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Abstract
The proliferation of fake news, more recently multimodal fake news, poses a significant threat to individuals, organizations,
and society. While online social media platforms have employed automated methods to combat fake news, they face two
notable challenges: the scarcity of labeled data and the diversity of news domains. To enhance the effectiveness and efficiency
of online platforms in mitigating the spread of fake news, this study proposes MT-GPD (multimodal deep transfer learning
with gating network, model patch, and domain classifier) for cross-domain fake news detection. MT-GPD integrates three
novel design artifacts as auxiliary mechanisms for enhancing multimodal deep transfer learning, including a gating network
that captures the relative importance of textual and visual components of individual news articles for dynamic fusion; a
customized model patch that balances detection performance and computational efficiency; and a domain classifier that
adapts multimodal representations to a target news domain. We evaluate the performance of MT-GPD using news datasets
spanning four different domains. The results demonstrate the efficacy and robustness of MT-GPD, providing strong evidence
for the impacts of the proposed auxiliary mechanisms on improving fake news detection performance.
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1 Introduction
People increasingly rely on online platforms (e.g., social
media) for news, which also serve as a fertile ground for fake
news (Ng et al., 2023; Zhou et al., 2004). We define fake news
as news that is deliberately fabricated and disseminated to mis-
lead others. Fake news can lead to serious economic, political,
social, mental, and societal issues. An economic study reports
that fake news costs US$78 billion to the global economy
annually (Brown, 2019). Despite increasing public awareness
of online fake news, its detection remains challenging. A sur-
vey showed that humans’ ability to detect fake news dropped
from 39% in 2016 to 26% in 2019 (Watson, 2023). People tend
not to question the credibility of information unless it violates
their preconceptions, largely attributed to humans’ cognitive
biases (Zhou et al., 2004).

The challenge in fake news detection can be potentially
addressed by AI technology. Some online platforms have

deployed machine learning and deep learning models for
this purpose (https://www.logically.ai/factchecks). For exam-
ple, Meta uses AI algorithms to fact-check user-generated
content (Meta, 2020). However, online platforms also face
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notable challenges when implementing those machine learn-
ing or deep learning methods for fake news detection. First,
fake news detection in a multi-domain setting remains rarely
explored (Goel et al., 2021). The vast majority of existing
research ignores significant differences in the language style,
structure, and terminologies of news articles across different
domains. As a result, the models trained with news samples
in one domain may not be effective for detecting fake news in
another domain. Nor is it effective to apply general models to
detect fake news in specific domains. On the other hand, given
that fake news creators may employ similar strategies in craft-
ing fake news content, there may be intrinsic and shared char-
acteristics among fake news articles across different domains.
Thus, the knowledge gained in fake news detection from one
domain can potentially be helpful and leveraged for detect-
ing fake news in another domain. Second, fake news detection
is typically viewed as a classification problem, distinguish-
ing between fake and real news. The scarcity of labeled news
data, however, presents a constraint on fake news detection
research. Third, news articles are increasingly created in multi-
ple modalities, such as text and images, to enrich their content
and attract readers’ interest. Images in news can stir emo-
tions of readers and foster public outcry like no other means
of expression (Zillman et al. 1999). According to Inforgraph-
ics Statistics (www.demandsage.com/infographic-statistics),
posts with images have a 650% higher engagement rate. Today,
more and more news articles include images. Ruhl Ibarra et al.
(2024) collected 1607 news articles on tragic incidents, where
60% of those articles included at least one image. Despite
emerging studies on multimodal fake news detection (e.g.,
Hua et al., 2023; Singhal et al., 2020), effective fusion of
characteristics of news content in different modalities beyond
simple concatenation remains significantly under-explored.

Transfer learning (TL) (Bozinovski and Fulgosi, 1976),
which focuses on applying knowledge learned from solv-
ing one problem/task to another different yet related one, is
promising to address the first two challenges mentioned above.
TL has the potential to tackle the heterogeneity of differ-
ent news domains and mitigate the problem of the lack of
labeled training data in a target domain in fake news detec-
tion by identifying their similarities. Several recent studies
have explored TL models for fake news detection (Goel et al.,
2021; Ng et al., 2023; Singhal et al., 2019), which, however,
have several limitations. First, they mainly fine-tuned pre-
trained models (PTMs) (e.g., BERT and XLNet) with fake
news. The “transferred” knowledge is essentially the general
text and image representations learned by those PTMs from
large open-domain datasets rather than knowledge specific
to fake news detection. As a result, the generality of those
PTMs is confined to the similarity between general corpora
and domain-specific news articles (Orhan, 2021). To the best
of our knowledge, few studies have investigated multimodal
TL for cross-domain fake news detection by adapting the fake
news knowledge learned from one news domain to another,

which is the primary objective of this research. Second, effec-
tive TL requires facilitation. However, existing research has
rarely explored ways to improve TL via auxiliary mechanisms.
Third, although some TL models have integrated multimodal
pre-trained models (Goel et al., 2021; Singhal et al., 2019),
none has considered the relative importance of multimodal
news content, such as text and image, for fake news detec-
tion. Also, whether and how a TL model can benefit from the
dynamic fusion of multimodal representations of news con-
tent and auxiliary mechanisms for cross-domain fake news
detection remains severely under-studied.

