
Deep Reinforcement Learning Monitor for Snapshot Recording

Giang Dao, Indrajeet Mishra and Minwoo Lee
Department of Computer Science

University of North Carolina at Charlotte
{gdao, imishra, minwoo.lee}@uncc.edu

Abstract— Deep reinforcement learning (DRL) has been lead-
ing to state-of-the-art performance to learn control policies for
a wide range of applications. However, it does not provide an
explanation of how a policy is learned and how the learned
policy performs on a given task. In this paper, we answer to
the inquiry: what scenes does a machine learning agent need
to memorize for efficient learning and additional explanation
regarding performance? Proposing a monitoring model to
record the most important moments from experience–called
snapshot images–we examine them for analysis. Sparse Bayesian
Reinforcement Learning (SBRL) [1] is known to remember
sparse input samples during training and to construct bases
for value function approximation. Also, SBRL has successfully
maintained the snapshot memory for sparse input sampling. We
apply our method to a visual maze problem and Atari games to
observe the recorded snapshot images. Analyzing the images,
we evaluate the efficacy of the proposed monitoring model and
the quality of collected snapshots.

I. INTRODUCTION

With the success of deep learning, there are a lot of
applications built based on deep learning to solve complex
tasks from unprocessed, high dimensional input data. By
combining advances in deep learning with sensory input pro-
cessing [2] and reinforcement learning, Mnih et al. [3] have
suggested Deep Q-Network (DQN) algorithm, determining
actions given state inputs as raw images. DQN algorithm
is capable of playing Atari games by taking raw images
data through the screen at human-level of control. Many
other reinforcement learning algorithms have adopted deep
neural networks for Deep Reinforcement Learning (DRL)
such as DQN, Deep Deterministic Policy Gradient (DDPG)
[4], and Asynchronous Advantage Actor Critic (A3C) [5].
Adopting deep neural networks, DRL has shown its suc-
cessful applications to many different, complex decision
making and control problems. There are a wide range of
real world applications including robotics [6], [7], allocating
cloud computing resource [8], advertisement technology [9],
and finance [10].

However, the deep neural networks, the black box model,
are not capable of interpreting what they have learned [11].
There is lack of understanding of what a deep neural network
model has learned. Thus, when an erroneous event happens,
finding causes and fixing them can be a tedious process that
requires time and effort. For example, it is very hard for
neural networks to explain why self-driving car crashes (i.e.
Tesla and Uber) happen or the reason for the wrong decision
in neural networks due to lack of interpretation.

Several previous publications [12], [13], [14], [15] have
tried to understand how neural networks’ computational
process works through visualization in supervised learning
problems. These works, interpreting neural networks, analyze
neural networks after the procedures converge. Therefore, it
is not enough to fully understand what deep learning has
learned during its learning phase. Furthermore, all of these
works targeted supervised learning problems where the target
is known and stays unchanged, which cannot be directly
applicable to reinforcement learning tasks.

To the best of our knowledge, only Zahvay et al. [16]
and Greydanus et al. [17] attempted to visualize to help us
understand deep reinforcement learning policies. The method
by Zahvay, et al., however, is not able to directly handle
raw image state and need handcrafted features. Greydanus,
et al. display a part of the input images play important role
in the policy development by observing how the policy is
affected by the changes in the image pixels values. Although
the method in [17] helps us point out the most important part
of input images and its computation in neural networks, it
is not enough for us to visualize the policy learned by the
agent. Moreover, the visualization is only when the policy
has converged. That is not enough to show what and how
the agent has learned through the training process.

SBRL [1] has first introduced solutions for multiple
feature-engineered state environments such as cart pole,
mountain car, and simulated octopus arm control. Most
noticeably, the SBRL is capable of remembering impor-
tant experiences during training a reinforcement learning
agent. The experiences are stored to perform the analysis
and interpretation of the learning process and the learned
behavior. The stored experiences also prevent forgetting im-
portant samples and; more importantly, increase the stability
of learning. However, SBRL requires a technical feature-
engineering, so its practical application might be limited.

