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Abstract

Radar-based biometric identification is an emerging user identification platform that
exploits radar return signals to capture human biometrics (such as gait, gesture, lip
motion, and cardiac motion), which can be used to predict a user’s identity. Despite
its unique advantages (such as privacy-preserving and resilience to weather/lighting
conditions), the generalization performance of this technology is still unknown
and greatly hinders its practical deployment. To address this challenge, we collect
and investigate a non-synthetic dataset, which revealed the existence of distinct
spatial and temporal domain shifts in radar-based gait biometric data. We show
that spatio-temporal domain shifts, when not addressed jointly, can significantly
degrade identification accuracy. Moreover, we propose a data-efficient yet straight-
forward domain shift mitigation approach for tuning deep learning models over
their entire life cycle. Our approach exploits an unsupervised domain shift detector
to measure the malignancy of domain shifts. Such metrics allow us to determine
the domains that maximize the net contributions upon adapting to, after which
an appropriate domain adaption method is utilized to improve both spatial and
temporal generalization. We show that our approach improves data efficiency by
reducing the number of domains that necessitate adaptation while maintaining the
generalization performance of a blind approach that uses data from all domains.

1 Introduction

As an emerging user identification technology, radar-based biometric identification exploits radar
signals scattered and returned by human subjects to capture a variety of behavioral and physiological
biometrics such as gait [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], gesture [11, 12], lip motion [13, 14], and cardiac
motion [15, 16]. These biometrics characterize the movement patterns unique to each individual.
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Radar-based biometric identification systems have several unique advantages. First, they are privacy-
preserving as they do not rely on images of human subjects. Next, they can operate in adverse weather
and lighting conditions such as heavy fog, smoke, rain, and zero-light conditions. Finally, they can
see through some opaque objects depending on its material and the frequency of the radar [17, 18].

A rich body of research has established the viability of this new technology [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16]. However, the spatial and temporal generalization performance of this
technology is still unknown. We found that deep neural networks (DNNs) trained on radar-based
gait data suffer from substantial performance degradation with the progression of time and in new
locations. Most radar-based biometric systems proposed in the literature, test their performance on a
dataset collected alongside the training data and fail to uncover the temporal degradation. Furthermore,
they seldom address the spatial generalization issues from introducing new environments. These
issues are prevalent in other biometric solutions, such as images as well. Nevertheless, curating a
dataset of monumental proportions often overcomes this, which is especially true for face recognition,
as they have datasets containing millions of images. A brute force approach is not viable for most of
the other biometric identification platforms, such as radar-based ones. Unlike images, most other
platforms require specialized devices that are not omnipresent and exclusively designed for user
recognition, which further complicates data collection campaigns on a large scale.

The root cause of this generalization issue is dataset shift [19]. Simply put, it occurs when the testing
data distribution differs from that of the training data, i.e., the i.i.d. assumption is violated. Depending
on the type of difference in the test data distribution, it can be categorized as a covariate, posterior
probability, or concept shift. Mitigating dataset shift, also known as dataset drift or domain shift, is
known to be one of the hardest problems in machine learning and is prevalent in numerous application
domains. This leads us to the ethos of Domain Adaptation, addressed by myriads of methods in
literature [20].

After an in-depth analysis of dataset shifts and domain adaptation, we found the current taxonomy of
domain shifts is not adequate to explain the full extent of our problem. Apart from the manifestations
of domain shifts mentioned above, we seek to distinguish them further. Concretely, we acknowledge
the presence of spatial and temporal domain shifts (SDS/TDS). We treat TDS as shifts that arise
temporally as a consequence of the inherent dynamics of a domain while, treating SDS as shifts
induced from introducing new spatial locations. This distinction allows us to understand and explain
the behavior of the shifts that manifest in radar-based gait data.

