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ABSTRACT
Rapidly generated image data can be shared to advance research
and benefit various communities. However, sensitive individual
information captured in the data, such as license plates and identi-
ties, may inflict privacy concerns when sharing image data with
untrusted parties. Existing image privacy solutions rely on standard
obfuscation, e.g., pixelization and blurring, which may lead to re-
identification. In this study, we explore how differential privacy can
enhance standard image obfuscation. Specifically, we extend the
standard differential privacy notion to image data, which protects
individuals, objects, and/or their features. We develop differentially
private methods for two popular image obfuscation techniques,
i.e., pixelization and Gaussian blur. Empirical evaluation with real-
world datasets demonstrates the utility and privacy of our methods.
Furthermore, our methods are shown to effectively reduce the suc-
cess rate of CNN based re-identification attacks.

The abstract extends our previously published conference pa-
per [4], with a newly developed DP-Blur method and additional
empirical results. Discussions are also provided for future work on
differential privacy for image publication.
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1 INTRODUCTION
Image data is largely shared nowadays for research and services,
e.g., surveillance and energy saving, or for social purposes, e.g.,
online social networks. The sanitization of sensitive content in im-
age data, e.g., faces and texts, has largely relied on standard image
obfuscation techniques, such as pixelization (also referred to as
Mosaicing) and blurring. However, recent development and appli-
cations of machine learning have rendered such obfuscation tech-
niques ineffective for privacy preservation [6, 9]. Specifically, Hill
et al. [6] have demonstrated that Hidden Markov Models (HMM)
can learn to decode redacted documents. Moreover, McPherson et
al. [9] have shown that Convolutional Neural Networks (CNN) are
highly adaptable to standard obfuscation, which can re-identify
up to 96% of pixelized faces. Therefore, we are in need of image
obfuscation methods that can provide rigorous privacy guarantees.

The goal of this study is to ensure a rigorous notion, i.e., differ-
ential privacy [2], for image data sharing. Our work differs from
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the differentially private synthetic data generation approach, such
as [14], by protecting sensitive content in each individual image.
As a result, our work is applicable to a wider range of settings, e.g.,
when data owners have small amount of data or correlated image
data. The specific contributions1 are as follows:
(1) To extend the standard differential privacy notion to image data,
we propose them-neighborhood notion, which allows for the pro-
tection of any sensitive information represented by up tom pixels.
(2) We develop two differentially private methods, i.e., DP-Pix and
DP-Blur, which enhance the privacy of widely used image obfus-
cation techniques, i.e., pixelization and Gaussian blur, respectively.
(3) We empirically evaluate the differentially private methods with
real-world datasets. Two utility metrics are adopted to measure the
absolute error and the perceptual quality. We show that our private
methods yields comparable output to the non-private obfuscation.
(4) We simulate the re-identification attacks via deep learning and
the results show that the differentially private methods significantly
reduces the re-identification risk, even with low privacy require-
ments, i.e., ϵ ≥ 0.1 andm = 16.

2 RELATEDWORK
Image Obfuscation. Two popular image obfuscation techniques

are pixelization and blurring. Pixelization [6] can be achieved by su-
perposing a rectangular grid over the original image and averaging
the color values of the pixels within each grid cell. On the other
hand, blurring, i.e., Gaussian blur, removes details from an image by
convolving the 2D Gaussian distribution function with the image.
YouTube provides its own face blur implementation [13] for video
uploads. McPherson et al. [9] studied pixelization and YouTube face
blur and concluded the obfuscated images using those methods can
be re-identified. Given sufficient training data, Convolutional Neu-
ral Networks (CNN) can effectively learn the association between
the obfuscation and the underlying identity.

