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ABSTRACT

Cities have become more networked and wired, thus generating
unprecedented amounts of operational and behavioral data. For
instance, a city’s traffic is instrumented by online mapping services
(Google maps) in conjunction with crowd-sourcing (Waze). In this
work, we present an Urban Analytics Platform (UAP) that demon-
strates a systematic framework to tackle data-driven problems that
the modern urban settings present. UAP embodies an end-to-end
system for ingesting multiple data sources and processing them
via neural network models to tackle predictive urban computing
problems, like traffic flow. Results show improved traffic flow pre-
diction and how we can utilize the improved prediction to inform
on the possible weather conditions for abnormal traffic patterns.
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1 INTRODUCTION

In today’s data-rich world, datafication of critical infrastructures
like transportation — road networks and public services — has be-
come an integral aspect of the unprecedented urbanization that
we are witnessing. Modeling and understanding traffic flow has
always been a problem of interest for city planners. Web services
like Google Maps, Waze, online weather monitoring, and surrogate
sources like Twitter have become useful instruments to sense and
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Figure 1: Data Fusion Engine. The UAP’s data fusion engine
aims to harness information from multiple data sources such as

Google maps, weather forecasts, twitter and use it for applications
like city planning, traffic prediction and detection.

predict traffic. Towards that end, we design an Urban Analytics
Platform (UAP) (for the city of Charlotte) that will systematically
ingest multi-modal urban data from traditional sources and surro-
gate sources to tackle urban problems in a data-driven fashion. In
this work, we describe how UAP will embody predictive models
to forecast and inform the city about the traffic flow and enable
efficient operation of shared mobility systems.

The larger goal of UAP is to effectively and seamlessly integrate
data from the city (community safety data, planning and zoning,
transportation, neighborhoods & housing, and city government
via http://clt-charlotte.opendata.arcgis.com/) with surrogate data
sources like social media (Twitter, Facebook, Reddit), transporta-
tion (GoogleMaps, Waze) and weather data (OpenWeatherMap) as
represented in Figure 1. The core component of the platform is a
data fusion engine, which will combine the various data sources
ingested into an application specific repository. For instance, in this
work we demonstrate how UAP has utilized Waze to make traf-
fic prediction and OpenWeatherMap to detect anomalies in traffic.
UAP will further equip City of Charlotte with well-enriched urban
datasets and “first principle” models that position us to answer
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trans-disciplinary urban research questions using a data driven
discovery and analytics approach.

Summary of Results

We utilize a stacked LSTM for making accurate traffic predictions.
Training with selective data of weekdays and weekends separately,
we further notice an improvement in prediction results. The trained
LSTM prediction model is then used to detect abnormal traffic to
correlate with the weather conditions. The results are presented in
following sections.

2 RELATED WORK

Data fusion as defined by Waltz and Llinas [22] is, “A multilevel, mul-
tifaceted process dealing with the automatic detection, association,
correlation, estimation and combination of data and information
from single and multiple sources to achieve refined position and
identify estimates, and complete and timely assessments of situ-
ations and threats and their significance” With so many sources
of data, multi-sensor data fusion helps us to understand the en-
vironment and act accordingly. Baloch et al. [7] describe a way
to gather more accurate and additional data using more than one
sensor. They propose a layered approach for context acquisition
and filtering using multiple subtasks.

Leveraging data fusion techniques, Faouzil et al. [10] describe
the state-of-the-art practice of sensor data fusion to traffic data, and
they reported that data fusion techniques indeed provide encour-
aging results. However, there are also challenges when there is a
widespread use of data fusion in transportation field like obtaining
data with accuracy to make application effective, dynamic and the
need to process the data in real time. Bachmann et al. [6] inves-
tigate how multi-sensor data fusion of loop detectors, Bluetooth-
enabled devices, vehicles equipped with GPS devices improved the
estimation accuracy and concluded that accuracy depends on the
technology, the number of probe vehicles and traffic state. He et
al. [12] propose an optimization framework that improves traffic
prediction using Twitter semantic data.

