
Visualization assisted hardware configuration

 for Bioinformatics algorithms

Priyesh Dixit

Advisors:

Drs. K. R. Subramanian, A. Mukherjee, A. Ravindran

May 2005

1

Special Thanks

I would like to thank Dr. Subramanian for his faith in my abilities and for selecting me

to do this project. I also thank Dr. Mukherjee and Dr. Ravindran for their patience and

support throughout the year and making this project possible. Thanks to Josh Foster

and Nalin Subramanian for help with the FLTK and VTK. And also I would like to

especially thank Jong-Ho Byun for his all his help.

2

Table of Contents
Chapter 1: Introduction...4

Chapter 2: Background...6

2.1 Bioinformatics...6
2.2 Field Programmable Gate Arrays..6
2.3 The Smith-Waterman algorithm..9
2.4 Visualization...10

Chapter 3: System Description..11

3.1 Overview...11
3.2 Design flow...12
3.3 Data files...13
3.2 Visualization Design...16

Chapter 4: Implementation..21

4.1 Class Heirarchy...21
4.2 Metrics Implemented...22
4.3 The Visualization Pipeline..23
4.3 User Session..24

Chapter 5: Experiments...26

5.1 Generating the data..26
5.2 Comparing datasets...27

Chapter 6: Conclusion...30

References...31

Appendix...32

Application source code..32

3

Chapter 1: Introduction

Bioinformatics is the development of efficient computational algorithms, statistical

analysis methods, and mathematical models, to manipulate, analyze, interpret and

distribute biological information in gene and protein databases. The main challenge lies

in analyzing the phenomenally enormous amount of accumulated data, and hence, the

need for high performance computing. The current computational platforms, such as

microprocessor based super computers and grid computing networks, are not fast

enough to keep up with increasing complexity of the data [7]. High performance

reconfigurable hardware such as Field Programmable Gate Arrays (FPGA’s) can fulfill

this need.

The proposed research will make it feasible to execute bioinformatics applications and

algorithms on compact and cheap computation platforms that are hardware

reconfigurable, and orders of magnitude faster than supercomputers. The FPGA based

platforms will accelerate the computationally intensive cores of the algorithms, and will

be part of standard computation platforms like supercomputers, clusters of PCs

(personal computers) and workstations, and grid computers. Beyond the domain of

hardware implementation, we are proposing an entire methodology for optimal design

of bioinformatics algorithms for efficient hardware implementation, along with a

partitioner for efficiently implementing enormous computations on multiple FPGAs,

memories and processors. We expect that our research will lead to novel system-level

architectural innovations in FPGAs and hypercomputing platforms for bioinformatics

applications. The objective of my senior project was to develop a visualization

application for this hypercomputing platform.

Visualization is needed for our system in order to visually observe the effectiveness of a

proposed hardware mapping. Currently, there is no existing software to our knowledge

4

that allows the user to visually simulate the execution of an FPGA. The Xilinx [6]

ModelSim application allows the user to see the activity in the wires in the form of a

wave (whether the wire is high/low). However, the wave form is not easy to

understand, especially over time for long running algorithms. We need to explore the

many cost and performance metrics of an FPGA over time. Thus, this data is

multivariate and visualization can aid in understanding this data. In particular, we use

multiple linked views to bring out the spatio-temporal features of interest.

In this project, we have developed a visualization application that enables the user to

visualize this multivariate data. The application was developed using the Fast and Light

ToolKit (FLTK) [1], the Visualization ToolKit (VTK) [2] and OpenGL (Open Graphics

Library). FLTK was used to develop the Graphical User Interface of the application.

VTK and OpenGL were used to render the visualizations in the different views. All of

the tools used to implement the tool are cross-platform, which means we can port it to

almost any operating system. It has three different visualization displays, the main

view, the detailed view and the graph view. The system requires two types of data files

as input, an architecture description file and a chip activity data file. Once the data has

been loaded, one can play the simulation using the VCR controls in the control panel.

The work that has been completed so far is enough to show the potential of our

proposed system. Using the visualization, scientists from many disciplines can observe

and optimize hardware implementations for faster and more efficient computations.

This report will discuss the work that has been done within the past year. It is broken

down into several sections. The first section gives some background information on

bioinformatics and FPGAs. Next, there is a description of the visualization system and

how it was implemented. This is followed by the experiments performed with the tool

and their results. The possible future work is outlined in the concluding chapter. The

source code of the visualization application is also provided in the appendix.