In this work, we present a novel method, DRL-Monitor,
which automatically captures the most important moments
with visual representation during training to explain why an
agent makes a decision given a situation. DRL-Monitor com-
bines DRL that trains an agent and SBRL that extracts and
stores important memories. SBRL’s stored experiences can
be used to fill in the gap of interpreting and understanding
deep reinforcement learning. Therefore, DRL with convolu-
tional layer solves complex reinforcement learning problems
with raw image inputs while DRL-Monitor complement DRL
with additional interpretation with recorded images of the

training experiences. The stored experiences can be easily
visualized to understand how agent develops its learning
ability through its learning process. We apply this method
to a navigation task and Atari games to examine what an
agent has learned to understand the learning process and the
outcomes.

Our main contributions in this work are 1) presenting a
novel method of memorizing important moments during the
DRL training, which can be 2) providing Bayesian inferences
for further analysis, and 3) can be applied with any state-of-
the-art DRL algorithms.

In Section II, we outlines the backgrounds for the proposed
work. The DRL-Monitor framework is introduced in Section
III, and results of applying our framework in several exper-
iments are presented in Section IV. We review and discuss
related works in Section V and draw conclusions in Section
VI.

II. BACKGROUND

A. Reinforcement Learning

A reinforcement learning agent learns from interaction
with an environment. An environment can be described by
a set of states S, a set of actions A, a reward function
r : S × A → R, and a discount factor γ ∈ [0, 1]. An
environment starts with an initial state s0.

A deterministic policy π maps states to actions, π : S →
A. At timestep t, an agent takes an action at based on the
current policy π and state st, at = π(st), and it gets the
reward rt = r(st, at) and observes a transition to the next
state st+1. The return is computed with the discounted future
rewards Rt =

∑T
i=t γ

i−tri where T is the timestep that the
environment terminates.

An action value function, Q value function, estimates the
expected return: Q(st, at) = E[Rt|st, at]. The agent’s goal
is to maximize the expected returns using the following
Bellman equation:

Q∗(st, at) = Est+1∼ε[r(st, at) + γQ∗(st+1, at+1)]

where Q∗ denotes the optimal Q value function.
A greedy action selection rule is defined as the agent takes

action based on the policy: π(s) = arg maxa∈AQ(s, a).
As an alternative near-greedy method, ε-greedy explores
the space by following a policy which takes a random
action (uniformly sampled from A) with small probability ε,
independently of the Q value estimates, and takes a greedy
action with a probability of 1− ε.

B. Deep Q-Network

Deep Q-Network (DQN) [3] is one of the DRL algorithms,
which learns from an interaction between an agent and an
environment. DQN uses convolutional neural network for
processing images. Therefore, DQN can understand what
happens when given raw image input as state to solve a
reinforcement learning task.

At each time step, from the interaction, a state transition
tuple (si, ai, ri, si+1) is stored into an experience replay
buffer. Randomly sampling training data from the replay

buffer helps to provide an identical and independent distri-
butions to the deep neural networks. Thus, it helps avoid
possible sampling bias to improve learning performance of
DQN.

To improve the stability of learning, when approximating
Q∗ values, DQN uses two deep neural networks, online
network Qonline(st, at) and target network Qtarget(st, at).
The online network is trained using mini-batch gradient
descent where the target

yt = rt + γmax
a∈A

Qtarget(st+1, a).

The loss can be set up as L = (yt − Qonline(st, at))
2.

The target neural network is identically structured as the
online network. The weights of Qtarget are periodically
set or slowly updated using Polyak-average method [18]
with the weights of Qonline. Thus, the Qtarget changes
the estimation of Q values slower than the Qonline. Mnih,
et al. [3] empirically showed the improved stability and
performance of this structure in Atari games.