A major issue in getting traffic flow information in real time is
that the majority of the links are not equipped with traffic sensor.
Abadi et al. [4] used dynamic traffic simulator to generate flows in
all links using the available traffic information, estimated demand,
and historical data. Further, they used an autoregressive model to
predict the traffic flows up to 30 min ahead using the real-time
and estimated traffic data. With huge traffic data available, the
problem of what data is relevant comes in to question. Polson et
al. [18] have shown that data from the recent observations of the
traffic conditions (i.e within last 40 min) are stronger predictors
rather than historical values i.e measurements from 24 hours ago.
Lv et al. [17] proposed the use of stacked autoencoder to learn the
latent traffic flow features representation like nonlinear spatial and
temporal correlation from traffic data and showed the performance
of the proposed method to be superior to the other machine learning
methods such as support vector machines, radial basis functions,
and neural networks.

Recently, Long Short Term Memory (LSTM) [13, 19] have been
used to predict various times series forecasting [5, 14, 16, 20, 21] and
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achieved the state-of-the-art results. For traffic congestion predic-
tion, Chen et al. [8] have proposed an LSTM model. They proposed
a classification technique to determine congestions and achieved
improved accuracies. Our work extends their approach and uti-
lizes LSTMs for making estimated traffic predictions. Moreover,
we incorporate and utilize weather statistics in assessing traffic
conditions. The proposed approach is expected to further broaden
to inform with various surrogate data source.

3 DATA COLLECTION FRAMEWORK
3.1 Traffic Data

Our traffic data consists of the estimated time of travel from Point
A to Point B using a car as a medium of transportation. The two
simple ways in which we can get the estimated traffic are :

3.1.1  Google Maps. Using Google Map’s Distance Matrix API
[1], we can get the estimated travel duration and distance between
a pair of points. Google’s API calls are free only upto a limit of 2500
API calls per day.

3.1.2  Waze. Waze [3] is another navigation app which can pro-
vide the traffic information. Waze is however crowdsourced and
does not requires an API key. For this project, we utilized web
scraping to get this traffic information from Waze as represented
in Figure 2. Since this data collection is done using web scrapping,
there is only a limited number of requests that can be made per sec-
ond to the Waze website. Through experimentation we determined
that we can make at most two requests per second approximately
from a unique IP. Following equations define the data collection
parameters that determine the number of servers needed for data
collection based on number of sources and destinations.

Number of sources = N
Number of destinations = M

Total number of routes =R =N * M

Time taken to process a single request in seconds =t
Delay between each request in seconds = d
Limit on number of requests per second =L = 1/(t + d)

Total time in seconds to serve all requests = T = R/L

Data collection interval or period =P

Buffer time in seconds = B

T
P-B

Number of servers/Unique LP needed =S = { J +1

3.2 Weather Data

Weather data includes information such as temperature, pressure,
humidity and current conditions for the day. OpenWeatherMap [2]
is one such service that provides daily weather forecasts and current
weather conditions. Therefore utilizing the OpenWeatherMap API,
we get access to current and past weather conditions in the city of
Charlotte.
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Figure 2: Web scraping. To obtain traffic information we pe-
riodically make GET requests to Waze website from different IP
locations.

3.3 Interest Point Selection for Data Collection

Since we are constrained by the number of servers we can have for
data collection, we need to carefully select our source and destina-
tion points for traffic data collection. The source and destination
points should be such that they are evenly spread out through-
out the city so that they represent all the traffic in the city. The
city of Charlotte has 42 Fire stations which are evenly spread out
throughout the city. These are represented by red in Figure 3. It
also has 26 Light Rail Stations linearly distributed in the middle of
the city. These are represented by blue dots. Collecting estimated
travel durations between Fire Stations and Rail Stations periodi-
cally throughout the day will act as a proxy in help us modeling
the inflow and outflow of traffic in the city.
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Figure 3: Source and destination points for traffic collection.