5

Chapter 2: Background

2.1 Bioinformatics

Bioinformatics is the management and analysis of biological (especially genomic) data

using advanced computing techniques [3]. The goal of bioinformatics is to solve the

many mysteries of science using high performance computational platforms. Currently,

most bioinformatics algorithms are performed on multi-processor super computers and

distributed computing networks. These platforms are relatively slow and the growth of

processing power is not high enough to keep up with the demands of bioinformatics.

One example of this would be DNA sequence matching algorithms. There are many

different types of sequence matching algorithms such as BLAST, FASTA, HMMER

and Smith-Waterman. It involves the comparison of a DNA string of arbitrary length

with a gene database (such as GENBANK). Such an algorithm requires a lot of

computational power and can take hours on a microprocessor system [7].

2.2 Field Programmable Gate Arrays

The power required to execute bioinformatics algorithms can be found in high

performance Field Programmable Gate Arrays (called FPGAs). An FPGA is an array

of logic gates that can be hardware-programmed to execute user-defined tasks. Due to

its reconfigurable nature, it can be optimized to perform a task at much greater speeds

than regular microprocessors [4]. Application specific integrated circuits (ASICs) on

the other hand, are faster and smaller than FPGAs, and dissipate less power compared

to FPGAs [8]. However, ASICs are not reconfigurable once fabricated, and hence, they

are extremely expensive and have months of turn-around time.

An FPGA contains many computational elements called “Slices” that have some input

and output wires that are known as “Nets”. Each net has an origin slice and one or

6

more destination slices. Modern FPGAs are high performance, capable of massively

parallel computations, and complex enough to implement system-on-chip at low costs

[11]. Therefore, we propose the use of FPGAs along with standard computing

platforms to execute bioinformatics algorithms. This is the concept of a “hyper-

computer.” In order to optimize the mapping and partitioning of the algorithms to the

hardware, a visualization tool is required. A visualization of metrics such as power,

latency and transition density can aid in the optimization of the hardware configuration.

With the help of the visualization, bioinformatics researchers can create their own

hyper-computing platforms. First, one must write the algorithm to be mapped in C

source code and convert it to the circuit description language VHDL using the

ImpulseC software. Next, using the Xilinx software one can map the VHDL code onto

one or more FPGA designs. Then, the data files for the visualization would be

generated and input into the visualization system. Once the mapping has been

optimized, it can be used to generate bit-streams that are sent to the hardware. The

reconfigurable hardware platform is a BenNUEY motherboard connected to the host

computer via a PCI slot. The motherboard interfaces between the host computer and

the multiple FPGAs. There can also be more than one motherboard. The relatively

slow PCI bus is only used when communicating with the CPU for downloading bit

streams onto the FPGAs, for driving the FPGA inputs and analyzing their outputs, and

for inter-motherboard communications. A diagram of the flow is given below.

7

Figure 2.1: Data flow diagram of a typical hyper-computing platform

There are several metrics that must be considered when optimizing the hardware

configuration. These include utilization, power, latency, and transition density. They

are derived as follows:

• Utilization: percentage of chip area being used by the algorithm. This metric is

constant for any given design and is the only time-independent variable. The formula

is as follows:

U = (Used chip area / Total chip area)

• Transition Density: the average of the transitions in the input and output nets of a

slice during a given time frame. The transition density of a wire is as follows:

TD(t) = Total transitions / Maximum transitions possible

• Power: the product of transition density, relative length and the Capacitance

Coefficient of the FPGA. Relative length is the length of the net divided by

maximum length of the design. The Capacitance Coeffient (Kc) is a hardware

8

dependent constant. The formula is as follows:

P(t)= TD(t) * (L/Lmax) * Kc

• Latency: the ceiling of the product of transition density, relative length and the Delay

Coefficient (Kd), divided by the clock period, T (in seconds). Kd is another

hardware-dependent constant like Kc. The formula is as follows:

L(t)= ceil[TD(t) * (L/Lmax) * Kd] / T

2.3 The Smith-Waterman algorithm

For this project the bioinformatics algorithm chosen for our experiments was the Smith-

Waterman sequence-matching algorithm [9]. The goal of sequence matching is to

determine the similarities between the subsequences of strings as much as possible.

