978-1-7281-2484-1/19/$31.00 ©2019 IEEE

2019 IEEE Symposium Series on Computational Intelligence (SSCI)
December 6-9 2019, Xiamen, China

Automatic Composite Action Discovery for
Hierarchical Reinforcement Learning

Josiah Laivins and Minwoo Lee
Computer Science Department
University of North Carolina, Charlotte
Charlotte, NC 28223
Email: {jlaivins; minwoo.lee} @uncc.edu

Abstract—Even with recent advances in standard reinforce-
ment learning, hierarchical reinforcement learning has been dis-
cussed as a promising approach to solve complex problems. From
human-designed abstraction, planning or learning with composite
actions are well-understood, but without human intervention,
producing abstract (or composite) actions automatically is one of
the remaining challenges. We separate this action discovery from
reinforcement learning problem and investigate on searching
impactful composite actions that can make meaningful changes
in state space. We discuss the efficiency and flexibility of the
suggested model by interpreting and analyzing the discovered
composite actions with different deep reinforcement learning
algorithms in different environments.

Keywords—hierarchical reinforcement learning; composite actions;
skill discovery; options; automatic discovery; abstraction; temporal
composition

I. INTRODUCTION

Design of autonomous agents to effectively traverse their
environments has required a balance of exploration and ex-
ploitation. Early work involved detailed system designs [1], [2]
were frameworks for humans to use as references for complex
system design. Unfortunately, these early systems grow in
complexity so much so that this prevents agents from truly
scaling to human-level competence. This has encouraged re-
search in reinforcement learning (RL) which promises reduced
human involvement by simply asking the agent to determine
the best self-designed methods of achieving a task.

[3] found success training a neural network to do this, and
unprecedentedly was able to use the same architecture and
parameters to win many different Atari games such as Video
Pinball, Boxing, Breakout and 46 more, most above human-
level playing abilities. [4] evaluated several RL algorithms
such as Trust Region Policy Optimization (TRPO) [5], Prox-
imal Policy Optimization (PPO) [6], and Deep Deterministic
Policy Gradients (DDPG) [7] on physical robots. They eval-
uated actions such as reaching toward objects, moving, and
docking with charging stations.

Unfortunately, as agents are asked to learn more complex
tasks, they quickly suffer from sparser rewards and succumb to
the curse of dimensionality in their state and action spaces. As
a result, in earlier works, humans need to get involved to help
them along: the designed actions enable the agent to reach a
state difficult to reach if using primitive actions. This kind of

human labor can manifest itself in different strategies such as
by [8], [9] whose algorithms require human metadata input
to better describe the environment that the agent is working
in. [10] encourages the agent to be interested in novelty and
will often become bored and thus maintain a constant balance
of exploration and exploiting its environment similar to its
biological counterparts. [11], [12], [13], [14] attempt to avoid
laboriously adding metadata to environments by instead im-
proving the effectiveness of the actions the agent takes. Instead
of trying to reduce the state space, their common strategy
lets a chunk of actions into hierarchies to make state space
traversal and exploration more effective. These frameworks
are working toward the concept of hierarchical reinforcement
learning (HRL) of which was detailed by [15]. Throughout this
paper, we will define composite action as a raw set of action
values or policies of which could be hierarchical or flat. We
summarize the main drawbacks contained in these frameworks
are human involvement 1) in composite action design, 2) in
defining the number of composite actions available, and 3) in
composite action size as required by HAC algorithm developed
by [14].

Automatic discovery of composite actions has received a lot
of attention these days to overcome these drawbacks. Creating
these composite actions with as little human intervention as
possible is an important puzzle piece for HRL agents to be
more effective. Nature seems to learn the same way. When a
human wants to accomplish some new task such as cooking,
they do not start learning to cook from scratch. Commonly,
they would have knowledge of composite actions such as
grasping, cutting, reaching, and stirring. All of these natural
composite actions might have different lengths, numbers of
nested composite actions, and most of all at some point in time
are created from primitive movements (temporal abstraction
[16]). Solutions were proposed to reduce the requirement
for human design of options [12]. [17] allowed an agent to
build more advanced hierarchies by chaining existing options
into logical groups. [18] developed an algorithm for creating
options via chaining from a root option. [19] used a clustering
algorithm to break the MDP into regions, then assigned an
option per region.

