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Motivation

» Trigger-action loT platforms (e.g., IFTTT) are getting
popular
* Chain of interactions creates security vulnerabilities

» Attackers inject malicious events remotely
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Problem Statement

E: light turned-on

e A: start grinding coffee
E: motion detected E: home-mode activated
A: activate home-mode A: turn-on light
o
f Malicious event E: light turned-on
E: motion detected Injection A: open window
A: activate home-mode

.

« How can we determine the optimal attack path an
attacker may adopt to implement a trigger-action based
attack?
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Existing Approaches

Approach-1.:
* Performing static analysis on application source code
* Instrumenting customized codes
* Generating system models at runtime

 |dentifying and blocking unsafe and insecure state transitions

Example: loTGuard [1]

[1] Z. B. Celik, G. Tan, and P. Mcdaniel, “IOTGUARD : Dynamic Enforcement of Security and Safety Policy in Commodity
loT,” no. February, 2019.
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Existing Approaches (Contd.)

Approach-2:
* Analyzing network traffics to extract wireless fingerprints
* Using supervised learning methods to identify malicious

activities

Example: HoMonit [1]

1] W. Zhang, “HoMonit : Monitoring Smart Home Apps from Encrypted Traffic,” Comput. Commun. Secur., pp. 1074-1088,
2018.
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loTMonitor at a Glance

* A Hidden Markov Model based security system

* Discovers probabilistic relationships between loT event

occurrences and physical evidence

Goals:

* Determining optimal attack sequence from a set of physical

evidence

* |dentifying the most frequently triggered loT events
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System Architecture

loT Events: light on, window open
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State Machine Generator
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Observation states, Y; c {ph,, ., ph;}

Emission Probability, p;(y,) = Pr(Yyq = vy | X 1=X)

Observation States

True states, X; € {d;, d,, ....., dut}

o ={o}, 0, = Pr(X; = x)
Q = {a;},
E = {u(vi)}

Current
Model: 8 =

(O-’ Q’ E)

Yid Yy Yisg

I |

True States

State Transition Probability, g; = Pr(X.; = x;| X, = x)
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Goal: Given the observation sequenceY = {¥V,,Y,, ...,Y;},
determine

¢* = argmazx Pr(Y1,Ys,...,Yr|0)
0
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Probability Estimator (Contd.)

* loTMonitor uses forward-backward procedure to calculate 6*.

the probability of being in the state x; at time Initialization
t given a history of observations <Y, Y,, ...,
Yt> (li](‘i) = O},U,,;(Yl), 1<i < N
ai(t1) = Pr(\h,Ys, ..., Y;, X; = z;|0) Br(i)=1, 1<i<N
Bi(i) = Pr(Yiy1, Yigo, ..., Y| Xy = 24, 0)
Induction
N
ar1(f) = p;(Yerr) p_auli)gy, 1<t<T -1, 1<j<N
the probability of being in the state x; at time o e ; S

t given a set of observations <Y,,;, Yo, -y
Yr>

N
Be(i) = > qijtt;(Yer1)Besr(§), t =T - 1,..,2,1, 1<i<N

=1
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Probability Estimator (Contd.)

5t(?) = -P'r(Xt = :E-ilyla }/'2 sy YTag) ‘Et(?faf) = PT(Xt — :I:z'-axt-—i—l = x‘}l}/l'\}/Q seny YTag)
_ Pr(Xy=z;,11,Ys, ..., Yr|0) _ PrXi=z;, Xi 1 = 33,11, Ye, ..., Yr|0)
PT(K:YQ,...?YTIG) PT’(EYQ,YT‘G)
(1) By (i) _ (1) Be+1 (7)1 (Yen)
}\;1 a:(7)B:(7) SN @ (8)Gi5 801 (3) 15 (Yer)
N
& (i, J) = the probability of the system being in
the true states x;and x; at time instances t and
0(i) = the probability of the system being o]
in the true state x; at time instance t
_ , P e 2 T 1 Wesr=g) 0t
g; = 51(3) gij = t?l Et(@’j) Ai(yr) = 2=t (Tnﬂ_yf) L
Et:_l 6¢(2) Et:l 6t(7)

11
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Sequence Retriever
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Goal: wi(i) = maz {Pr(Xl X =Y, Y = yk|€)}

o f - ©
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Goal: To identify the most frequently triggered events

13



Crucial Node Detector (Contd.)

MICNIC

2022

Algorithm 1 Crucial node detection algorithm

Imput: X, Ti, o)y 1y

Output: Pairs of true states responding to the most frequently triggered events

14+ 1
2: while 7 < p do

3: S, + Longest Common Subsequence between X and T,

4: for j+ 1to (|S;|—1) do

s Eli,j] < (Sl Silj + 11}

6: if E[i, j] not in SCORE . Keys() then

7 SCOREIEL, j]] + 1

8: else

9: SCORE[E[i, j]] «+ SCORE|E[i, j]] +1
10: end if

11: end for
12: end while

13: return argmazx (SCOREI[E]i, j]])
)

Number of times a particular
pair is present in the sequence

14
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Experimental Settings

» Utilized the PEEVES [1] dataset

» Data collected from 12 distinct loT devices and 48 sensors

» Conceptualized a sliding window w;

 When an event s occurred at time t;, we consider all sensor
measurements collected within the time period (t+w;) for the

purpose of event verification

[1] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical Event Verification in Smart Homes,” Proc. ACM Conf. Comput.
Commun. Secur., pp. 1455-1467, 2019.
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Probability Estimation Time vs Decoding Time

Probability Estimation Time (in milliseconds)

Estimation time: the time required to estimate the converged 6*

Decoding time: the time required to extract the hidden sequence
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Computational Overhead

« We compute computational overhead for forward-
backward procedure since loTMonitor spends most of the

computations for estimating probabilities

30 A1

Number of iterations
%] [¥T) -y
(=] [ =}

=
L=

1.0 1.2 1.4 16 1.8 2.0
Ratio between number of unigue observation states
and number of unigue true states
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» Determines how accurately the extracted hidden sequence
of events represent the actual loT events triggered during
the attack

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Length of the event sequence
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Future Work

* Modeling the joint contribution of multiple events into

leading a single trigger operation

* Investigating noisy sensor’s impact on the observation space

and the detection accuracy of attack path

19
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Conclusion

* loTMonitor uses a Hidden Markov Model based approach to

determine the optimal attack sequence

* loTMonitor leverages the probabilistic relation between
physical evidence captured by sensors and actual loT

events triggered

* loTMonitor discerns the underlying event sequence with

>=90% accuracy mostly

20



UNIVERSITY OF NORTH CAROLINA (7 T
B i Hene

Questions?
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