The similarity is determined by the minimum changes needed to get one string from the

other. A scoring scheme must be used to assign a certain score to a pair of strings

based on gaps, matches and mismatches. A matrix is used to keep track of the scores

and eventually compute the result, where M[i,j] is the score for strings A[0..i] and B

[0..j]. The position M[0,0] is assigned the value of zero (for two empty strings) and

then the rest of the positions are computed in a pipelined fashion.

This algorithm was already implemented in C, it was then converted to VHDL using

ImpulseC and then mapped to an FPGA using the Xilinx Integrated Software

Environment. The mapping of the algorithm to hardware is also a pipeline. Individual

processing elements (consisting of multiple slices) represent a column in the matrix.

The computation flows from one processing element to another and finally reaches a

counter that calculates the result. Using multiple FPGAs in parallel to compute

different sub matrices can optimize this design further. The pipelined nature of the

algorithm made it easier to tell if the transitions were displayed accurately.

9

2.4 Visualization

Visualization is the technique of transforming complex, multivariate data into

interactive, sensory representations using a computer in order to better understand the

information [5]. The representation is typically visual although it is possible to use

other senses such as hearing and touch. In our case, a hardware device is represented

on the computer as a two-dimensional grid and attributes such as power are mapped

onto the grid as colors. This allows the user to intuitively interpret the complex

relationships between points in the data.

Modern visualization tools provide an effective means for extracting knowledge from

large amounts of raw or processed data. For the past two decades, visualization

techniques have been increasingly employed in a number of scientific, engineering and

business domains. Interactive visualization techniques have the added advantage of

placing the user expertise in the loop, leading to exploratory visualization environments

that can be considered to be an effective search technique for near-optimal solutions.

Since our design methodology and hypercomputing platform will be mainly used by

biologists and bioinformatists, visualization will be extremely helpful for them to

comprehend the system, and analyze/interpret the observed data. Thus, the users can

effectively use our system, and find good partitioning results for high speed sequence

matching.

There are several tools available for data visualization such as Prefuse, AVS, IBM Data

Explorer and VTK. The tool we chose for this project was the Visualization ToolKit

(VTK), which is a C++ class library based on OpenGL. VTK allows for the creation of

a pipeline of data sources and filters. It uses a “lazy update” method, which means it

does not redraw the visualization unless it something is modified in the pipeline. This

makes it much faster and efficient. A diagram of the VTK pipeline used in this

application is given in Figure 4.2.

10

Chapter 3: System Description

3.1 Overview

The interactive visualization system is an intuitive tool that allows the user to monitor

the execution of an algorithm on an FPGA board over time. The VCR-like interface

allows for simple controls for viewing any part of the simulation. There are three

variables that can be adjusted through the user interface: play position, window size and

time delay. Play position is simply the current time step being displayed on the screen.

Window size determines the number of time steps that are averaged to calculate the

color map value. A moving window average is used, so if N is the window size then

the metric at the current time step is added to the N-1 time steps after it and averaged to

return the final metric value (see Figure 3.1). The time delay is the time (in seconds)

between frames during playback. Note that this does not include any delay caused by

computations. A picture of the system interface is shown in Figure 3.2.

Figure 3.1: Moving window average

11

Figure 3.2: Screenshot of the main screen before any data is loaded

3.2 Design flow

The diagram below describes the typical data flow of the system.

Figure 3.3: Typical design flow of the system

12

We start with the VHDL implementation of the algorithm, which then gets mapped to

an FPGA. VHDL is a design description language used to map algorithms onto FPGAs

and other hardware devices. Next, we generate a data file that contains the hardware

mapping description of the chip (XDL). After the XDL file is generated, the simulation

must be done using the Xilinx ModelSim simulation software and a VCD file is created.

These two files are input into the visualization tool and the VHDL implementation can

be modified based on the performance. The data files are explained in more detail in

the following section.

3.3 Data files

There are two different types of data files that can be loaded into the visualization. The

first is the XDL (Xilinx Design Language) file that shows the architecture of the design.

The XDL file contains a list of all slices in the circuit along with their X,Y coordinates.