Double Deep Q-Network (Double DQN) [19] extends the
DQN. Double DQN computes the target value yt by using
the both online and target networks as follows:

yt = rt + γQtarget(st+1, arg max
a∈A

Qonline(st+1, a))

The authors observed further improved performance with
Double DQN in their experiments.

C. Sparse Bayesian Reinforcement Learning

SBRL [1] is built based on the Sparse Bayesian Learning
algorithm, also known as Relevance Vector Machines [20].
The kernel-based learning transforms i−th input data xi into
features, φi(x) = k(x,xi), using kernel function k. For re-
inforcement learning problems, the inputs are represented as
the combination of state and action pair, x = [s,a]. Since the
action and state space are orthogonal, Lee [1] defines the ker-
nel function as a product between two independent kernels
for state and action: k(x,xi) = ks(s, si) × ka(a,ai). Φ is
defined as a matrix composed of feature vectors transformed
by the kernel function: Φ = [φ(x1), φ(x2), ..., φ(xN)] where
φ(xn) = [φ1(xn), φ2(xn), ..., φN (xn)]>.

Sparse Bayesian reinforcement learning assumes that the
target Q is a weighted sum of the feature vectors Q̂ = Φw
with some noise ε such that:

Q = Q̂ + ε = Φw + ε

where ε is zero-mean Gaussian noise with variance σ2.
Tipping et al. [21] suggested the initial variance: σ2 =
0.1× var(Q).

Let M be the number of scalar in vector w, and initialize
α = (α1, α2, ..., αM)>, a set of hyper-parameters controlling
the strength of the prior over the corresponding weights, to
be infinity except for one starting as:

αi =
||φi||2

||φ>i Q||2/||φi||2 − σ2
.

Given α, the posterior parameter distribution p(w|Q,α, σ2)
is the Gaussian distribution N (µ,Σ) with A = αI:

Σ = (A + σ−2Φ>Φ)−1 and µ = σ−2ΣΦ>Q.

The marginal likelihood over the weight parameter represents
zero-mean Gaussian:

p(Q|w,α, σ2) ∼ N (m,C)

where the mean and the variance are

m = ΦΦΦµµµ and C = σ2I + ΦΦΦA−1Φ>.

The variance of the marginal likelihood C can be decom-
posed as:

C = C−i + α−1i φiφ
>
i

where C−i is C with the contribution of basis vector i
removed. The sparsity factor, si = φ>i C−1−iφi, measures the
extent of overlaps of φi with the existing other bases. The
quality factor, qi = φ>i C−1−iQ, measures the alignment error
of φi when the i−th output is excluded.

3 cases need to be considered:

• If q2i > si and αi <∞, re-estimate αi.
• If q2i > si and αi = ∞, add φi to the model and re-

estimate αi.
• If q2i ≤ si and αi < ∞, delete φi from the model and

set αi =∞.

αi (when q2i > si) and the noise level σ will be updated as
following:

αi =
s2i

q2i − si
and σ2 =

||Q− Q̂||2

N −M +
∑
m αmΣΣΣmm

.

The algorithm re-computes ΣΣΣ and µµµ and the followed process
until a convergent condition is met. The relevant state and
action pairs can be traced back by the φ left in the model.
The predict Q-value for new data xnew:

Q̂new = k(xbase,xnew)wbase

where xbase are significant samples, and wbase are the
weights along with the samples.

III. DEEP REINFORCEMENT LEARNING MONITOR

Fig. 1 shows the overall structure of Deep Reinforcement
Learning-Monitor (DRL-Monitor) which consists of two
parts. The first part is the deep reinforcement learning for
learning and controlling agents. The second part is the novel
monitor for recording the most significant moments. In the
monitor, SBRL chooses which moments to be recorded,
and we call them as snapshots. After that, snapshot storage
permanently remembers those moments in the format of raw
image, action, and weight distribution.