Differential Privacy. Differential privacy [2] has become the state-
of-the-art privacy paradigm for sanitizing statistical databases.
While it provides rigorous privacy guarantees for each individual
data record in a database, it is challenging to apply the standard no-
tion to non-aggregated data. Several variants of the privacy notion
have been proposed. For instance, event-level privacy [3] aims to
protect the presence of individual events in one person’s data when
releasing aggregated data. Local privacy [1] enables answering ag-
gregate queries without a trusted data curator. Recently, differential
privacy has been applied to generative adversarial networks (GAN)
for synthetic data generation, such as in [14]. Such an approach
protects the presence or absence of any training image, but it is
hard to apply when each data owner wishes to publish a small num-
ber of images, or highly correlated images, e.g., a video sequence.
Beside our work [4], there have not been any studies on differential

1A prior version of the study can be found in [4]
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Figure 1: A sample AT&T [12] image, its pixelization (b-d) with
different b values, and Gaussian blur (e-g) with different k values.

privacy in individual-level image publication or its mitigation effect
of CNN based re-identification attacks.

3 METHOD
3.1 Preliminaries

Problem Setting. A data owner wishes to share one or more
images with a wide range of untrusted recipients, e.g., researchers
or the greater public. For privacy protection, the data owner must
sanitize sensitive content in the image data prior to its publication.
Here we focus on grayscale images: an image I is regarded as anM
x N matrix with integer values between 0 and 255 (0 is black and
255 is white).

Image Pixelization and Gaussian Blur. The pixelization technique
renders a source image using larger blocks. It is achieved by parti-
tioning the image using a two-dimensional grid, and the average
pixel value is released for each grid cell. We adopt a “square” grid
where the pixel width is equal to the pixel height in the grid cells,
i.e., each cell contains b x b pixels. In general, a smaller b value
yields better visual quality, as is shown in Figure 1b, 1c, 1d.

The Gaussian blur smooths a source image by removing de-
tail and noise. It is achieved by convolving the image with a two-
dimensional Gaussian kernel. For each pixel, a k x k neighborhood
around the pixel is considered and the gaussian weighted average
is released. In general, a larger k value yields lower visual quality
by over smoothing the image, as is shown in Figure 1e, 1f, 1g.

3.2 Image Differential Privacy
We adapt the standard Differential Privacy [2] definition, which
operates in statistical databases, to image data.

Definition 1. [ϵ-Image Differential Privacy] A randomized mecha-
nism A gives ϵ-differential privacy if for any neighboring images I1
and I2, and for any possible output Ĩ ∈ Ranдe(A),

Pr [A(I1) = Ĩ ] ≤ eϵ × Pr [A(I2) = Ĩ ] (1)

where the probability is taken over the randomness of A.

The parameter ϵ specifies the degree of privacy offered byA, i.e.,
a smaller ϵ implies stronger privacy and vice versa. The concept of
“neighboring images" is the key to the differential privacy notion,
which should clearly define the private content under the protection
of differential privacy. In this paper, we propose the following
notion of image neighborhood.

Definition 2. [m-Neighborhood] Two images I1 and I2 are neigh-
boring images if they have the same dimension and they differ by at
mostm pixels.

Allowing up tom pixels to differ enables us to protect the presence
or absence of any object, text, or person, represented by those pixels

(a) PETS [7] (b) Example neighbor
(c)
AT&T [12]

Figure 2: Example neighboring images and representative sensi-
tive information

in an image. For instance, each red rectangle in Figure 2a illustrates
sensitive information which can be represented by ∼ 360 pixels,
such as a pedestrian, a van, an object on grass, and a signage. One
example neighboring image is shown in Figure 2b, differing only
at the left-most pedestrian. By differential privacy, an adversary
cannot distinguish between any pair of neighboring images by
observing the output image. The privacy of the pedestrian, and
any other sensitive information represented by at mostm pixels,
can thus be protected. The m-Neighborhood notion can also be
applied to protect features of an object or person. For instance, the
rectangle in Figure 2c contains ∼ 120 pixels and encloses the area of
the eyes which is reportedly the optimal feature for face recognition
tasks [11]. When adopting the above definition, the data owner can
choose an appropriatem value in order to customize the level of
privacy protection, i.e., achieving indistinguishability in a smaller
or larger range of neighboring images.

3.3 Differentially Private Methods
The notion of image differential privacy can be applied to enhance
the privacy of standard image obfuscation, such as pixelization and
blurring. We propose two methods below.