The file also lists all nets along with their origin slice and destination slices. Once this

file is parsed another file containing the activity information must be loaded. A sample

of an XDL file description of a slice and a net is given below.

inst "Tout_1_OBUF" "SLICE" , placed R91C31 SLICE_X61Y10 ,
 cfg "CYSELF::#OFF CYSELG::#OFF COUTUSED::#OFF YUSED::#OFF
 XUSED::#OFF F5USED::#OFF YBMUX::#OFF CYINIT::#OFF DYMUX::0
 DXMUX::#OFF F::#OFF: REVUSED::#OFF FXMUX::#OFF
 SYNC_ATTR::ASYNC SRFFMUX::#OFF FFY_SR_ATTR::SRLOW FFX::#OFF
 FFY:y8/output:#FF FFX_SR_ATTR::#OFF G_ATTR::#OFF
 DIG_MUX::#OFF CY0G::#OFF GYMUX::#OFF FXUSED::#OFF
 DIF_MUX::#OFF SLICEWE0USED::#OFF F_ATTR::#OFF CY0F::#OFF
 DIGUSED::#OFF SHIFTOUTUSED::#OFF BYOUTUSED::#OFF
 FFX_INIT_ATTR::#OFF FFY_INIT_ATTR::INIT0 G::#OFF:
 XBMUX::#OFF BYINVOUTUSED::#OFF SLICEWE2USED::#OFF
 SLICEWE1USED::#OFF WF1USED::#OFF WF2USED::#OFF
 WF3USED::#OFF WF4USED::#OFF WG1USED::#OFF WG2USED::#OFF
 WG3USED::#OFF WG4USED::#OFF YBUSED::#OFF BXOUTUSED::#OFF
 BYINV::BY BXINV::#OFF CEINV::#OFF CLKINV::CLK SRINV::#OFF
 SOPOUTUSED::#OFF SOPEXTSEL::#OFF"”

...

net "Tout_1_OBUF" ,
 outpin "Tout_1_OBUF" YQ ,
 inpin "Tout<1>" O1 ,

13

 pip R91C31 YQ2 -> OMUX0 ,
 pip R92C31 OMUX_S0 -> S2BEG0 ,
 pip R95C31 S2END_S0 -> S2BEG8 ,
 pip BIOIC31 S2END8 -> IOIS_FAN_BX3 ,
 pip BIOIC31 IOIS_FAN_BX3 -> IOIS_FAN_BY0 ,
 pip BIOIC31 IOIS_FAN_BY0 -> O1_B0 ,
 # net "Tout_1_OBUF" loads=1 drivers=1 pips=6 rtpips=0

Above is an excerpt from an XDL file describing the slice Tout_1_OBUF and also a net

of the same name. As can be seen, the net comes out of the Tout_1_OBUF (outpin)

and goes into Tout<1> (the second bit of the Tout line). The other information, such as

internal ports and interconnection points, is not used at this time.

The main file type for activity data is the VCD file, which is generated by the Xilinx

simulation program called ModelSim. The VCD file is a text file that contains a list of

all wires and at each time step it lists the wires that changed in value (had a transition).

The VCD file first lists all wires by name with their assigned ID (one or more

characters). After the wires have been listed with IDs, a time step is started with a

pound sign (#). Following the time step line, the transitions are defined by a 0 or 1

followed by the wire ID. This information is stored in the application such that, for

each wire there is an array of time steps when the wire changed in value. The actual

value of the wire is currently not recorded. A sample VCD file format is shown below.

$date
 Thu Dec 9 21:55:27 2004
$end
$version
 ModelSim Version 5.7c
$end
$timescale
 1fs
$end
$scope module tb_sw $end
$var wire 1 ! clk $end
$var wire 1 " init $end
$var wire 1 # initout $end
$var wire 1 $ tbase_in [1] $end
$var wire 1 % tbase_in [0] $end
$var wire 1 & edit_dist [6] $end
$var wire 1 ' edit_dist [5] $end
$var wire 1 (edit_dist [4] $end

14

$var wire 1) edit_dist [3] $end
$var wire 1 * edit_dist [2] $end
$var wire 1 + edit_dist [1] $end
$var wire 1 , edit_dist [0] $end
$upscope $end
$enddefinitions $end

...

#100000000
1!
0"
0%
1$

The above VCD file sample shows the declaration of wires and the symbolic ID's of the

wires that are used to reduce file-size. After the wire definitions, I have shown the

transitions for time step 100000000 femto-seconds. It shows that wire ! (clk) became

one, wire “ (init) became zero, wire % (tbase_in[0]) became zero and wire $ (tbase_in

[1]) became one.

When an XDL file is selected, the VTK canvas displays the architecture of the FPGA

design. The unused positions in the 200x200 grid are blue and slice positions are green.