Before addressing a shift, we need to be aware of its presence. An overwhelming amount of domain
adaptation methods only address shifts that behave similar to SDS [20], i.e., they only consider
explicitly introduced domains. So, the problem of detecting the presence of a shift, which is a sine
qua non for TDS, has not received the attention it deserves. Moreover, among the work available on
drift detection [21], a majority of them make assumptions about the behavior of softmax classifiers,
which have long been invalidated [22, 23]. We draw attention to a simple yet effective unsupervised
domain shift detector based on metric learning [24]. Our shift detector enables a data-efficient domain
shift mitigation approach, where the shift malignancy of each domain is first measured, and domains
that maximize the net contributions upon adapting are selected. An appropriate domain adaption
method is then applied only to the selected domains to improve model generalization. Our prominent
contributions and findings are as follows.

• We curated a non-synthetic dataset consisting of radar-based gait biometric data. This dataset, for
the first time, allows one to study and improve the spatio-temporal generalization performance of a
radar-based biometric identification system.

• We introduced the distinction of TDS and SDS, which enables us to explain the system performance
degradation.

• We uncovered a correlation between TDS and SDS, which unveiled significant ramifications for
data collection and domain adaptation. In particular, we found SDS can be mitigated to a certain
extent by using the TD data and vice-versa, but both SDS and TDS have to be addressed explicitly
for consistent generalization performance.

• We revealed that if multiple sources of domain shifts appear, each source of domain shifts yields a
different net contribution to generalization upon adapting to that domain.

• We elucidated the effectiveness of metric learning based shift detectors and reaffirm the limitations
of softmax thresholding for out of domain detection.
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• Finally, we exploit our shift detector to develop a data-efficient domain shift mitigation approach.

2 Dataset

Figure 1: First row: gait spectrograms of the same person. Second row: t-SNE embeddings generated
from each domain of our dataset. Orange triangle clusters represent the training data in source
location on day 1, where each cluster represents a distinct human subject. Blue circles represent each
domain’s testing data, where the data points were sampled from all the classes of a given domain.

In light of the novelty of our problem, we curated a dataset to study it properly. We collected gait data
from 10 volunteers between the ages of 18-35. Each subject’s data was collected in four different
locations. The source location was a research space with cubicles, and the other three areas consisted
of a server, conference, and an office room. By maintaining four distinct locations, we introduce SDS.
In the source location, data was collected on ten different days for each subject. Five separate days of
data was acquired for each of the three other locations, which are used as target domains.

The data collection was limited to 100 data samples in the source location and 50 data samples in each
of the target locations on any given day. Unlike cameras, radars collect data actively by broadcasting
signals into the environments. Unique movement patterns (e.g., gait) can induce different micro-
Doppler frequency shifts in radar return signals, which can be represented as a spectrogram. Thus, a
radar spectrogram can serve as the biometric print for user identification [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
Apart from biometric traits, radar spectrogram data could also contain spatio-temporally varying
noises from signal reflections and interference, which cannot be completely removed. This leads
to environment-induced TDS and SDS. To add on, human gait, although unique to each individual,
could contain minute variations, potentially as a consequence of a subject’s mood, clothing, footwear,
or some other similar aspect, which combined with the environment-induced shifts, further aggravates
TDS. Changing the number of days in the train and test sets changes the amount of TDS. Similarly,
using a subset of the available locations, SDS can be controlled, which makes it possible to study
how the two variants of shifts interact with each other.

We use the widely-adopted radar data preprocessing schemes to minimize environment-induced shifts
[1, 4, 5]1. It is worth to note in Fig. 1 that the spectrograms from all locations look very similar. This
is because they are spectrograms representing the same action (gait). Most of the environmental data
is filtered out by the preprocessing methods, but the minuscule amounts of environmental information
that seeps through was enough to induce domain shifts. We show the t-SNE [25] embeddings for
each domain in our dataset alongside the training data embeddings. The model used to generate the
embeddings was trained on a single day’s data from the source location. The embeddings show a
domain shift in each new domain. However, this might not be very evident in the absence of the
knowledge of the data collection procedure. We address this issue in Section. 4.5.
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Figure 2: Left: high-level procedure overview. Right: detailed system model

3 Method

Overall Domain Shift Mitigation Procedure. Given the radar data in the source location, we utilize
metric learning to detect the presence of any TDS and SDS and measure the shift malignancy. Using
these metrics, we determine the domains that mandate domain adaptation and ignore the rest. Then,
labeled or unlabeled data from the corresponding domains is collected, and an appropriate domain
adaptation method is applied. The entire procedure shown in Fig. 2 is repeated throughout the life
cycle of the deployed model. We explain each component of the proposed procedure as follows.