To address these research limitations and gaps, we propose
a novel multimodal deep transfer learning model augmented
by three auxiliary mechanisms, including a gating network, a
model patch, and a domain classifier (MT-GPD), to improve
TL effectiveness. The design of MT-GPD follows the design
science research paradigm (Hevner et al., 2004). MT-GPD first
learns the knowledge about fake news detection from a source
news domain, then adapts it to a target news domain facilitated
by the three proposed auxiliary mechanisms. Among the three
mechanisms, a gating network is designed to capture the rela-
tive importance of the textual and visual content of each news
article. It dynamically assigns different importance weights
to the latent representations of text and images in each news
article to reflect their different roles in fake news detection.
The customized model patch helps reduce the computational
complexity of TL without compromising model performance.
The domain classifier adapts the multimodal representations
learned from a source domain to a different news domain
without requiring specific domain knowledge.

This study makes several contributions to emerging
research in operations management (OM) and information
systems (IS) interfaces, including language models, AI, deep
learning, content moderation, and online platforms. First, we
design an effective TL-based model for fake news detection,
which empowers online platform operations with automatic
approaches to detecting fake news across different domains.
Specifically, our proposed model could optimize the operation
process of online platforms in mitigating the spread of fake
news by providing the platforms with a well-performed system
to automatically detect fake news. Second, our proposed aux-
iliary mechanisms for facilitating transfer learning can assist
online platforms in strategically allocating their resources to
improve operation efficiency in automatically detecting fake
news on their platforms. Third, our study contributes to the
increasing research that employs machine learning and deep
learning techniques in solving OM-related problems (e.g.,
Choi et al., 2018; Lee et al., 2018; Ng et al., 2023; Zhang
et al., 2022). The proposed approach is generalizable and can
be applied to the detection of other online misinformation or
fraud (e.g., financial disinformation detection (Zhang et al.
2022)). It can also advance big data analytic techniques in OM
when addressing uncertainty with learning (e.g., caused by
limited labelled data) (Ng et al. 2023), or when deciphering
financial news for stock or market prediction or discovering
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product defects from social media content (Abrahams et al.
2015), etc. To the best of our knowledge, this is the first
study to design and comprehensively examine several auxil-
iary mechanisms for enhancing fake news detection that can
support platforms in managing misinformation.

2 Related Work

2.1 Automatic Fake News Detection
Machine learning techniques have been widely used for auto-
matic fake news detection to overcome human biases. Earlier
studies mainly used traditional classification techniques, such
as support vector machines (Zhang et al., 2022), which rely
on manual and ad hoc feature selection. The common input
features of those models are classified into four categories:
(a) textual features capturing the characteristics of news tex-
tual content; (b) visual features comprising count-based and
content-based features of news images; (c) network features
representing the propagation patterns of news and URLs; and
(d) sender features characterizing the behavior and demo-
graphics of news creators. Among these four types of features,
textual features have been most commonly used, while sender
and network features have been used much less because the
latter are more difficult to acquire due to privacy concerns.

In recent years, deep learning techniques have been increas-
ingly deployed to detect fake news. For example, Wang et al.
(2018) designed an event-based adversarial neural network for
fake news detection by deploying CNN models. Some more
recent studies fine-tuned pre-trained transformer-based mod-
els, such as BERT (Essa et al., 2023) and XLNet (Athithan
et al., 2023), with news samples. However, unlike this study,
their focus is not on cross-domain fake news detection.

2.2 Multimodal Models for Fake News Detection
There are emerging efforts to develop multimodal models that
integrate text and visual representations of news for fake news
detection (e.g., Hua et al., 2023). For example, Wang et al.
(2018) improved Jin et al. (2017)’s approach by deploying a
CNN as the core module of a textual feature extractor and a
pre-trained VGG-19 model for extracting visual features from
a news article, then concatenating the generated representa-
tions to form the multimodal feature representation as the
input of a fake news detector. Giachanou et al. (2020) first used
BERT and VGG-16 to create representations of news’s textual
and visual content, respectively, then concatenated them into
a similarity vector as the input to a softmax layer.

There are two major issues with existing multimodal mod-
els for fake news detection. First, they concatenate textual
and image feature representations directly by overlooking the
varying importance of text and image content of individual
news articles to fake news detection. Second, despite the ini-
tial efforts in applying them to fake news detection and their
success in many other applications, PTMs are prone to adopt-
ing shallow heuristics that succeed for the majority of training

samples, instead of learning the underlying generalizations
that they intend to capture (Wang et al., 2018). Therefore, they
may suffer from potential “upstream overfitting” caused by
intra-class semantic differences (Feng et al., 2022).

2.3 Deep Transfer Learning for Fake News Detection
A common assumption of machine learning models is that
training and testing data are drawn from the same feature
space and share the same distributions. When the distribution
changes, models have to be rebuilt from scratch (Yu et al.,
2020). This is problematic due to the varying feature distri-
butions across news domains and the scarcity of labeled news
data in specific domains.

