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Abstract—Function approximation methods, such as neural
networks, radial basis functions, and support vector machines,
have been used in reinforcement learning to deal with large state
spaces. However, they can become unstable with changes in the
samples state distributions and require many samples for good
estimations of value functions. Recently, Bayesian approaches to
reinforcement learning have shown advantages in the exploration-
exploitation tradeoff and in lower sampling costs. This paper
proposes a novel reinforcement learning framework that uses the
relevance vector machines (RVM) as a function approximator,
which incrementally accumulates knowledge from experiences
based on the sparseness of the RVM model. This gradual knowl-
edge construction process increases the stability and robustness
of reinforcement learning by preventing possible forgetting. In
addition, RVM’s low sampling costs improve the learning speed.
The approach is examined in the popular benchmark problems
of pole-balancing and mountain car.

I. INTRODUCTION

To solve a reinforcement learning (RL) problem, an agent
must develop a good estimate of the sum of future rein-
forcements, called the value of the current state and action.
A common problem in RL in continuous actions and states
is that there is an infinite number of state and action pairs.
Successful RL often requires fine discretization, but this can
result in the need for a prohibitive amount of experience [27];
high-dimensional discrete representations result in a curse of
dimensionality. To overcome the limited amount of experience
available in practical RL tasks, an agent must be able to
generalize based on limited experience. To do so, the value
function or action-value (Q) function must be approximated
using parameterized, continuous representations.

A variety of function approximation methods have been
studied in RL. Cellular approximations such as CMAC tile-
coding [1]] and radial basis function [31} 3] have been applied
to various RL problems. Most popularly, neural networks have
been selected as function approximators for backgammon [32],
robot shaping [8]], agent survival game [17], robot walking
[Sl], robot soccer [29], and octopus arm control [10, [16].
Recently, Mnih, et al., [19, 20] successfully applied con-
volution neural networks to Atari games and overcame the
challenges of applying deep networks to RL problems—small
numbers of samples with delayed or noisy reinforcements,
dependent data samples from sequences of state transitions,
and different sample distributions for diverse, new behaviors.
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Anderson, et al., [2] suggested that RL with neural networks
as function approximators can be more efficient by pretraining
deep networks without giving any information about the goal
tasks. They trained deep networks to predict state changes and
showed that the weights learned for predicting state changes
reduced the RL training time. Silver, et al., [28] maintained
three different deep networks for policy and value evaluation
and trained them with a combination of supervised learning
and reinforcement learning. They applied them to play Go
successfully.

Online support vector regression (SVR) has been applied
as a value function approximator [14, [15]. As online SVR
removes useless support vectors, it provides good general-
ization and performance on solving RL problems. Even with
the successful applications of various function approximations,
problems with the stability of learning remain. Furthermore,
SVR is well-known for its impracticality caused by the in-
creasing number of support vectors as the number of training
samples grows [40].

Recently, Bayesian learning models have shown some suc-
cess and efficiency in reinforcement learning. Bayesian Q-
learning [7], Gaussian process temporal difference learning
(GPTD) [9, 110} 26, and linear Bayesian reinforcement learn-
ing [38] have been applied to estimate value functions. Unlike
classical RL, Bayesian RL suggests feasible solutions to the
exploration-exploitation tradeoffs [25| [7]. Moreover, Bayesian
RL can choose samples to learn especially when the sampling
cost is expensive [12].

Relevance vector machines (RVMs) [33] 134, [35] can be
viewed as a Bayesian regression model that extends Gaus-
sian processes (GP), and also we can consider RVMs as an
extension of support vector machine (SVMs). With respect
to the first point, RVMs can represent more flexible models
by providing separate priors for each dimension. With respect
to the second point, while SVMs suffer from the explosive
growth of support vectors, RVMs provide sparse solutions
by capturing the significant mass. To accommodate those
advantages of Bayesian RL and to overcome the limitations
of SVR, we use RVMs as function approximators.

