Three-dimensional Reconstruction of Intravascular
Ultrasound Data

K.R. Subramanian Michael Funk

26 October 1998

Acknowledgements

We would like to thank the staff of the Heineman Medical Research Laboratory at Carolinas
Medical Center, without whom this project would not have been possible. They provided us
with access to lab facilities for data acquisition, and the expert assistance of Brett Fowler.
The contributions of Dr. Mano Thubrikar are also greatly appreciated; Dr. Thubrikar kindly
volunteered his time in evaluating the reconstructions our software produced, and gave help-
ful professional advice throughout the development process. This project was supported, in

part, by the National Science Foundation, grant number DUE-9651080.

Chapter 1

Introduction

Visualization is rapidly becoming a popular field of research within the medical community.
A number of technologies widely used in medicine (such as ultrasound) lend themselves well
to visualization techniques. One area in which this is particularly true is in intravascular
applications. Physicians need to be able to locate and identify potentially dangerous struc-
tures found on the arterial wall, such as atherosclerotic plaque. This is important both for
diagnosis, and in preparation for intervention.

Current research in medical volume visualization is for the most part centered around
three technologies for data acquisition: CT (computed tomography), MRI (magnetic res-
onance imaging), and ultrasound. Each of these technologies has its own characteristic
strengths and weaknesses. MRI produces very high quality data. However, it takes a rel-
atively long time to gather the data, ruling it out as an option for real-time visualization
applications. CT suffers from many of the same problems.

Ultrasound, while plagued by often “noisy” and inconsistent data, is nonetheless quite
useful because of its relative lack of intrusiveness, and the rapidity and efficiency of the data-
gathering process. In particular, for cardiovascular applications, ultrasound provides higher
resolution data than the alternatives. Angiography, for example, only provides a silhouette
of the vessel, making it difficult to produce useful reconstructions. Ultrasound is thus best

suited for visualization systems in which interactivity and real-time responsiveness are highly

6 CHAPTER 1. INTRODUCTION

valued.

This paper documents the development of a prototype of one such system, specifically
geared towards intravascular ultrasound (IVUS) visualization. It is our belief that this
system offers several distinct advantages over traditional means of analysis. In particular,
great care was taken to accurately reconstruct curved blood vessels, by incorporating data
from a secondary source (biplane xray fluoroscopy). Because of this, much of the work implies
new methodology for the gathering of the data, in addition to providing new visualization

tools with which to interpret it.

Accurate visualization of IVUS data offers a number of unique challenges to overcome.
It is by nature extremely noisy; also, the data produced is in the form of a sequence of two-
dimensional images. Three-dimensional reconstruction of these images takes place only in
the mind’s eye of the specialist who analyzes the data. The visualization software developed
by this project attempts to ameriolate both of these areas of difficulty, first by applying
filtering and image processing techniques to the original IVUS data, and secondly by using
the filtered data to generate a three-dimensional reconstruction of the blood vessel itself.
The applications software developed by this project allows viewing and analysis of both the
original (2D) data, as well as the 3D reconstruction, which may reveal structures only implic-
itly defined by the original IVUS data. This software is designed not to replace traditional
means of analysis, but rather to provide additional tools with which a diagnosis could be
made.

An additional difficulty associated with 3D reconstruction of the IVUS data is the fact
that all of the data is relative to the position of the catheter tip at a given time. A trivial
solution is to ignore the problem and assume that the catheter tip is moving along one axis
only, from one frame to the next. Prior research projects [10] have made this assumption for
the sake of expediency, directing their intellectual focus to other, more pressing areas (such

as filtering). Unfortunately, it is simply not possible to determine the path of the catheter

(and, by extension, the blood vessel) from the IVUS data alone. It is necessary to use
another means to track the position of the cathether tip in 3D space, while the IVUS data
is being gathered. For this purpose we have employed biplane xray fluoroscopy; the exact
mechanism used (described in detail later in this document) was rather cumbersome, but
was suitable for our purposes. The focus here was more on what to do with the data once it
was acquired, rather than on streamlining the data acquisition process itself. Nonetheless, if
this sort of visualization is ever to become a useful and widespread tool for clinical analysis,
much more work will need to be done in the area of data acquisition.

My own involvement in this project was as an applications programmer, both in de-
velopment of the user interface and the onscreen rendering engine, and in the underlying
visualization pipeline, which transformed the raw ultrasound data into polygonal surfaces
suitable for rendering on a graphics workstation. In addition, I wrote a helper application
which automated much of the image-processing work that needed to be done prior to the
actual visualization. The main visualization application and the helper application are fully
documented in appendices A and B, respectively.

St. Goar [6] and Yock [9] offer additional information on IVUS technology and its appli-

cations, although neither work is related to computer graphics.

CHAPTER 1. INTRODUCTION

Chapter 2

Data Acquisition and Preparation

2.1 Ultrasound and X-rays

One of the major goals of this project was accurate reconstruction of curvatures in the path
of the blood vessel being examined. A trivial analysis of the ultrasound data does not take
this into account; it seems very natural to assume that the catheter moves only along one
axis, and that each frame of cross-sectional data is parallel to the next. In reality, this is

rarely the case.

First, a note on the technologies and procedures involved. The IVUS data is generated
by a transducer attached to the tip of a catheter, which is inserted into one of the patient’s
blood vessels, near the point of interest. The catheter is withdrawn at a constant speed, while
data from the transducer is directed to a video output. The output is stored on videotape
for later analysis. Due to the nature of the technology, the IVUS probe only generates two-
dimensional data, along a plane perpendicular to its spatial orientation. Therefore, each
frame of the videotape represents a cross-section of the vessel, at a given point along a
segment of the vessel. When taken as a whole, the videotape’s contents can be thought
of as describing a volume of space containing the vessel. One is left with a sequence of

cross-sections, one per frame.

Figures 2.1 and 2.2 should clarify this situation. The line in figure 2.2 represents the

10 CHAPTER 2. DATA ACQUISITION AND PREPARATION

actual path of the catheter, in a hypothetical experiment. The squares arranged along this
path represent the frames of data gathered by the probe. Recall that the probe generates
a continuous video signal, and that at any given time the probe has a particular spatial
orientation. Because of the way the probes are designed, the probe only “sees” in two
dimensions, along a plane perpendicular to the orientation of the probe. FEach frame of
video data generated by the probe corresponds to what the probe “sees” at a given point in
time and space, with the probe itself at the center of the frame. Each point in each frame
will have a particular grayscale value; higher values represent a greater density at that point
in space, as determined by the probe. Figure 2.3 is a typical example of the IVUS probe’s

output.

The data is gathered during “pullback”; the term refers to the fact that the catheter has
already been inserted into the patient’s vascular system, and is slowly being withdrawn, at
a constant rate (typically on the order of a millimeter per second). The equipment used in

our experiments generated a PAL video signal, resulting in 30 frames per second of video

data.

Consider a volume of space, which is large enough to contain every point which was ever
visible to the IVUS probe during pullback. Each point in this volume has a single scalar
value associated with it, corresponding to the density of the material at that point. Each
point on each frame of the IVUS data corresponds to a point in our volume. In order to
do a proper 3D reconstruction of a curved vessel, it is necessary to map each frame onto a
position within the volume. Since the catheter will generally follow a curved path during
pullback, the positions of each frame within our volume will not necessarily be coaxial. This
is the situation illustrated in figure 2.2. Figure 2.1 shows a far simpler situation, in which
the catheter follows a straight path. Much of the previous work done in IVUS visualization
has assumed a straight path for simplicity; one of the goals of this project was to generate

accurate reconstructions which took into account the curvature of the vessel.