Our method separates the automatic composite action dis-
covery problem from learning formulation in order to further
alleviate the limitations and improve generality. Our dimen-

197

sionality limit is higher and has been successfully run on Atari

game RAM inputs. We also do not need any extensive MDP

to start using our method for composite action extraction.
Our contributions are summarizes to

« no human involvement in composite action creation,

« individual problem design for composite action discovery,
which can work with standard RL algorithms, and

« an effective composite action achievement by correlating
it with notable changes in state space.

In this paper, we perform a proof of concept via evaluating
several environments, using different agents, different models,
different state and action space representations, all while using
a single set of parameters. Our hypothesis is that changes
in learned action sequences can be partitioned using entropy
or distance methods. However, we also hypothesize that the
most useful actions will cause some change in state space.
Our method will compare the action distributions with the
state distributions and keep only the composite actions that
have been observed to cause a correlated effect on the state
space. To the best of our knowledge, no previous research
has attempted to “automatically” extract “effective” composite
actions without extra metadata or human interference. We
believe that our method can prove to significantly improve
the usability of existing HRL algorithms, as well as future
HRL algorithms.

II. RELATED WORKS
A. Planning and Learning with Composite Actions

Hierarchy-based composite actions have been of interest in
the general planning [8], [9], [2], [1], and learning [20], [11],
[13]. While these existing frameworks have their strengths,
the common problem they share is the persistence of human
intervention in the environment, agent, or action design.

Early work in hierarchical composite actions were defined
by [1] via manually designing multiple layers of human
designed behaviors. They organized these behaviors into hier-
archical layers via a categorical system they termed 7 levels of
competence. Similarly [2] postulate the existence of different
schemas such as motor and perceptual Schemas. These meth-
ods shared the same weakness in that the intention was for
the human designer to design each Behavior or Schema, and
classify them under one of these levels.

STRIP-like logical descriptions of their environments and
actions allow an agent to create action hierarchies. [8] ac-
complished this through the human creation of fluents and
operators, and [9] did so using similar logical based constraints
and agent to environment contact points. The amount of
information required to describe the actions and environments
would require a human to create an entire sub-ontology of
their environment, and then debug that ontology.

Skills [11] assume the presence of multiple related tasks.
They determine the number of skills as proportional to the
number of tasks the agent is trying to accomplish. [12] covers
a similar strategy called options and is further elaborated on
in [21]. [13] developed Boundary Localized Reinforcement

Learning (BLRL) which divides the state space into multiple
modes. The mode boundaries evolve to develop sub-policies.
Once again, there is a question of how options, modes, and
skills are created in the first place. Unfortunately, the theory
of options still requires a human designer to determine the
number of options present in an environment, skills are directly
tied to a task, and ultimately determined by the number of
tasks, and modes require human-defined regions in the state
space.

All of these algorithms in some way or another are trying
to allow an agent to solve exceedingly complex tasks by
reducing the state space, improving the complexity of actions,
and adding extra information from the environment to make
a valid decision. As we have found, behaviors and schemas
are early attempts at improving agent robustness by designing
abstractions of actions available to agents. Both of these are
examples of how one would create a robust robotic system that
could react to its world, and how to think about designing the
system by considering the tasks that the robot might be trying
to solve. While this can be seen in some form or another today,
most agents are still given simple highly related tasks primarily
due to the sheer complexity of these systems, and the amount
of human design work involved. [11], [13], [12] understood
this by leveraging the power of reinforcement learning. They
could drastically reduce the amount of human design work.
Their methods used the idea of telling the agent to use a
specific number of human-designed composite actions (skills,
modes, options), and augment those actions into more effective
versions of themselves. While this has proven popular, many
of the immediate drawbacks still involve a human correlating
composite actions with the number of tasks, defining specific
state space regions to develop in, or designing the composite
actions manually. [9], [8] study alternative approaches to
allowing agents to solve real world problems. And while
both could be easily transferable to other tasks, the level of
human design work is still infeasible for sufficiently complex
environments. Moreover, modified formulation of semi-MDP
[12] and Universal MDP [14] enables an agent to deal with
multi-step composite actions along with primitive actions.