In this paper, we suggest a novel RL framework that utilizes
RVMs as function approximators. Observing that the sparse
relevance vectors capture the importance of the value esti-



mations, we design a learning framework that incrementally
builds up a knowledge base from the key experiences. To
maintain learning efficiency and to prevent forgetting, we
extend Riedmiller’s fitted Q [24] and train an RVM func-
tion approximator with a mini-batch of samples and transfer
relevance vectors after examining the learned model. This
approach can be comparable to directed rollout classification
policy iteration (DRCPI-RVM) [23] in that both adopt RVMs
to overcome the limitations of the growing number of the
support vectors (SVs), but the proposed approach focuses
on value iteration with gradual shaping of the data-centered
features. By comparing the learning performance with other
function approximations such as neural networks, SVR and
GP, we examine the efficiency of the framework. Also, we
examine how the learned relevance vectors (RVs) capture the
significant mass of the agent’s optimal behavior. The major
contribution of this paper is this new function approximation
in a constructive framework for various applications. Also,
with sparse solutions, it can provide computational benefits
by reducing the required number of samples to explore. Most
significantly, RV placement analysis facilitates an understand-
ing of the solutions that can lead to further investigation of
algorithms and problems in the discovery of an unknown op-
timal policy. Finally, empirically we observe the improvement
of learning speed, which is caused by augmented knowledge
(or experiences).

In Section |lI} we introduce the reinforcement learning and
its terms and notation along with well-known approaches as
baseline algorithms. In Section we briefly introduce the
relevance vector machine. Section [[V] describes the proposed
framework, RVM-RL. Benchmark experiments and results
of the proposed approach are summarized in Section
and follow-up discovery about RV analysis is discussed in
Section [VII

II. REINFORCEMENT LEARNING (RL)

Reinforcement learning problems that involve the interac-
tion with an environment can be modeled as Markov decision
processes (MDP). MDP is defined as a tuple (S, A, P%,, R, ),
where for each time step ¢ = 0,1,2,..., with probability
Pg,, action a; € A in state s; € S transitions to state
s¢+1 = s’ € S, and the environment emits a reward 7,1 € R.

In an environment specified by the given MDP, a reinforce-
ment learning agent aims to maximize the reward in the long
run. For control problems, to estimate how good an action is
in a given state, we can define the action value method for

policy m, Q™ (s, a), as expected sum of rewards:

o

Qﬂ-(sa a) = E[Z rytrt+1|5t =S,at = a, TF}
t=0

where v € (0, 1] is a discounting factor. To see the relationship
to the next state, the action-value function Q can be rewritten
with Bellman equation:

Q" (s,a) =E[rp1 + YV (8¢41)]8 = st,a = aq).

Reinforcement learning looks for an optimal policy that max-
imizes @™, which can be denoted Q*.

Q*(s,a) =E[re1 + ’YH}IE}XQ*(StJrla a')ls = sp,a = a4

Without an environmental model, temporal difference (TD)
learning learns directly from experience and bootstraps to
update value function estimates—it updates the estimates
based on the previously learned estimates. The simplest TD
updates the value function as follows:

Vi(st) < V(st) + afrerr + 9V (se01) — V(se)])-

Since V' (s¢41) is not known, the current estimate is used.

For control problems, on-policy TD, SARSA [31], estimates
Q7 (s,a) for the current behavior policy w. The @) estimate
for next state and action s;41 and a;4; is fed in for bootstrap
update as follows:

Q(st, ar) < Q(st, ar) +afrep1 +7Q(se41, ar1) — Q(st, ar)].

Here, the action value function @ is for current behavior policy
«. For simplicity, 7 superscript is omitted. Independently from
the current behavior policy, off-policy TD, Q-learning [39],
directly approximates Q*. From Q*(s,a) = max, (s,a’), Q-
learning updates is defined by

Q(s¢t,a¢) < Q(s¢, as)+afri1+y max Q(st41,a)—Q(st,at)).

From the estimated (), the current best policy can be chosen
greedily:
7 (s) < argmax Q™ (s, a).
a

However, greedy action selection can result in not enough
samples collected for correct estimates of value function. In
this paper, we use e-greedy that selects a random action with
probability e and chooses a greedy action with probability 1—e.
By decreasing € as learning goes on, an agent exploits the
learned best actions more.

III. RELEVANCE VECTOR MACHINE (RVM)

The relevance vector machine [35] is a kind of ker-
nel method that provides sparse solutions while maintaining
Bayesian interpretability. The basic idea is that defining hyper-
parameters to determine the prior distribution of weights that
favors smooth, sparse hypotheses. RVMs eliminate redundant
parameters and results in sparse solutions. For this, RVMs
define a linear model with an independent Gaussian prior that
is imposed on weights. This differs from Gaussian processes
with unified priors.