A data file must be loaded next; it can be either in VCD, compressed (cmp), or binary

(bin) format. It must first be generated in VCD format by the Xilinx ModelSim

application. The procedure for generating the VCD file is explained in Chapter 5.

Once the VCD file is opened it can then be converted to a more compact format by the

visualization tool. Be aware that an XDL file must be loaded before the data file.

When converting to another file format, the application only conserves the nets that

were present in both the XDL file and the original data file. Once the data file is

loaded, the metrics can then be calculated.

There are two compressed file formats that were developed for converting the VCD

files. The first is a compressed text file (.cmp) that contains only the wires of interest

and lists the index of the time steps at which a transition occurs in each wire. It first

gives the total number of wires, then the total number of time steps. After that, it has

15

the name of the first wire followed by the total number of transitions of the wire. It

then lists the time step indices of the wire which are then stored in memory. This

facilitates for easy file parsing since the data is in the same structure as it is going to be

stored in memory. There are two files that are stored for the CMP format, the actual

transition data is in the .cmp file and a separate .cmp.steps file is created that contains

the absolute time steps rather than indices.

The second format is a binary file (.bin) that contains the exact same information as

the .cmp but in an even more compressed form. First it lists the number of wires and

the number of time steps. This is followed by the number of transitions of the first

wire, and then the time step indices. For simplicity, the names of the wires are not

stored in binary form but instead a separate text file with a .bin.names stores an array of

the names and it is read concurrently with the binary file. After the transition time steps

of the first wire, the number of transitions in the next wire is given, this corresponds to

the next wire name in the names file. The VCD file can be converted using the convert

command line application found in the “binary” directory of the source tree.

3.2 Visualization Design

There are 3 different displays for the visualization. The first is the VtkCanvas, this is

the main canvas for showing the visualization. This canvas uses the Visualization Tool

Kit (VTK) for rendering. VTK is a widely used tool for visualization applications and

is based on OpenGL (Open Graphics Library). It displays the 2D grid of points

representing an FPGA either as a single textured plane or a 2D array of glyphs.

Currently, the grid size is set to a constant of 200x200. The single textured plane view

renders faster but does not have any interactive picking. The glyph view (or Slice

View) does allow for picking but due to the large number of objects it takes longer to

render.

16

There are currently two interaction modes in the VtkCanvas that can be chosen from the

menu bar. The first is the Trackball mode that allows for zooming and panning of the

view with the mouse. The second is the Pick Mode that only works in Slice View.

While in Slice View, if the Pick Mode is active, the user can right click on a point to

pick a slice at that location. A region of interest can also be selected by dragging the

middle mouse button from one point to another. When a slice or range is selected, it

changes the display on the GLCanvas (discussed below). The VtkCanvas also shows

some statistics in text next to the simulation. This is the histogram of transition density

across the regions of the X-axis (broken down into 10 regions horizontally). However,

this information is again calculated on the fly separately.

Figure 3.4: VtkCanvas display

The upper-right view in Figure 3.2 is the “detail” view and can show selected parts of

the main view in more detail. For instance, the processing elements and their

connections. This view uses pure OpenGL to render the slices as rectangles and it also

renders the wires connected to the selected slice as lines. When a slice is selected, it is

displayed in red, the input slices are yellow and the output slices are blue. The input

and output nets are also shown as yellow or blue lines respectively. When the Slice

view is active, one can select an area of the chip to view by dragging the middle mouse

17

button from one corner of the desired view to another. This will show only that area in

the detailed view. Interactive picking is possible in the detailed view by clicking the

middle mouse button. The view can also be panned by dragging the left mouse button.

Figure 3.5: GLCanvas/Detailed view shows wires and slices.

The third view window in the bottom left corner is the graph view. There are currently

two metrics that can be displayed here, transition density across the regions of the X-

axis and net length across the same regions. In transitions mode, transition density is

displayed otherwise if we are in Power mode then net lengths within the power range

are displayed. The net lengths display is constant for any given circuit. The transition

density, however, changes at each time step and is automatically updated. This process

is currently very inefficient because the graph view has to iterate through all the slices

of the circuit independently of the main view, which does the same thing. In future

revisions, the metrics will be calculated once and stored in the application and not

recalculated at each time step on the fly.