Transferring knowledge learned from one domain to
another extends a model beyond its original creation (Yang
et al., 2020). By reusing the domain knowledge previously
gained from a source task, TL can significantly reduce the
required data, time, and computing resources for completing a
similar task in another domain. Deep TL leverages deep neu-
ral networks to find invariants for the successful adaptation of
knowledge gained from a source domain to a target domain.

A small number of studies (e.g., Goel et al., 2021) have
explored TL for fake news detection. They all deployed PTMs,
such as BERT and XLNet, to learn generic text and image
representations from large-scale open datasets first, then fine-
tuned those PTMs with fake news datasets (normally the last
layer only). For example, Shu et al. (2022) proposed a BERT-
based TL model that fused meta information associated with
news (i.e., comments and user-news interactions) to enhance
news representation. However, that model focused on news
text only. Similarly, Ng et al. (2023) focused on linguistic fea-
tures of news textual content only. A few recent studies (e.g.,
Singhal et al., 2020) explored multimodal transfer learning.
For example, SpotFake+ used XLNet to derive a textual fea-
ture vector and VGG-19 to get a visual feature vector, then
concatenated them into a 200-dimension multimodal feature
vector (Singhal et al., 2020). However, the transferred knowl-
edge learned by those PTMs does not pertain to fake news
detection, which could pose challenges when PTMs are used
in the target news domain.

It is crucial to address the fundamental challenges in fake
news detection, including those arising from the scarcity of
labeled data and domain diversity, particularly multimodal
data. Despite increasing efforts in building TL models for
fake news detection, we have identified several limitations.
First, existing TL models mainly fine-tune general PTMs for
fake news detection rather than adapt the knowledge about
fake news detection learned from one news domain to another
(e.g., Shu et al., 2022; Singhal et al., 2020; Singhal et al.,
2021; Wu et al., 2021). The knowledge transferred in those
models comprises general representations of text or images
obtained from large-scale open-domain datasets rather than
domain-specific knowledge related to fake news detection.
The representations generalized by PTMs may fall short due to
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potential upstream overfitting (Feng et al., 2022; Wang et al.,
2018). Second, a learner can react selectively to the salient
elements of a problem while disregarding irrelevant or unim-
portant elements (Rumbaugh et al., 2008). However, there is a
dearth of attention to the design of facilitative mechanisms to
improve the effectiveness of TL in the current state of research
(e.g., Liu et al., 2023). For example, Liu et al. (2023) shared
cross-domain knowledge by learning transferable knowledge
features, but their model aligned inter-domain knowledge fea-
tures without assessing the relative importance of text and
image modalities of news articles to misinformation detec-
tion. Ignoring the importance of features in knowledge transfer
in existing work can introduce significant noises that degrade
model performance (Wu et al., 2020).

3 Method

3.1 Design Rationales
To address the limitations and gaps of the literature outlined
in the previous section, we design the proposed model with
several considerations. First, we consider transfer learning as
a process of transferring knowledge about fake news learned
from one news domain to another. We predict that incorporat-
ing the knowledge learned from a source news domain should
improve the initial state of a detection model trained for a
target news domain, which in turn leads to better model perfor-
mance. Second, text and images within news articles may offer
complementary functions or properties of news. Thus, the
proposed model should be a multimodal TL model that lever-
ages both textual and visual content of news articles for fake
news detection. Third, the textual and image content of indi-
vidual news articles may carry different levels of importance
to fake news detection. More important content in a specific
modality of a news article should carry more weight during
transfer learning by making it more salient and contributive to
the detection task. Fourth, the model should promote resource
efficiency to facilitate cross-domain transfer without sacrific-
ing detection performance. Fifth, while news articles across
different domains (e.g., entertainment, politics, and health)
may share common elements, they also exhibit some dis-
tinct differences. Thus, the multimodal TL model should align
latent representations of different domains to minimize the
representation gap between those domains, as illustrated in
Figure 1.

By following the design rationales, our proposed MT-GPD
model integrates adaptive and dynamic fusion of multimodal
representations, customized TL, and three novel auxiliary
mechanisms, which include a gating network, a model patch,
and a domain classifier. This strategic amalgamation addresses
the challenges of fake news detection outlined in the introduc-
tion section. It offers a comprehensive TL-based solution that
improves both model adaptability and efficiency while enhanc-
ing its effectiveness across various domains. Figure 2 shows
the overall architecture of MT-GPD.