RVMs can be viewed as a Bayesian extension of support
vector machines that resembles the linear model. RVMs share
many characteristics of SVMs while avoiding the limitations
such as point-estimate output, necessity of parameter search,
kernel requirement for Mercer’s Theorem, and no guarantee
of sparse solutions [6]. The probabilistic output of RVMs
captures the uncertainty in their predictions. RVMs are less
sensitive to hyper-parameters than SVR, and the kernel func-
tion does not need to be positive definite.



The learning algorithm obtains a posterior distribution over
the weights from Bayes rule. Thereafter, it acquires a marginal
likelihood (or evidence). Maximizing the likelihood iteratively
creates an eventual smooth hypotheses with a small number of
data points used. Thus, RVMs learn weight distributions and
hyper-parameters alternatively.

From kernel k, we define the basis function ¢;(X) =

k(x,x;). We define ® as a matrix composed of train-
ing vectors transformed by the basis function; that
iS, ® = [¢(X1),¢(X2),---7¢(Xn)], where (b(Xn) =

[1,01(Xn), ®n(Xn),  ,Pn(xn)]T. @ and B represent the
hyper-parameters for the prior distribution of weights w and
target t. -y; is interpreted as a measure of how well-determined
the weight w; is by the data. First, it computes the mean and
covariance of the weights:

w=pYdt, €]
S =(® ' ®+al)t )
From the weight estimation, it computes the hyper-parameters:
vi =1 —a; X, (3)
i
Q; < —3, “)
i
N—2
B = ®)
[t — @p?

These two update steps are repeated until convergence.

When the hyperparmeter «; = o0, the corresponding
weights w; becomes zero because of the assumed zero-mean
Gaussian prior distribution. Thus, the related samples can be
deleted and remaining samples are retained to construct base
features. Obtained sparse data are treated as a key experience
to build RV bases in RVM-RL in the following section.

IV. RVM-RL

The reinforcement learning framework with RVM function
approximator is depicted in Figure [I| The approach extends
Fitted-Q minibatch learning [24] with sequential accumulation
of key experiences. From the agent’s interaction with an
environment, the learning framework collects samples for
training an RVM. The RVM regression model at each step
estimates the Q values with Q-learning updates. As learning
continues, it shapes the target function approximator for the
next Q value estimation. For this, the evaluation and deci-
sion steps are necessary to establish a better target function
approximator. We apply transfer learning of learned RVs for
coherent learning. Our hypothesis in this paper is that RVM
regression on the Bellman target can obtain significant RVs for
good Q estimation. By transferring and shaping the knowledge
from RVM training, we expect to achieve good Q function
approximation.

From an interaction with a simulated or real world, an
RL agent collects samples (s:, at, S¢41,7++1). For mini-batch
training, the agent collects /N samples and updates the RVM
model via a Q-learning update (Step 2). The sparse solution of
RVM training embedded the RVs that can refer the correspond-
ing input samples. For RV transfer and feature computation,
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Fig. 1: RVM-RL learning framework

Algorithm 1 RVM-RL

Initialization: empty features for RVM, and set target
function approximation FA = RVMj.
Choose discounting factor v € (0, 1], learning rate ¢, and
threshold 7.
for each episode do
Select action a; given state sy by e-greedy with FA.
Apply a to arrive at S¢yq.
Observe N samples, (st,at, r+,S¢1) at time step .
Initialize the base features of RVM; with transferred
RVs.
Add the RVs to training data and target.
Set target y = 1 + YMaTqQw.a,8(St+1, @)
Train RVM, with alternate iteration of (I) to (5).
Evaluate RVM,; with train RMSE
if RMSE < 7 then
RV(FA) = RV(RVM;) URV(RVM;)

W(FA) = (1 — ¢)W(RVM;) + cW(RVM;41)
Store RV(RVM;, ) for transfer.
end if
Decreases ¢
end for

we store these input samples. From now on, we regard the
relevance vectors to transfer or store as the related input
samples.

When regression training is done, the framework checks the
trained RVM to decide if the RVM is good enough to shape
the target function approximation (Step 3). Many different
heuristics possibly exist for evaluating RVM training. In this
paper, we chose the regression root-mean-square error (RMSE)
as a measure for this decision. When the training RMSE is
greater than a preset threshold, we ignore the current RVM
for the target function approximator.