Fig. 1: The diagram for the DRL-Monitor framework. Here,
we illustrate the Double DQN for the deep reinforcement
learning module. The monitor can possibly be connected to
many different DRL algorithms.

A. Deep Reinforcement Learning

This module is a main workhorse solving a reinforcement
learning task. During both training and testing, the DRL
module produces Q values or the learned policy. A raw image
state from an environment is preprocessed through multiple
layers (i.e. convolutional layers) to map into a feature vector,
and we call the output features of these layers as perception.
Perception is mapped through a fully connected layer to gen-
erate Q values or policies to take an action. The action taken
affects the changes in the perception to continue exploration
of the agent for training. The variation of the training loop
follows the selected algorithm’s implementation.

We confirm that DRL-Monitor is successfully applied to
the Double DQN [19] model in Section IV. Using DRL-
Monitor to monitor DQN [3], DDPG [4], and A3C [5] can
be done in the same manner. Moreover, we observe that
DRL-Monitor has potential applications to a large number
of algorithms with perception layers. We reserve this for our
future research. In this paper, we only applied DRL-Monitor
in Double DQN to validate our work.

B. Monitor

From the DRL module, the monitor extracts final layer’s
perception by taking the outputs from the layer before the
fully connected layers for Q estimation. The final layer’s
perception is a good feature vector representation of its
complex input state (image).

For the cases that actions are in a discrete space, we
mapped independent action inputs into a real value vector
so that we can measure distances between actions precisely.
For example, left: [-1, 0], right: [1, 0], up: [0, 1], and down:
[0, -1].

In order to record significant snapshots, the radial basis
kernel function computes the similarity of samples’ state-
action pair using the transformed perceptions and the mapped
actions. The monitor trains the SBRL module with the kernel
features to predict Q-values of the selected DRL. For the
training step, it augments input data with the snapshots stored
in the snapshot storage.

The kernel to train SBRL can be calculated as:

k(x,xi) = ks(p,pi)× ka(a,ai)

where p is the perception, a is mapped action, and i
represents the index of input sample.

The snapshots, which are retained from SBRL training,
are passed through a filter. In this filter, it examines whether
the SBRL training was successful. When SBRL training
is evaluated as success, the collected snapshots become
candidates for permanent recording in the snapshot storage.
One of the possible heuristic rules can be defined as:√∑

(Q̂i −Qi)2 < τ ×
√∑

(Q̄−Qi)2

where Q is a target value, Q̂ is a predicted value, Q̄ is the
average of the target Q, and τ ∈ [0, 1] is a control parameter.
We want SBRL prediction to be better than a naive prediction
of average value by a certain ratio of τ .

The remaining snapshots are moved to the storage. For
additional analysis and explanation of learning, the weight
distributions (means and variance) are stored for the corre-
sponding snapshots. This information provide the measure-
ments of how strong a snapshot affects the environment or
policy development.

If a new snapshot does not exist in the storage, the monitor
uses the newly achieved weights, and add the snapshot to
storage. If a snapshot was already in the storage, we updates
the weight using the following convex update rule:

wss
i = (1− c)×wss

i + c×wnew
i

where wnew
i is the weight of the filtered candidate snapshot

and wss
i is the weight of the same snapshot found in the

storage. c ∈ [0, 1] is a convex update parameter.
For the sparsity of the storage, we measures how different

stored snapshots and new candidates are by computing their
similarity using the kernel function. When new candidates
have a similar snapshot in the storage, the similarity is
measured higher than a preset threshold value. Then, instead
of adding new snapshots (indexed by j), we updates the
weight of the most similar snapshot (indexed by i) with the
similarity ratio:

wss
i = (1− c)×wss

i + c× (
∑
j

k(xj ,xi)×wnew
j).

IV. EXPERIMENTS

In this section, we test the DRL-Monitor with three
different game environments with vision inputs, Visual Maze,
Atari Pong and MsPacman.