2.1. ULTRASOUND AND X-RAYS 11

\\

——

Figure 2.1: Mapping IVUS data to 3D space, assuming a straight path

Figure 2.2: Mapping IVUS data to 3D space, curved path

12 CHAPTER 2. DATA ACQUISITION AND PREPARATION

Figure 2.3: Typical IVUS probe output

In order to accurately model the curvature, it is necessary to keep a record of the path
of the catheter tip itself. This is only made possible by introducing a second form of data
acquisition. In this case, biplane X-ray flouroscopy was used. Two X-ray machines were
set up in such a way that they were directed towards the catheter tip, along directions
perpendicular to one another, as well as perpendicular to the general direction of motion
of the catheter. Figure 2.6 shows the arrangement of the X-ray machines and the IVUS
apparatus. To avoid confusion, it should be stated that neither live human nor animal
subjects were used; in all of our experiments the catheter was drawn through either a length
of tubing or a sample artery which had been removed from a subject. The output from the
X-ray devices and the ultrasound probe were both recorded on SVHS for later analysis. By

having two views perpendicular to the general direction of motion (as well as each other),

2.1. ULTRASOUND AND X-RAYS 13

Figure 2.4: X-ray image, x view

14 CHAPTER 2. DATA ACQUISITION AND PREPARATION

Figure 2.5: X-ray image, y view

2.1. ULTRASOUND AND X-RAYS 15

X-ray #1 (x view)

X-ray #2 (y view)

Direction of pullback (z direction)

Figure 2.6: Configuration of X-ray machines

it was possible to determine the catheter tip’s position in 3D space at each point along its
journey, relative to its starting position. Figures 2.4 and 2.5 are examples of images taken
from the two X-ray machines during pullback; the catheter is visible, as is the vessel itself,
and a ruler placed nearby as a measurement aid.

While gathering the ultrasound data, the motion of the catheter was periodically stopped,
and the X-ray machines were turned on to provide a snapshot of the catheter tip’s current
position. The mathematical procedure used to generate a spline corresponding to the curved
path of the catheter (and the blood vessel) only required a sampling of points along the path
in question. Various techniques were used to synchronize the X-ray images with the record

from the ultrasound probe; in all cases the X-ray images were taken at discrete intervals,

16 CHAPTER 2. DATA ACQUISITION AND PREPARATION

rather than continuously. On average, X-ray images were taken at 6-7 points during the

motion of the catheter.

2.2 Digitization

After the data had been recorded to SVHS, an Abekas Diskus recorder was used to digitize
the images stored on tape. The X-ray images were examined immediately, and processed by
hand. The end result was a set of 3D coordinates derived from each pair of X-ray images,
corresponding to the catheter tip’s location in 3D space at the time the images were recorded.
The coordinates were all relative to the initial position of the catheter. The 3D coordinates
were derived as follows: for each pair of digitized X-ray images associated with each point
(such as those shown in figures 2.4 and 2.5), a pixel count was taken from the edge of the
image to the tip of the catheter (the location of the transducer). For the x images, the count
was from the left edge of the image; for the y images, the count was from the right edge
of the image. Once all points were determined, there were recalculated relative to the first
point, which became the origin of the coordinate system. Since the the X-ray machines are
set up to take perpendicular views of the catheter, any observed lateral displacement from
one x image to the next can be taken as motion in the x direction only; likewise for the y
images.

If the z-axis is taken to correspond to the general direction of the catheter’s motion,
then the X-ray images provide information regarding motion along the x and y axes. The
displacement along the z-axis from one frame to the next was known from direct measurement
at the time of data acquisition. Also, each pair of X-ray images was associated with a
particular frame of IVUS data at the time of data acquisition; it was this knowledge which
enabled us to associate the derived points in 3D space with their specific points in time in

the IVUS data stream.

A final detail: the x and y coordinates for each point were in pixels, whereas the z

2.3. FILTERING AND SMOOTHING 17

coordinate associate with each (x,y) pair was in millimeters. A small metal sphere was
placed next to the catheter in some of the X-ray images; the sphere’s diameter was known
through direct measurement, and the image of the sphere was used to determine the pixels-

to-millimeters conversion factor.

The end result of this procedure was, we had a sampling of 6-7 points in 3D space,
representing points through which the catheter tip had traveled in its path. We also had a
very large series of images from the ultrasound probe, frequently numbering in the hundreds
(the SVHS recorder recorded 30 frames per second). We took a sampling of those images
to construct a volumetric (3D) dataset corresponding to that particular ultrasound run,
generally on the order of 100-150 images. The volume was defined as follows: each image
represented a cross-section of the volume (an (z,y) plane), for a given z-value. The scalar
value of a given point at (x,y, z) was obtained by looking at the grayscale value of the (x,y)
pixel of image number z. Taken as a whole, the series of ultrasound images described a
curvilinear volume of 3D space, in which each point in that space was described by a single
scalar value. While that scalar value was obtained by examining the grayscale value of the
corresponding pixel on the corresponding digital image, ultimately it represented the density
of a point in space, as determined by the ultrasound probe. Note that at this point, the
points derived from the X-ray images have not yet been used. Ultimately they will be used
to derive a spline which closely approximates the path of the catheter, and that spline will

be used to create a deformation of the volumetric data.

2.3 Filtering and Smoothing

Before 3D reconstruction could proceed, however, it was necessary to apply some image
processing techniques to the volumetric data. As stated earlier, ultrasound can produce
rather noisy data, but carefully applied filtering and smoothing can eliminate much of it. In

addition, the ultrasound device itself had left several artifacts on the image that needed to

18 CHAPTER 2. DATA ACQUISITION AND PREPARATION

be removed. The device superimposed tick marks over each image, presumably to facilitate
measurement and analysis. These were easily removed by masking off the appropriate bits,
as the pixels affected by the tick marks were consistent from one image to the next. Another
artifact was produced by the transducer itself: a ghost-like shadow of the catheter, in the
center of each image. This artifact was also consistent from one frame to the next, and thus
it was also possible to remove it by masking off the appropriate pixels. Much of the image

processing work described here follows the procedures and algorithms found in Zhou [10].

The first step in the image processing phase was to crop each image in order to remove
the overlayed textual data which had been composited by the IVUS controller. Secondly,
the tick marks produced by the device were removed by masking off the row and column of
pixels where it was superimposed. While this had the negative side effect of damaging some
of the original data, it was deemed a better alternative to simply allowing the tick marks
to remain. Anecdotal evidence suggests that most IVUS equipment may be configured to
not generate the tick marks in the first place; however, the equipment to which we had
access did not have this capability. Thirdly, something had to be done about the catheter
artifact. Since it was very nearly circular, and was consistent in form from one frame to
the next (down to individual pixels), it was decided to simply mask off all pixels within
a certain radius of the center of each image. Finally, we resized the resultant images to
an acceptable width and height; generally, this meant scaling them down to 50-100 pixels
in both dimensions, down from 300 or so, on average. This was done via simple point
sampling; in the future, bicubic interpolation may be used for greater accuracy (at the
expense of more processing time). The scaling was necessary because of the need to reduce
the memory requirements of the program. In the final dataset, 100-150 of these images will
be concatenated together to produce a volumetric dataset; in addition, the program which
performs the actual 3D reconstruction and visualization needs to retain several copies of the

dataset (and its derivatives) in memory at once, further reinforcing the need to keep the

2.3. FILTERING AND SMOOTHING 19

size of the datasets down to a minimum. Scaling the individual images down dramatically

decreases the software’s memory usage, and in our experience produces acceptable results.