The RVM that passes the evaluation test will be kept for
updating the target function approximator while the RVM that



failed to pass the test will be ignored. The passed RVM is
now ready to update the target function approximator (Step 4).
There are possible heuristics for this step again. A new
Q estimator can be constructed by averaging all successful
RVMs. Another way, which is the method used here, is to
shape the target function approximator with stochastic updates:

RV(RVMygrget) = RV(RVMygrget) U RV(RVMy 1),
W(RVth«get) = CW(RVMtaTget) + (1 — C)W(l{VMt)7

where RV(:) retrieves the relevance vectors of the RVM and
W(-) retrieves the weights (mean estimates) of the RVM. ¢ is
a stochastic update scalar to control the learning speed. When
¢ = 1, it completely ignores previous RVMs and uses the
new RVM. ¢ = 0 means the target function approximator is
not affected by the new RVM. When the target decision is
made, the agent uses this function approximator to collect next
samples. The weights for discarded RVs become zero. In this
approach, the increment of the RVs can lead to an very large
number of them. The set of important states, however, that are
captured by the RVM converges to sparse solutions as we will
see in Section [Vl

For the next sample training, instead of starting from
scratch, we transfer the relevance vectors. The new, next RVM
initializes the initial features with the transferred RVs. That is,
the transferred RVs are added to the training samples, and the
initial RVs are set to the indices of the transferred RVs.

Xt = Xtransfer U Xt
RV(RVMt> - Xtransfer

where RV(RVMy) = ¢. When the collected samples are
biased in a certain space, learned RVs can be forgotten. By
transferring RVs and using it as the initial base features of
next RVM, it helps learning to be unbiased on each stage and
alleviate forgetting.

Algorithm [I] summarizes the framework.

V. EXPERIMENTS

Two reinforcement learning benchmark problems were used
to investigate the efficiency of the RVM-RL framework. The
first is the mountain-car problem, in which an under-powered
car must be controlled to climb up a hill by using inertia. The
second problem is a pole balancing problem.

We selected baseline algorithms based on function approx-
imators. First, we compare RVM-RL with a value iteration
approaches with neural networks. For this, we test neural
fitted Q learning that is most similar structure to the suggested
approach. Considering the two different viewpoints of RVM,
an extension of SVM and GP, we test online SVR function
approximation (0SVR-RL) [14] and GPTD [9].

In our experiments, oOSVR-RL fails to learn in a given
relatively short samples (200 episodes). Furthermore, it suffers
from the huge number of support vectors that limits the choice
of good kernel parameters because of the computation and
memory limit. Thus, oSVR-RL results are not presented. To
illustrate the SV explosion in RL problems, we examine the

Fig. 2: Mountain car problem

number of SVs with the actor-critic SVR-RL [15]], which
generates less SVs than oSVR-RL.

A. Mountain Car

The mountain car (Figure [2) is a popular dynamics problem
having an under-powered car that cannot climb a hill directly,
but must be pushed back and forth to gain the momentum
needed to reach the goal on top of the right hill. There are three
actions: move forward (41), move backward (—1), and no
acceleration (0). The optimal solution of pushing the car away
from the goal makes the problem difficult. This continuous
control problem is described in detail in [30]].

The state is two dimensional, consisting of the car position
x; and its velocity 2;. Following the classic mountain car
problem, we assign the reward —1 on each time step. When
it reaches the goal (x; = 0.5) at the top of the right hill,
the agent gets the reward O and is restarted from a random
position. After each restart, a fixed number of samples are
collected for training. The described reinforcement function is
defined as follows:

0
Ty =
T -1

1000 samples are collected for each mini-batch, and 200
mini-batches are used to train the proposed RVM-RL frame-
work. Parameter values for each function approximator were
approximately optimized. For all experiments, the discount
factor v was set to 0.99 and e decreased from 1 exponentially
by the factor 0.9885 to a minimum of 0.1. For RVM-RL,
the radial basis function (RBF) kernel with normalized input
was used with the kernel parameter 'y}ERVM) = 0.1. The
learning rate was ¢ = 1.0. For each RVM training, the
maximum number of iterations was set to 100 and tolerance
threshold was set to 1 x 107°. For neural networks, two
layers of 20 hidden units were used, which consist of one
input layer (3 inputs), two hidden layers (20-20 units), and
one output layer (one output). For the gradient update in
backpropagation, we used Moller’s scaled conjugate update
[21] with a maximum number of iterations of 20 to avoid
overfitting. GPTD parameters were chosen to be the accuracy
threshold v = 0.1, the convergence threshold n = 1 x 1074,
and initial standard deviation cg = 0.1. The RBF kernel was
used for GPTD and the kernel parameter mgGPTD) = 0.01.