3.2 The Baseline Deep Transfer Learning Models
We first developed baseline deep TL models for fake news
detection. For text-only TL, we trained CNN models with the
textual content of news from a source news domain and stored
the learned weights. Then, we built a text-only CNN model
for a target domain by loading the previously trained source-
domain model (i.e., transferring weights), adding a dense layer
to the network, and fine-tuning the dense layer while preserv-
ing other learned weights. We followed the same procedure
to construct an image-only CNN model. The baseline multi-
modal TL model concatenates the embeddings learned by the
text-only and image-only CNN models before feeding them
into the dense layer. Because MT-GPD is intended for cross-
domain fake news detection that involves source and target
news domains, it employs CNN and LSTM instead of PTMs.
Based on the result, the CNN models consistently outper-
formed the LSTM models in detection precision, recall, F1
score, and accuracy (p< 0.001). Thus, we chose CNNs over
LSTMs to build MT-GPD. Because existing studies on TL
for fake news detection mainly use PT, we also implemented
PTM-based models as another set of baseline models, includ-
ing BERT for news text and VGG-19 for news images, and
concatenated them by following previous studies (Goel et al.,
2021; Ng et al., 2023).

3.3 Auxiliary Mechanism #1: A Gating Network
Different news domains may have different characteristics to
attract readers’ attention (Dai et al., 2018). The importance of
text and images to fake news detection may vary among indi-
vidual news articles and news domains. In addition, fabricators
may attempt to build a sense of credibility by mixing fake
and real content (Zhou et al., 2004) by not fabricating news
text and images to the same extent. For example, a fake news
creator may include a fake image, or keep the image intact
but manipulate the textual content, of a news article. Further-
more, news fabrication strategies may depend on the cost and
difficulty of fabrication. For example, it might be easier and
more persuasive to manipulate images by simply flipping them
than manipulating text in some news, or vice versa. There-
fore, we predict that individual modalities of a news article
may bear different levels of importance to fake news detection,
and that those importance levels of individual modalities may
vary from one news article to another. It would be desirable
for a multimodal fake news detection model to take poten-
tially varying roles of individual modalities in a news article
into consideration by assigning different importance weights
for different modalities dynamically.

By following the above rationale, we propose a gating net-
work (GN) design that unveils the importance of multimodal
news content. This design empowers MT-GPD with the ability
to identify certain parts of high-dimensional inputs that carry
important information for a target outcome, and then assigns
larger (or smaller) weights to the more (or less) important parts
through dynamic adaptation and exploitation of input-specific
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Figure 1. Three key needs identified from the research gaps of the existing PTM-based TL models.

Figure 2. The overall architecture of MT-GPD.

characteristics. As a result, the less relevant or less impor-
tant features of news content will have less impacts on the
fake news detection decision. Gating enables MT-GPD to
ensemble multiple neural networks or latent features and con-
tributes to the improvement of model efficiency by developing
a multimodal scoring rule for each news article.

Figure 3 illustrates how the GN discerns the varying sig-
nificance of text and image modalities of each news article,

obtaining both domain-specific and domain-independent scor-
ing rules. The proposed GN captures the ratios of text-image
cues (represented by blue bars for text and red bars for images
in Figure 3) of each news article for fake news detection. The
text and image cues are the information carried by news text
and image used for detecting fake news, represented by their
latent representations, and cue ratios represent the relative
importance of news text and image for detecting fake news.
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Figure 3. The gating network auxiliary mechanism.

Once the GN learns the cue ratios from the source domain,
through TL, the GN imparts overarching domain-specific mul-
timodality control rules, which is the process of multiplying
the text and image latent representations with their relative
dynamic gating scores (as shown in Equations (1) and (2)), to
adapt the relative importance of text and image modalities of
each news article while sharing the domain-independent rules.
By transferring the GN, MT-GPD can prioritize the embed-
dings of text or images for effective multimodal representation
based on the inherent characteristics of the target domain,
which may lead to a more nuanced and accurate detection of
fake news. As illustrated in Figure 2, the designed multimodal
control for the GN plays a pivotal role in capturing the relative
importance of text and image within individual articles.

Although both the GN and attention mechanism can be
used to manage information flow and weighting in neural net-
works, they have distinct differences. Attention emphasizes
the specific dimensions of a latent representation that may con-
tribute more, while the GN focuses on effectively controlling
different modalities of a news article to produce an overall
optimal latent representation. Our exploratory investigation
reveals that the GN demonstrates higher efficacy in facilitat-
ing transfer, whereas attention faces challenges in transferring
shareable knowledge across different news domains. Given the
dual modalities and their latent representations, we use a shal-
low network with the sigmoid function to calculate the gating
scores (i.e., importance ratio) (See eq. (1) and (2)):

gtext =
𝜎(wtext ∗ htext + btext)

𝜎(wtext ∗ htext + btext) + 𝜎(wimage ∗ himage + bimage)
(1)

gimage =
𝜎(wimage ∗ himage + bimage)

𝜎(wtext ∗ htext + btext) + 𝜎(wimage ∗ himage + bimage)
(2)

where htext and himage denote the latent text and image repre-
sentations, respectively; wtext, wimage, btext, and bimage denote
the learned parameters (i.e., weights and biases) of the gat-
ing network; 𝜎(⋅) is the Sigmoid function; and gtext and gimage

are the gating scores of the text and image subnetworks,
respectively. We chose sigmoid as the gating function, as it
facilitates the calculation of gating scores with a bounded
range, providing interpretability (see online Appendix A in the
E-companion). The gating network calculates gating scores
for multimodal content dynamically and multiplies them with
the corresponding latent representations (e.g., text and image
embeddings) of each news article, which enables MT-GPD to
make dynamic adaptation and effective fusion of multimodal
representations. In addition, we insert a batch normalization
(BN) layer after the concatenation to improve model stabil-
ity and efficiency. We save the model parameters (e.g., wtext,
wimage, btext, and bimage) after training the gating network in the
source domain, then transfer the gating network structure with
the saved model parameters to a target domain, where those
parameters get updated with the target-domain training data.