Metric Learning for the Base Model. Given the user recognition task at the core of our dataset,
we started with a metric learning-based model [24]. Training networks with metric learning allows
one to introduce new classes after training a base model, without having to train the model again,
which translates to adding new user identities without the need for retraining. Another benefit of
using metric learning is its theoretical underpinning, which is the cluster assumption. The cluster
assumption states that the decision margins lie in low density or relatively unoccupied regions of
the classification manifold. This assumption has previously been exploited in numerous domain
adaptation techniques and is known to promote adaptation under certain constraints. Metric learning
reaffirms this assumption by maximizing inter-class distances and minimizing intra-class distances.

Shift and Malignancy Detection. Upon further investigation, we found metric learning-based
models are well suited for detecting domain shifts as well. Domain shift detection is the process
of identifying shifts in the testing data. Unlike SDS, the presence of TDS is not always known. A
few methods have been proposed for domain shift detection, but most either fail to detect shifts in
an online fashion [26, 21] or base their predictions on softmax thresholding. However, it is well
established that [22, 23] softmax classifiers are not suitable for detecting domain shifts, especially for
out of domain data.

To address aforementioned challenge, we rely on thresholding embeddings generated by metric
learning models. Softmax classifiers are optimized to make closed-set predictions [27], i.e., pick one
of the classes present in the training dataset as the prediction. Such an assumption is too strong and
grossly underestimates the likelihood of seeing unknown classes or out of distribution data during
testing. Metric learning methods do not make such assumptions or, at the very least, not to the
extent softmax based solutions do. Metric learning optimizes a metric on embeddings generated by a
base classifier, which potentially allows the classifier to ignore the concept of closed set predictions,
thereby overcoming overconfident predictions and calibration issues.

We exploit this premise to detect domain shifts. By maintaining dictionaries of class-wise mean
embeddings and thresholding any new data point’s distance from known embeddings, we can
recognize shifts and their magnitude. Furthermore, such an approach does not require any specific
offline training and can be deployed on online data sources. Not to mention, the detector will also be
unsupervised, as no labeled data is required to detect a shift. The notion of detecting outliers or novel
classes from embeddings is certainly not unheard of. We re-purpose it for detecting the presence and
extent of domain shifts. Our experiments show that the approach agrees with labeled shift detectors.

Data-efficient Domain Shift Mitigation. Exploiting the proposed domain shift detector enables us
to develop a data-efficient domain shift mitigation approach. Instead of blindly collecting a large

1Refer to the supplementary material for additional details
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amount of labeled or unlabeled data from all spatial and temporal domains, we use the shift detector
to measure the shift malignancy of each domain. Next, domains with insignificant shifts are discarded.
Based on the cost of collecting labeled/unlabelled TD/SD data in different domains, a heuristic
approach is utilized to determine and collect an appropriate type and amount of data. After this, the
available domains are adapted to using an appropriate domain adaption strategy. A hybrid domain
adaption scheme can also be applied, where supervised domain adaption is used to address certain
shifts and unsupervised methods for the others.

For unsupervised domain adaptation, we experimented with three prominent methods. In the first
method, we combine metric learning and a domain discriminator based on a gradient reversal layer
(GRL) [28]. As anticipated, the approach worked well. The addition of metric learning boosted
the model performance by a sizable amount. In the second approach, we replace the GRL with a
Generative Adversarial Network [29], which can also significantly improve model generalization
performance (which is detailed in section 4.6). Finally, we used a student-teacher based approach
[30] but failed to procure any significant improvement. We conjecture that the failure is due to the
presence of metric learning. The recent findings of [31] have a strong resemblance to combining
student-teacher with metric learning. Since label smoothing behaves similar to metric learning, we
speculate the presence of metric learning impedes the need for student-teacher approaches.