DP-Pix. In a nutshell, the algorithm first performs pixelization
on an input image, i.e., by computing the average pixel value for
each grid cell, and applies perturbation to the pixelized image. Intu-
itively, the global sensitivity of pixelization for each b x b grid cell
is 255m

b2 . The corresponding Laplace mechanism [2] is adopted to
draw random noises, in order to achieve ϵ-differential privacy.

DP-Blur. The initial design of the algorithm first applies Laplace
perturbation to each pixel and then performs Gaussian blur, in order
to produce a “smooth” output image. The global sensitivity of direct
pixel-wise operation is 255m, which induces larger noises compared
to the pixelization based approach. To reduce the effect of the noise,
we first run DP-Pix on the input image, using a small cell width b0.
We then upsample the private pixelization to the original size and
perform Gaussian blur.

Theorem 1. DP-Pix and DP-Blur satisfy ϵ-differential privacy.

The proof of the theorem is straight-forward. The proof for
DP-Pix can be found in [4] and the result of DP-Blur follows.

4 RESULTS
Datasets: In this abstract, we present results with two widely

used datasets in the computer vision2, including the re-identification
attacks via deep learning [9]: AT&T [12] database of faces which
2more datasets are adopted in [4]
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Figure 3: Utility of pixelization versus privacy ϵ

(a) MSE - AT&T (b) MSE - MNIST

(c) SSIM - AT&T (d) SSIM - MNIST

Figure 4: Utility of blurring versus privacy ϵ

contains 400 grayscale images of 40 individuals with 92 x 112 reso-
lution; and MNIST [8] which contains 60, 000 grayscale images of
handwritten digits with 28 x 28 resolution.

Setup: We prototyped our method in Python with OpenCV. The
parameters take the following values, unless specified otherwise:
b0 = 4, b = 16,m = 16, k = 99, ϵ = 0.5. The utility of the obfuscated
image is measured by: (1) standard Mean Square Error (MSE) and (2)
a widely used perceptual quality measure, i.e., Structural Similarity
(SSIM) [15], the range of which is from 0 to 1 with 1 being the
highest quality. Both utility metrics are defined between the input
image and the obfuscated image. In each experiment, the average
result is reported in each dataset. As a reference for utility, we also
included the standard pixelization and Gaussian blur, i.e., NP-Pix
and NP-Blur, which are parameterizedwith the sameb andk values.
A complete set of experiments can be found in [4].

4.1 Impact of ϵ
We present the tradeoff between utility and privacy by varying the
parameter ϵ in Figure 3 and 4. Lower ϵ value ensures stronger pri-
vacy, and yields lower utility. When increasing ϵ , the differentially

private methods show a lower MSE and a higher SSIM, approach-
ing the utility of the non-private baselines. This is due to a lower
perturbation error required by differential privacy. An exception
is observed for MNIST dataset, where the MSE of DP methods in-
creases initially, e.g., 0.1 ≤ ϵ ≤ 0.3 in Figure 3b and 0.1 ≤ ϵ ≤ 3 in
Figure 4b. The reason is that MNIST depicts white (255) digits on
a black (0) background. Such extreme pixel values are not signifi-
cantly affected by very large Laplace noises (when ϵ is small), as the
perturbed pixel values are truncated to the range of [0, 255]. The
SSIM measure is shown to be more robust than MSE, exhibiting a
consistently increasing trend as ϵ increases in Figure 3d and 4d.

4.2 CNN Re-identification Attacks
While differential privacy provides a rigorous indistinguishabil-
ity guarantee, we conducted the following study to understand
whether the differentially private methods can mitigate known,
practical privacy risks. We simulated the CNN based attacks pro-
posed in [9] such that the attack is adapted to each obfuscation
method. Specifically, assume the adversary has access to the train-
ing set obfuscated by a given method, and the label of each training
image, i.e., individual identity (1-40) and digits (0-9). The goal of
the adversary is re-identify the testing set obfuscated by the same
given method, i.e., predicting the label for each obfuscated testing
image. We reported the attack results in Table 1.