The city of Charlotte has 42 Fire stations spread throughout the
city (represented by red pentagons) which act as sources and has
26 rail stations (represented by blue dots) which act as destinations
for our traffic data collection.
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Using the equations listed in the previous section, we estimate
the number of servers/unique L.P that will be required to collect
data every 5 minutes using web scraping. The chosen parameters
listed in Table 1.

l Parameters Values
N 42
M 26
R 42 % 26 = 1092
t (experimental) 0.5
d (experimental) 0.4
L 1/0.9
1092 *0.9 = 982.8
P 5*60=300
B 60
982.8
S l—J +1=5
300 = 60

Table 1: Data Collection Parameters

The buffer time B is the time in seconds to wait after making
all the requests, this could be useful for making any read-write
operations etc. and can be adjusted accordingly.

3.4 Sample Data
In the experiment, we are using traffic data (Table 2) that is collected
from Waze API calls, between a given (fire station, rail station) pair
over a period of 60 days.

Date Clock Fire Rail Station Time | Distance

Station (s) (m)

3/7/18 | 0:00:00 40 1-485/South 2243 29885
Blvd

3/7/18 | 0:00:02 40 Sharon Road | 2195 28668
West

Arrowood 2193 28269

Archdale 2061 26495

3/7/18 | 0:00:06 40 Tyvola 1976 25808

3/7/18 | 0:00:08 40 Woodlawn 2048 26957
Table 2: Traffic data.

3/7/18 | 0:00:04 40
3/7/18 | 0:00:05 40

At the same time, we also collect hourly weather information
using OpenWeatherMap API. The data (Table 3) contains the current
temperature, minimum and maximum temperature within an hour,
humidity, wind speed and weather description (rain, light rain,
thunderstorm, sky is clear).
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Date | Time | Temp. | Temp. | Temp.

(K) Min | Max ure dity er

Press- | Humi-| Weath

3/7/18| 0:00:00| 278.64 | 277.1 | 280.15 | 1008 93 mist

3/7/18| 1:00:00| 278.14 | 276.15 | 279.15 | 1007 93 mist
3/7/18 | 2:00:00| 278.06 | 276.15 | 279.15 | 1007 93 mist
3/7/18| 3:00:00| 278.31 | 277.15 | 279.15 | 1006 100 mist
3/7/18 | 4:00:00| 278.65 | 277.15 | 280.15 | 1006 100 mist
3/7/18 | 5:00:00| 278.73 | 277.15 | 280.15 | 1006 100 mist

Table 3: Weather data.

3.5 Traffic Analysis

In order to make a sensible prediction, we first analyze the traffic
patterns on a selected route, throughout the week.

Monday
600

Figure 4: Average traffic from Monday to Sunday. x-axis rep-
resents the the (time of the day) and y-axis represents the estimated
time of travel in seconds on this route.

As seen in Figure 4, the traffic flow pattern on weekdays are
similar. There is a spike in traffic from 7:00 AM to 8:00 AM which
can be attributed to people driving to work. The same spike is
missing on Saturdays and Sundays reason it being a work holiday.
There is also noticeably less traffic on a late Sunday night i.e the
early hours of a Monday.

Figure 5: Weekday Pattern. Overlapping traffic patterns from
Monday to Friday reveals weekday traffic pattern.

Archit et al.

Traffic patterns from Monday to Friday when plotted (Figure 5)
together reveal the general trend of traffic on weekdays.

Saturday
Sunday

Figure 6: Weekend Pattern

Saturdays and Sundays have similar traffic patterns except the
intensity of traffic is lower on Sundays (Figure 6).

4 DEEP LEARNING-BASED TRAFFIC
PREDICTION MODEL

In this section we discuss Long Short Term Memory (LSTM) net-
works, a particular type of Recurrent Neural Network (RNN) and
how it can be used to model for traffic flow prediction.