B. Automatic Composite Action Discovery

Understanding the needs of automated discovery of compos-
ite actions without human help lead the emergence of learning
frameworks that construct or discover composite actions. [14]
improve agent search through its state space by using an
automatic form of sub-policy creating and training. Their
method allows for generating hierarchies simply based on the
agent’s experience during training. However, these sub-policies
are restricted in their size during the entire duration of the
agent training. [18] create options via chaining. Based on a
single root option, the algorithm works backward, creating
options as a chain to the original one. [17] built upon options
[12] by allowing an agent to build more advanced hierarchies
by chaining options into logical groups. While this improves
the capabilities of existing options, this does not address
creating a single option from primitive actions. [19] proposed

198

the use of Perron Cluster Analysis (PCCA+) to discretize the
state space regions based on the MDP. Once this was done,
an option would be created per region. However, they note
that PCCA+ suffers from high dimensional state spaces thus
requiring a more complex pipeline. It also requires acceptably
built MDPs before discretization.

We clearly cut connections between learning methods and
composite action discovery so we can apply the general
method for different algorithms for either standard RL or
HRL. We design the algorithm to be invariant to a single
composite action size, and so the agent could always have an
opportunity to learn small composite actions or large ones.
Also, our method does not need a root composite action
to build from, nor will it restrict composite action creation
to regions near other composite actions, which helps cut
dependence to specific type of algorithm.

III. METHODS

The input to our method is the environmental information
such as action and state Markov Chains. We design the model
computationally efficient so that we can run online, so during
training of an RL agent, we can immediately start collecting
candidates for our composite actions,

ap,1 ap2 ag,n

ap1r a2 a1,n
ATJL =

ari ar;2 ar n

where T is the max time step, and n is the action joint. Many
simpler environments may only have n = 1, however, larger
multi-joint agents will have more. Our method will output
composite actions for each joint is they are found. Along
with actions, we need the Markov Chains for state transitions.
The state space can be anything from meta level environment
output or raw image output. If images are provided, it is then
assumed they are flattened to 1D vectors,

50,1 50,2 S0,n

S1,1 51,2 S1,n
ST,n =

ST1 ST,2 STn-

Let b be defined as the number of bins to discretize action
outputs. Let w be the size of the window to run over the
Markov Chains. Our defaults will be b = 64 and w = 5. This
method is largely inspired by [22] and [23]. [22] used Shannon
entropy for anomaly detection in real time space shuttle
systems, while [23] used entropy for drawing segmentation.
Our method performs action segmentation via changes in both
action and state space. Our algorithms for doing binning,
calculating probabilities, and windowing are here:

Xpinnea = {arg max(HIST (x¢,b, min(X), max(X))) (1)
| 7, € X} 2

where HIST is a generic histogram building function that
takes in the number of bins b, the minimum and maximum of
X, a an element z;. X can be either S or A. The resulting
Xbpinneq 18 a discretized version of X,

COUNTS(J% Xbinned)
S COUNTS (¢, Xpinned)

where COUNT'S is a generic value counting function. At
present the probabilities for each value is strictly based on that
value’s occurrence frequency resulting in a set of probabilities
X,

Once we bin our action and state readings similar to [22]
and extract probabilities, we generate a window per time step.
However, their final entropy extraction was done via graphing
the readings of over 120 sensors of ¢ time steps. Since a single
action over 7" time steps is a single 1D vector, we convert both
the actions and the states per time step into windows over w
time steps given w; = w/2 + 1 and w, = w/2:

X = {Ti—wp t4w, | Te € Xp}.)

X, = lmex) O

Our sliding windows are centered over each time step. Our im-
plementation of Eq. (4) uses a padding procedure to maintain
matching dimensions.

Eq. (5) takes three parameters for an entropy function f, the
window size w, and X which is either a single action joint
Markov Chain A,, or the state Markov Chain S:

Ey ={f(xtstraxw) | ze € X} 5)
where we define A as:
1, t<T —w
A= _ ©)
— 1, otherwise

The resulting E,, is a mask of entropy values of the
same length of X. Instead of padding the edges of E,,, we
simply change the direction via A once we reach close to
the end of the Markov Chain. Our method can next make
use of any of the many different methods of comparing
probability distributions. We divide the different methods we
have experimented with into entropy and distance methods.
As a note, F,, will need to be partially redefined via Eq. (7).

First and foremost, we started with Shannon entropy [24]
and is of the form:

n
H=-K) pilogp

i—1

where p; is a single probability in a single window, and n is
the window size. K is defaulted to 1.