4 Experiments

All of our experiments utilized an 18-layer Resnet architecture [32]. The models were trained using
an Adam optimizer [33] with an initial learning rate of 1e−3 and polynomial decay1. Additionally,
we used Constrictive Annular Loss (CA-Loss) [34] for metric learning. It is a regularised variant of
Additive Margin Softmax [35]. Nevertheless, we speculate that any metric learning based approach
could be used in place of CA-Loss to draw similar conclusions as we do here.

4.1 Establishing the Presence of TDS and SDS

Figure 3: Results obtained from training only on source location data for varying number of days.

Our first experiment establishes the presence of TDS and SDS in our dataset. We trained a model on
data only from the first day of our source location. Test accuracies of data from the remaining nine
days of the source location and all target locations are reported in Fig. 3. The temporal degradation in
the source and target domains is evident in the first row of Fig. 3.

The target domains also suffer from SDS apart from TDS, which is evident from the overall perfor-
mance degradation in the target domains. This unequivocally establishes the presence of both TDS
and SDS in our dataset. We also found a rather unexpected outcome from this experiment. There is a
temporal degradation both in the source and target locations, but the deterioration does not strictly
correlate with time progression. We conjecture that this behavior is a consequence of the malignancy
of shifts. That is, not every shift is equally harmful. We further elaborate on this in Section 4.4.
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4.2 Mitigating TDS and SDS

Mitigating SDS via TD data. We now show that it is not possible to entirely mitigate SDS by
introducing source domain’s temporal data alone and vice-versa. Limitations of improving SDS
generalization by using TD data are evident in Fig. 3. We trained models from two, all the way up to
nine days of labeled source location data, which is followed by an evaluation of daily accuracies. By
introducing more temporal data, the source location generalization improves as time progresses. But
as one might expect, we start to see diminishing returns in terms of source location accuracy as we
increase the number of training days. Moreover, after introducing more source domain’s temporal
data, the target location performance also has diminishing returns so that each target location’s
performance is seldom on par with the source.

Figure 4: Results obtained from training on source, server, and conference location data for varying
number of days. The data from office location is not used for training and only for testing

Mitigating TDS via SD data. We move on to establish the limitation of introducing more tar-
get/spatial domain data to alleviate TDS. We trained a model on a single day of labeled data from the
source, conference, and server locations. From the first row of Fig. 4, it is clear that even when data
from target domains is introduced, individual location’s temporal shifts are not completely mitigated.
However, we do find that the model performance in the office location improves when compared to
introducing only temporal data. Since no data from the office was used in training, we interpret it as
the true SDS generalization of the model. This implies that the primary benefits of training on data
from a particular type of shift is confined to easing similar kinds of shifts.

4.3 Correlation of TDS and SDS

We now draw attention to the correlation between TDS and SDS. It is evident from our prior
experiments that TD or SD data individually cannot mitigate both. Nevertheless, from Fig. 3 and
Fig. 4, and the findings mentioned above, a correlation between the two is evident. It might be the
reason no clear distinction has been established so far, but the implication of this is rather profound.
Collecting TD and SD data might incur varying costs. When the cost disparity is substantial, it is
possible to trade one for the other to a certain extent. This brings us to one of the most exciting
findings of our paper. That is, TDS and SDS have to be addressed jointly to bring substantial
generalization improvement. We trained models with both TD and SD data along with the initial
source data. We find in Fig. 4 that when both shifts are addressed together, we attain the best
generalization in both TD and SD. By introducing multiple (2 - 3) days of data from every location,
we address TDS individually in each location. Introducing data from multiple target locations (server
and conference rooms) addresses SDS. Moreover, such jointly trained model generalizes well to the
unseen target domain (office).

4.4 Domain Importance

As mentioned in Section 4.1, we notice a disparity in the malignancy of each domain shift. From the
plethora of research conducted on adversarial learning [36], it is evident that not every kind of data
noise is equally harmful. Networks can overcome small amounts of noise in the data. This is true even
when the models have not been explicitly trained with adversarial methods. Similarly, adversarial
training with arbitrary data perturbations is not always a precursor for domain generalization.