4.1 Recurrent Neural Networks

Recurrent neural networks (RNN) [23] are similar to feedforward
neural networks, except it also has connections pointing backwards.
A simple RNN composed of one neuron receiving inputs, producing
an output and sending that output back to itself. The output of the
single RNN is

YY) = ¢ (X(t)T cWx + Y(t_l)T CWy + b) .

At each time step t, this neuron receives the inputs x; as well as its
own output from the previous time step, y;—1. Similarly, for a RNN
layer at each time step t, every neuron in the layer receives both
the input vector x; and the output vector from the previous time
step ys—1.

Although RNN has potential to learn the contextual dependency
and it is easy to compute its gradients, the range of input sequence
is limited in practice due to the vanishing gradient problem. Vari-
ous efforts were made to tackle this problem since 1990s. Among
them, LSTM model, as a variant of standard RNN, was proposed by
Hochreiter and Schmidhuber [13].
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4.2 Long Short Term Memory (LSTM)
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Figure 7: LSTM Cell

Figure 7 illustrates a LSTM [13, 19] architecture. This complicated
cell has its state split in two vectors: h(;) and c(;), where h(;) is
the short-term state and c(;) the long-term state. As the long-term
state c(;_y) traverses the network, it first goes through a forget gate,
dropping some memories, and then it adds some new memories via
the addition operation which adds the memories that are selected
by the input gate. The result c(;) is the output of the cell without
any further transformation. Also, after the addition operation, the
long-term state is copied and passed through a tanh function h(;)
which is equal to the cell’s output for this time step y(;). The main
layer is the one that outputs g(;), which analyses the current inputs
x(¢) and the previous short term state h(;_1). The three other layers
f(#)> i(r) and o(4) are gate controllers, they use the logistic activation
function, so their outputs range from 0 to 1. Their output is fed
to the element-wise multiplication operations, so if they output
0s they close the gate, and if they output 1s, they open it. Hence,
LSTM can learn to recognize an important input, store it in long-
term state, learn to preserve for as long as it is needed and learn to
extract it whenever it is needed. Below equations summarizes how
the computation in the LSTM cell takes place.

i) = 0(Wxi - x()+ Wpi T ~h(p_q) +by)

fio) = o(Wp T - x(py) + Whe! ~hq) +bp)

o) = U(WxaT “X(r) + WhoT “h(;_1) + bo)

gn = tanh(Wng “X(p) + WhgT “h(y_1y +bg)

ce) = f(e) ® Ct-1) *+ 1) @ B(r)

Y(¢) = h(r) = o(y) ® tanh(c(y)),
where Wy;, Wyr, Wpo, Why are the weights of each of the four
layers for their connections to the previous short-term state h(;_y),
while Wy;, Wy, Wxo, Wyg are the weight matrices of each of the

four layers for connection to the input layer x(;). The b;, bs, b, and
by are the bias term for each of the four layer.
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4.3 Prediction Model

While the original LSTM model is comprised of a single hidden
LSTM layer followed by a standard feed forward output layer, the
stacked LSTM has multiple hidden LSTM layers where each layer
contains multiple memory cells. Studies [9, 11, 15] have shown
that deep LSTM architectures with several hidden layers can build
up progressively higher levels of representations of sequence data,
and thus, work more effectively. The deep LSTM architectures are
networks with several stacked LSTM hidden layers, in which the
output of a LSTM hidden layer will be fed as the input into the
subsequent LSTM hidden layer. We experimented with different
number of LSTM layers stacked onto each other and empirically
determined that a stacked LSTM with 4 layers works best for our
data (Figure 8).

The code base and the data for this study will be made available
on our GitHub repository (https://github.com/ArchitParnami/UAP)
for reproducibility and further research.

5 TRAFFIC FLOW PREDICTION

The following subsections describe the traffic flow prediction model
for a single route i.e., shortest route from Fire Station 20 to JW Clay
Rail Station. This route connects the city of Charlotte from one
end to another. The model can be generalized to predict traffic on
any route. Furthermore we assume that the traffic data from Waze
i.e., the estimated time of travel between two points obtained from
Waze is the real representation of actual traffic.