Other problems were less predictable, however, and required more sophisticated filters.
Seemingly random “speckles” cropped up on the boundaries of each image, a by-product of
the noisiness inherent in ultrasound. Also, there was not necessarily a smooth progression
of grayscale values across structural boundaries; rather, it was not uncommon to encounter
drastic variations from one pixel to the next. Again, this could be chalked up to ultrasound
noise. Both problems were resolved by applying a combination of Gaussian and/or median
filtering to each image, which had the effect of eliminating the random “speckling”, while
also smoothing out the more dramatic shifts in value between adjacent pixels. In both
cases, retaining the integrity of the data is of vital importance; the idea was to improve
the signal to noise ratio of the data rather than to massage it into compliance with the
software’s needs. While loss of information is inevitable in such a situation, it is believed
that the signal to noise ratio of the data was greatly improved, a more than satisfactory
tradeoff. Figures 2.7, 2.8, 2.9, and 2.10 show the results of successive median filtering, a
simple smoothing procedure whereby each pixel’s value becomes the median of its original
value and that of its 8 immediate neighbours. Figure 2.7 shows a typical IVUS image, after
cropping, but prior to the application of the median filter. The remaining figures show the
results of successive passes of the filter: 2.8 is after one pass, 2.9 is after two, and 2.10 is
after three. Two passes seemed to produce the best results; after the second pass, successive
passes appeared to “dim” the data to the point of obscurity. Neither the catheter artifact nor
the tick marks have been masked off; as is evident from the filtered images, the artifacts are
too strongly defined to simply rely on a smoothing filter to eliminate them. It is necessary
to mask them off prior to the filtering process; in this case they were allowed to remain in

order to demonstrate this very point.

As the image processing procedure was repetitive and easily automated, a small applica-

20 CHAPTER 2. DATA ACQUISITION AND PREPARATION

Figure 2.7: Image, prior to median filtering

Figure 2.8: Image, after one filtering pass

2.3. FILTERING AND SMOOTHING 21

Figure 2.9: Image, after two passes

Figure 2.10: Image, after three passes

22 CHAPTER 2. DATA ACQUISITION AND PREPARATION

Figure 2.11: Volumetric dataset creation

tion was written which performed almost all of it. The applet, seen in figure 2.11, picks up
after the videotape has been digitized (and after the 3D coordinates have been obtained from
the X-ray images), but prior to any image processing or manipulation. The applet needs only
to be told where to find the digitized images, and where to store its output. It ultimately
produces a single “idset” file (for “IVUS discrete set”), which is a file format specifically
designed as input for the main visualization application. It contains the volumetric data, as
well as the 3D coordinates from the X-ray images, and other miscellaneous fields regarding
the data acquisition procedure, such as the date of the experiment. The various fields in the
applet each serve one of 3 purposes: they control selection of input files, they set parameters
for the image processing pipeline, or they fill in informational fields in the header of the
output file. In view of the sheer number of fields available for the user to manipulate, the
applet generates reasonable default values for the vast majority of them. In most cases the

user only has to manually enter a half-dozen or so values in order to generate an idset. The

2.3. FILTERING AND SMOOTHING 23

only other file which must be provided by the user is a simple text file which contains the
3D points obtained from the X-ray images. The points are listed in a simple text file. It is
not necessary for the user to normalize the points with respect to the first one (the origin),
nor is it necessary for the user to convert the pixel values to millimeters; the applet will do
this automatically. The points are merely inserted as is into the idset file; they do not affect
the image processing procedure in any way, and in fact are not used until later, when the
main visualization application loads up the idset file and performs the 3D reconstruction of

the data.

24

CHAPTER 2. DATA ACQUISITION AND PREPARATION

Chapter 3

3D Reconstruction and Visualization

Once the data has been gathered, digitized, sampled, and filtered, 3D reconstruction can
begin in earnest. The visualization pipeline for the 3D reconstruction consists of 3 major
segments. The first computes a spline (a cubic curve in 3 dimensions) from the points
sampled by the X-ray images and applies it to a spatial deformation of the volume. The
second involves generating polygonal data from the volumetric, scalar data. The third is
really a group of procedures, included not out of necessity but convenience. The third
segment consists of a number of filters which boost the performance of the rendering process

later on, when interactivity and smooth animation are extremely important.

3.1 Modeling Curvatures

Recall that the location of the catheter tip in 3D space is known at several discrete points
along its path, relative to its initial position. These points are sufficient to generate an
interpolating spline, which should provide a reasonably accurate approximate of the location
of the catheter tip at any point along its path. A Kochanek-Bartels [1] spline is used, to
ensure that the generated spline passes through all of the points. Roelandt [3] and Lengyel [2]
document much work in the area of mapping IVUS video data to specific points in (3D) space

and time; the system used here is far simpler but in many ways functionally equivalent, and

25

26 CHAPTER 3. 3D RECONSTRUCTION AND VISUALIZATION

sufficient for the task at hand.

Once the spline has been generated, each ultrasound image is placed along it. Each image
is placed in such a way that the spline passes through its center, and that the tangent to the
spline is coincident with a line passing through the center of the image and perpendicular to
its plane. In this way, each pixel in each image now has a definite location in a 3D volume
defined by the spline (representing the path of the catheter tip) and the images which are
“hung” on it. The position of each image along the length of the spline is given by the
image’s z-value, that is, its position within the series of images. An image that comes in
the middle of the series would be assigned a position halfway along the length of the spline.
As far as how this changes the volumetric data is concerned, prior to this operation the
data could only be thought of in terms of figure 2.1; that is, a volume defined in terms of
a sequence of parallel, coaxial planes. Afterwards, the volumetric data assumes the more
realistic form depicted in figure 2.2, in which each point of known data is mapped into our
volume on the basis of not just its position within its “frame” and the number of the frame

in the sequence, but also on where the catheter was at that time, as well as its orientation.

3.2 Isosurfaces

The next step in reconstruction involves transforming the volumetric, scalar data into a
polygonal object defined in terms of a relatively small number of vertices. This is achieved
by constructing an isosurface from the volumetric data. An isosurface is the 3-dimensional
equivalent of a contour line on a topographical map; in the same way that each point
on the contour line is at the same elevation, each point on an isosurface has the same
scalar value. The simplest method for constructing isosurfaces is the well-known Marching
Cubes algorithm [5]; however, given the deformed layout of the volumetric data, a more
sophisticated variant is used. Marching Cubes is designed for a uniform grid, and is a

special case of a more general family of algorithms. Nonetheless, generating the isosurface

3.3. OPTIMIZATION 27

is a relatively fast and painless proces. The most difficult part is selecting the value to base
the isosurface on; this is a judgement call on the part of the user, and cannot be automated.
This value should reflect the threshold between the interior of a blood vessel and the inner
wall. While certain values seem to produce better results than others (and are provided as
intelligent defaults), in general the ideal value is going to depend on the patient’s condition
and the ultrasound equipment itself. Under certain circumstances, it may be desirable to
specify multiple values and generate multiple surfaces in order to better model a volume,
but as of yet this capability does not exist in the application. There is a slider with which

the user may control the isosurface value, however.

3.3 Optimization

In essence, the process of reconstruction is complete at this point. However, more work
needs to be done in order to make the data suitable for interactive viewing and exploration.
Specifically, the complexity of the geometry needs to be reduced; the number of polygons
used to represent the reconstruction can be brought down, and the format used to store the
geometric data can be made more efficient.

