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Abstract—A comprehensive understanding of the topology of
the electric power transmission network (EPTN) is essential for
reliable and robust control of power systems. While existing
research primarily relies on domain-specific methods, it lacks
data-driven approaches that have proven effective in modeling
the topology of complex systems. To address this gap, this
paper explores the potential of data-driven methods for more
accurate and adaptive solutions to uncover the true underly-
ing topology of EPTNSs. First, this paper examines Gaussian
Graphical Models (GGM) to create an EPTN network graph
(i.e., undirected simple graph). Second, to further refine and
validate this estimated network graph, a physics-based, domain-
specific refinement algorithm is proposed to prune false edges and
construct the corresponding electric power flow network graph
(i.e., directed multi-graph). The proposed method is tested using
a synchrophasor dataset collected from a two-area, four-machine
power system simulated on the real-time digital simulator (RTDS)
platform. Experimental results show both the network and flow
graphs can be reconstructed using various operating conditions
and topologies with limited failure cases.

Index Terms—critical infrastructure, data-driven modeling,
electric power transmission, Gaussian graphical models, graph
construction

I. INTRODUCTION

Electric power transmission networks (EPTN) are dynamic
complex systems that connect power generating sites to load
locations, such as electrical substations, where power is dis-
tributed. This critical infrastructure requires real-time control,
as power generated must be consumed immediately due to the
network’s limited storage capability. Thus, reliably monitoring
and modeling the EPTN topology is of utmost importance
for making optimal power control decisions. Inaccuracies in
the topology model can be caused by equipment malfunctions
(breakers, relays, isolators), or false data injection attacks [1].
Such inaccuracies can result in catastrophic consequences,
including blackouts and brownouts. Therefore, there is a
pressing need for additional resilient, reliable, and accurate
modeling techniques.

Traditionally, EPTN topology has been modeled using the
circuit breaker status information (i.e., connected or not)
and other supervisory control and data acquisition (SCADA)
sensors [2]. However, the introduction of phaser measurement
units (PMUs) has provided an abundance of data related to

the underlying physics of the EPTN, such as the magnitude
and phase angle for the voltage and current at particular points
in the network. Compared to traditional SCADA monitoring,
PMUs offer high temporal resolution, allowing for dynamic
events to be closely monitored. SCADA information has a
time resolution of 0.16-0.5 Hz, compared to PMUs 30-240
Hz [3]. Prior approaches that have attempted to harness PMU
data for EPTN topology modeling have been highly domain
specific, utilizing rule-based and search-based approaches that
exploit the underlying physics of the EPTN [4, 3, 1].

PMU data enables more general data-driven machine learn-
ing approaches. However, studies using algorithms such as
deep learning or graph signal processing have largely focused
on downstream tasks such as fault detection, time-series pre-
diction, predicting optimal power flow, or data interpolation,
while often assuming the EPTN topology to be given [5, 6, 7].
As a result, the application of machine learning approaches
for modeling the true underlying EPTN topology has largely
gone unexplored. Therefore, this paper aims to initiate the
exploration of machine learning for modeling the true EPTN
topology (i.e., graph structure learning). Additionally, it ex-
plores the novel combination of machine learning and domain-
specific approaches such that the domain-specific approach
acts as a form of physics-based verification of the modeled
graph topology. Moreover, the proposed ideas are tested using
a time synchronized PMU (i.e., synchrophasor) dataset col-
lected from a real-time EPTN simulation [3].

The proposed approach is delineated into a two-stage pro-
cess. In Stage 1, graph structure learning employs the Gaussian
graphical models (GGMs) [8]. GGMs establish multivariate
relationships by learning the conditional dependencies or the
“structure” of a network. While extensively used in the fields
like genomics and broader -omics fields [9], neuroscience [10],
and psychology [11], GGMs have not been used to directly
estimate the true EPTN topology. The resulting undirected
simple graph estimated by GGMs can be interpreted as a
network graph for the EPTN, representing the static physical
connectivity of the nodes in the EPTN. Stage 2 consists
of graph refinement, using a domain-specific physics-based
scoring metrics [3]. Here, the estimated network graph from
Stage 1 undergoes refinement by computing edge scores based
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Fig. 1: Kundur’s two-area, four-machine test power system model with PMUs installed.

on the connectivity, pruning false edges, and then converting
the network graph into a directed multi-graph which is inter-
preted as a flow graph. This flow graph depicts the power flow
in the EPTN, accommodating parallel edges. An alternative
perspective of these two stages is that Stage 1 attempts to
reduce the search space for Stage 2 by estimating a sparser
network graph. In the worst case scenario, Stage 1 produces
a fully connected network, similar to the exhaustive search
method proposed by Venayagamoorthy et al. [3].