5.1 Data Representation

Since we collect data every 5 minutes for a route, we have 288 time
intervals in a 24 hour day. For a day i, the data x; is

x; = [t1,t2, ..., t2gs].

The training set has 60 days of data. Therefore the entire training
data can be represented as:

X1

X2
Xtrain =

X60

We try to predict the traffic for the 61st day (i.e., the subsequent
day). Therefore the test set is the traffic for the next day,

Xtest = [x61] -

5.2 Data Preprocessing

Xirain i flattened into a single list with number of observation equal
to 288%60 = 17,280, so

Xirain = [t1,t2, ..., t17280].
The training data is then normalized into a range of [0,1]:
Xirain = Normalize(Xirain)-
Similarly, the test data is also normalized,
Xtest = Normalize(Xtest).

An LSTM model expects input in the form of a sequence. The
length of the sequence, also know as the number of time-steps is
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Figure 8: Architecture of the traffic prediction model. The first layer in this architecture represents the input layer which contains the
traffic data from the current and previous time intervals. This data is then fed into a stacked LSTM model of four layers which is connected
to a dense layer, which then outputs the estimated traffic for the next time interval.

a hyperparameter that can be set. For this problem the length of
sequence is set to 12. That means we train the LSTM model on the
past hour of traffic data continuously and try to predict the traffic
in the next 5-minute interval. After this transformation the training
observations looks like this:

x1 = [t1,t2,..., t12], y1 = [t13],

x2 = [t13, t14, ... t2al, Y2 = [t25].

Finally the training set will have the form:

Xn Yn

The test data is also split into sequences of length 12. To predict
the 1st time interval of the 61st day, we also add traffic information
from the previous day, i.e., the last sequence of the 60th day to our
test data.

5.3 Prediction Results

The red line in Figure 9 represents the real traffic where as the blue
line represents the traffic predictions made by our LSTM model
depicted in Figure 8. The y-axis is the ETA in seconds and x-axis is
the time of the day.

While the stacked LSTM architecture fits very well for making
traffic predictions, we observed that having a separate stacked
LSTM model just for weekdays could improve the prediction results.
This is based on our previous observations that the weekday traffic
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Predictons for 05/15/18. Error 5.17

50 —— Real Traffic
—— Predicted Traffic

2250

Figure 9: Real traffic (red) vs predicted traffic (blue) when
trained on all the historic data (Mean Squared Error = 5.17).

Predictons for 05/15/18. Error 4.61

—— Real Traffic
—— Predicted Traffic

Figure 10: Real traffic vs predicted traffic when trained only
on weekdays (Mean Squared Error = 4.61).

pattern differs from the weekend traffic pattern, so having a separate
model would benefit (Figure 10).

Date Weekday | Weekday All day All day

Average Average Average Average

MSE MAPE MSE MAPE
05/15/18 4.59 4.66 4.73 4.73
05/16/18 341 4.51 3.49 4.6
05/17/18 3.97 4.77 4.0 4.86
05/18/18 3.79 4.72 3.84 4.87
Average 3.94 4.66 4.01 4.76

Table 4: Mean squared error and mean absolute percentage
error averaged over 10 training and test runs for weekday
and all day prediction models.

From Table 4, we can conclude that the Weekday training model
performed better than all days training model. Figure 12 displays
the average residue for the Weekday model vs the All day model
for a sample route. The green area represents the intervals where
the average error for prediction was less when using the Weekday
model whereas the red area captures the interval when average
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error for prediction was high when using the Weekday model. The
figure reaffirms the efficacy of weekday training model.

Average Residue

Residue All Days
—— Residue Weekdays

120

Time(s)

Figure 11: Training models’ prediction error. Green regions
indicate less prediction errors when model was trained only for
weekdays, and red regions indicate higher prediction errors.