A. Deep Reinforcement Learning Agent

The DRL-Monitor can possibly be applied with any deep
reinforcement learning agent. In our experiments, we choose
Double Deep Q-Network [19], which has shown slightly
improved performance of DQN. There are still some Atari
games that Double DQN could not score better than human
players. By using the DRL-Monitor, we explain how Double
DQN learns, how it exploits learned knowledge and also why
it fails to learn in some problems by examining the behavior
of the Double DQN. The architecture of the neural network
includes three convolutional layers with max pooling layers
and one fully connected layer before outputting Q-values.

From our pilot tests, we found the following choice of
parameters, which performs best. The replay buffer contains
maximum 50,000 transition tuples. The mini-batch size is set
to 64. We choose discount factor γ as 0.99. The similarity
threshold is set at 0.99. The control parameter, τ = 0.5 for
maze and τ = 0.1 for Pong and MsPacman. To simplify the
experiment and analysis, the convex update parameter c is
chosen to be 1.

B. Visual Maze

Fig. 2: Maze Environment

Visual Maze is a navigation (8×8 blocks) task with RGB
image representation as state (80×80×3). An agent starts at
the pink block and moves toward to the goal location in the
green block. The black blocks represent obstacles. The four
discrete actions are defined as left, right, up, and down. The
agent receives −1 reward for the cost of each movement. If
the agent moves out of the boundary or hit the obstacles, it
stays at the current location, and it receives −5 as a penalty.
If the agent reaches the goal, the game terminates, and it
receives +30 reward.

Fig. 3 illustrates the gradual snapshot acquisition as the
agent learns. The bottom figure shows a total reward of each
episode and above three figures show the activate snapshots,
whose weights are not close to 0’s, in the snapshot storage.
The collected active snapshots are relevant to the perceptions
and the policy at that time. There are negative snapshots
at first and in the middle of training process. When the
training converges, we observe that there are only positive
active snapshots left because the majority of samples in the

Fig. 3: DRL-Monitor gradually adds snapshots to a snapshot
storage during learning. The upper images show the content
of snapshot storage at each moment. Red actions (arrows)
mean negative weights of the snapshots, and green actions
mean positive weights.

Fig. 4: Q contour plot after fully trained with snapshots. The
numbers present for weight distribution.

experience replay buffer contains positive ones as it exploits
the learned policy more to reduce the steps to reach the goal.

Fig. 4 shows the maximum Q values in the maze and some
of the active snapshot samples. When they lie on the path
to the goal, and as getting closer to the goal, they end up
of getting high Q values. In this path, the weights of those
snapshots become high. We also observe that the weights are
also affected by the exploration. Since the training always
starts at the top left of the maze, there is less exploration
made starting from the right side of the maze. This results
in low weight values to those snapshots.

Once Double DQN achieves the knowledge from training,
it exploits the learned policy as shown in Fig. 5. With two
different starting positions, one with the same start (5a) and
the other with a different start location (5b) from training, we
present the three most relevant snapshots, which is computed
by the kernel function. In Fig. 5a, the agent has developed an
optimal policy that makes a right decision at each moment

(a) Optimal path selection

(b) Suboptimal path selection

Fig. 5: Exploitation of learned policy with different starting
position: small images on the right are the snapshots for
each circled moment. The snapshots are ordered from left to
right showing its effects, and left has the highest effect. The
numbers above each snapshot are weights and similarity.

(at the junction) and the snapshots has captured them. On the
other hand, when we start from the start location with lack
of experience, it came up with a sub-optimal path. Snapshots
on the right show when and what were the wrong decisions.

The snapshots explain learned rule of what action an agent
takes in a given state. The snapshots also provide information
of which neural networks was able to learn. For example,
there might be a dangerous zone that agent wants to take a
sub-optimal solution.