We find this to be the case for domain adaptation as well. Not all available domains are worth adapting
to. In our dataset, the conference location exhibits a domain shift, but it is not equally worth adapting
to when compared to server room data. We found that by adapting to the server location alone, we can
generalize to all other locations shown in Fig. 5. The server room can be considered more adversarial
than the conference room. When we train a model on the source and server data, the information
discrepancy amongst the two domains is substantial compared to the source and conference room
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Figure 5: (Top) Results obtained from training on the source and server data for a varying number
of days. (Bottom) Results obtained from training on the source and conference data for a varying
number of days. Data from office location is for testing only

data. This results in spatial generalization with only half of the spatial target domain data. Admittedly,
the model trained with source and server data is not as good as the model trained with source and
conference data in every aspect. However, the overall generalization is better. Depending on the cost
of data collection, it might be well worth the marginal loss in accuracy. This raises the question of
how one can estimate the potential gains in generalization upon adapting to a domain, and we address
this issue in Section 4.5.

4.5 Shift Detection

Figure 6: Mean distance from known class centers obtained from the source, server, and conference
data for a varying number of days.

As mentioned in Section 3, before addressing domain shifts, we must be aware of the existence of a
shift in their data. So far, we used an offline approach for shift detection, where the accuracy of the
model trained using ground truth labels is used to uncover the presence of domain shifts. We now
propose to sidestep this issue. By thresholding the distance to known training data embeddings, we
acquire results similar to our labeled, accuracy based observations. Not only does this need no ground
truth labels, but it can also be deployed online without any specific training for the problem. We note
that a separate holdout dataset will be required to tune the thresholds2. An added advantage of such
an approach is its capability of detecting the malignancy of a shift. The accuracy-based approach does
not necessarily convey the amount of shift introduced [22, 23]. We amend this issue by interpreting
the magnitudes of the distance from class centers as an indicator of its malignancy. In Fig. 6, we
present the results of Fig. 4, but with metric learning based shift metrics3. We find that the results
strongly correlate with our hypothesis along with insights3 into the malignancy of each domain.

4.6 Data-efficient Domain Shift Mitigation

All the experiments we reported so far were exclusively trained with labeled data. Nevertheless, that
need not be the case. We utilized a domain discriminator trained as a GAN2 to adapt to TDS and SDS.
We trained a network with three days of labeled source location data and three days of unlabeled
server location data, which makes TDS adaptation in the source domain supervised. However, TDS
and SDS adaptation in the target domains is addressed in an unsupervised manner. Table 1 shows
the results of our approach (Hybrid) and results from training a model without a discriminator on
three days of labeled source, conference, and server data. We reduced the amount of labeled data

2Refer to the supplementary material for additional details
3Refer to the supplementary material for metric learning based results of all our experiments along with

t-SNE embeddings, and elaboration of additional findings from the magnitude of shifts.
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Table 1: Model Accuracies (%). (Labeled) The model trained on three days of labeled source, server,
and conference data. (Hybrid) The model trained on three days of labeled source data and three days
of unlabeled server data.

Source-Temporal Server-Test Conference-Test Office-Test
Labeled 99.59 98.85 99.37 97.51

Hybrid(Ours) 99.61 98.70 99.70 97.47

by utilizing unsupervised domain adaptation techniques. Furthermore, utilizing the lessons learned
from our findings so far, the number of domains to adapt was reduced, i.e., we only use the server
location data with the highest domain shifts, while ignoring data from conference and office locations.
Furthermore, we conjecture that by incorporating few-shot learning methods, the source location
labeled data could also be reduced. A single day of source location data currently consists of only
1000 labeled data samples, which hinders the performance as it is not sufficient to train a robust
model. We addressed this issue by using labeled data from three days of the source location. However,
using other techniques such as initialization with pre-trained model weights might also work well,
thereby reducing the source location’s labeled data.

5 Discussion

With all our experiments and findings being detailed, we now move on to discussing their implications.