This paper’s contributions are summarized as follows:

o Exploration of data-driven GGMs for network graph
estimation using a two-area four-machine power system
model RTDS synchrophasor dataset.

o Proposal of a domain-specific graph scoring algorithm
for refining and validating the modeled network graph
by pruning false edges and generating the corresponding
flow graph.

o Discussion concerning challenges faced by the GGMs
and the proposed graph refinement algorithm, along with
those presented by EPTN data.

II. BACKGROUND

This section briefly introduces the ideas of GGMs using
convex and non-convex penalties, along with EPTN concepts
and a very basic EPTN topology.

A. Gaussian Graphical Modeling

Graphical modeling is a technique for inferring dependen-
cies between random variables. Graphical models (GMs) are
represented via a graph G = (V,E) defined by a set of
p nodes or vertices V' = {1,...,p} and a set of edges FE.
The structure or topology of G is typically defined using
an adjacency matrix A. GMs are technically derived as a
multivariate joint distribution containing certain conditional
independencies [8]. As such, vertices are associated with
random variables X = (X3, ..., X,,) while the edges represent
the conditional dependencies. Thus, conditional independence
is represented by the lack of an edge between any two variables
X; and X;. In other words, within GMs, the edge {7,j} is
absent from E if the random variables X; and X; associated
to the nodes 7 and j satisfy the pairwise Markov property such
that

Xi L X | Xyg (1)

ij}

which means that X; is conditionally independent of X; when
conditioned on all other random variables Xy (53

One common approach for estimating an undirected proba-
bilistic graphical model in an unsupervised fashion are Gaus-
sian graphical models (GGMs), where X ~ N(u,X) is
assumed to be a multivariate Gaussian distribution with a mean
vector 1 and a covariance matrix X [8]. Using the precision
matrix § = X 7!, the conditional dependencies can be derived
such that an edge between ¢ and j exist if and only if 6;; # 0.
An adjacency matrix defining the graph connectivity (i.e.,
dependencies) can then be derived using non-zero entries of 6.
Thus, the goal of GGMs is to estimate # provided an empirical
covariance 3 derived from the data.

A classical approach for estimating a sparse dependency
graph precision matrix 6 is the graphical lasso (glasso) [12,
13]. Glasso is a penalized maximum likelihood estimator that
uses the convex ¢; norm penalty ||0]|; to enforce sparsity on
0 by minimizing

%nigl —log det(6) + tr(30) + A||0]1,
—

(@)

where \ is the regularization parameter, det(-) is the determi-
nant, and tr(-) is the trace.

Alternatively, non-convex penalty formulations have also
been explored to obtain estimators with more desirable prop-
erties, such as the oracle property and unbiasedness, which
tend to lead to sparser models that have the same or better
prediction accuracy than glasso [14, 15, 11]. The generalized
form of a non-convex estimator can be achieved by minimizing
a general penalized maximum likelihood estimator

Igngg —log det(0) + tr(30) + Ag(0), 3)
where ¢g(-) is a non-convex, sparsity-inducing surrogate ob-
jective. By simply setting g(6) = ¢; the problem is reduced
to glasso. Classical non-convex penalties include smoothly
clipped absolute deviation (SCAD) [16], minimax concave
penalty (MCP) [17], arctangent penalty (ATAN) [18], and
seamless ¢y penalty (SELO) [19].

B. Electric Power Transmission Network

EPTNs are vast, geographically distrusted systems that
distribute electrical power over long distance at a high voltage.
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Fig. 2: Depiction of the network graph and the corresponding flow graphs for each topology.