5.4 Comparing results with a Multilayer
Perceptron model

The following results were obtained when we trained an artificial

neural network with 3 hidden layers (288,16,8). The inputs to the

model was the day of week(1-7) and the time interval (1-288) and

the output was traffic (estimated time of travel).

Date = 05/15/18 - MSE 7.9 - MAPE 5.5

—— Real Traffic
—— Predicted Traffic

2750

Figure 12: Real traffic vs Predicted traffic on 05/15/18 ob-
tained using a multilayer perceptron model trained on all
days.

| Date [ MSE [ MAPE |
05/15/18 7.9 5.5
05/16/18 3.7 5.46
05/17/18 492 6.22
05/18/18 7.35 6.19
Average 5.97 5.84

Table 5: Mean squared error and mean absolute percentage
errors obtained using multilayer perceptron model.
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It can be observed that while the multilayer perceptron model is
able to learn the general traffic pattern, the LSTM model is able to
better capture the traffic pattern more accurately with lower MSE
and MAPE.

6 CORRELATING DEVIATIONS IN TRAFFIC
PREDICTION WITH WEATHER
CONDITIONS

Traffic conditions are dynamic in nature. There are many uncon-
trollable factors which can cause deviations in traffic patterns. For
example a sudden thunderstorm, an accident or a game event. There-
fore it is certain that an LSTM model can not make accurate predic-
tions all the time considering that there are other factors in play
which could cause sudden change in traffic conditions. Here we
focus on one such factor i.e weather and try to correlate and see its
influence on traffic conditions.

Figure 13 and Figure 14 shows the changing weather conditions
at different time intervals. For example it rained around 1:00-2:00
AM and then there was thunderstorm followed by rain at 12:00
PM. The figures also display the real traffic and the LSTM predicted
traffic. In certain regions, such as when there was a thunderstorm,
the deviation or the error in prediction was observed to be more
than normal i.e., when the sky was clear.

Predictons for 05/18/18. Error 4.36

—— Real Traffic
—— Predicted Traffic

2600

2400

2200

2000

Timels)

1800

1600

1400

1200

0100 0200 03:00 04100 0500 06100 07:00 08100 09100 10100 11:00 12/00 13:00 14100 15.00 16:00 17:00 18:00 19:00 20:00 21'00 22:00 23:00 24:00
Clock

Figure 13: Peak deviations in traffic correlated with weather
conditions. The arrows point at a traffic condition at a par-
ticular time and weather.
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Figure 14: Deviation in traffic prediction with weather. The
orange region highlight the interval of thunderstorm and dark
green region highlight the interval of heavy rain. These two regions
correspond to the highest deviation in traffic prediction.

Intuitively and experimentally from Figure 14 it can be said that
traffic conditions are definitely affected by weather conditions. This
impact of the anomalous weather on traffic can be measured using
LSTM predictions as observed in this study.

7 CONCLUSION

In this paper, we have discussed a low-cost data acquisition and
fusion model for traffic flow analysis. To get high quality traffic data,
researchers [6, 10] must rely on government sources for getting
data from hardware devices (i.e., loop detectors, GPS). In view of
the large amount of data that was required for this project, paid
services like Google maps are often not an option. Thus, acquiring
high quality traffic data is one of the challenges in traffic prediction.
However utilizing the power of webscraping on a crowdsourced
website, i.e., Waze, we could gather estimated traffic information
in the city. OpenWeatherMap API allows us to retrieve relevant
information regarding possible weather conditions for unexpected
traffic flows.

Our LSTM model has shown good performance for short term
prediction; it however lacks the capability for making long-term
predictions. Utilizing the data fusion engine, we aim to build a
more sophisticated model that can not only make long term traffic
predictions but could also inform us about the anomalous traf-
fic behavior using diverse data sources such as social networks,
news headlines, and accident logs. This will require development
of an efficient anomaly detection technique that can automate the
informing process.
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