Detecting Shifts. The first and foremost question is to detect shifts. By incorporating metric learning,
one can detect shifts with thresholding. Merely being aware of the proper tools to detect a shift
will be a great take away from our work. Since softmax based methods are invalid, our method is a
straightforward alternative. However, a thorough investigation into how accurate these metrics are on
a wider variety of datasets, with longer time horizons, is needed.

Handling Shifts. Upon detecting a shift, the question of how to handle it naturally arises, which
entails figuring out how much and which data should be acquired. As mentioned in Section 4.4, we
suggest one should take account of the malignancy and the type of shift in such decisions. Being
aware of the malignancy of every shift allows one to determine which domains need to be adapted to,
thereby significantly reducing any resources involved in the adaptation process. Shift malignancy
could also be used to determine the amount and frequency of adaptation that is required. Finally,
knowing the type of shift– SDS, TDS, or both–allows us to trade one for the other. The underpinning
theory of this approach is the distinction of SDS and TDS, which requires us to address them properly.
Our approach, as shown in Fig. 2, lays out a straightforward solution for realizing spatio-temporal
generalization in a data-efficient manner.

Limitations. One limitation of our work is in addressing TDS explicitly on a daily basis. Currently,
in our hybrid approach, we address TDS by aggregating data from multiple days in each location and
treating it as an SDS. TDS in the source location is explicitly addressed because we use supervised
classification. However, in the target domains, TDS generalization is a byproduct of explicit SDS
adaptation. This can be improved upon by using a discriminator to classify the day label, which
will address TDS explicitly in the target domains without any class labels. But, given the limited
amount of data we collected in each domain, we did not address TDS with such an approach. It
would certainly be interesting to study the impact of a daily data discriminator on a dataset with
larger quantities of data and perhaps on a longer time horizon as well.

6 Related Works

[19] is one of the only known works which surveyed domain shifts and formally suggested a unifying
taxonomy. Indeed, it does mention continuous shifts similar to the TDS observed in our data.
However, they failed to include such shifts in their final taxonomy and did study the correlation shifts
could have with one other.

[26] introduced one of the most prominent works on shift detection and correction. But, their work is
limited to label shifts and relies on softmax predictions. We find their work similar to ours in their use
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of a black box classifier. In fact, in [26]’s Lemma 1, if we replace the use of a confusion matrix with
a pairwise similarity matrix for embeddings, their approach and bounds hold for our metric learning
based black box predictor while circumventing the limitations of softmax classifiers.

7 Conclusion

Our work has established the need to differentiate spatial and temporal shifts. Contrary to some
beliefs, we show that these drifts can be particularly harmful, which is especially true for radar-based
gait recognition, in which the presence of the issue was not well known. The dataset we introduced
has unveiled the previously unbeknown relation between TDS and SDS. We further uncovered the
impact of adapting to one domain could have on other domains and introduced the promising yet
straightforward avenue of methods that use metric learning to detect and estimate a shift’s potential
impact. Finally, we show our proposed life-cycle to tune and decide which domains to adapt to
substantially optimized our adaptation efforts. Our overall approach to handling shifts establishes a
promising layout for improving the generalization performance of radar-based biometric identification
systems in a data-efficient manner.

Broader Impact

Even though our primary objective was to address radar-based gait detection, we believe it has
significant ramifications for one of the major issues faced in deep learning deployment. Concretely,
we suggest Implicit and Explicit Domain Shifts (IDS/EDS). IDSs are the implicit domain shifts that
arise inherently due to some known or unknown dynamics of a domain, and EDSs are the explicit
domain shifts, introduced only for a given task or application. Under this generalized definition, the
TDS we observed in our dataset can be considered to be a form of IDS that happens to correlate with
time.

Similarly, SDS is one type of EDS introduced in our dataset. Such a generalized nomenclature implies
the possibility of introducing multiple EDSs depending on the type of labels present. Furthermore,
various other IDSs could be uncovered and addressed depending on the dynamics of a domain. This
distinction could redefine the current pipeline adopted by most machine learning practitioners for
deploying models. It would allow for smarter data collection procedures and better utilization of
resources. A large scale study to validate the generalization of our suggested taxonomy is required,
and it also raises the need to reevaluate the current taxonomy of domain shifts.