Their primary purpose of an EPTN is moving electrical
power from energy generating locations (e.g., power plants)
to electrical substations with very few connection points along
the way. This is in contrast to distribution networks, which
are local lines that transfer electrical power from substations
to consumers with large numbers of connection points. The
combination of the transmission and distribution networks is
typically referred to as the electrical grid.

Fig. 1 depicts a very simple EPTN known as Kundur’s two-
area, four-machine symmetrical power system. This system is
divided into two areas which serve as grouping mechanisms
for shared control. Each area has two generators (i.e., power
plants) and four buses (i.e., nodes) where an additional bus is
used to join the two areas so that power might be exchanged.
The gray shaded regions represent buses where the color of the
bus number resents generators (green), transmission (orange),
and distribution (red). The branches (i.e., edges) connecting
the buses have their names given above the line and the
distance given below. Each bus has a time synchronized PMU
for measuring the voltage phasors (blue circle) and branch
current phasors (green squares) where a GPS is used for
time synchronization. A given bus can have multiple current
phasor measurements, as each branch (i.e., edge) connected
to a bus is assigned a current phasor measurement. A phasor
measurement consists of a magnitude and angle measurement.
Additionally, buses (7,8) and (8,9) have double transmission
branches (i.e., multi-edges). Finally, the distribution buses
12 and 13 represent load consuming nodes (i.e., leaf nodes)
which can be interpreted as substations feeding power to the
distribution network. The typical power flow then is from the
generators to the load consuming nodes.

I[II. METHODOLOGY

This section covers the simulated synchrophasor dataset,
network graph modeling using GGMs, and network graph
refinement for pruning false edges and constructing the corre-
sponding flow graph. For the latter, a domain specific graph
score algorithm is proposed which harnesses the physics of
the EPTN contained within the synchrophasor dataset.

A. Simulated Synchrophasor Data

A synchrophasor dataset generated by a real-time digital
simulator (RTDS), a multiprocess computer system for power
system simulations, is employed to observe power flow over
time. This dataset captures both voltage and current phasors
in conjunction with the time-domain. This allows for a more
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realistic and high-fidelity dataset to be generated, unlike other
works which rely on computer simulation software (e.g.,
MATPOWER) where data samples are generated by varying
the load of the system and no current or time information can
be captured [6, 7]. Further details regarding the data generation
are provided by [3] although a brief overview of the data is
given below.

The synchrophasor dataset is generated using a two-area
four-machine power system model (Fig. 1) on a RTDS. PMUs
collect data at a rate of 30 Hz where a total of 1800 samples
are collected over 60 seconds. Data is collected only once the
system has reached a steady state. There are three different
network topologies (Fig. 2) which are denoted as complete,
partial-left, and partial-right. The complete topology uses the
original two-area four-machine network structure (Fig. 2b).
The partial-left topology uses the same network structure but
disconnects one of the dual transmissions branches between
buses (7,8) (Fig. 2c). Likewise, the partial-right topology
uses the same network structure, but disconnects one of the
dual transmissions branches between buses (8,9) (Fig. 2d).
Any “disconnected” branch is still reported in the data, but
the current magnitude measurement is reported as a near zero
value (i.e., no power flow). These two partial datasets can be
used to test the detection of branches that no longer have any
power flow (i.e., a topology change).

Additionally, each dataset is collected using three different
operating conditions of low, medium, and high loads (ex-
act power flow values are available in [3]). Each operating
condition (i.e., load type) indicates power consumption by
nodes 12 and 13. The low load signifies a low power demand,
prompting generators to reduce power production. Conversely,
high load signifies a high power demand, prompting generators
to increase power production. The medium load then simply
lies in between the low and high load power demand. Thus,
the load type affects the entire network’s power flow, simu-
lating different power demands and assessing the viability of
modeling the EPTN topology across various levels of demand.

A total of nine datasets are collected, representing three
network topologies and three operating conditions for each
topology. Each dataset consists of 83 features in total, where
each bus has two voltage phasor (e.g., magnitude and angle)
features and at least two current phasor features, with the total
number of current features being determined by the number
of branches per bus. Finally, while included in the data, the
generators (i.e., buses 1-4) and distribution nodes (i.e., buses
12 and 13) will not be used in favor of focusing on the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 09,2025 at 18:31:56 UTC from |IEEE Xplore. Restrictions apply.



connectivity between the transmission nodes (i.e., buses 5-11).