First, a process known as decimation is applied to the polygonal data. Decimation
looks at groups of triangles; if it finds adjacent triangles within a few degrees of lying on
a plane, it replaces the group with a single triangle. The number of polygons eliminated
(approximated, really) in this way increases as a function of the tolerance level (the degree
to which the orientation of adjacent triangles may differ) of the algorithm. This is a very
computationally expensive process, and time consuming compared to the previous filters,
but it improves the rendering speed of the application significantly. The algorithm used to
construct the isosurface in the first place is not very intelligent, and as a result doesn’t check
to see if a particular group of triangles it just created don’t lie in a plane, and can thus be

substituted by a larger (and less complex) polygon. Decimation can reduce the number of

28 CHAPTER 3. 3D RECONSTRUCTION AND VISUALIZATION

vertices needed to specify the isosurface by up to 85%, at least in our own experience, given
the datasets we used for testing.

Second, as many triangles as possible are converted into a single triangle strip. A triangle
strip is a graphics primitive composed of groups of triangles which share vertices. Figure 3.1
illustrates the difference between ordinary triangles and triangle strips. Ordinarily, specifying
the location of three triangles involves specifying 9 vertices, even if some of those vertices are
shared. If some of these vertices are shared, then obviously some of this data is redundant
and can be expressed in a more compact form, such as a triangle strip. Converting as
many triangles as possible into triangle strips reduces the amount of redundant data stored
in memory. This improves the rendering speed of the application because fewer vertices
means fewer equations for the processor (or graphics hardware) to solve in order to render
the isosurface. A number of standard procedures in computer graphics involve per-vertex
operations; for example, shading calculations, and transformations (scaling, translation, etc.)
By minimizing the number of vertices used to render the surface, we also minimize the
number of equations which must be evaluated in order to do the rendering. The final
result is rendered by the main visualization application developed for this project, as seen in
figure 3.2. Both the decimation algorithm and the algorithm used for generation of triangle
strips are described in detail in the VTK documentation [5]; sample implementations of both

are freely available in the VTK source distribution.

3.3. OPTIMIZATION

Triangles

A triangle strip

Figure 3.1: Triangles and triangle strips

29

30 CHAPTER 3. 3D RECONSTRUCTION AND VISUALIZATION

% Decimation
27
;
XY Plane
14
’—7 J
XZ Plane ¥YZ Plane

|
?
o
&
>

Currently viewing file: /home/mwfunk/projectsfivus3d/artery.51.idset

Figure 3.2: 3D IVUS visualization

Chapter 4

3D IVUS System Description

Having described the procedures involved in data acquisition, and the algorithms used to
create the 3D reconstructions of that data, we turn our attention to the details of the
development process itself: what hardware and software was used in development and what
demands this sort of software places on the underlying platform; also, details regarding the
actual interactive visualization application that was created, and what external tools it relies
on. The reader is referred to Subramanian [7] for more theoretical background; the remainder

of this paper focuses on more implementation-specific issues.

4.1 Hardware

All of the software was developed and run on graphics workstations from Silicon Graphics,
Inc. (SGI): primarily R5000-based O2’s, as well as an R10000-based Indigo2. For any future
incarnation of this program or this visualization system, it is absolutely necessary to have
3D graphics hardware. A large part of the potential utility of this type of system revolves
around its interactive use; lack of decent 3D hardware acceleration greatly reduces the level
of interactivity of the software, to the point of unusability. If the user has to wait for several
minutes just to see the reconstruction from a different angle, then it would be wiser to invest

in a system based more on a batch-processing paradigm, with less computationally expensive

31

32 CHAPTER 4. 3D IVUS SYSTEM DESCRIPTION

means for specifiying the desired viewing angle. Another system requirement is sufficient
memory...the more the better. It was not unusual for even a small dataset to require 50MB
of memory; unfortunately there is no way to reduce this requirement short of decreasing the
granularity or the size of the data.

One of the more useful features of the application is the ability to assign an arbitrary
alpha value (for transparency) to the material used for the 3D reconstruction. This allows
the interior of the reconstruction to be seen, as well as providing a clear view of the plot of
the path of the catheter. Having direct support for alpha blending in the graphics hardware
is therefore particularly desirable, if this feature is to be commonly used. We had the
luxury of having access to an SGI Indigo2 with the High Impact graphics option, which
offered excellent support for alpha blending in hardware, to the point of there being no
perceptible drop in performance when the transparency feature was activated. This was in
stark contrast to the other machines used (mostly O2’s), in which the interactivity of the
application dropped dramatically due to the machine being forced to perform alpha blending

in software.

4.2 Software

The main application was written in C++, chosen both for the power of the language as well
as for compatibility with certain libraries. Two libraries in particular were indispensable:
Open Inventor [8] and VTK (the Visualization Toolkit) [5]. Both are implemented as C++
class libraries.

VTK was used for number-crunching and “behind the scenes” data processing. VTK
includes 3 general types of classes: sources, filters, and sinks. Instances of these classes are
strung together in a list to form a visualization pipeline. Sources are objects which produce
output, but take no input. They are always at the beginning of the pipeline. They are either

going to correspond to things such as an input file, or perhaps one of VI K’s advanced data

4.2. SOFTWARE 33

types, created by the program. VTK’s built-in data types include classes for volumetric
data, and for large polygonal datasets. The initialization of a source is unique to each class
(reflecting the wide variety of sources available), but all sources produce a specific type of
data as output. All sources have a getOutput() method which return a pointer to their
output buffer.

Filters have both input and output. Filters take a specific type of data as input, perform
some sort of transformation on that data, and yield the transformed data as output. The
output type is not necessarily the same as the input type. An arbitrary number of filters
may be strung together in the visualization pipeline, the only requirement being that the
data types are consistent with one another at all junctures. Nearly all of the algorithms
required by the software were already implemented as VTK filters, freeing up the authors’
time to concentrate on 3D reconstruction. In particular, the algorithms used to construct
isosurfaces of the data, as well as optimizing the data for fast rendering (decimation, triangle

stripping, and so on) were already implemented and readily availabe.

At the end of the visualization pipeline lies a sink object. A sink, as the name suggests,
takes an input but produces no output. A sink always terminates a pipeline, and has no
getOutput() method. Sinks are generally going to be either writers or renderers. Writers
convert their input into files of some appropriate format (for example, VRML or AutoCAD).
Renderers use available graphics facilities to render their input onscreen, and optionally
provide a user interface with which the user can interact with the rendered objects.

Our software used Open Inventor for all onscreen rendering; the final node in the VTK
pipeline was thus neither a writer nor a renderer. It was written specifically for this project;
it took polygonal data as input and generated the equivalent data structure for Inventor to
render.

Open Inventor was used for the actual onscreen rendering, and much of the user interface.

Inventor provides an object-oriented layer of abstraction on top of the native 3D rendering

34 CHAPTER 4. 3D IVUS SYSTEM DESCRIPTION

library, OpenGL. OpenGL is a low-level, immediate-mode graphics API, whereas Inventor
is very high-level, and is retained-mode. The distinction between immediate and retained
graphics API’s is this: functions in immediate-mode libraries are generally commands to
draw graphics primitives on the screen immediately. It is up to the programmer to keep
track of which objects are currently being rendered, what properties are associated with
each object, and what the geometric relationships between the various objects are. An
immediate-mode API thus provides little more than a thin layer of abstraction on top of the
graphics hardware. By contrast, in a retained-mode API, the programmer rarely (if ever)
explicitly causes rendering to take place. Rather, the programmer manipulates a database
of objects to be drawn. The library itself determines when rendering must be done, and
relieves the programmer from having to write the underlying database code himself.