To compare the performance of RVM-RL, GPTD, and neu-
ral networks, we repeated the experiment 10 times. Figure [3]
shows the average number of steps to reach the goal with each

if z; > 0.5
otherwise
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Fig. 3: Average of steps to reach the goal in mountain car
problem.
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Fig. 4: Trajectory of successful control of mountain car by
trained RVM from position -0.3.

function approximator. While the neural network’s perfor-
mance oscillates near the optimal point, both GPTD and RVM-
RL show stable convergence. However, GPTD found a policy
that reaches the goal with a greater number of steps with 200
mini-batches of training. Note that RVM-RL reaches the goal
with the smallest number of steps. Example state trajectories
followed by each of the three function approximation methods
are shown in Figure[d] The RVM-RL agent consistently applies
the —1 action to push the car farther up the left hill, then
applies the +1 action to reach the largest velocity of the three
methods, reaching the goal the fastest.

B. Pole Balancing

Adding a pole to a cart that swings in two dimensions,
Barto et al. [4] first introduced the benchmark pole-balancing
problem (Figure [3). The objective is to apply forces to the cart
to keep the pole from falling over. Three actions to control the
cart are defined: push left, push right, and apply zero force.
When the cart reaches the end of track, it stops with zero
velocity. In this instance, the pole is allowed to swing the full
360°.

ﬁ

Fig. 5: Pole balancing task

The state of this system is four dimensional: the cart position
x4, its velocity 2y, the pole angle 6;, and the angular velocity
0;. When the angle 0; = m, the pole is upright. The reward
function is defined in the terms of the angle as follows:

1
T+ =
7o

Thus, when it can balance the pole through the simulation
time, the optimal policy will result in the average reward of
1.0.

With the e-greedy policy with an e that decreases expo-
nentially with the factor of 0.9332, we use the discounting
factor v = 0.99. For training, we use 100 mini-batches,
each with 1000 steps of samples. For RVM-RL, RBF kernel
parameter ’y}ERVM) = 1.0 was the best from our pilot tests. The
learning rate ¢ = 0.1 was chosen, RVM max iteration was
100, and tolerance was 1 x 10~°. From pilot tests, even with
the best performing parameters, neural networks and GPTD
were not able to find an optimal policy in 100 mini-batches.
With 200 minibatches with more random explored samples,
neural networks and GPTD converged to good policies. Neural
networks with two hidden layers (10 hidden units per each)
was the best structure. SCG max iteration was set to 80.
GPTD required a finer accuracy threshold v = 1 x 107°
and relaxed convergence threshold 1 = 0.1. Initial standard
deviation gy = 10 and the RBF kernel parameter 'y]EGPTD) is
set to 1 x 1072,

Figure [6] compares the average reward curves in pole-
balancing task and shows the good performance of the pro-
posed framework. RVM-RL shows fast learning to balance
the pole most of the time. Neural networks and GPTD fail
to learn with the given 100 mini-batches. They need twice
as many samples to learn the policy, compared to RVM-RL.
Figure[7) confirms the good performance of the RVM-RL when
applying the learned policy. The upper plot shows the position
changes over the 1000 steps and the bottom shows the angle
trajectory. It moves slightly toward the right but keeps the pole
balanced near 7.