B. Stage 1: Network Graph Modeling

In order to estimate the network graph structure from data,
GGMs using convex and non-convex penalties are employed.
In particular, the convex estimator glasso and estimators using
the non-convex penalties SCAD, MCP, ATAN, and SELO! are
utilized as these are well explored methods for approximating
the sparse precision matrix 6 [16, 17, 18, 19, 20, 11].

Typically, the input for these estimators is an empirical cor-
relation matrix R with the dimensions p X p where p = 7 (i.e.,
the number of transmission buses). However, to capture the
potential high dimensional interactions between the features,
a rational quadratic kernel (RQK) is employed instead. RQK
can be seen a mixture of radial basis function kernels and is
defined as )

RQK = (1+ Az ;)7 ) " @
2al?
where o controls the scale mixture and [ is the length scale
of the kernel, and d(-,-) is the Euclidean distance.

To compute the RQK similarity matrix, all current-related
features (i.e., edge features) are excluded due to the non-
uniform number of current phasor measurements per bus,
leading to an inconsistency in the number of features per
each node. Thus, only node-specific voltage phasor features
are employed for this phase, leaving 14 voltage features in total
(two phasor features per node) for the seven nodes (5-11). The
data is then standardized across PMU features, meaning all
magnitude features across all nodes are standardized together,
and the same process is applied to the angle features. Using all
1800 data samples and 14 voltage features, the data is flattened
into a matrix with dimensions equal to the number of nodes by
voltage phasor measurements times the number data samples
(e.g., (7,3600).2

Given the RQK similarity matrix as input, the GGM out-
puts an estimated precision matrix 6 containing the partial
dependencies. Transforming 6 into the estimated network
adjacency matrix A is done by setting all the non-zero values
to one. Any index containing a zero represents the conditional
independence between the respective two variables given all
other node variables.

One caveat of the considered estimators is the requirement
of hyperparameter selection. In particular, glasso requires the
selection of one regularization parameter A\. Meanwhile, the
non-convex estimators require the selection of two hyperpa-
rameters: the regularization parameter A and the shaping pa-
rameter . To select the best model (i.e., hyperparameters), two
different metrics are employed, which yield varying results.
The first metric is the extended Bayesian information criterion
(EBIC) [21]. A lower EBIC score indicates a potentially more
“preferred” model, where scores are relative to the problem.
The major benefit of EBIC is that it does not require the

L All estimators are executed using the implementations provided by the R package
GGMncv [11].

2That is, 7 nodes, 2 x 1800 = 3600 features as there are 2 phasor measurements
per node and 1800 data samples per dataset.

ground truth for computation. The second metric is the Fg-
score, a generalized version of the F-score, where recall is
considered /3 times as important as precision. However, the F3-
score requires access to the ground truth. For these controlled
experiments, the underlying ground truth is available for both
the network and flow graphs, yet this might not always be
the case as GGMs are typically formulated as unsupervised
methods.

C. Stage 2: Network Graph Refinement

Stage 2 refines the GGM network graph estimation and
converts it into its corresponding flow graph. Recall, the output
of the GGM estimator is an undirected simple graph, which is
interpreted as a network graph. Therefore, the network graph
needs to be converted into a directed multi-graph to represent
a flow graph. Thus, when converting to a flow graph, direction
needs to be determined and edges need to be expanded into
multi-edges if they exist. Furthermore, the initial network
graph estimation can include false edges, which will need to
be pruned. All this can be achieved by using the power flow
physics inherently contained within the synchrophasor dataset.