In addition to being an abstraction layer on top of OpenGL, Open Inventor provides
a number of useful user-interface components, including viewers for rendered objects. In
this respect it is also a layer of abstraction on top of Xt/Motif and the X Window system,
in which it is implemented. While finer-grained control over the application could have
been achieved by using Xt/Motif and OpenGL directly, Open Inventor saved a considerable
amount of time, and no doubt resulted in a much higher-quality package than would have
been developed otherwise, due to the quality and utility of its prebuilt components.

Despite Inventor’s interface components, there were a number of interface elements that
had to be coded from scratch. Fortunately, it proved trivial to include Inventor components
within a larger Xt/Motif-based application. Essentially, Inventor provided the rendering
areas (as well as some basic mechanisms for user interaction with the rendered objects),
while most of the other interface elements (the menubar, sliders, etc.) were hand-coded
in Xt-Motif. There were also a small number of rendering areas devoted to displaying the
original, 2D data; Inventor was used for creation of the rendering widgets, but the routines

which drew into these widgets were coded in straight OpenGL (unfortunately, Inventor has

4.3. DEVELOPMENT ISSUES 35

no facilities for dealing directly with two-dimensional data). Nonetheless, Inventor provides
hooks into OpenGL in all of its interface components, so integration of Inventor and straight

OpenGL was quite straightforward.

4.3 Development Issues

The most pressing issue was the need for optimized performance, both in terms of rendering
speed (which is bound by the CPU and the graphics hardware) and the memory footprint.
One approach that alleviated both areas involved reducing the amount of geometry that
the application had to deal with. The decimation and triangle stripping processes (both
available as VTK filters) helped a great deal. While they may have added several seconds
to the initial processing time it takes to generate a 3D reconstruction, they improved the
interactive performance a great deal. It was judged to be far more important to improve
the interactive performance than the startup time, within reason. The user can no doubt
tolerate waiting a few extra seconds before being able to view the reconstruction, but if the

viewing process itself is sluggish, then the usefulness of the application suffers.

In addition, steps were taken to reduce the memory footprint. By default, each VTK
filter retains a copy of its version of the dataset in memory, so that if the visualization
pipeline has to rerender, only those filters whose input or parameters have been modified
need be run again. Since this was much less of an issue than memory consumption, VTK
was configured so that the various nodes in the visualization pipeline did not cache a copy of
the data upon execution; rather, the data was passed along to the next filter in the pipeline,

then discarded.

36 CHAPTER 4. 3D IVUS SYSTEM DESCRIPTION

4.4 'The Application

The application itself consists of two parts, a 3D viewing area, and a collection of 2D viewing
widgets. The 3D viewing area is where the 3D reconstruction gets rendered, and contains
controls allowing the user to change the camera’s location and angle, as well as modify the
rendering process itself (designating a default viewing angle, switching to wireframe mode,
among many other useful settings). A new dataset is opened via a file selection dialog
box reached through the menubar. Two sliders exist for altering the parameters to the
isosurfacing algorithm and the decimation filter; they change the isovalue and the target
percentage for decimation, respectively. Figures 4.1 through 4.3 show reconstructions of the

same dataset using different isovalues.

Once a dataset has been opened, additional dialogs become available (again, through
the menubar), allowing the user to modify such things as the material properties of the
reconstruction (most notably the degree of transparency) and the specification of a clipping
volume, so that only a subset of the geometry may be viewed. Figure 4.4 shows the appli-
cation with the material editor dialog open; figure 4.5 shows the results of setting a higher
alpha value in order to obtain a transparent reconstruction. The complete plot of the path
is clearly visible through the transparent material. Figure 4.6 shows the dialog box used to
specify the clip volume; through this dialog box it is possible to define a subset of the volu-
metric data to be used for generation of the reconstruction. Figure 4.7 shows one application
of this technique: the top half of the artery appears to have been removed, revealing much
more of the inner structure (and providing a clear view of the catheter path, without having
to resort to transparency).

In addition to the 3D canvas and its associated controls, there are a group of 3 2D
drawing widgets, each of which show a different cross-section of the volumetric data (they

show the (z,y), (z,2), and (y, z) planes). There is an independant variable associated with

4.4. THE APPLICATION

Figure 4.1: IVUS 3D reconstruction, isovalue 9

Figure 4.2: IVUS 3D reconstruction, isovalue 45

Figure 4.3: IVUS 3D reconstruction, isovalue 117

37

38 CHAPTER 4. 3D IVUS SYSTEM DESCRIPTION

> Material Editor -

Edit Color
Amb:

Spec:

Emis:

Shininess:

Transp:

Figure 4.4: The material properties editor dialog

Figure 4.5: Using a transparent material for reconstruction

4.4. THE APPLICATION 39

each one, which is set using another slider. For example, for the (z,y) view there is a slider
which allows the user to set the z value of the plane being viewed. The data displayed in
these widgets has not been modified by the curvature deformations, and as a result the (x,y)
view directly corresponds to the sequence of images generated by the ultrasound probe, after
clipping and smoothing, but prior to any other processing. The (z, z) and (y, z) views offer
perspectives on the original data not previously available. The reasoning for providing both
3D and 2D views is based on the belief that no one form of visualization is ideal, and that
perhaps the best solution in the face of uncertainty is to place as many tools as possible in
the hands of the analyst. Certain features of the data might not be obvious given the 3D
reconstruction alone, whereas some observations might only be made given exposure to both

formats together.

40

1 >< Clip Yolume
Dimension:

X (range 0-44)
Y (range 0-44)

Z (range 0-49)

QK

CHAPTER 4. 3D IVUS SYSTEM DESCRIPTION

Ceiling:

44

49

Cancel

Figure 4.6: The clip volume dialog

4.4. THE APPLICATION 41

-
-
»
»
»
»
»
»
»
-

-

.
»
»
»
»

Figure 4.7: Clipping the top half of the volumetric data

42

CHAPTER 4. 3D IVUS SYSTEM DESCRIPTION

Chapter 5

Future Directions of Development

Work is currently underway to minimize the amount of time spent in the digitization pro-
cess, by eliminating the digitization phase of the data acquisition procedure; it should be
possible to directly connect the ultrasound equipment to a digital storage device. This would
eliminate what is perhaps the most time-consuming step of the process, digitization of the
images from SVHS. In addition, some preliminary research is being done on the viability of
performing much of the image processing on a video input in realtime. If this is found to be
feasible, it may be possible to eliminate all intermediate phases of data processing between
the gathering of IVUS data and the generation of the 3D reconstruction, as a program could
be written which would take its input directly from the probe itself rather than from an
intermediate, static form of stored data (such as the idset files currently used). Even if this
proves to be impossible with current technology, ultimately this is the direction such systems
will most likely go in the future.

Another area of potential research is in proper segmentation and analysis of the recon-
struction; in the context of intravascular ultrasound, this means being able to identify key
coronary structures automatically. In particular, having the ability to automatically identify
aberrations and unusual conditions could greatly assist medical specialists in both diagnosis
of problems and in the planning of direct interventions. The work of Rosenfield, et al [4]

contains some preliminary thoughts on segmentation, as well as possible applications of the

43

44 CHAPTER 5. FUTURE DIRECTIONS OF DEVELOPMENT

technology.