If we are to simply consider a single 1D vector, typical
Shannon entropy might not be desirable. We would be in-
terested in methods of determining entropy over time series,
and more specifically, find changes in entropy over those time
series. [25] was also interested in this in finding irregularities
in heartbeats, and so developed Approximate Entropy (ApEn).

199

It uses Kolmogorov-Sinai entropy as their measure with mod-
ifications where m and r are strictly fixed variables. Their
algorithm is of the form:

ApEn = ®™(r) — d™F(r).

where m is a per comparison region size in the time series,
and 7 is the behaves as a smoothing parameter. Some of the
immediate drawbacks we found was pointed out by the authors
in that their algorithm is “badly compromised by noise.” ApEn
is affected by series length and has relative inconsistency and
bias. [26] designed their time series entropy analysis to solve
this drawback:

SampEn = —In(A™(r)/B™(r)).

Compared to ApEn, SampEn has reduced bias, is invariant to
series length, and is relatively consistent, which means that
given a set of parameters m and r, one would expect a linear
change in reported entropy.

Another form of time series based entropy analysis [27] was
developed with the intent to have an entropy function that was
both fast and did not require a high level of hyper parameter
tuning. It is formulated similar to Shannon Entropy as:

)= > p(w

However, the variable 7 is found via

p(m) = #o<t<T-— n,;xt+1,~- .
—-n+1
where n is defined as the order of the function and defines the
number of permutations to try in the time series.
KL-Divergence [28], [29] is one of the most popular strate-
gies of comparing the regularity of two distributions. In order
to do this, we can use two adjacent windows in a Markov
Chain, and pass in their probability distributions here:

(P 19)= 2 s (5

TEX
where P and () represent different windows.

[30] developed Jensen-Shannon divergence to solve the
trouble posed by KL-Divergence which as the authors stated
“requires absolute continuity.” Jensen-Shannon divergence
makes use of Jensen’s inequality to achieve this:

JSx(p1.2) = H(mip1 + mopa) — miH (p1) — m2H (p2).

Most interestingly, JS-divergences allows us to optionally as-
sign different importance to different probability distributions
via 7. In this work, we assign equal weights (0.5) for the given
two probability distributions. In future work, one interesting
experiment would be to test more than two windows with
different weights.

[31] experimented with multiple distances and divergences
training a Generative Adversarial Network. Along with KL-
Divergence and JS-Divergence they tested Total Variation (TV)
distance:

) log p(m

s Zi4,) has type 7}

O(Py, Py) = sup |P.(A) —
Aeys

Py(A)].

They also experimented with Earth-Mover (EM) distance:

W(P,,P)= _inf

Ex, ‘e — vyl
e y) Ylllz —yll]

One of the important benefits of EM is that it is differentiable,
so they were able to use it in designing a loss function.
Regardless of the function we choose, our framework makes
it easy to test all of them by simply plugging in. Given that b
and w define our binning and window size, X is defined by our
states and actions, and finally for any of the entropy functions
we simply pass them as f to Eq. (5). However, given available
divergence and distance functions, the formulation revised as:

Ey = {mln(fj 1Tttt Axw,

‘Bt+A><]—>t+A><(.7'+w))) | T € X} @)

We included min because given a window, we want to see if
there is a similar pattern found in its neighbors. A changes
the direction of which sequence of windows to look at. This
is a padding avoidance measure.

For example, given multiple single element windows of
some distribution X,

X=[01 02 03 01 02 03],
and given a window size of w = 3 at time step ¢t = 0, we get
wo=1[01 02 03].

If we test one of the functions such as f =
Jensen_Shannon_Divergence(p,q), we would get
the expected output of

Jitq(wo, Xj) =

The lowest value indicates the most similar neighbor to wy.
In this instance, the value was 0 indicating there is a pattern
exactly similar to wy. E,, will now have the the result of
any of the entropy functions or divergence functions we have
discussed above. The next step is normalizing the distributions
as

[0.066 0.066 0.0].