The DP methods are applied with various ϵ values and com-
pared with the non-private methods and a random baseline, which
randomly picks a label. As can be seen, the non-private baselines
inflict high re-identification rates and the differentially privatemeth-
ods significantly reduce the attack success. Especially, the DP-Blur
method produces obfuscated images that are hard to re-identify. For
theAT&T dataset, DP-Blur achieves the lowest the re-identification
rate, making such attacks harder than random guessing. As for the
MNIST dataset, the re-identification rate is less sensitive to the
privacy parameter ϵ since the images are dominated by black and
white pixels and at a lower resolution. For images obfuscated by
DP-Blurwith ϵ = 0.1, the attack CNNmodel simply classifies every
instance as “1", which is the majority class in MNIST.

4.3 Qualitative Utility
Sample AT&T images obfuscated under the default parameter set-
ting are provided in Table 2. As can be seen, the differentially private
methods inflict minor visual quality loss, compared to non-private
obfuscation techniques. Recall that NP-Pix and NP-Blur lead to
high re-identification risks in Table 1 and differentially private
methods significantly reduces the risk. We conclude that image dif-
ferential privacy can enhance the privacy of standard obfuscation,
without compromising the quality of the obfuscated image.

5 CONCLUSION AND DISCUSSIONS

We have presented two differentially private methods for image
obfuscation, which was the first attempt at extending differential
privacy to individual-level image publication. We proposed them-
neighborhood notion to define the indistinguishability requirement,
i.e., roughly the same output for any images differing at up tom
pixels. We empirically evaluated the utility of differentially private
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Dataset Random NP-Pix DP-Pix (b = 16) NP-Blur DP-Blur (k = 99)
- b = 16 ϵ = 0.1 0.5 1 k = 99 ϵ = 0.1 0.5 1

AT&T 2.50 96.25 3.75 43.75 77.50 88.75 1.25 7.50 17.50
MNIST 10.00 52.13 16.41 21.51 22.95 76.35 11.35 11.75 13.43

Table 1: Accuracy (in %) of CNN Re-Identification Attacks

Orig NP-Pix DP-Pix NP-Blur DP-Blur
Table 2: Qualitative utility of differentially private obfuscation:
each column represents one obfuscation method.

methods with multiple real-world image datasets, and showed that
our methods yield similar utility to that of the non-private obfusca-
tion techniques. In addition, CNN based re-identification attacks
were simulated and the results showed that differentially private
methods significantly reduce the attack success even at low privacy
requirements, i.e., ϵ ≥ 0.5 andm = 16. Therefore, we concluded
that our methods are simple yet powerful.

As a new endeavor, a number of directions can be explored for
future work on differential privacy for image publication:

1. Although our results show that differential privacy can en-
hance the privacy of standard image obfuscation, it would be inter-
esting to study the potential benefit of differential privacy in utility.
Intuitively, relaxations of ϵ-differential privacy can be applied, such
as (ϵ, δ )-DP and Rényi DP [10]. Furthermore, we may consider
the application of differentially private methods in image super-
resolution [16], e.g., the low-resolution image can be protected
under DP-Pix. Moreover, we should explore whether differential
privacy can be achieved independent of standard obfuscation, such
as pixelization and blurring, in order to overcome the limitations on
utility imposed by those techniques. Our recent work [5] initiates
the study of this possibility.

2. An extension of this work is to obfuscate sensitive content in
videos, where each video can be considered a sequence of images,
i.e., frames. For instance, a face will be captured in each frame in
the sequence, which requires obfuscation consistently. Due to the
composibility, applying differentially private obfuscation to each
frame quickly reduces the privacy guarantee. A first-cut solution is
to apply the DP method to the first frame only and replace the face
region in each subsequent frame using the same DP obfuscation.
More utility-friendly solutions can be developed, given specific
video analysis tasks.

3. We will also discuss how the work on differential privacy for
image data could benefit other communities and applications. For

instance, if differentially private image data can be published in real
time with sufficient accuracy, surveillance and event detection can
be performed tomonitor home safety and patient mobility disorders.
Another area of interest is the interplay of differential privacy and
security in multimedia information systems: the methods proposed
in this work introduce irreversible perturbation noise, which makes
it hard to recover the original visual data when needed, e.g., for
forensic applications. Last but not least, we should explore whether
differential privacy tools can help with the behavioral research
community which relies on visual recordings of participants, as
participants may have personalized privacy needs that current
visual privacy solutions fail to address.
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