C. Pong

Pong (Fig. 6) is one of Atari game environments that
Double DQN has played very well. An agent controls the
green bar. There are six possible actions: stay still, start the
game (stay still if game already started), up, down, fire up
(move up faster), fire down (move down faster). The agent
gets +1 reward if the ball (white dot) passes brown bar to
the left, and −1 reward if the ball passes green bar to the
right. The game terminates when either the bot or the agent
reaches 21 rewards (or points).

Fig. 7 shows active snapshots at 4 different training
iteration (300K, 800K, 1.5M, 1.9M iterations). The bottom
plot represents total rewards evaluated every 100K iterations.
We observe that the slightly growing number of active
snapshots thanks to the sparse control parameters in kernel,
a filter heuristic, and snapshot storage. In our experiment,

Fig. 6: OpenAI Gym Pong Environment

Fig. 7: DRL-Monitor on Pong with reward curve and ac-
tive snapshots. Red actions mean negative weights of the
snapshots, and green actions mean positive weights of the
snapshots. Longer actions indicate a faster action toward a
direction.

the total number of snapshots at the end of the training is
764 snapshots, and 221 of them are active.

Fig. 8 presents the three most effective snapshots that has
the high absolute weight values at 300K, 1.5M, and 1.9M
iteration. At 300K iteration, agent remembers key snapshots
that lead directly to a negative reward signal because Double
DQN has not been successfully train the agent. We can also
see lack of training by looking at the reward curve in Fig. 7.
As the training progresses, the agent learns how to catch the
ball to avoid negative reward shown in Fig. 8b. However, the
agent only knows how to correctly behave when the ball is
close. When the agent starts to converge at 1.9M iteration,
agent reuses more past experiences stored in snapshot storage
to mark down a harmful state-action pair as well as to master
how to move when the ball is far away.

In Fig. 9, we visualize exploitation of the learned policy
in a Pong game. Here, we show the Q-values at each
frame of the video game screen. On the top, it shows how
the agent exploits the winning policy with a game scene,
active snapshots in the storage, and three most relevant
snapshots. The three most relevant snapshots are selected by
kernel similarity between the game scene and active snapshot
image. Since the agent uses the same strategy repeatedly to
defeat its opponent, the point 2 in the figure has three most

(a) Pong most effective snapshots at 300K iteration

(b) Pong most effective snapshots at 1.5M iteration

(c) Pong most effective snapshots at 1.9M iteration

Fig. 8: The three most effective snapshots each timestamps
by the weights.

significant (similar) moments to send the ball through the
winning trajectory shown in the dashed arrow line. There
are three similar relevant snapshots at point 2 indicating a
strong action selected such that the ball hit the edge of the
agent to go back down and defeat its opponent.

D. MsPacman

In MsPacman (Fig. 10), an agent controls yellow Pacman.
The agent will have three lives. There are 9 different actions:
stay still, left, right, up, down, up right, up left, down right,
and down left. If the agent eats one dot, the agent gets +10
reward. The agent loses one life if ghost catches it, and it is
reseted to the starting position. The game terminates when
the agent runs out of its lives.

We show the gradually snapshot collection as the agent
learns with active snapshots at 4 different iterations (300K,
1.2M, 2.4M, and 3.6M) in Fig. 11 along with the reward
curve. Comparing to Pong, there are more active snapshots
are gathered at each time. We observe the total number of
snapshots is 993, and the active snapshots at the end is 236.

As in Pong, we show the three most effective snapshots at
300K, 1.2M, and 2.4M iterations by comparing the absolute
values of the weights (Fig. 12). At the beginning of the
training, the snapshots are favor of staying still action. The
agent understands that staying still is not a good action.
In fact, the agent should always move in MsPacman game
to be successfully survive. In the middle of the training
when the agent is developing its policy, the agent learns
the importance of the food which give positive immediate

Fig. 9: Visualization of learned Q-values on Pong. The video
is available at: https://youtu.be/Si4SvglUjzk.