E, = (E, —min(E,)) / (max(E,) — min(E,)). (8

Once normalized, we convert the distributions into binary
distributions based on threshold A (default is 0.5):

Epin = E, > A (C)]

Supposing that we have done above with distributions A and
S (in place of X), we now have binary distributions Ej;p(a)
and FEy;,(s), we correlate changes in the action A Markov
Chain with changes in S Markov Chain. Our hypothesis is
that a useful composite action should cause some noticeable
change in state space. Formally, for each time step, we check
if there is an intersection between ¢+ w state and action binary
distribution truth values. This is modeled by:

ACorTelated = {g(st»at) Sty € Ebin(S)a Ebin(A)} (10)

200

TABLE I. METHOD PARAMETERS

Gyms w b A f
Cartpole 5 64 05 Earth-Mover
MountainCar 5 64 0.5 Earth-Mover
Pendulum 5 64 0.5 Earth-Mover
Acrobot 5 64 0.5 Earth-Mover
Boxing 5 64 05 Earth-Mover
Breakout 5 64 0.5 Earth-Mover
Pong 5 64 05 Earth-Mover
Tennis 5 64 0.5 Earth-Mover
Skiing S5 64 0.5 Earth-Mover

where,
(50, 01) True, if 38 yi1Axw N Attt Axw 7 8
Sty At) = .
’ False, otherwise

an

Our final step is breaking the action Markov Chain into
composite actions based on our correlations between our state
and action binary distributions. PART is a function that takes
in a binary distribution, and between each consecutive truth
pair, a partition is created, so

AComposite = {Apartition | pﬁ"‘titiml S PART(ACorrelated)}~

The final result is a single function to extract composite
actions simply by analyzing the action and state distributions.
In total, the there are 4 basic parameters. We can denote the
entire process as:

AcComposite = Extract(A, S,b,w, A, f).!

IV. EXPERIMENTS

We validate our methods on several OpenAl environments
[32] including simple classic benchmarks and Atari games.
We used the same parameters for all environments as shown
in Table I.

For discrete action environments we used Dueling Double
DQNs (DDDQNs) [33], and for continuous action environ-
ments we used Deep Deterministic Policy Gradient (DDPG)
[7]. We used Earth-Mover distance due to it generating the
best results over our pilot tests.

Fig. 1 illustrates the process of the automatic composite
action discovery. Unlike other proposed methods, our method
extracts the composite actions that have the greatest effect on
the state space. This extraction is also rich in information,
and the agent can first try composite actions that have been
observed to cause the greatest changes in the state space.

We found that this did so successfully for the 8 other envi-
ronments that we performed our pilot test on as referenced in
Fig. 2 and Fig. 3. For classic control problems such as Cartpole
and MountainCar were certainly easier for our method to
extract actions which commonly fell between 1-5 composite
actions. Cartpole composite actions typically were involved
in stationary oscillation, while MoutainCar hard changes in

IThe implementation is available

CompositeActionExtractor.

at https://github.com/josiahls/

State Values for Cartpole Action Values for Cartpole

Raw State Values

190 0 R W0 1o 140

& ®
Tene steps T stops
(a) State and action values differ greatly in number of dimensions and values.

State Measurements for Cartpole using EM Action Measurements for Cartpole using EM

a v
Vi

Normalized / Windowed / Threshed / M
Normalized / Windowed / Threshed / Me

ul

10 [Y

[EE V0 20 Mo

© ® © ®
Time Steps. Time Steps

(b) Regardless of noise, we can break a Markov Chain into useful segments
of changes between transitions.

Discovered Composite Actions

-
5
I

o
@

=
S

o
Y

o
N

Raw Action Values (Overlayed Composite Actions)

=
=
[

@ 100 120 140

Time Steps

)

(c) Composite action discovery via correlating changes in actions space with
their effects in the state space. Each color represents different patterns of
composite actions.

Fig. 1. Composite Action Extraction from Classic Environment.

direction. Based on our observations, Cartpole composite ac-
tions could be useful and transferable to agents with joints that
require the same oscillating behavior. MoutainCar composite
actions seem more task specific, so it may not be reusable but
it can help learning fast in similar tasks.

Both Acrobot and Pendulum generated composite actions
for handling momentum. Acrobot composite actions either
involved swinging oscillation or as seen in Fig. 2 was a
compact strategy for slinging the lower second arm in the
counter clockwise direction. While that Acrobot’s second
composite action seems task specific, the first can be useful
and transferable to other agents. Pendulum typically had 2
composite action phases: phase 1 for keeping the pendulum
vertical and phase 2, as seen in the figure, hard torque
in the counter clockwise direction. Phase 1 seems like a
common behavior shared between pendulum and Cartpole, and
interestingly phase 2 has high force, then quick slow down
behavior that can be useful for other agents to employ.