18

Figure 3.6: Graph view shows a histogram of transition density across the X-axis

All the controls for the application are available through the control panel. The control

panel allows the user to open data files by typing the filename and path. In the future

this will be improved by having a file chooser. Also, all of the VCR controls for the

simulation are available here. The current time step, window size for averaging and

speed of playback can also be set using slider bars. There are buttons on the main

window to change the metric displayed on the VtkCanvas and Graph view. An image

of the control panel is given below.

Figure 3.7: Control panel of the application

The menu bar on the main window also contains some features. One can toggle image

19

capture mode on and off. With image capture mode, an image of the VtkCanvas is

saved to a preset location every time the view is rendered. Currently, the save location

is “pictures/image-X.jpg” where X is the index of the picture in the sequence.

Currently, it skips two frames before saving a frame to conserve memory. Another

feature that is available through the menu is the Interaction mode, which was discussed

earlier, and the option to save to another file format.

20

Chapter 4: Implementation

4.1 Class Heirarchy

The architecture of the application is very object oriented. It is written completely in

C++ and the Fast and Light TookKit (FLTK) was used to develop the graphical user

interface and the FlVtkRenderWindowInteractor was used to combine FLTK and VTK

in the same window [10]. A diagram of the classes and dependencies is given below.

Figure 4.1: Class Diagram, interconnections between the main classes of the application

The vFpga class stores all the information about the architecture of the FPGA and the

activity data that is parsed by the VCDReader class. The different views have pointers

21

to the instance of the vFpga in order to calculate metrics on the fly. Once the XDL and

data file have both been loaded, the information is stored in vFpga. The architecture

information is in the form of a hash-map that stores the slices by their ID. The ID of a

slice is computed as Y*rowlength + X, where (X,Y) is the coordinate of the slice. The

nets are also stored in a hash-map, but the key is the name of the net. Storing the nets

by name allows for quick access when we are traversing the FPGA because we store the

names of the incoming and outgoing nets of a slice.

The SettingsDialog class is the control panel and does all of the playback logic. When

the user selects a VCR action (Play, Rewind, etc) the VCR state is updated and the

animation callback function is invoked. It checks the current state and does the

appropriate action, and changes the state if needed. The VtkCanvas handles the

visualization pipeline but it also controls the Detailed View, the Graph View and the

vFpga class. The visualization pipeline is described in detail in section 4.3.

4.2 Metrics Implemented

Three metrics have been implemented: Transition Density, Power and Latency. The

time frame for calculating transition density is determined by the current time step plus

the window size (selected in the control panel). The transitions of all wires in a slice

are summed up and normalized before being mapped to a color.

The Capacitance coefficient, Delay coefficient and Clock Period are all defined as 1.0

at this time. This means that the output for Latency will be equal to the Power, this is

only until we get the definite values for the constants. As you can see, transition

density is the main metric that the others depend on. It is also the only time dependent

variable in the equations. Length is dependent on the given wire and Max Length is a

constant for any given architecture.

22

Currently it is not possible to obtain the exact net length, so an approximation is done.

Since the Latency gives the same result as Power, I implemented Power1 and Power2

buttons instead. Power1 will display power metrics for only the nets whose lengths are

in the smaller half of all nets. Power2 on the other hand, displays power for only the

bigger half. This allows the user to view power in more detail for the smaller and larger

nets.

4.3 The Visualization Pipeline

The VTK pipeline of the application uses the StructuredPoints data type to store a grid

of points representing the FPGA in main memory. Each point in the grid has some

scalar value and vector value. The scalar value is the current metric value of that

position and determines the color in the visualization. A vector is placed at each grid

position and the components are set to two if a slice exists and zero if it is empty. The

vector value is then used to determine whether a glyph is drawn at that position and also

as the scale factor for the glyph. For the textured plane view, the vtkStructuredPoints is

passed through an image filter to convert it into a texture. That texture is then applied

to a plane that is rendered by VTK. In the glyph view, the vtkStructuredPoints is

passed through the vtkGlyph3d filter. There are 2 glyphs that are indexed 0 and 1, the

first is a plane and the second is null (no slice). The scalar values are used to color the

glyph and the vector is used as the index of the glyph. The glyph view is substantially

slower due to the number of planes that must be drawn, compared to only one plane

with the texture view. A color lookup table is created with four color values (dark blue,

green, light red, bright red). Depending on the view mode, either the glyph or plane

geometry is passed to the PolyDataMapper. The mapper is then assigned to an actor

that is passed to the Renderer. If the texture view is active, the texture is applied to the

actor. The Renderer is passed to the RenderWindow, which is in turn passed to the

RenderWindowInteractor. The RenderWindowInteractor is then started and it allows

for interaction with the window. A diagram of the pipeline is given below.