3.4 Auxiliary Mechanism #2: Customized Model
Patch
MT-GPD deploys a customized model patch for parameter-
efficient fine-tuning of an overparameterized multimodal
model for cross-domain transfer. It adapts (i.e., fine-tunes)
a small set of pre-trained parameters dispersed throughout a
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Figure 4. The model patch auxiliary mechanism.

network, rather than all the parameters in the network, aim-
ing to not only reduce computational overhead (Mudrakarta
et al., 2019), but also enhance asymptotic performance in
the target news domain. There are three major motivations
for our model patch design, including improving the com-
putational efficiency of fine-tuning, avoiding the loss of the
pre-learned knowledge, and reducing the redundancy in the
network. First, the computational cost of neural network train-
ing or fine-tuning is proportional to the number of weights
that need to be adjusted (Han et al., 2015). Therefore, fine-
tuning an entire pre-trained model after knowledge transfer for
the target task can be memory and computationally intensive.
Second, full fine-tuning, which updates all parameters in a
deep learning model, may cause catastrophic forgetting of the
pre-learned/trained knowledge (Kemker et al., 2018). In com-
parison, fine-tuning a small subset of parameters can better
preserve the valuable pre-trained parameters (i.e., knowledge).
Third, overparameterized models often have shared knowledge
among parameters, with as little as 5% of model parameters
potentially enough to predict the majority of other parameters
within a neural network while not sacrificing the model perfor-
mance (Denil et al., 2013). Thus, it is important to strategically
distill crucial information from the parameters that require
tuning for the target domain.

Our model patch design shares a philosophy with emerg-
ing parameter-efficient fine-tuning (PEFT) techniques, which
aim to minimize the parameters for fine-tuning while freezing
the majority of a large network. For example, adapter-tuning
(Pfeiffer et al., 2020) introduces a small number of additional
trainable parameters for the target tuning while keeping the
source network frozen. Cai et al. (2020) suggest an efficient
parameter adjustment, focusing specifically on fine-tuning the
bias terms at each layer. Hu et al. (2022) present LoRA, which
enables PEFT by re-parameterizing some of the weight matri-
ces in a large network to introduce low-rank updates. While

these PEFT techniques hold promise for efficient transfer,
there is no established de facto method, let alone for fake news
detection. Importantly, the existing PEFT methods overlook
the effective transfer of multimodal representations that focus
on improving computation efficiency while achieving satis-
factory performance. According to Han et al.’s (2024) tax-
onomy, PEFT can be categorized into additive fine-tuning for
adapters and prefixes, re-parameterized fine-tuning for LoRA
and its variants, and selective fine-tuning for pruning and Fish-
Mask. Model patch falls under selective fine-tuning. A critical
motivation of our MP design in MT-GPD is to reduce compu-
tational complexity through the reduction of parameters that
need to be fine-tuned without sacrificing or even potentially
enhancing model performance. We believe that normalizing
the representations of individual modalities and patching the
fused representation can maximize the sharable knowledge
and facilitate the process of multimodal cross-domain transfer.
As a result, we design a customized MP, as shown in Figure 4.

Our customized MP fine-tunes only the normalization lay-
ers, gating network, and the two dense layers for several
reasons. First, MT-GPD preserves the key knowledge for fake
news detection learned from the source domain within the
frozen layers. Second, those tunable MP layers, such as BN and
dense layers, contribute to the generalizability of our model
patch design for TL by transforming domain-specific knowl-
edge for a target domain. Third, those tunable layers carry a
small portion of the parameters of the entire model, thereby
enhancing the computational efficiency of fine-tuning.

Our tailored MP design freezes the majority of percep-
tion layers of image- and text-only models and focuses on
tuning post-transfer multimodal representations to improve
the quality of domain-specific multimodal representations.
To avoid ad hoc MP design, which often requires an
exhaustive brute force search, we simplify the patch (i.e.,
LN+Gating+BN+Dense). It strategically incorporates
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Figure 5. The domain classifier for aligning the latent representation with the target domain.

layer normalization (LN) (Ba et al., 2016) and BN (Ioffe and
Szegedy, 2015) for effective and efficient model adaptation
via scale-and-bias patch. To capture the basic statistics of
the content in each modality of individual news articles, we
introduce LN layers within text and image network layers.
Accordingly, LN separates domain-specific and domain-
independent knowledge for each modality of a news article.
We also inject a BN layer for the gating features to learn the
statistics of each dimension of the multimodal representation,
which facilitates the sharing and fine-tuning of multimodal
representation within the latent space. The condensed mul-
timodal fusion rules embedded in the single-layer gating
network are required to swiftly adapt to domain-specific
sample distributions through TL and fine-tuning. The final
layers that transform multimodal representations into a
fake news detection decision are fine-tuned to enhance the
accuracy of detection in a target news domain. In the end,
MT-GPD fine-tunes only 48,033 parameters while freezing
other 2,127,312 parameters.