201

Initial State Intermediate

Terminal State

Composite Action Interpretation

Start at timestep 16 Middle state at timestep 34

Start at timestep 51

Raw Compsite Action Values

e vl) e 24 o €] ETpe—]

From right, move left
with faster oscilla-
tions to center the

pole.

Raw Composite Action Values
K]
%

5 20 >3 0 45 50

Time steps 16 to 51

Start at timestep 0 Middle state at timestep 27

Start at timestep 54

Raw Compsite Action Values

e et e 22 o €] Eppe—]

Move up left hill,
then change direc-
tion.

Raw Composite Action Values

0 2 0 44 50
Time steps 0'to 54

Start at timestep 58 Middle state at timestep 82

Start at timestep 105

Composite Action Plot

L |

V4
\

Use forearm to gen-
erate momentum in
the counter clock-
wise rotation.

Raw Composite Action Values

8

] 8 EY 100
Time steps 58 to 105

Start at timestep 0 Middle state at timestep 27

Start at timestep 53

Composite Action Plot

Hard counter clock-

\ -

wise torque to reach
vertical state. Next,
rapidly reduce mo-
mentum.

Raw Composite Action Values
-]
L}
8
8

Time steps 0 to 53

Fig. 2. Classic Environment Analysis and Human Interpretation of Composite Actions.

Boxing and Tennis in Fig. 3 demonstrate complex composite
actions being employed against an adversary. Boxing action
involved maintain distance, hitting, then flanking. Tennis found
a serve and return composite action.

Pong, although also reacting to adversarial actions, pro-
duced composite actions of simple fast reactions to the ball.
It is possible that Pendulum’s high force, quick slow down
composite action could be useful also to the Pong agent.
Skiing and Breakout generated extremely simple actions such
as repositioning after a previous action. Also based on our
observations, Pong, Pendulum, and Breakout could possibly
benefit from shared high force, quick slow down composite
actions since those kinds of composite actions were generated
from each of them separately.

Even when faced with both noisy action and state Markov
Chains, by comparing them with each other we were able
to extract useful slices of the action sequences, and interpret
what each is doing. Not only were we able to accomplish
this, but we were also able to do this across different agents,
and different environments using the same set of parameters.
Furthermore, since the extraction runs over the trajectories of
states and actions, which are turned into binary distributions,

we were able to run the algorithm regardless of the deep
reinforcement learning algorithm choice. We have run the
same method without modification for both DDDQN and
DDPG.

V. CONCLUSIONS

We set out to develop a human intervention free approach
to composite action discovery. Early preliminary results indi-
cated that this is indeed feasible, and successfully discovered
composite actions from multiple different environments and
agents using a single set of parameters. We highlight that the
discovered actions are not merely a temporal composition of
a sequence of actions but as sequences that actually cause the
agent’s state to change.

Additionally, future works could extend our method to trans-
fer learning between agents, composite action extraction from
human demonstration, or to improve existing motion planning
methods. Composite action projection for task transfer will be
another interesting next step.

REFERENCES

[1] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal on robotics and automation, vol. 2, no. 1, pp. 14-23, 1986.

202

[2]

[8]

Initial State Intermediate

Terminal State

Composite Action Interpretation

Start at timestep 832

L

Middle state at timestep 1053

J

Start at timestep 1273

Composite Action Plot

Keep distance, then
quickly circle around
opponent and attack.

P

=

125
100

50
25

Raw Composite Action Values

900 1000 1100

Time steps 832 to 1273

1200

Start at timestep 160

Middle state at timestep 193

Start at timestep 226

Composite Action Plot

Hit ball to blocks,
reposition for inter-
ception.

Raw Composite Action Values

160 170 180 190 200 210 220
Time steps 160 to 226

Start at timestep 310 Middle state at timestep 371

Start at timestep 432

Composite Action Plot

Simple align to cen-
ter.

Raw Composite Action Values
g 5 5 & B

20 340 360 380 400 420

Time steps 310 to 432

Start at timestep 52

Middle state at timestep 61

Start at timestep 70

Composite Action Plot

Simple move to cen-
ter and stop.