A novel domain specific algorithm, inspired by [3], denoted
as the Power Network Graph Score (PNGS) is proposed for
Stage 2. PNGS aims to harness the physics of the current
phasor measurements, which could not be properly utilized
in Stage 1. Current phasor measurements allow for three
crucial concepts to be accounted for: 1) The number of in-
flows (incoming edges) and out-flows (outgoing edges) for a
particular node can be derived, thus determining the power
flow direction of an edge; 2) A number of metrics can be
computed using current and power differences to generate an
edge score, where the higher the score, the more likely the
edge is a false edge; 3) Multi-edges can be accounted for as
each edge has a current phasor, thus an edge score can be
computed for each edge. This can be done as long as the
estimated network graph possesses a connection between two
nodes.

The core idea of PNGS lies in computing a score for each
edge in the estimated network graph. PNGS aims to learn
a score matrix S of shape p x p. S functions similarly to
an adjacency matrix, but now each element contains scores
for the potential edges determined by the estimated network
graph adjacency matrix A. Thus, for each pair of nodes, a set
of scores is computed based on the potential edges between
them and assigned to the corresponding node-pair index in S.
Edges with lower scores are likely to represent true edges,
while edges with higher scores are likely to represent false
edges. A value of infinity is used to represent impossible edges
(i.e., edges that can not exist based on the computed in-flows
and out-flows of a node) while a value of NaN (i.e., Not a
Number) is used to represent edges that are not in. Similar
to an adjacency matrix, the rows of S represent out-flows
and columns represent in-flows, with the main diagonal being
NaNs to represent the lack of self-connections.

For PNGS to function, partial information about the true

graph, denoted as G, must be extracted using the current
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phasor information. Thus, G contains information concerning
the total number of nodes, the total number of edges, and
the number of edges for each node including the number of
in-flows and out-flows. Computing the total edges contained
within the true graph is equal to half the number of current
phasor measurements, assuming no PMUs are taken offline.
This is because each branch has a current measure taken at
the beginning and end of the branch. Likewise, the number of
edges for each node is equal to the number of current phasor
measurements reported for a node divided by two® In-flows
G™3(n) and out-flows G°%**(n) can then be determined for
each node by looking at the current angle such that if the
current angle is greater than 180 degrees it is an in-flow while
any angle less than 180 it is an out-flow*.

Given G and A, the edge score can be computed by looping
over all nodes in G where n represents the current node. This
is done by first checking the number of out-flows G°“*(n)
for n. If n has no out-flows G°“*¢(n) = {}, no out-going edges
can exist for n and the row indexed at n in S is set to infinity.
Given n has out-flows, each connected node 7 is then checked.
If 7 has no in-flows G**(ii) = (), no incoming edge can exist
between (n,7n) and the corresponding value for S is set to
infinity. Given n has in-flows, it must be determined if any
of the out-flows G°“**(n) match with the in-flows G"*(7).
Before any computation can be done, all possible pairs C'
between G°“*(n) and G™*(71) must be generated.

For each pair (out,in) in C, three scores proposed by
[3] are computed using various aspects of the voltage and
current phasor measurements. Absolute current flow difference
(ACFD) aims to compute the absolute difference between the
out-flow and in-flow current magnitudes:

ACFD (out, in) = |[I°"| — |Im||, (5

where the I represents the current magnitude, out represents
the out-flows of n, and ¢n represents the in-flows of 7.
Absolute power flow difference (APFD) aims to compute the
absolute different between the out-flow and in-flow power.

APFD(out, in) =||V I cos(6*" — )]
_ |Vin1in cos(éi" _ azn)|
where V represents the voltage magnitude, ¢ the voltage angle,

« the current angle. Finally, the mean power loss (MPL) aims
to compute the real power loss for a given power line:

(6)

I

MPL(Out’ Z’rl,) :‘Re<(vo’fit467:’n/ _ VlnlénL)
Jout fout | fin yyin

)l
where Re denotes the real part and * denotes the conjugate.
For each equation, the mean is computed over the total number
of data samples (i.e., time steps) m.

Once all pairs have been exhausted, Equations (5), (6), and
(7) are summed and stored inside a local score matrix S with

)

3The division is done to account for each phasor measurement having two features
(magnitude and angle).