Also under consideration is the eventual usage of the Java language and environment, as
a means of providing portability and greater maintainability and extensibility for the code
itself. Any decision to go in this direction is entirely dependant on available 3D APT’s, and
their performance and availability on target platforms. Also important is the performance
of current and future JVM’s, particularly with regard to JIT compilation. The application
developed for this project is quite resource-hungry and bound by CPU speed; a transition to
Java will only be worthwhile when we are certain that performance hits in this area can be
minimized. For the time being, any transition to a Java-based environment is on hold until

these issues can be addressed.

Chapter 6

Conclusion

In terms of providing a complete system, the single greatest hurdle to overcome is providing a
more streamlined system for data acquisition. If such visualization packages are to become a
standard tool in the future, the data acquisition procedure should take no more than an hour
or two, and should be automated (where possible) to the point that most of the procedure
can be done without human supervision. Ideally, the gathering of the data via an ultrasound
probe (and a corresponding, integrated means of tracking the probe in 3D space) should take
only a few seconds, with the bulk of the time spent performing the filtering and smoothing
procedures on the data. Aside from initially setting up a small number of parameters, the
latter process can be entirely automated and left to run unattended. The initial storage
device should be digital; removing the need to digitize a videotape would remove one more
link from the chain, and reduce the need for human labor and supervision, as well as improve

the margin of error.

One area in which progress was made was in the image processing stage, after digitization
and prior to reconstruction. Previously, this had to be done more or less by hand, using
a number of scripts specifically written for the project. The procedure was insufficiently
generalized and standardized, and as a result could take as long as an hour or more. The
dataset creation program shown in figure 2.11 reduced this to a couple of minutes, at most.

It also completely automated the procedure, so that once the initial parameters were set, no

45

46 CHAPTER 6. CONCLUSION

Size of dataset, in frames: 32 43 51
Processing time: 1:04 | 1:22 | 1:43

Table 6.1: Timings for dataset creation

additional interaction was required. Timings for three sample datasets are given in table 6.1.

As far as the software itself is concerned, the three most pressing issues are interactivity,
correctness, and analytical utility. Barring dramatic improvements in processing power and
available memory, it will be highly desirable to speed up the interactive rendering engine
and reduce the memory consumption even more than it already has been. For this sort of
resource-intensive application, there really is no point at which “enough” optimization has
been performed; even though acceptable performance has been achieved given the datasets
used for testing, more optimization means that it becomes practical to use larger and more
complicated datasets. There really is no ceiling on how large a dataset one could conceivably
want to visualize, hence further optimization will always be a useful area to explore. Secondly,
correctness. A significant amount of processing is performed on the original data; common
sense dictates that the longer one’s visualization pipeline is, the greater the margin of error
becomes, and the less relevant (or even potentially confusing) the output becomes. Work
needs to be done, starting with very simplistic, cut-and-dried test cases (fiberglass tubing,
hoops, and so on), to determine how accurate the reconstruction is. Such work might
also benefit those researching the instruments themselves, developing better catheters or
transducers, or improving the methodologies involved with the usage of existing equipment.
Finally, analytical utility. This means, increasing the amount of information that can be
derived from the data. One area of discussion has revolved around giving the user the ability
to perform measurements in physical units (such as millimeters) on arbitrary features found
in the reconstruction. For example, the user may wish to measure the diameter of the blood

vessel at various points, in order to help diagnose medical conditions, or weigh the benefits

and dangers of various forms of intervention.

47

48

CHAPTER 6. CONCLUSION

Appendix A

The Visualization Application

A.1 Usage

The primary focus of development was on the interactive visualization application, which was
named “ivus3d”. This program takes as input a single file containing the filtered volumetric
data from the ultrasound run. The file format was developed specifically for this application;
the files typically are given an “idset” extension (for ivus discrete set). In addition to the
volumetric data, the files contain the set of points corresponding to the catheter path for
that particular dataset. There are also some miscellaneous fields in the file header containing
useful information about the dataset, such as the dimensions (in voxels) of the volume, the
date of the experiment, and so on.

The application can be seen in figure 3.2. When the program first starts up, there is no
dataset loaded. To load an idset file, choose the “Open” option from the File menu. A file
selection dialog box will pop up, allowing the user to select an idset file to load. After a file
has been selected, the application will generate an isosurface from that dataset and display
it in the main rendering area. By clicking and dragging on the rendering area, the user may
move the camera to any arbitrary position and orientation around the reconstruction.

Right-clicking on the rendering area will bring up a menu which contains a number

of options controlling how the isosurface is rendered, including wireframe and hidden-line

49

50 APPENDIX A. THE VISUALIZATION APPLICATION

modes, and switching between parallel and perspective viewing modes.

There are two user-configurable paramters which control the reconstruction process itself.
These are the isovalue used to construct the isosurface, and the target percentage for the
decimation procedure. Both may be set using slider widgets located in the upper left-hand
corner of the application’s interface. Changing the target percentage for decimation means
changing what percentage of the the original polygons the program attempts to eliminate.
This doesn’t mean that that percentage of polygons will actually be eliminated; it only
means that the decimation filter will relax its constraints until they reach a point where it

estimates that that many polygons will be eliminated.

Changing either the isovalue or the target decimation percentage prior to the loading of
a dataset will simply alter the initial values for these parameters when a dataset is finally
loaded. If a dataset has already been loaded when the change is made, the reconstruction

will be redone using the new parameters.

In addition to the main rendering area are three smaller rendering areas in the top half
of the window. These areas are used to display two-dimensional data, namely orthogonal
cross-sections of the volumetric data. For each of these 2D areas, there is a corresponding
slider widget which allows the user to select which cross-section to view. For example, the
leftmost rendering area is used to display cross-sections which are perpendicular to the z-
axis. A slider allows the user to select a z value, and the corresponding 2D area will display
the z-y cross-section located at that point on the z-axis. The other two areas display x-z
and y-z planes, with sliders allowing the user to select y and x values, respectively. The z-y
view is especially useful as it is corresponds to the original frames of video data from the
ultrasound probe. Flipping through a sequence of z-y planes is analogous to flipping through
the sequence of video frames generated by the probe. However, there is a difference: the
images displayed in the 2D rendering areas have already had the various image processing

filters applied to them, and will not be identical to the original video data. The 2D rendering

A.1. USAGE 51

areas are thus most useful for getting a sense of the structure of the volumetric data, and

for evaluating the effectiveness of the image processing techniques used.

Finally, a number of features may be accessed through the two menus on the menubar.
The first menu, the “File” menu, contains three entries: Open, Save, and Quit. Selecting
Open brings up the file selection box, so that the user can select an idset to load. Selecting
Quit exits the application, after requesting confirmation from the user via another dialog
box. Selecting Save will write out a file in the Inventor format, corresponding to the current
3D reconstruction. If no dataset has been loaded (and hence no 3D reconstruction has yet
been generated), the Save item is greyed-out and unavailable. After selecting Save, the user is
presented with a dialog box, which allows the user to specify a filename and which directory
to place it in. By default, the current working directory is used, and a default filename is
constructed by replacing the extension of the idset file with “iv”, the standard extension
for Open Inventor files. Inventor files may be viewed using a number of other applications,
including the “ivview” program from SGI, and a Netscape plugin. In addition, it is trivial

to write Inventor-based programs which read in data from a file in this format.

The second menu is the “View” menu, which contains two items. Both of these items are
greyed-out if the user hasn’t already loaded up a dataset. This menu contains two entries,
Material Editor and Clip Volume. The Material Editor entry will bring up a dialog box
which allows the user to modify the properties of the material used for the reconstruction.
This includes various color-related parameters, but the most useful function of this dialog is
the ability to change the level of transparency of the material. When the reconstruction is
initially rendered, it is fully opaque. However, by giving it a nonzero level of transparency,
it becomes possible to examine the interior geometry of the reconstruction. In addition, the
plot of the catheter path becomes fully visible. The tubes and cylinders which make up the
plot of the path are not affected by the material editor, only the reconstruction itself. The

material editor dialog may be seen in figure 4.4.