23

Figure 4.2: Pipeline diagram, shows the components of the application's VTK pipeline

4.3 User Session

Following is a description of a normal run of the application. Firstly, the user must

enter the path of the XDL file and the data file. Once the XDL file is read, the hashmap

of slices is created and the architecture of the FPGA is known. The activity data file

then provides information about the transitions of the wires in the FPGA. This

information is stored in the wire structure in the form of a list of time steps at which the

wires transition. Once this data is ready, the simulation can begin. The user must then

select an averaging window size and playback speed and then press Play. This will

24

begin the playback of the simulation and the time step variable in the VtkCanvas is

updated periodically by the animation function in the SettingsDialog class.

Each time the time step gets updated, the scalar values of the structures points are re-

evaluated by the evaluate() function. The evaluate function steps through each and

every slice in the vFpga and calls the getMapValue function in vFpga. This function

must then step through each wire connected to the slice (input or output). At each wire,

it calculates the number of transitions by iterating through the array of time steps until

the current time step or a time step greater than the current one is reached. This sum is

then divided by the maximum possible transitions (averaging window - 1) to get the

Transition Density ratio, which is used to determine the final metric value. The metrics

of all the wires are then averaged to determine the value at that particular slice. This

value is returned to the evaluation function and the scalar value at that position is set

and the canvas is redrawn. Spatial averaging has also been implemented such that if a

point is “on” (has a value greater than one) its neighbors are also turned on. Currently,

a position is either one or zero to make it easier to see the movement of transitions

across the chip. Once the grid is re-evaluated the colors get updated on the

visualization and the process is repeated again at the next time step until playback is

stopped.

Simultaneously, the GraphView also updates itself. If the current mode is transition

density across the X axis, then it must iterate through all slices and do the same

procedure described above independently of the VtkCanvas. However, if the current

mode is net lengths then it iterates through all the nets to get their lengths. This slows

down the rendering substantially and can easily be improved if the metrics are pre-

calculated and stored in memory.

25

Chapter 5: Experiments

5.1 Generating the data

One of the biggest challenges faced in this project was generating the right data. The

hardware architecture is obtained from the Xilinx ISE and it is stored in a proprietary

format called NCD. After much research, we were able to find the ncd2xdl tool that

converts this proprietary binary format into a readable text format called XDL. A

reader for this format was developed and we were able to see the architecture of the

FPGA. In order to generate an xdl file from an NCD file, one must run the following

command in the console (where file.ncd is the name of the ncd file):

xdl -ncd2xdl file.ncd

Next, we needed to get the activity data dumped into a text file. We found that in order

to save the transition data, one must write a test bench that gives some inputs to the

FPGA over some period of time (in VHDL). Once the test bench is compiled, we can

invoke the ModelSim program from the command line and pipe it a text file that

contained a set of instructions. A sample script could be:

vcd file test.vcd

vcd add *

run 100 ns

vcd checkpoint

run 100 ns

vcd checkpoint

quit -f

This script file will generate a VCD data file that checks the transitions of all the wires

in the given simulation after two 100 ns intervals. The “vcd add *” line adds all of the

main wires of the circuit but it does not add internal wires between slices. To do this

one must replace that line with the following two lines:

vcd add /*

vcd add /tb_sw/x0/*

26

Where “tb_sw” is the test bench name and “x0” is the name of the main component.

With this, we were able to see all the wires in the FPGA in the data file. Once we had

this data, we were able to read both the XDL file and the VCD file into our application

and see the results. The transitions were visible but there was no pattern. The

transitions seemed almost random and it was hard to determine what was happening.

Ideally, the transitions should move across the chip in a pipelined fashion. After much

investigation, we determined that the rogue transitions were coming from the many

internal wires and flip-flops of the circuit. The internal wires, for some unknown

reason, were transitioning randomly when no inputs were passed to them. Additional

changes in the C code were made to generate the design. After the changes were made,

the transitions indeed moved in a pipeline along the FPGA and a pattern could be easily

seen.

5.2 Comparing datasets

Once the generation of the datasets was solved, two designs of the Smith-Waterman

Algorithm were implemented: (1) a design that was hand optimized by Dr. Ravindran,

Dr. Mukherjee and Mr. Jong Byun to be efficient and pipelined, (2) an automatically

generated design by the Xilinx ISE without any optimization. When loaded into the

visualization, the two designs look very different and it is obvious which one is more

optimal. On the next page is a screen shot of the optimal design followed by the non-

optimal one. The red portions are active (ie. have transitions) and the green parts are

inactive.