Furthermore, we never addressed the issue of model retraining. Currently, we assumed that all the
data is always available. However, it is unrealistic to maintain the entire dataset for each retraining
cycle as the dataset will keep increasing in size by design in our current workflow. Therefore, it
is essential to consider incorporating continual or federated learning based approaches to enable
training only on new data while avoiding catastrophic forgetting.

One cause for concern of our work is the development of radar-based user recognition. Unlike most
biometric solutions, radar can not only recognize people but can also be used to determine one’s
actions. Moreover, depending on the type of radar used, they can see through walls to a varying
extent, which we believe could be extremely detrimental if used by an adversary. Proper oversight and
regulations might be in order when deploying such devices. However, the device also has numerous
advantages. Unlike image-based methods, biases such as race, ethnicity, and gender are not present.
To the best of our knowledge, the only issue was data, which we addressed in our work here.
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1 Dataset8

Our dataset was collected using a TI IWR1642 mmWave sensor [1]. The radar chirp configuration9

used in [2] was utilized to collect data from 4 different locations. The primary location, which was10

used as the source domain, was a research lab with cubicles. Each of the ten subjects was asked to11

walk back and forth in the room with a radar pointed at them. The subject’s path was pre-determined12

and was always perpendicular to the radar signal’s propagation direction. Moreover, each day of a13

user’s data contains 100 data samples. 4-seconds of walking data was considered as an individual14

data sample.15

Apart from the source domain, three other locations were used to collect data. These locations were16

used as the target domains. The locations consisted of a server, conference, and office room. Of17

the three locations, the office location was reserved for the test set, and none of the experiments18

utilized the office data for training. The radar device was deployed at all three target locations, and19

the walking path setup is similar to the source domain. Furthermore, unlike the source domain, the20

users generated only 50 data samples on each day at each target location. In addition, the data from21

all four locations collected each day was not necessarily from the same day. The source location’s22

day one for a user could be today, while the data from the same user at each target location could be23

collected on three different days. Similarly, all ten users were not required to generate data on the24

same day for a given location. This allowed us to simulate a real-world setup, such as an office with25

new employs generating data, upon being hired or given access to a restricted space.26
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2 Model27

All our experiments used an 18-layer Resnet as defined in [3]. The last fully-connected layer was28

replaced with a Multi-Layered Perceptron (MLP) with 128 hidden units and a final layer with hidden29

units equal to the number of classes (10). The 128 dimensional fully connected layer’s output was30

used as an embedding layer. Moreover, a Constrictive Regularizer [4] was utilized as the activity31

regularizer. Moreover, the last fully connected layer also used a Constrictive Regularizer for the32

kernel weights instead of the activations. Additionally, given the definition of Additive Margin Loss33

[5], we do not have any bias variables in the last layer. Finally, the logits were activated following the34

definition in [5].35

In all our supervised experiments, data from each available domain was shuffled together and sampled36

in batches. This was done irrespective of the domain each sample belonged to. For our unsupervised37

experiments, data from each available domain was sampled separately, which allowed us to generate38

embeddings for data from each domain. We generate domain predictions with an MLP with 12839

hidden units followed by another layer with hidden units equal to the number of domains being used40

for training. The domain classifier MLP was either prepended by a gradient reversal layer (GRL) [6]41

or treated as a discriminator in a Generative Adversarial Network (GAN) [7].42

Figure 1: (Left) Supervised model architecture. (Right) Unsupervised model architecture.