4This method can not be applied to generators as their measurements are typically
obfuscated by transformers.
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dimensions |G (n)| x |Gi"(72)|. S is then stored with S at
the index at (n,71) to represent all the scores for the potential
connections between the two nodes. Given a completed S,
refinement can be naively done by looking at each node’s edge
scores and taking the top k smallest scores where k is equal
to the number of out-flows for a node. As mentioned, the idea
is that the & top smallest edge scores should represent the true
edges (i.e., smallest values). The result is then a multi-edge
directed adjacency matrix. Algorithm 1 summarizes the PNGS
process for Stage 2.

Algorithm 1: Power network graph score (PNGS)

1 Parameters: partial graph G, estimated adjacency
matrix A

2 Initialize score matrices S with shape p X p

3 foreach n € G do

A(n) + set of nodes connected to 7 in A

G°U*3(n) + set of outgoing edges from n in G

if Go3(n) = () > No outgoing edges

then

S(n,A(n)) « oo

continue

e e N &

foreach 72 € A(n) do

G'™3(7) < set of incoming edges for 7 in G
if Gins(i) =0 > No incoming edges
then

L S(n,n) + oo

continue
C < pairs between G°“**(n) and G'"*(7)
Initialize S with shape |G (n)| x |G (7))
foreach (out,in) € C do
S(out,in) < APFD(out,in) +
ACFD(out, in) + MPL(out, in)
| S(n,n)=8

10
11
12
13
14

16
17
18
19

20

IV. EXPERIMENTS

The experiments conducted within this section aim to assess
the ability of GGMs and PNGS to reproduce the true network
and flow graphs under various topology and load changes. As
such, the goal is to explore how GGMs might fail and to test
if using PNGS for graph refinement can accommodate for the
shortcomings of GGMs?>.

For all experiments, the RKQ kernel parameters are set
to 1 and [ 50. Likewise, each GGM estimator
will search over 100 different A\ values, generated using the
exponential log scale between 0.001 and 200. Thus, for each
A, a new model is fitted. The selection of ~ is done by using
each estimator’s corresponding recommended value: SCAD
v = 3.7, MCP ~ = 2.0, while the rest of the non-convex
penalties use v = 0.01. The default values produced relatively

S All results and code can be found at https://github.com/RL-BCI-Lab/gc4eptn.
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Fig. 3: (a) The ground truth network graph adjacency matrix. The RQK similarity matrices computed for the complete topology
are depicted using the (b) high load, (c) medium load, and (d) low laod. The x-axis and y-axis represent the bus/node number.

sufficient results, negating the need for additional computa-
tional resources [11]. The best network graph estimation is
selected using the lowest EBIC and highest Fg-score. For
Fg-score f = 2 is selected in order to put emphasis on
retaining the underlying ground truth graph. This is crucial
as the Stage 2 can not add edges, it can only validate and
prune existing edges. Therefore, it is more desirable to have
slightly more dense graphs that contain the underlying ground
truth than sparse graphs that do not.

A. High Loading Condition and Complete Topology

Baseline experiments are conducted using the high load for
the complete topology, allowing for an idealized EPTN setup
to be tested. Before running Stage 1, it is useful to first observe
the RQK similarity matrix, as it can provide insights into the
potential difficulty of the network estimation problem. Fig. 3b
depicts the RQK matrix for the high load. When compared
with the ground truth adjacency matrix (Fig. 3a), it can be
seen that the RQK matrix produces higher similarity values
for nodes with edges (e.g., (6,5)) versus those that do not
(e.g., (11,5)).

The network graph estimation for all GGM estimators and
the corresponding refined flow graphs are depicted in Fig. 4.
When selecting using F-score, all non-convex penalties result
in an Fg-score of 1 while glasso results in an Fg-score of 0.97.
Thus, we observe that using non-convex penalties enables
estimating the true network graph directly. While glasso still
requires refinement, it only estimates a single false edge.
However, when selecting using EBIC, all non-convex penalties
lead to an F-score of 0.71. On the other hand, glasso performs
slightly worse with a resulting Fg-score of 0.68. The reasoning
for the decreased Fg-score for all estimators is due to denser
network graphs estimations. Although the recall scores for
EBIC selected network graphs are perfect, the precision scores
suffer significantly. This is the first indication that EBIC
might not be well suited for selecting the best network graph
estimations. Yet, Fg-score selection clearly shows that it is
possible for GGMs to directly recover the true network graph.