if |0t - 7T| < %
otherwise

VI. DISCUSSION

As Tipping, et al., [33]] state, one of the issues in support
vector regression is the growing number of support vectors as
the number of samples increases. This impact gets severe when
we apply SVR to reinforcement learning function approxima-
tor. Repeating 10 mountain car experiments, Table |l compares
the number of support vectors and relevance vectors. The
SVM model that we use for comparison is the SVR-RL, actor-
critic model by Lee, et al., [15]. The mean and median of the
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With positive samples, RVM quickly adjusts learning. The cart
and pole stay center and upright. Magnifying inner plots show
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number of SVs are 286 and 128.5, and the mean and median
of the number of RVs are 11.5 and 10.5. The table illustrates
the sparseness of our RVM approach, even after the gradual
augmentation of RVs. This suggests that RVM-RL may be
the more practical approach for complex RL problems such
as high-dimensional or continuous-state tasks. In the light of
this, we have recently applied RVM-RL with continuous action
control to high dimensional octopus arm control problem, and
we intend to publish further results shortly.

l

[ Mean | Median | Min [ Max |

SVM

286

128.5

19

852

RVM

11.5

10.5

8

45

TABLE I: The number of support vectors and relevance
vectors in mountain car problem. The numbers are collected
from 10 runs for each FA.

In Figure [8] we examine the selected RV's for the mountain
car problem over the contour plot of Q values for each action.
From the samples experienced during RL training, RVM-RL
discovered the key samples that can be used as a basis and
they are plotted as white dots. A total of 12 RVs were chosen
as a basis; 3, 5, and 4 RVs for actions of —1, 0, and +1,
respectively. It appears that for action —1 (Figure [8p), two
RVs represent positions near the bottom of the valley and
negative velocity. These probably contribute to a higher Q
value for the —1 action for these states. Most RVs for action
0 (Figure [8p) are placed in low velocity areas and near the
top of the both hills. RVs for action +1 (Figure [8c) allow
the selection of action 1 when the car has moved far enough
up the left hill. Figure [J] shows the policy that depicts the
action that maximizes the RVM-RL Q estimations for each
state. The figure illustrates the policy of pushing right when
moving down the left hill with high positive velocity, in the
upper portion of the displayed velocity-position state space.
The low velocity range in the middle is governed by no action.
When the velocity is negative, in the lower half of the velocity-
position space, pushing left rules.

The learned RVs can be considered as high level knowledge
about the dynamics and goals of the task. They are abstractions
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of the experienced state-action pairs that are most relevant to
the RL problem. The sharing of RVs, rather than the large
number of state-action pairs, with other RL agents in the
same or similar environment can be used to quickly initialize
them with good base features. This can improve adaptability
in multiagent systems or for environmental changes. This is
similar to human learning that mimic others or following
advise from a teacher or a coach. Similar approaches are
studied in the transfer of learning context, such as imitation
[18, (1] and advising [36} [37]. For instance, after RVM-RL
training, the key experiences in RVs are transferred for a
complex target task. By repeating the key actions, an agent
imitates the learned behaviors in an easy task to quickly
discover an optimal policy for the hard task.

VII. CONCLUSION

We have described a novel reinforcement learning frame-
work that trains relevance vector machines (RVMs) as function
approximators with mini-batch samples. By transferring RVs
acquired during mini-batch training, RVM-RL maintains the
learned knowledge, which are considered as important expe-
riences. By first evaluating the new RVs and not transferring
them if they are judged to be detrimental, we filter negative
knowledge transfer that can deter learning.

The major contribution of our RVM-RL approach is a
unique extension of the relevance vector machine for sparse
Bayesian reinforcement learning. Policies learned by RVM-RL
can lead to a useful analysis of the state-action space structure
by examining the RVs after training. This analysis can also be
utilized for a transfer of knowledge for imitation or advising.
Rasmussen et al. [22]] discussed the problem of RVM-as new
samples are away from training samples, most bases do not
correspond to new inputs and the predictive variance gets
small. The authors suggested augmentation as a solution, but
they pointed out that the solution resulted in losing sparsity
of RVMSs. Our approach is similar to theirs by augmenting
RVs, but we have shown that the sparsity is maintained with
additional heuristics in the framework.

Our future research will focus on using the Bayesian traits
to improve the learning performance such as investigating
alternative exploration-exploitation strategies [7 [13]. Another
avenue we will investigate is human contributions in the form
of prior distributions can affect the learning performance.
These additions will improve the quality of the RVs learned
from the directed exploration. Further study of kernel tricks
can extend the application of RVM-RL to many real-world
RL problems that have not been attempted previously. Other
interesting questions remain regarding ways to efficiently
utilize the transferred RVs to improve reinforcement learning.
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