3 Experiment Embeddings43

We present the t-SNE embeddings for all our experiments in the section.44

2



Figure 2: Embeddings from the model trained using 1 to 6 days of source-only data. The number in
brackets indicates the day indices. For example, [1 - 6] means the data from day 1 to day 6. Orange
triangle clusters represent the training data (Source Location’s Day 1), where each cluster represents
a distinct human subject. Blue circles represent each domain’s testing data, where the data points
were sampled from all the classes of a given domain.
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Figure 3: Embeddings from the model trained using 7 to 9 days of source-only data

Figure 4: Embeddings from model trained on source and target domain data. (Top) model trained
one day of source, server and conference data, (Middle) model trained via one day of source and
conference data, (Bottom) model trained via one day of source and server data
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Figure 5: Embeddings from model trained on source and target domain data. (Top) model trained via
two days of source, server and conference data, (Middle) model trained via two days of source and
conference data, (Bottom) model trained via two days of source and server data

Figure 6: Embeddings from model trained on source and target domain data. (Top) model trained via
three days of source, server and conference data, (Middle) model trained via three days of source and
conference data, (Bottom) model trained via three days of source and server data
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Figure 7: Embeddings from model trained on three days of labeled source and three days of unlabeled
server domain data. The unsupervised data was trained using a GAN based approach.

4 Experiment Shift Metrics45

Here we present the accuracies obtained from all our experiments alongside the corresponding46

metric learning based distance metrics. We find that not only does the distance metrics agree with47

the accuracy based findings, it also makes it more evident. Indeed we see an apparent temporal48

degradation in Fig. 8 in the source domain. Moreover, introducing more training data from the source49

domain alleviates the SDS to a certain extent, but it also biases the model more towards the source50

domain in some cases.51

Figure 8: Results obtained from training only on source location data for varying number of days.
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Figure 9: Results obtained from training on source, server, and conference location data for varying
number of days. The data from office location is not used for training and only for testing

Figure 10: (Top) Results obtained from training on the source and server data for a varying number
of days. (Bottom) Results obtained from training on the source and conference data for a varying
number of days. Data from office location is for testing only

5 Metric Learning Based Shift and Malignancy Detection Algorithm52

We utilize Algorithm 1 to compute thresholds used for detecting outliers. In our experiments, L253

distance was used along with a margin m of 10. Upon computing class thresholds Threshold and54

trained model M , any new data samples that were observed, were subject to class-wise thresholding55

DistanceMetric between the known class centers CTrain and the generated embedding for the new56

data point.57

Algorithm 1 Algorithm to Compute Class-Wise Thresholds
Input: Training data XTrain, validation data XV al, number of classes n, DistanceMetric (L2

or cosine distance), hyperparameter safety margin m.
Output: Class-wise threshold {Thresholdj |j = 1, 2, ..., n}, M , CTrain

1: Train model M on XTrain with metric learning
2: Generate class-wise embeddings {CTrain

j |j = 1, 2, ..., n} from XTrain and M

3: Generate class-wise embeddings {CV al
j |j = 1, 2, ..., n} from XV al and M

4: Compute {Thresholdj |j = 1, 2, ..., n} = DistanceMetric (CV al
j − CTrain

j |j = 1, 2, ..., n) +
m
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6 GRL, GAN and Student-Teacher Methods for Unsupervised Domain58

Adaptation59

We addressed unsupervised domain adaptation using a GAN based approach. However, we also60

tried a few other methods. The most notable of which were, based on GRL and Student-Teacher(ST)61

based methods. We report the accuracies obtained from each method in Table 1. These models62

were trained using three days of labeled source location data and three days of unlabeled server63

location data. Apart from the three methods mentioned above, we also tried introducing several other64

methods. Specifically, in combination with the model with GRL and AMCA loss, we tried each65

of the methods in [8, 9, 10, 11, 12, 13] including mixup/cutmix regularization, adversarial training,66

pseudo-labels, multi-adversarial and cyclic adversarial domain adaptations. However, none of these67

methods amounted to any significant results. We are not sure if these methods failed as a consequence68

of being used along with metric learning or because the data are in the format of spectrograms. We69

leave investigations into the matter for our future work.70

Table 1: Model Accuracies (%). (GRL) The model trained with GRL based UDA. (GAN) The model
trained with GAN based UDA. (ST) The model trained with student-teacher based UDA

Source-Temporal Server-Test Conference-Test Office-Test
GRL 99.37 97.80 99.40 94.96
GAN 99.61 98.70 99.70 97.47
ST 97.77 86.99 95.50 85.07
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