3.5 Auxiliary Mechanism #3: A News Domain
Classifier

News articles are in different domains, each exhibiting some
unique characteristics and properties. Reinemann et al. (2012)
categorize news into hard news, soft news, and general news.
Hard news (e.g., political news) is characterized by immedi-
ate reporting and short lifespan; soft news (e.g., entertainment
news) can be reported at any time with little or no intrin-
sic social importance; and general news (e.g., health news) is
important but not necessarily urgent for reporting.

The content of news and the ways of fabricating news are
expected to vary considerably across different domains. To
cope with such heterogeneities, in MT-GPD, we propose a
news domain classifier (DC) (Figure 5) as the third auxiliary

mechanism to facilitate multimodal TL for fake news detec-
tion by automatically adjusting latent news representations,
enabling the detection of diverse fabrication patterns.

The pre-trained DC enables MT-GPD to align multimodal
representations with a target news domain. The proposed DC
distinguishes itself as a multi-class classifier that predicts the
specific target news domain to which a news article belongs.
It is specifically designed to fortify the precise alignment of
latent multimodal representations of a news article after the
transfer of knowledge by facilitating the backpropagation pro-
cess to effectively shift the multimodal representations from a
source to a target domain without fine-tuning. When a trans-
ferred network generates a misaligned latent representation
of a news article in the target domain, it risks misclassifying
fake news due to differing fabrication patterns. Backpropaga-
tion through the DC enhances the alignment process, thereby
improving fake news detection. Note that this DC mecha-
nism does not require explicit domain information. Instead, it
adapts the learned news characteristics of each news domain
without requiring domain-specific knowledge. To minimize
possible negative transfer, we define a combined loss function,
as shown in Eq (3):

L = 1
N

N∑

n=1

(𝛼 × l1(𝜃; y1(n), o1(n))

+ (1 − 𝛼) × l2(𝜃; y2(n), o2(n))) (3)

where 𝛼 is a convex weight that indicates the relative impor-
tance of latent feature representation of each modality to
correctly detect a news article as fake or real; 𝜃 denotes all
the parameters; l1 and l2 are loss functions; y 1(n) and o1(n)

are the actual label and predicted output for fake news detec-
tion in the target news domain, respectively; and y2(n) and o2(n)

are the actual and predicted target news domain labels for news
domain classification, respectively. The back-propagation pro-
cess, aimed at minimizing the loss function (see Eq (3)), yields
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gradients to update the latent representations generated by
the upper hidden layers of the neural network. Such gradi-
ent updates, guided by the second term in Eq. (3) involving
the domain classifier, ensure an improved representation align-
ment with the target domain. In instances where the generated
latent representations are already well aligned, the loss from
the second term becomes zero, resulting in no further updates
to the latent representation. Consequently, the well-aligned
latent representations minimize the need for fine-tuning the
bottom classification layers, thereby facilitating transfer learn-
ing. We built a multi-class CNN-based classifier by using a
diverse set of authentic news articles to detect the specific
domain of individual news articles automatically by using
the multimodal representations of news text and image. The
architecture of the news DC mirrors that of our baseline text-
and image-only CNNs. We used Adam as the optimizer and
the sparse categorical cross entropy loss function and set the
number of training epochs as 10 with a batch size of 32.

The proposed domain classifier introduces an innovative
role in facilitating TL, ushering in the paradigm of self-
supervised learning. By leveraging unlabeled data (i.e., with-
out requiring fake news labels) for training, the self-supervised
approach ensures effective learning of representations for
downstream tasks. In our design, MT-GPD leverages the
domain classifier to improve the domain-specific representa-
tions of the news text and image. Auxiliary learning delves
into the exploration of diverse auxiliary tasks, aiming to lever-
age these tasks for learning latent representations that are not
only useful but also highly effective. This enhanced effec-
tiveness contributes to MT-GPD’s enhanced generalization
capabilities and facilitates its rapid convergence, which has
never been explored in the literature on multimodal transfer
learning for fake news detection. Although the term domain
classifier has been used in a few other studies, it was designed
for different purposes in those studies. For instance, Ng et al.
(2023) deployed a binary classifier to determine which one
of the two subsequent processing should be performed. Shu
et al. (2022) used a classifier to force BERT to generate
a domain-independent representation. Moreover, both stud-
ies proposed text-only based models instead of multimodal
models. Although the proposed domain classifier primarily
addresses the adaptation of latent embeddings to different
news domains, it can be pre-trained to classify news into
subcategories or other categorizations beyond general news
domains, such as articles favoring different political parties,
depending on specific requirements and availability of data or
domain expertise.