27

Figure 5.1: Hand-optimized dataset, 8186 slices and 8181 nets. 2037 character string

Figure 5.2: Unoptimized dataset, 14297 slices and 8181 nets. 2037 character string

28

Figure 5.3: Progression of datasets, top: optimized, bottom: unoptimized

The above figure shows the progress of these two datasets, as can be seen the second

dataset is not moving in a uniform manner, while the hand optimized design is very

uniform and the pipeline is clearly visible. The images are roughly 300 time steps apart

and from both datasets are shown in the same interval. These results were very

important because they show that our visualization system is now functional.

This application remains to be tested with different algorithms and data sets. An

algorithm that is not as nicely pipelined like Smith-Waterman would make the power of

this tool more evident. It can be used for many different applications such as

encryption algorithms.

29

Chapter 6: Conclusion

Despite the many difficulties we faced in getting the data and testing the visualization,

the final results are promising. The primary objective of this project was to develop the

visualization system and it has been achieved. Even in its current form, the

visualization tool can be extremely helpful in the mapping of an algorithm to an FPGA

and in developing the hypercomputing platform. Further optimization and evaluation of

the application can help make it more powerful and user friendly. The basic design

flow of our computing system is in place.

There are many things that can be done to further improve the application. For

example, the detailed view (GLCanvas) needs to be worked on extensively. Giving it a

color map similar to the VtkCanvas can extend the detailed view. We can also make

this view into another VTK view and have it display a textured plane of the selected

region of interest. The graph view can also be improved by adding more metrics and

making it easier to change the metric that is displayed. One of the major revisions that

can be done to the system is pre-calculation of metrics. Currently, all metrics are

calculated on the fly as the simulation runs, this slows down the system considerably.

This also means that the all of the views must calculate the metrics separately, which

causes unnecessary computations. More features such as a partitioning tool can be

added to the visualization system. The partitioner would enable the user to modify the

hardware implementation and observe the results before actually making the change in

the FPGA. The visualization can also be extended by having multiple FPGAs and

adding a third dimension to the simulation.

30

References

[1] “Fast Light Toolkit (FLTK).” 12 May 2005 <http://www.fltk.org>

[2] “VTK Home Page.” 12 May 2005 <http://www.vtk.org>

[3] “Food Standards Agency – Genomics, Transcriptomics and Proteomics:

Glossary of Terms.” Foods Standards Agency. 2002. 12 May 2005

<http://www.food.gov.uk/science/ouradvisors/toxicity/cotmeets/49737/49750/49

831>

[4] “Glossary of terms.” Overview of Recent Supercomputers. 2004. 12 May 2005

<http://www.arcade-eu.info/overview/2004/glossary.html>

[5] “Information Visualization – Wikipedia, the free encyclopedia.” Wikipedia.

2005. 12 May 2005 <http://en.wikipedia.org/wiki/Information_visualization>

[6] “Xilinx: The Programmable Logic Company.” 15 May, 2005

<http://www.xilinx.com>

[7] TimeLogic Corp., “Decypher bioinformatics acceleration solution.” 2002. 14

May 2005. <http://www.timelogic.com/decypher_intro.html>

[8] Mathew, Binu. “1.1 The Problem” The Perception Processor. 2004. Stanford

University. 14 May 2005

<http://www.stanford.edu/~mbinu/perception/node2.html>

[9] “Computers and the Human Genome Project: Smith-Waterman Algorithm.”

Stanford University. 14 May 2005. <http://www.cse-

stanford.edu/classes/sophomore-college/projects-00/computers-and-the-

hgp/smith_waterman.html>

[10] “vtkFlRenderWindowInteractor – cpbotha.net" cpbotha.net. 14 May 2005.

<http://cpbotha.net/vtkFlRenderWindowInteractor>

[11] A. Singh, L. Macchiarulo, A. Mukherjee and M. Marek-Sadowska, “A Novel

High-Throughput FPGA Architecture”, Proceedings of ACM International

Symposium on FPGAs, February 2000. pp.22-27.

31

Appendix

Application source code

I have included the source code for this application in the following pages so it can be

referred to for better understanding of the software.

32