Fig. 10: OpenAI Gym MsPacman Environment

s
Fig. 11: DRL-Monitor on MsPacman with reward curve and
active snapshots of 4 different timestamps. Red actions mean
negative weights of the snapshots, and green actions mean
positive weights of the snapshots

(a) MsPacman most effective snapshots at 300K iteration

(b) MsPacman most effective snapshots at 1.2M iteration

(c) MsPacman most effective snapshots at 2.4M iteration

Fig. 12: MsPacman most effective snapshots each timestamps
by the weights. Red actions mean negative weights of the
snapshots, and green actions mean positive weights of the
snapshots.

rewards. Moreover, the agent develops better perception of
the foods as well as its own location than previous iterations.
When the Double DQN starts to converge, we observe that
the agent avoids the ghost shown in Fig. 12c.1 by a negative
weight of the snapshot.

However, Fig. 12c.2 and Fig. 12c.3 show that agent is
heading towards to the ghost with positive weight snapshots.
From the snapshot images, we observe that the agent is
heading to the foods although the ghost is nearby. The agent
overly weighted on eating foods to be safe keeping its lives.
This is the key reason that Double DQN cannot reach human-
level in MsPacman game. This might happen because of
a sample bias or imbalance between positive and negative
reward samples in the replay buffer so that the agent is not
able to develop an optimal policy.

V. DISCUSSIONS

Understanding and interpreting neural networks are active
and important research area to handle various applications
that require confidence or trust of a model. There has been
a number of techniques proposed to understand what neural
networks have learned. Interpretable learning of the com-
plex model affects to selection of an efficient and effective
network architectures, identification and mitigation of bias,
accounting for the context of problems, and improvement of
generalization and performance [22]. Especially in decision
making problems, understanding what action is taken and

https://youtu.be/Si4SvglUjzk

why the action is taken at a certain time is beneficial to
interpret knowledge for transfer learning, to improve learning
performance, and to fix potential errors in the critical domain
as in autonomous car and medical applications.

Previous publications [12], [13], [15], [14], [22] have
attempted to visualize the neural networks to understand the
learned model for supervised learning problems. Not many
have attempted to visualize reinforcement learning problems
yet but recent work by Zahavy et al. [16] and Greydanus
et al. [17]. Zahany et al. apply Semi Aggregate Markov
Decision Process and t-SNE to visualize strategy of a DQN
agent with an Atari game. Greydanus et al. visualize the
A3C policies through a salient map for Atari game agents.
By observing the changes in the policy learned by the agent
in input images, the method make it possible to observe the
salient pixels that is highly relevant to the learned policy.

However, these are not sufficient enough to understand
what and how deep reinforcement learning agent has learned.
In real world, we (as human) recalls relevant past experiences
when encounter a new problem. To mimic this psychological
information processing process, our work focuses on mem-
orizing significant moments through training the monitor to
has an automated retention of snapshots with Bayesian model
that accounts for what an agent is doing.

The benefits of our method are that we have a sparse set
of snapshots that takes less memory and is easy to interpret.
The snapshots interpretation discovers unconsidered factors
or features for learning process. The DRL-Monitor is com-
plimentary to be combine with Graydanus, Zahany, or other
visualization.

VI. CONCLUSIONS

In this work, we applied a new, novel method to mon-
itor deep reinforcement learning by memorizing important
moments during training. The stored images help interpret
what and how the agent builds up its knowledge and solves a
reinforcement learning task. The method can be applied with
many different state-of-the-art DRL algorithms to understand
and evaluate their learning. By adopting a Bayesian model,
the interpretation was able to bring additional insights.

We have discussed about the observed evidences ex-
plaining possible reasons for unsuccessful Double DQN
solution in MsPacman. Our next naturally move is to im-
prove the Double DQN algorithms and re-verify the ef-
ficacy of evidence-based interpretation. Understanding the
significance of sparsity, we will examine different kernel
functions that can improve sparsity of DRL-Monitor. We
will also extend the model application to various algorithms
(other than Double DQN) and environments to verify the
compatibility.