3.6 A Summary of Design Novelties of MT-GPD
Unlike existing literature (See online Appendix B in the E-
companion), MT-GPD incorporates several novel methodolog-
ical designs. First, in contrast to previous multimodal fake
news detection methods that directly concatenate text and

image representations, MT-GPD incorporates a gating net-
work that dynamically calculates the gating scores of news text
and images reflecting their relative importance, then uses those
scores to adjust the weights of text and image representations,
leading to customized adaptation and fusion of multimodal
features. Second, MT-GPD provides a solution and guidance
on what to transfer and what to fine-tune when transferring a
classification model for fake news detection. The model patch
design is aimed at minimizing the number of parameters to
be fine-tuned while striving for optimal model performance
by fine-tuning only the normalization layers and maximizing
the shared weights. The design artifact facilitates MT-GPD in
establishing domain-independent knowledge while also devel-
oping domain-specific knowledge. Third, MT-GPD deploys
self-supervised auxiliary learning via a domain classifier that
leverages the inherent and characteristic differences among
news articles across different domains to achieve aligned
knowledge representation. Last, the novel multimodal TL
approach used by MT-GPD addresses the limitations of current
PTM-based TL, such as the transfer of domain-independent
generic representations and ad hoc practice of fine-tuning for
downstream tasks.

4 Evaluation

4.1 Datasets
In this study, we used news datasets collected from four diverse
domains to evaluate MT-GPD. Among them, the political and
entertainment news datasets were drawn from the FakeNews-
Net (Shu et al., 2020); the health dataset from the CoAID and
ReCovery datasets (Feng et al., 2022), and the technology-
related news dataset from Desai et al. (2022). We performed
data cleaning tasks, including removing logos from news arti-
cles and filtering news samples lacking images. After data
cleaning, the political news dataset consists of 320 real and
164 fake news articles (1582 words/article on average); the
entertainment news dataset consists of 2620 real and 2581
fake news articles (697 words/article on average); the health
dataset consists of 927 real and 309 fake news articles (761
words/article on average); and the technology dataset con-
sists of 305 real and 823 fake technology-related news articles
(1131 words/article on average).

We select those datasets for several reasons. First, they
come from diverse domains, which serve the objective of
this study well. Second, they vary in sample sizes, average
news lengths, and real-fake news ratios, allowing us to eval-
uate the robustness of MT-GPD. Third, they are multimodal
news datasets, in which each news article includes both textual
and image content. Fourth, previous studies have used those
datasets, as mentioned above. The sizes of our datasets are
comparable to, or larger than, those used in many prior studies,
such as Giachanou et al. (2020) (2745 fake, 2714 real), Pham
et al. (2021) (819 fake, 4018 real), Cruz et al. (2020) (1603
fake, 1603 real), Goel et al. (2021) (240 fake, 240 real), Silva
et al., (2021) (1673 fake, 4264 real), Meel and Vishwakarma
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(2021) (2121 fake, 1867 real), and Hua et al. (2023) (562 fake,
1297 real). Because the general notion of TL is to transfer
knowledge learned from one domain/task with larger data to
a target domain/task with less data (Yu et al., 2020), we select
the entertainment dataset as the source-domain data, and other
three datasets as separate target-domain datasets.

4.2 Modeling Tasks and Settings
We design and perform four incremental tasks to assess
the effectiveness of MT-GPD and its auxiliary mechanism
designs. Task 1 focuses on building a news DC (domain clas-
sifier). We randomly split each dataset into training (80%)
and testing (20%) data. We also measure the cross-domain
news similarity. Task 2 compares the performance of the base-
line single-modal and multimodal TL models without any of
the proposed auxiliary mechanisms with those of the baseline
models without TL in cross-domain fake news detection. Task
3 investigates the impact of each auxiliary mechanism, namely
the gating network (GN), customized model patch (MP), and
DC, on MT-GPD performance via ablation experiments. Task
4 compares the performance of MT-GPD against fourteen
baseline models, including EANN (Wang et al., 2018), IMD
(Singhal et al., 2021), SpotFake+ (Singhal et al., 2020), EM-
FEND (Qi et al., 2021), MVAE (Khattar et al., 2019), MCAN
(Wu et al., 2021), MMFND (Giachanou et al., 2020), both
fine-tuned and not fine-tuned LLaVA (Liu et al., 2024) and
LLaMA-3 (Touvron et al., 2023), attRNN (Jin et al., 2017),
FT2, and FT2-GD (Appendix H in the E-companion). All
but attRNN and non-fine-tuned LLaVA and LLaMA-3 are
PTM-based multimodal TL models. FT2 and FT2-GD, the two
MT-GPD variational models, are double fine-tuned PTM base-
line models, while other PTM-based models are fine-tuned
only once with target-domain news.

We downloaded the code of all the baseline models that are
publicly available on GitHub, except FT2, FT2-GD, LLaVA,
and LLaMA-3, and then fine-tuned and tested them using our
datasets directly without making any changes. The baseline
models were optimized by the Adam optimizer. For the sake
of modeling complexity and paper length, we only employed
the technology news dataset in tasks 1 and 4.