B. Topology and Load Changes

Next, experiments using various combination between dif-
ferent topologies and loads are presented. To simplify the

ML)
INARMRAARMARL

WAL )

(a) Glasso (b) SCAD  (c) MCP  (d) ATAN (e) SELO

Fg-score

EBIC

Fig. 4: Estimated network graphs (1st and 3rd rows) using each
GGM estimator and their corresponding flow graphs (2nd and
4th rows) for the complete topology and high load type. Best
network graph estimations are selected using Fg-score (1st and
2nd rows) and EBIC (3rd and 4th rows). The dotted lines for
the network graph indicate edges pruned using PNGS.

analysis of this section, specific focus is placed on the SELO,
as it is one of the top performing penalties. Albeit, all GGM
estimators do perform relatively similar to one another, with
glasso having a tendency to produce more dense network
graphs. In addition to the medium and low loads, a new “all”
load type is included, which combines all three loads into
one dataset. This is used to simulate the change of loads over
time. As a consequence, the all load dataset contains 5400
data samples as compared to the normal 1800.

Fig. 3 depicts the RQK similarity matrices for the complete
topology and high, medium, and low loads. It can be observed
that the similarity among the ground truth nodes is typically
high. However, as the load decreases, some connected nodes
start to lose their high similarity (e.g., (5,6) and (8,9)).
This drop in similarity indicates a potential problem as it
could become harder to distinguish true connections from false
connection as some nodes can have similar values, yet not be
connected (e.g., (5,11) or (11,9)). As such, this highlights
the problem of value similarity between unconnected nodes
within the synchrophasor dataset, which is likely to arise for
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other EPTN datasets as well.

Table I reports the performance for both network graph
prediction and flow graph refinement using all topologies and
load types, where the top SELO models are selected using Fa_
score. For the most part, SELO can reconstruct the underlying
ground truth graph with the addition of a few false edges,
regardless of the load or topology type. This is indicated
by the relatively high Fg-scores. When looking at the recall
and precision metrics, it can be seen that the recall is almost
always perfect, indicating the true network graph is contained
within the estimation. Yet, precision tends to suffer as it ranges
between 0.60 to 1 (a value of .60 translates to approximately
4 false edges). As almost all results report a perfect recall
score, refinement using PNGS allows for the recovery of the
true flow graph. For the perfect estimation cases which receive
an Fg-score of 1 (e.g., high load, complete and partial-left
connectives), Stage 2 only needs to add direction and expand
edges into multi-edges.

However, there is a point of failure that can be observed.
That is, as the load decreases (from high to low) the problem
tends to become more difficult (i.e., higher likelihood of false
similarities between nodes to arise). It can be seen that for the
complete topology and low load that SELO does not properly
maintain the underlying ground truth graph indicated by its
lower recall score as it fails to predict the edge between (8, 9)

This is likely, due to its low RQK similarity of 0.36 (Fig. 3d).

As a result, after refinement, this edge remains missing and
the reported metrics are even lower. This is because the flow
graph metrics are computed using the true directed multi-graph
adjacency matrix and edge (8,9) has multi-edges, yet none
were estimated. This highlights the limitation of PNGS for
graph refinement, as it can not add edges retrospectively. Thus,
placing emphasis on the importance of the initial network
estimation.

Additional metrics regarding SELO model selection using
EBIC are reported in Table II. It can be seen that the EBIC
selected network graph estimations have lower Fg-scores. This
is due to EBIC selecting more dense graph estimations, in
turn leading to more false edges and a lower precision score.
Even with the more dense graph predictions, EBIC too suffers
from the same failure case as Fg-score when estimating the
graph for the complete topology and low load. Furthermore,
EBIC selection fails to ever recover the exact underlying true
network graph for any topology or load.