ACKNOWLEDGMENT

This work was supported, in part, by funds provided by the
University of North Carolina at Charlotte. The Titan Xp used
for this research was donated by the NVIDIA Corporation.

REFERENCES

[1] M. Lee, “Sparse Bayesian Reinforcement Learning,” Ph.D. disserta-
tion, Colorado State University, 2017.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” Advances In Neural
Information Processing Systems, pp. 1–9, 2012.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level Control through
Deep Reinforcement Learning,” Nature, vol. 518, no. 7540, pp. 529–
533, 2015.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Hess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous Control with Deep Reinforcement
Learning,” Foundations and Trends R© in Machine Learning, vol. 2,
no. 1, pp. 1–127, 2016.

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous Methods for Deep
Reinforcement Learning,” in International Conference on Machine
Learning, 2016, pp. 1928–1937.

[6] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially Aware Motion
Planning with Deep Reinforcement Learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 1343–1350.

[7] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba,
“Hindsight Experience Replay,” in Advances in Neural Information
Processing Systems 30. Curran Associates, Inc., 2017, pp. 5048–
5058.

[8] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang,
“A Hierarchical Framework of Cloud Resource Allocation and Power
Management Using Deep Reinforcement Learning,” in 2017 IEEE
37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 372–382.

[9] J. Zhao, G. Qiu, Z. Guan, W. Zhao, and X. He, “Deep Reinforcement
Learning for Sponsored Search Real-time Bidding.” arXiv preprint
arXiv:1803.00259, 2018.

[10] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep Direct Rein-
forcement Learning for Financial Signal Representation and Trading.”
IEEE transactions on neural networks and learning systems, vol. 28,
no. 3, pp. 653–664, 2017.

[11] J. Yosinski, J. Clune, A. M. Nguyen, T. J. Fuchs, and H. Lipson,
“Understanding Neural Networks Through Deep Visualization.”
CoRR, vol. abs/1506.06579, 2015. [Online]. Available: http://arxiv.
org/abs/1506.06579

[12] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye,
and A. Mordvintsev, “The Building Blocks of Interpretability.” Distill,
2018, https://distill.pub/2018/building-blocks.

[13] H. Li, Z. Xu, G. Taylor, and T. Goldstein, “Visualizing the Loss
Landscape of Neural Nets.” arXiv preprint arXiv:1712.09913, 2017.

[14] M. Tulio Ribeiro, S. Singh, and C. Guestrin, “Why Should I Trust
You?: Explaining the Predictions of Any Classifier.” arXiv preprint
arXiv:1602.04938, 2016.

[15] G. Montavon, W. Samek, and K.-R. Müller, “Methods for Interpreting
and Understanding Deep Neural Networks.” Digital Signal Processing,
2017.

[16] T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the Black
Box: Understanding DQNs.” in International Conference on Machine
Learning, 2016, pp. 1899–1908.

[17] S. Greydanus, A. Koul, J. Dodge, and A. Fern, “Visualizing and
Understanding Atari Agents.” arXiv preprint arXiv:1711.00138, 2017.

[18] B. Polyak and A. B. Juditsky, “Acceleration of Stochastic Approxi-
mation by Averaging.” SIAM Journal on Control and Optimization,
vol. 30, pp. 838–855, 07 1992.

[19] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learn-
ing with Double Q-Learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

[20] M. E. Tipping, “Sparse Bayesian Learning and the Relevance Vector
Machine,” Journal of Machine Learning Research, vol. 1, pp. 211–
244, 2001.

[21] M. E. Tipping, A. C. Faul et al., “Fast Marginal Likelihood Maximi-
sation for Sparse Bayesian Models.” in Proceedings of International
Conference on Artificial Intelligence and Statistics (AISTATS), 2003.

[22] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via
Gradient-Based Localization.” in ICCV, 2017, pp. 618–626.

http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1506.06579

