

i
TextureWidth * TextureHeight

z=floor(
Find location of fragment at TextureCoordinate: TextureLocation :iﬁ
Extract intensity from four component vector: TextureComponent =i%4.0
Figure 5.7 - Unpacking Operations
Note that unpacking a texture requires the original, unpacked texture
dimensions. That would simply be four times the size of each dimension in the
packed texture. TextureLocation from Fig. 5.7 returns the location of a voxel

containing four packed voxel intensity values.  TextureComponent determines

which of those four values to use.
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Packed 32x32 texture
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Figure 5.8 - Packed Texture
As shown in Fig. 5.8, the packed pixel T ,; contains four pixels from the

originalimage: I o , I s , I s ,and I ,,; . Soin a single texture
lookup, four intensity values can be retrieved.

Convolution in Multiple Passes

One way to break the instruction limit barrier is to devise a multipass
algorithm to filter the volume. Rather than applying the entire convolution kernel
to the volume, only parts of it are applied at a time. For each pass, a different
part of the kernel is applied to the volume. The results are stored in a separate
texture. Finally, after the entire kernel has been applied, the textures are

summed together by a separate fragment program for the final image.
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KernelSize
TextureLookups

NumberPasses =

NumberTemporaryTextures = NumberPasses

For a 5x5x5 convolution kernel, which contains 125 elements, 25
elements of the kernel could be passed to the fragment program at at a time.
Doing so would require five passes, and five temporary textures. The full
neighborhood of voxels would still have to be computed, whether using an
unpacked texture model or a packed texture model.

Why only 25 elements at a time? Using only 25 elements would waste
three-fourths of the final vector. Why not 32 elements, optimizing for four-
component vector operations? If the number of elements of the kernel being
passed to the fragment program are not consistent for each pass, a separate
fragment program would have to be loaded into the card for the last pass.

For the example in Fig. 5.9, a 5x5 convolution kernel is applied to an
image. The kernel is passed five elements at a time, since twenty-five is easily
divisible by five. The result is five separate textures. For each pass, the

neighborhood of pixels is retrieved, then multiplied by the partial kernel.
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and so on

Figure 5.9 — Multi-pass Convolution (5x5 represented)

5.5 Performance Comparison

The following tests were performed on an Athlon 1800+ XP with 512mb of
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RAM and with a NVIDIA GeForce 5200FX, which has a NV30 GPU, using the
latest NVIDIA drivers available, 1.0-5336. The operating system was Gentoo

Linux with the 2.6.5 kernel.
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Figure 5.10 - Tooth Dataset Used for Testing
The dataset used for testing was a tooth stored as a list of intensity
values. The size of the volume was 55x50x81 voxels. All times are measured in

seconds using the timer described in chapter three.
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3x3x3 Gaussian Kernel
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Computation Method First Run Second Run| Third Run Average
GPU Component 11.6633 11.6630 11.7516 11.66
GPU Vectorized 4.7891 4.8056 4.8108 4.8

CPU 0.1399 0.1396 0.1520 0.14

Figure 5.11 - 3x3x3 Gaussian Kernel Performance

Figure 5.11 shows two fragment programs, “ConvolutionFilter3” and

“ConvolutionFilter3v”, as well as the CPU fragment operation. Vectorizing

operations in the GPU greatly increases performance. Performance increased

by nearly 60 percent in this example. However, this is not enough to approach

the speed of the CPU, which is 98% faster than the vectorized fragment

program.
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CPU and Packed GPU Convolution
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Figure 5.12 - Packed Texture Performance

Fig. 5.12 shows how a packed-texture convolution method would perform.
For each value, the program was run three times with the results averaged.
These results were obtained by a fragment program which performs the average
number of texture lookups required for a packed texture given a specified
window size. With a 3x3x3 window size, packing cuts the length of time to
process a volume by about half the time compared to the vectorized convolution

method. Itis, however, still not close to the speed of the CPU method.
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Chapter 6 - Future

6.1 GPU Limitations

Currently much of the difficulty is due to the limited feature set of both the
GPU and the Cg language. The latest NV30 GPU from NVIDIA supports
fragment programs up to 1024 instructions. This limits the ability to execute
complex programs on the GPU. The NV30 also does not support loops in
fragment programs. Cg works around this by unrolling loops at compile time.
This increases the size of programs, and such a loop's length must be able to be
determined at compile time.

Conditional operations are allowed in fragment programs, but are very
limited. The fragment program is executed for both possible results of an “if’
statement, for example. Such limitations greatly decrease the speed of fragment
programs; the use of branching operations in fragment operations is undesirable.

Another area lacking in current GPUs is the ability to temporarily store
data between iterations of a fragment program. There is no direct way to pass
data between fragments. The best way to work around this limitation is the use
of multi-pass methods, storing partial results in an external buffer. This requires
more complex CPU programs, and more memory bandwidth is used.

Cg itself is a relatively new language, and is currently in development.

The development tools and the language itself are still rapidly evolving.
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6.2 Potential Optimizations

The main reason the GPU convolution programs are so slow is due to the
large number of texture lookups. The GPU is optimized for reading one fragment
at a time, in order, but modern GPUs such as the NV30 allow random texture
access. This is why it is possible to perform convolution in a single pass at all.

Various multi-pass methods may increase the speed of the program, such
as was discussed in chapter 5.3.4. For example, performing each pass with only
one value of the convolution kernel, generating a texture for each value in the
convolution kernel. If the number of temporary textures is too large to fit all at
once in the GPU, a series of calls of a texture summation fragment program
could be executed in a tree-like manner. The resulting convolution function
would be very simple, comprising of a single texture lookup and a multiplication.
Managing the large number of temporary textures in an efficient manner would

require the most attention.