Raw Composite Action Values
6 = N w & w

525 550 575 600 625 650 675 700
Time steps 52 to 70

Start at timestep 1171 Middle state at timestep 1302

Start at timestep 1432

Composite Action Plot

s Single game
s sequence. Agent
§‘jz serves, and returns
£ 5o ball.

S 2s

1200 1250 1300 1350 1400
Time steps 1171 to 1432

Fig. 3. Atari Game Environment Analysis and Human Interpretation of Composite Actions.

M. A. Arbib, “Schema theory,” The Encyclopedia of Artificial Intelli-
gence, vol. 2, pp. 1427-1443, 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world robots,”
arXiv preprint arXiv:1809.07731, 2018.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889-1897.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the
now,” in Workshops at the Twenty-Fourth AAAI Conference on Artificial

[10]

(11]

[12]

[13]

[14]

203

Intelligence, 2010.

K. Hauser and J.-C. Latombe, “Integrating task and prm motion
planning: Dealing with many infeasible motion planning queries,” in
ICAPS09 Workshop on Bridging the Gap between Task and Motion
Planning. Citeseer, 2009.

N. Chentanez, A. G. Barto, and S. P. Singh, “Intrinsically motivated
reinforcement learning,” in Advances in neural information processing
systems, 2005, pp. 1281-1288.

S. Thrun and A. Schwartz, “Finding structure in reinforcement learning,”
in Advances in neural information processing systems, 1995, pp. 385—
392.

R. S. Sutton, D. Precup, and S. P. Singh, “Intra-option learning about
temporally abstract actions.” in Proceedings of the 15th International
Conference on Machine Learning ICML, vol. 98, 1998, pp. 556-564.
G. Z. Grudic and L. H. Ungar, “Localizing search in reinforcement
learning,” in Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative Applications
of Artificial Intelligence, 2000, pp. 590-595.

A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learning multi-level
hierarchies with hindsight,” in The International Conference on Learning

Representations, 2019.

[15] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete event dynamic systems, vol. 13, no.
1-2, pp. 41-717, 2003.

[16] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Twelfth Conference on Innovative Applications of Artificial Intelligence,
2017.

[17] H. Sahni, S. Kumar, F. Tejani, and C. Isbell, “Learning to compose
skills,” arXiv preprint arXiv:1711.11289, 2017.

[18] G. Konidaris and A. G. Barto, “Skill discovery in continuous reinforce-
ment learning domains using skill chaining,” in Advances in neural
information processing systems, 2009, pp. 1015-1023.

[19] A. S. Lakshminarayanan, R. Krishnamurthy, P. Kumar, and B. Ravin-
dran, “Option discovery in hierarchical reinforcement learning using
spatio-temporal clustering,” arXiv preprint arXiv:1605.05359, 2016.

[20] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning, vol. 3, no. 1, pp. 9-44, 1988.

[21] R.S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial
intelligence, vol. 112, no. 1-2, pp. 181-211, 1999.

[22] A. Agogino and K. Tumer, “Entropy based anomaly detection applied
to space shuttle main engines,” in 2006 IEEE Aerospace Conference.
IEEE, 2006, pp. 7-pp.

[23] Z. Sun, C. Wang, L. Zhang, and L. Zhang, “Free hand-drawn sketch
segmentation,” in European Conference on Computer Vision. Springer,
2012, pp. 626-639.

[24] C. E. Shannon and W. Weaver, The mathematical theory of communi-
cation. University of Illinois press, 1998.

[25] S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, “A regularity
statistic for medical data analysis,” Journal of Clinical Monitoring,
vol. 7, no. 4, pp. 335-345, Oct 1991.

[26] J. S. Richman and J. R. Moorman, ‘“Physiological time-series analysis
using approximate entropy and sample entropy,” American Journal
of Physiology-Heart and Circulatory Physiology. vol. 278, no. 6, pp.
H2039-H2049, 2000.

[27] C. Bandt and B. Pompe, “Permutation entropy: a natural complexity
measure for time series,” Physical review letters, vol. 88, no. 17, p.
174102, 2002.

[28] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, no. 1, pp. 79-86, 03.

[29] D. J. MacKay, Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[30] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information theory, vol. 37, no. 1, pp. 145-151, 1991.

[31] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[32] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[33] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

204