52 APPENDIX A. THE VISUALIZATION APPLICATION

The other item on the “View” menu is Clip Volume. Selecting this item brings up yet
another dialog box, which allows the user to select a subset of the volumetric data to use.
Any combination of z, y, and z ranges may be used. This is useful in case one wants to
examine the interior of the reconstruction without having to resort to transparency. The

dialog box may be seen in figure 4.6; figure 4.7 is an example of a clipped reconstruction.

A.2 Tools, Languages, and Libraries

Aside from the application used to generate the idset files, no additional external tools
are required to run the software. However, ivus3d does have the ability to save the 3D
reconstructions in the Open Inventor 2.0 file format. This allows the reconstructions to be
read in directly by any other tools which can read this format. This includes a number of
programs which ship with Irix, including a Netscape plugin.

The implementation language for ivus3d was C++. C++ was chosen because we wanted
to use certain class libraries for the project, namely VITK and Open Inventor. In addition,
we felt that C++ offered better facilities for modular programming than the alternatives,
without sacrificing performance.

The program relies on a number of external libraries for much of its functionality. As
was noted earlier, the actual reconstruction is performed using classes from VTK. A custom
VTK class was written which exported VTK’s internal format for storing geometric data
to the functionally equivalent format used by Open Inventor. This allowed us to use Open
Inventor to perform the actual rendering. This was desirable for three reasons. First of all,
Open Inventor has a highly optimized rendering engine, which gave demonstrably better
performance than the corresponding renderer that ships with VTK. Secondly, it is easier
to integrate straight OpenGL code with Open Inventor than it is with VTK. Finally, Open
Inventor included a large number of very high-level user interface components which proved

useful.

A.3. SOURCE CODE ROADMAP 53

In addition to Open Inventor and VTK, Motif was used to create much of the user
interface. Open Inventor provided essential Ul components such as the viewer widget, which
displays the reconstruction, and allows the user to interact with it in a number of different
ways. However, Open Inventor does not provide simpler, more general-purpose components
like menubars or sliders. This was where Motif proved useful. Also, since Open Inventor’s
widgets themselves were implemented using Motif, it was very easy to integrate the two

toolkits to provide a single, uniform UI.

A.3 Source Code Roadmap

The source code is composed of 5 source files and a number of headers. One of the files,
main.cc, contains the main() function for the program. It is very small; it does nothing
more than instantiate the Interface class (described in the next paragraph), and enter the

main event loop of the program.

The program uses a very simple object model (if it could even be called that). One
class, Interface, encapsulates all of the code related to the user interface and the onscreen
rendering. To the greatest degree possible, all Motif and Open Inventor code is confined to
this class, and no VTK code will be found within. The other class is the (perhaps poorly
named) Data class, which contains the VTK pipeline. All VTK code is within this class.
No UI code is contained in this class, with one exception. The final node in the VTK
pipeline converts VTK’s geometric data structures to the format used by Open Inventor.
A cleaner implementation might place the VTK/Inventor conversion class outside of Data,
and somehow place it in between Data and Interface. The Data and Interface classes are
implemented in the files data.cc and interface.cc, respectively. Corresponding header

files (data.h and interface.h) contain their class declarations.

When the program starts up, it creates one instance of the Interface class. When an

54 APPENDIX A. THE VISUALIZATION APPLICATION

idset file is loaded up through the interface, an instance of the Data class is created. The

idea is that each dataset would have an associated instance of the Data class. In the current

implementation, there is only one dataset available at time. However, it is written in such a
way that the program could be extended to allow multiple datasets to be open at once, with
one instance of Data for each. This would allow for a richer user environment; for example,
multiple datasets could be open at once, each in a different top level window. Alternately,
multiple instances of the same dataset could be open at once, each with different parameters

for its visualization pipeline (such as different isovalues).

Manipulation of the visualization pipeline’s parameters is done by calling public methods
in the Data class, rather than by directly manipulating the VTK nodes. This allows us to
have a clean seperation between the Ul code and the visualization pipeline, to the degree that
we could do away with VTK altogether, and reimplement its functionality using custom code
or another toolkit, and not require a single modification to the UI code. The same applies
to the interface; it could be completely rewritten, if need be, and we wouldn’t have to worry

about potential side effects within the visualization pipeline.

The Data class contains instances of the various classes that form the nodes of VI K’s

visualization pipeline. In addition the the VTK classes, two custom classes were written for
use in the pipeline. The first class, IvusDiscreteSet, is an object-oriented wrapper around
the idset files. This class is declared in the file ivusDiscreteSet.h and implemented in
the file ivusDiscreteSet.cc. An instance of this class forms the beginning (or source, in
VTK terminology) of the visualization pipeline. The constructor for the IvusDiscreteSet
class takes a filename as a parameter; this should be the name of an idset file to read into
memory. The class serves two functions, aside from being a reader for the idset file format.
First, it marshals the data into a form that can be used by VTK. The VTK pipeline gets its
initial data from this class. Secondly, it generates a spline from the points stored in the idset

file (corresponding to the catheter path), and manipulates the volumetric data accordingly.

A.3. SOURCE CODE ROADMAP 55

This class implements a number of other methods for examining and manipulating idset files

and their data, but these two features are by far the most important for the program.

The visualization pipeline is implemented as a linked list of nodes, each node an instance
of a VTK class. The pipeline contains three kinds of nodes: sources, filters, and sinks. A
source is at the beginning of the pipeline; it generates an output, but does not accept another
node as input. In our pipeline, the IvusDiscreteSet class is the source. Although it is not a

proper VTK node, it creates one that can be used as a starting point.

Following the source are an arbitrary number of filters, chained together in sequence. A
filter has both an input and an output; a pointer to a VTK node may be set as an input, and
it exports a pointer to its output, which will be another VTK node (not necessarily of the
same data type). Inivus3d, all of the required filters were available as part of VTK. It was not
necessary to write additional filters. The filters include an instance of the vtkContourFilter
class, which generates an isosurface from scalar, volumetric data. Three other filters were
used. Two of them are for optimization: vtkDecimate and vtkStripper. These perform
the decimation procedure and the triangle stripping procedure described in section 3.3. The
third filter is an instance of vtkPolyDataNormals. This filter generates normals for polygonal

data, enabling a much higher quality rendering of the reconstruction.

The final node in the pipeline is a sink object; a sink takes a node as input, but does not
produce an output. A sink forms the end of the pipeline. A custom VTK node was written
for use as a sink: vtkIVSink. This node takes as input polygonal data in VTK’s format, and
transforms it into the format used by Open Inventor. This is the only Open Inventor code
to be found outside of the Interface class. When the application renders the reconstruction,
it calls a public method in the Data class which returns a pointer to the Open Inventor data
generated by the vtkIVSink node. This data is then passed to the rendering widget inside
the Interface class. The vtkIVSink class is declared in the file vtkIVSink.h and implemented

in the file vtkIVSink.cc.

56 APPENDIX A. THE VISUALIZATION APPLICATION

A.4 Implementation Notes

The object model is rather minimal, and rather awkward. It does, however, perform the task
for which it was created: to segregate the interface code and the rendering code from the
visualization pipeline. While it may become desirable in the future to create a new object
model from scratch, this fundamental relationship should be maintained. In the early stages
of development, intermingling interface and pipeline code was the single greatest source of

bugs, extensibility problems, and “spaghetti code”.