6.3 Future GPUs

Consumer graphics cards are in a period of rapid advancement. The
concept of the ability to modify the graphics pipeline in the card is a new one to
commodity graphics cards. The feature set in such hardware is changing rapidly
as developers express demands for new functionality in the hardware.

Cards such as the recently announced NVIDIA GeForce 6800 should

solve many of the problems one is faced with performing computation on a GPU.
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The GeForce 6800 will have a NV40 GPU, which supports more operations,
contains more pipelines, and has a larger instruction cache [11].

The NV40 will support loops in fragment programs thanks to a new loop
count register, and will support dynamically indexing any element in an array
[11]. This should remove the limitation in a program such as
“ConvolutionFilter3,” which requires recompilation for different window sizes.
Improvements in dynamic flow control should allow a program such as the

median filter in “GPU Filters” to execute much more quickly.
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Chapter 7 - Conclusion

“GPU Filters” and “Volume Viewer Filter” demonstrate that it is possible to
perform complex operations on a GPU, however special considerations must be
made due to the specialized nature of a GPU and limitations in the Cg language.

Even with the limitations of the current generation of Cg and GPUs, this
area of computer graphics is showing much potential. New GPUs on the horizon
will allow more traditional general-purpose techniques to be applied to GPU
applications, such as looping and branching. This will allow complex

mathematical operations to be applied to large datasets in real-time.
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Appendix A - Cg Program Examples

void Grayscale (float2 TexCoord : TEXCOORDO,
uniform sampler2D decal,
out float4 oColor : COLOR)

float4 valued=tex2D (decal, TexCoord):; //Retrieve pixel

float value=(valued.r+valued.g+valued.b)/3.0;
oColor=float4 (value, value, value, valued.a);

Figure A.1 - 2D Grayscale Filter

Fig. A.1 shows a very simple two-dimensional filter which retrives the color

value from the texture at the current fragment, average the red, green, and blue

channels together, and places that value in the “COLOR” semantic. This is

where the card determines the color for the fragment at the location stored in the

TEXCOORD semantic.

void get fragments (uniform sampler2D decal, //texture
float2 TexCoord, //central pixel location
float2 pixelsize, //pixel skip

out float4 colors[9]) //output, surrounding pixels

float lowerboundx=TexCoord[0]-pixelsize[0];
float lowerboundy=TexCoord[l]-pixelsize[l];
float upperboundx=TexCoord[0]+pixelsize[0]
float upperboundy=TexCoord[l]+pixelsize[l];

Iz

colors[0]=tex2D(decal, float2(lowerboundx, upperboundy))
colors[l]=tex2D(decal, float2(TexCoord[0], upperboundy)):;
colors[2]=tex2D(decal, float2 (upperboundx, upperboundy)):;
colors[3]=tex2D(decal, float2 (lowerboundx, TexCoord[1l]))
colors[4]=tex2D(decal, TexCoord);

colors[5]=tex2D(decal, float2 (upperboundx, TexCoord[1l]))
colors[6]=tex2D(decal, float2 (lowerboundx, lowerboundy)):;
colors[7]=tex2D(decal, float2 (TexCoord[0], lowerboundy)):;
colors[8]=tex2D(decal, float2 (upperboundx, lowerboundy))

Figure A.2 - “get_fragments” Support Function

The function in Fig. A.2 is used by most of the filtering operations in the
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“GPU Filters” program. This function takes the location of the current fragment

and returns the 3x3 neighborhood.

float get fragments3op(//grabs all of the pixels needed for convolution

uniform sampler3D decal, //texture
float3 TexCoord, //central pixel
float3 pixelsize, //pixel skip size

float matrix [WINDOW ARRAY SIZE])

int color count=0;
float output=0;
for (int Cx:O—WINDOW_OFFSET_SIZE;cx<:O+WINDOW_OFFSET_SIZE;cx++)
for (int Cy:O—WINDOW_OFFSET_SIZE;cy<:O+WINDOW_OFFSET_SIZE;cy++)
for (int CZ:O—WINDOW_OFFSET_SIZE;cz<:O+WINDOW_OFFSET_SIZE;cz++)
{
float3 coordinates=float3( TexCoord[0]+cx*pixelsize[0],
TexCoord[1l]+cy*pixelsize[l],
TexCoord[2]+cz*pixelsize[2]);
output+=tex3D(decal, coordinates).r*matrix[color count];
color count++;
}
return (output) ;

}

void ConvolutionFilter3( float3 TexCoord : TEXCOORDO,
float4 color : COLOR,
uniform sampler3D decal, //image to filter
uniform float3 PixelSize, //Pixel skip size

uniform float ConvolutionMatrix [WINDOW ARRAY SIZE],

out floatd4 oColor :COLORO
)

float intensity=get fragments3op (decal,

TexCoord,

PixelSize,

ConvolutionMatrix) ;
oColor=float4 (intensity, intensity, intensity, intensity * 0.1);

Figure A.3 - “ConvolutionFilter3” Per-Component
Fig. A.3 is the source for the slow “ConvolutionFilter3” program. For this
program to compile, three preprocessor values must be set. For a NxNxN

kernel, “WINDOW_SIZE” is “N.” “WINDOW_ARRAY_SIZE” which is of size N3
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is the size of the one-dimensional array needed to store the convolution matrix
and the number of iterations needed to process all of the pixels in the window.

“WINDOW_OFFSET_SIZE” is the length from the center of the window to one of

the edges. The basic formula to find this is  floor (w

For example, to build a 3x3x3 fragment program, the following parameters
would be passed to the compiler: WINDOW_SIZE=3

WINDOW_ARRAY_SIZE=27 WINDOW_OFFSET_SIZE=1.
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