
2022

IoTMonitor: A Hidden Markov Model-based
Security System to Identify Crucial Attack

Nodes in Trigger-action IoT Platforms

Md Morshed Alam, Md Sajidul Islam Sajid, Weichao Wang, Jinpeng Wei

1

Motivation

• Trigger-action IoT platforms (e.g., IFTTT) are getting

popular

• Chain of interactions creates security vulnerabilities

• Attackers inject malicious events remotely

2

2022

Problem Statement

• How can we determine the optimal attack path an
attacker may adopt to implement a trigger-action based
attack?

E: motion detected
A: activate home-mode

E: home-mode activated
A: turn-on light

E: light turned-on
A: start grinding coffee

E: light turned-on
A: open windowE: motion detected

A: activate home-mode

Malicious event
injection

3

2022

Existing Approaches

Approach-1:

• Performing static analysis on application source code

• Instrumenting customized codes

• Generating system models at runtime

• Identifying and blocking unsafe and insecure state transitions

[1] Z. B. Celik, G. Tan, and P. Mcdaniel, “IOTGUARD : Dynamic Enforcement of Security and Safety Policy in Commodity

IoT,” no. February, 2019.

Example: IoTGuard [1]

4

2022

2022

Existing Approaches (Contd.)

Approach-2:

• Analyzing network traffics to extract wireless fingerprints

• Using supervised learning methods to identify malicious

activities

1] W. Zhang, “HoMonit : Monitoring Smart Home Apps from Encrypted Traffic,” Comput. Commun. Secur., pp. 1074–1088,

2018.

Example: HoMonit [1]

5

IoTMonitor at a Glance

• A Hidden Markov Model based security system

• Discovers probabilistic relationships between IoT event

occurrences and physical evidence

Goals:

• Determining optimal attack sequence from a set of physical

evidence

• Identifying the most frequently triggered IoT events

6

2022

System Architecture

7

Physical Evidence: lux, humidity, pressure, temperature

IoT Events: light on, window open

2022

State Machine Generator

8

σ = {σi}, σi = Pr(X1 = xi)

Q = {qij},

E = {µj(yk)}

Current
Model: � =

 �, �, �

True states, Xi ∈ {d1, d2, ….., dN}

Observation states, Yj ⊂ {ph1, ., phL}

State Transition Probability, qij = Pr(Xt+1 = xj | Xt = xi)

Emission Probability, µj(yk) = Pr(Yt+1 = yk | Xt+1=xj)

2022

Probability Estimator

9

Goal: Given the observation sequence � = {�1, �2, … , ��},
determine

2022

Probability Estimator (Contd.)

• IoTMonitor uses forward-backward procedure to calculate �∗.

10

the probability of being in the state xi at time
t given a history of observations <Y1, Y2, …,

Yt>

the probability of being in the state xi at time
t given a set of observations <Yt+1, Yt+2, ….,

YT>

Initialization

Induction

2022

Probability Estimator (Contd.)

11

δt(i) = the probability of the system being

in the true state xi at time instance t

ξt(i, j) = the probability of the system being in

the true states xi and xj at time instances t and

t+1

2022

Sequence Retriever

12

Goal:

2022

Crucial Node Detector

13

Goal: To identify the most frequently triggered events

2022

Crucial Node Detector (Contd.)

14

Number of times a particular
pair is present in the sequence

2022

Experimental Settings

• Utilized the PEEVES [1] dataset

• Data collected from 12 distinct IoT devices and 48 sensors

• Conceptualized a sliding window ��

• When an event is occurred at time ti, we consider all sensor

measurements collected within the time period (ti+wi) for the

purpose of event verification

[1] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical Event Verification in Smart Homes,” Proc. ACM Conf. Comput.
Commun. Secur., pp. 1455–1467, 2019.

15

2022

Probability Estimation Time vs Decoding Time

• Estimation time: the time required to estimate the converged θ∗

• Decoding time: the time required to extract the hidden sequence

16

2022

Computational Overhead

• We compute computational overhead for forward-

backward procedure since IoTMonitor spends most of the

computations for estimating probabilities

17

2022

Accuracy Score

18

• Determines how accurately the extracted hidden sequence
of events represent the actual IoT events triggered during
the attack

2022

Future Work

• Modeling the joint contribution of multiple events into

leading a single trigger operation

• Investigating noisy sensor’s impact on the observation space

and the detection accuracy of attack path

19

2022

Conclusion

• IoTMonitor uses a Hidden Markov Model based approach to

determine the optimal attack sequence

• IoTMonitor leverages the probabilistic relation between

physical evidence captured by sensors and actual IoT

events triggered

• IoTMonitor discerns the underlying event sequence with

>=90% accuracy mostly

20

2022

Questions?

21

2022