Appendix B

The Dataset Generator

B.1 Usage

In addition to the interactive visualization program, a helper program was written to auto-
mate the process of creating idset files from the raw ultrasound data. This program assumes
that the video data has already been digitized, and that a simple text file has been created
that contains the points on the catheter path. Both the digitized video data and the text
file are needed to create an idset. The interface consists of a number of text entry widgets,
almost all of which initially contain suitable default values. The program’s interface may be

seen in figure 2.11.

Prior to running the program, the video data should have already been digitized. The
program expects that the digitized images are all in the same directory, and are named
consistently. The filenames for the digitized images should start with a common prefix,
followed by a number denoting the image’s position in the sequence (with no leading zeroes),
follwed by an . rgb extension. The files should all be in SGI’s rgb format, although support
for more file formats could easily be added in the future. For example, a subset of the files
for a given dataset might be named arteryl.rgb, artery2.rgb, artery3.rgb, and so on.

Each file corresponds to a single frame of the original video data.

In addition, a text file should have been created containing the sequence of points in the

o7

58 APPENDIX B. THE DATASET GENERATOR

catheter path derived from the X-ray data. The file should contain one line of text for each
point; each point is described by 3 decimal integers, seperated by whitespace (spaces and/or
tabs). The program takes care of translating each point relative to the first, so it is perfectly

acceptable to use the raw pixel counts from the X-ray images.

Out of all of the text entry fields in the application, it is only required that the user fill
in the first three. Reasonable default values are provided for the rest of the fields, which
may of course be changed by the user. The first field specifies the directory in which to
find the digitized images. The second field specifies the directory in which to place the
generated idset. The third field specifies the location of the text file containing the catheter
path information. In addition, the user will probably want to change the values for the
fourth through seventh fields; these specify the image file prefix, the interval to skip between
files, the number of the first file, and the number of the last file, respectively. For example,
specifying “artery” for the prefix, “5” for the interval, “20” for the starting number, and
“80” for the last number will result in an idset being created using every fifth file in the
sequence from artery20.rgb through artery80.rgb.

The other fields control the image processing parameters and the contents of the data
fields in the generated idset file’s header. Examples of image processing parameters include
how many times (passes) should the median filtering be performed on each image, and what
dimensions should each image be scaled to prior to inclusion in the idset. An example of an
idset file header field is the date of the original experiment; the program uses the current
date by default.

In addition, miscellaneous fields inform the program of such things as the total distance
covered during pullback, and the duration of pullback in seconds. This enables the program
to determine the speed at which the catheter was moving, and helps to impose physical units
(such as millimeters) on the data. Without such information, all of the geometric data is

relative, and is not directly related to standard units of measure.

B.2. TOOLS, LANGUAGES, AND LIBRARIES 59

After the required information is entered, the user simply clicks on the “OK” button,
and the idset is created. For most of the datasets we used, the process of idset creation took
no more than a minute or two (see table 6.1 for specific timings). The idset file may then be

loaded into the main visualization application for 3D reconstruction and data exploration.

B.2 Tools, Languages, and Libraries

This program is dependant on one external program: sgitopnm, from the NetPBM package.
NetPBM is a collection of standalone programs which operate on image files, doing both file
format conversion and image processing. The sgitopnm program converts SGI .rgb files to
the .ppm (Portable Pixmap) format native to NetPBM. The digitized images are initially
available as .rgb files, and are converted to . ppm files because the file format is very simplistic
and easy to manipulate. The dependancy on this executable should probably be removed in
future development; it’s functionality is easily duplicated within the program. Alternately,
the program could be made to operate directly on .rgb files without too much difficulty.
The code was written in C. The application was small (it is easily contained within a
single file) and it didn’t require any libraries other than Motif, so it was decided that any

sort of object model or class hierarchy would be overkill.

B.3 Source Code Roadmap

The source code for the program is contained within a single file, idset.c. The bulk of the
code constructs the label and text entry widgets. The entire functionality of the program is
contained within a single function, ok_but_cb(), which gets called when the user clicks on
the “OK” button. This function contains the entire image processing pipeline, the param-
eters of which are set via the text entry widgets. The function obtains the values of these

parameters by directly examining the strings contained within the entry widgets.

60 APPENDIX B. THE DATASET GENERATOR

B.4 Implementation Notes

The current form of the application assumes that the images have already been digitized,
and are sitting in an accessible directory on the filesystem. This still requires the user to
manually retrieve the digitized images from the Diskus, and to convert those images from
the raw YUV format to SGI RGB files. A possible future enhancement might retrieve the
files directly from the Diskus, saving both time and storage space.

The application was designed to resemble a dialog box. It would be fairly easy to take the
code, place the interface inside of a Motif dialog box rather than a top level window, and make
that dialog accessible from the main visualization application. This would make the main
application more of an integrated tool, and merge the codebases for the two applications.

The technique of masking off the ring artifact left by the catheter can occasionally produce
negative side effects: if the artery is somewhat lopsided, or is not centered in the image, then
the masking process can sometimes mask off part of the artery, rather than just the artifact.
This introduces inaccuracies into the reconstruction; in extreme cases the reconstructed
artery looks like it has holes in it, or strips removed from it lengthwise. Better techniques
for dealing with the artifact are needed. Ideally, better equipment would be developed that

would eliminate the artifact altogether.

Bibliography

1]

D.H.U. Kochanek and R.H. Bartels. Interpolating splines with local tension, continuity,

and bias control. Computer Graphics, 18(3), July 1984.

J. Lengyel, Donald P. Greenberg, and Richard Popp. Time-dependent three-dimensional

intravascular ultrasound. In Proceedings of SIGGRAPH ’95, 1995.

J.R. Roelandt, C. di Mario, N.G. Pandian, .. Wenguang, D. Keane, C.J. Slager, P.J.
de Feyter, and P.W. Serruys. Three-dimensional reconstruction of intracoronary ultra-

sound images. Clirculation, 90(2), August 1994.

K. Rosenfield, D.W. Losordo, K. Ramaswamy, J.O. Pastore, R.E. Langevin, S. Razvi,
B.D. Kosowsky, and J.M. Isner. Three-dimensional reconstruction of human coronary
and peripheral arteries from images recorded during two-dimensional intravascular utra-

sound examination. Circulation, 84(5), November 1991.

W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit. Prentice Hall,

second edition, 1998.

F.G. St.Goar, F.J. Pinto, E.LL. Alderman, H.A. Valantine, J.S. Schroeder, S.Z. Gao,
E.B. Stinson, and R.L. Popp. Intracoronary ultrasound in cardiac transplant recipients.

Circulation, 85(3), March 1992.

61

62 BIBLIOGRAPHY

[7] K.R. Subramanian. Accurate 3d reconstruction of curved coronary vessels from in-
travascular ultrasound images. University of North Carolina at Charlotte, Department

of Computer Science.

[8] Josie Wernecke. The Inventor Mentor: Programming Object-Oriented 3d Graphics With

Open Inventor, Release 2. Addison-Wesley, first edition, 1994.

9] P.G. Yock, E.L. Johnson, and D.T. Linker. Intravascular ultrasound: Development and

clinical potential. American Journal of Cardiac Imaging, 2(3), September 1988.

[10] Xinshi S. Zhou. Intravascular ultrasound image processing and 3d reconstruction. Mas-

ter’s thesis, University of North Carolina at Charlotte, 1995.