Finally, a contradiction arises when the EBIC values for
the same topologies and loads are compared across Table I
and Table II. In particular, it can be seen that while Table II
reports lower EBIC values, yet it reports worse Fg-scores
(specifically due to precision). For example, take the complete
topology with a high load, where the EBIC selected network
graph estimation reports an EBIC value of 5431.85 while the
Fg-score selected network graph estimation reports an EBIC
value of 7505.18. The objectively better estimation is the latter,
yet it receives a higher EBIC value. This indicates that a
lower EBIC value does not represent a “better” network graph
estimation. Thus, a more representative metric that does not

TABLE I: All topologies and load results using SELO where
the best model is selected using Fg-score.

Connec-

.. Loads Network Graph
tvity

Flow Graph

Fg Precision Recall EBIC

Complete High 1.00 1.00 1.00 7505.18 | 1.00 1.00 1.00
Med 091 0.67 1.00  4981.20 | 1.00 1.00 1.00

Low 0.83 0.83 0.83 5713.06 | 0.79 1.00 0.75

All 1.00 1.00 1.00  28999.48| 1.00 1.00 1.00

Fg Precision Recall

Pﬁlgl' High 1.00 1.00  1.00 5603.90 | 1.00 1.00  1.00
Med 097 086  1.00 455994 | 1.00 1.00  1.00
Low 088 060 100 1964.18 | 1.00 1.00  1.00
Al 100 100  1.00 2682158| 1.00 1.00  1.00
PO High 091 067 100 480679 | 100 100 1.00
ight

Med 0.88 0.60 1.00  3462.52 | 1.00 1.00 1.00
Low 0.88 0.60 1.00  1472.08 1.00 1.00 1.00
All 091 0.67 1.00  26361.21| 1.00 1.00 1.00
TABLE II: All topologies and load results using SELO where
the best model is selected using EBIC.

Connec-

.. Loads Network Graph
tvity

Flow Graph

Fg Precision Recall EBIC

Complete High 0.71 0.33 1.00 5431.85 | 1.00 1.00 1.00
Med 0.81 0.46 1.00 444288 | 1.00 1.00 1.00

Low 0.69 042 0.83 387521 | 0.79 1.00 0.75

Fg Precision Recall

Al 079 043 100 27666.75| 1.00 1.00  1.00
Pirgf'“:l' High 079 043  1.00 4172.09 | 1.00 1.00  1.00
Med 081 046  1.00 323033 | 1.00 1.00  1.00
Low 083 050 100 147561 | 1.00 1.00  1.00
Al 086 055 100 25769.53| 1.00 1.00  1.00
Partial-— proh 077 040 100 410560 | 1.00 1.00  1.00
Right

Med 0.81 0.46 1.00
Low 0.75 0.38 1.00
All 083 0.50 1.00

3204.76 | 1.00 1.00 1.00
1327.54 | 1.00 1.00 1.00
25807.94| 1.00 1.00 1.00

require knowledge of the underlying ground truth is required.

V. LIMITATIONS

As this work is highly exploratory, there are a handful of
limitations that need to be addressed before application in
the real-world. While the proposed graph construction and
refinement can help recover the true graph from data, it is
observed that the metric used to select the “best” graph affects
the quality of the chosen estimated network graph. While only
GGMs were tested for network graph estimation, any other
data-driven approach is vulnerable to this hyperparameter and
graph selection challenge. Thus, developing a new metric,
specifically one that does not require a ground truth, for EPTN
evaluation acts as a vital future point of investigation. For
instance, utilizing the PNGS as a metric for model selection,
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not just for refinement, could act as a starting point. Moreover,
due to the simplicity of the simulated EPTN provided here,
more complex load settings and network topology experi-
ments are needed to further solidify the robustness of the
proposed graph construction and refinement algorithm based
on GGMs. Finally, although the estimations do not need
to occur at the sampling rate of the PMUs, the bounds at
which the proposed algorithm can produce estimations needs
to be further explored. In particularly, algorithmic speed needs
to be investigated on various larger network topologies and
contrasted against prior domain specific approaches.

VI. CONCLUSION

A data-driven power flow graph construction of a simulated
electric power transmission network, the Kundur’s two-area
four-machine power system, has been investigated in this
paper. The two-stage data driven graph construction leverages
GGMs using convex and non-convex penalties to achieve an
initial sparse estimation of the network graph and further
refinement to discover a power flow graph using the novel
physics-based PNGS algorithm.
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