4.3 Evaluation Metrics
We use precision (P), recall (R), F1-measure (F1), and accu-
racy (A) as metrics to evaluate model performance. Precision
measures the proportion of detected fake news articles actu-
ally being fake. Recall measures the proportion of actual fake
news detected correctly. F1 is a harmonic mean of precision
and recall (i.e., 2 ∗ Precision ∗ Recall∕(Precision + Recall)).
Accuracy is measured as the percentage of news articles being
detected correctly. Due to the imbalanced distributions of real
and fake news articles in our datasets, we use macro precision,
macro recall, and macro-F1 (Mortaz, 2020) because they are
more suitable for imbalanced data.

We deploy Monte Carlo cross-validation (Xu and Liang,
2001), also known as repeated random subsampling cross-
validation, for the target domains. The training/testing process
was repeated 30 times, generating 30 different training and
testing data partitions for each target domain. The reported
model performance is the average model performance of 30
runs.

5 Results

5.1 Task 1: Constructing the Domain Classifier and
Measuring News Similarity Across Domains
The evaluation results of the proposed pre-trained auxiliary
DC show an overall accuracy of 94.7%. The precision, recall,
and F1 scores are 92.9%, 95.4%, and 94.1% for the poli-
tics domain, 91.7%, 93.9%, and 92.8% for the entertainment
domain, 92.5%, 93.9%, and 93.2% for the health domain,
and 93.6%, 92.7%, and 93.1% for the technology domain,
respectively.

The similarity between the source (entertainment) and each
target domain (i.e., politics, health, and technology) may influ-
ence TL performance. The lower the similarity, the more chal-
lenging the TL. We computed radial basis function-centered
kernel alignment (CKA) similarity scores based on the text
and image embeddings separately (see online Appendix C in
the E-companion). We make several major observations from
Table 1. First, there are varying degrees of similarity among
those domains. Second, the levels of similarity among fake
news articles across different domains are higher than those
among real news articles. One possible reason is that the cre-
ators of fake news may deploy similar fabrication strategies
across different news domains, which is less likely for real
news. Third, the textual content exhibits much higher levels of
similarity compared to the image content across various news
domains.

5.2 Task 2: Examining the Impact of Transfer
Learning on Detection Performance
5.2.1 Comparison of Baseline Models with TL vs. Without TL.
We built three baseline deep TL models using news text only,
news image only, and multimodal (i.e., both text and image)
news representation, respectively. For all three TL models, the
entertainment news articles were used as the source domain
data, and the politics and health news were used as two sepa-
rate target domain datasets. To explore the generalizability of
fake news detection models across news domains and the ben-
efit of TL, we also developed 1) three corresponding models
without TL as baselines that used the data from the same tar-
get domains for both training and testing (referred to as w/o
TL models); and 2) another three corresponding models with-
out TL that were trained with the source-domain training data
and then directly tested with the test data of target-domain data
(referred to as w/o_d models).
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Table 1. CKA similarity scores between the source (entertainment) and target domains.

Target domains Modality Fake news Real news All news Fake vs. real news

Politics Text 0.563 0.425 0.324 0.557
Image 0.236 0.133 0.089 0.202

Health Text 0.369 0.159 0.125 0.371
Image 0.139 0.050 0.041 0.066

Technology Text 0.281 0.178 0.113 0.403
Image 0.019 0.050 0.011 0.035

The baseline models with and without TL were all con-
structed with CNN. The text-only baseline models without TL
(i.e., w/o TL and w/o_d models) were composed of embed-
ding (Emb), convolutional (Conv), LN, max pooling (MaxP),
and dense (Den) layers (see details in the online Appendix D
in the E-companion). The optimal parameters of different lay-
ers were empirically learned via a grid search. Specifically,
the Emb layer took a sequence of n words from news text
starting from the beginning as the input. We experimented
with a number of different values of n in the range of 100 to
1500 words, with an increment of 50. The models achieved
the optimal performance when the text length was 500 words,
which we selected as the maximum length. If the length of a
news article exceeds this maximum length, the news would
be truncated - only the first 500 words would be considered.
If the length of a news article is fewer than 500 words, then
padding would be used. The optimal word embedding dimen-
sion was empirically set to 200 via a grid search in the range
of [50, 500], with an increment of 50. The Conv layer itera-
tively takes a consecutive sequence of h words (window size)
in the sentence S as the input and generates a feature vector as
the output. The optimal filter and window size were 296 and
5, respectively; the LN layer follows the Conv layer, aiming to
accelerate network training by reducing internal covariate shift
and the dependence of gradients on the scale of parameters; the
MaxP layer lowers the computational burden by reducing
the number of connections between convolutional layers; and
the Den layer deploys the ReLU activation function. The
optimal number of nodes in the Den layer was empirically
determined as 300. The final dense layer consisted of a sin-
gle node that indicates whether a news article was fake or not.
The models performed the best when using the batch size of
24 and running 30 training epochs.

The architecture of the image-only baseline CNN models
without TL contained five Conv layers, consisting of 32, 32,
32, 64, and 64 nodes, respectively (see online Appendix E in
the E-companion). Each Conv layer was followed by an LN
layer, a dropout layer, and a MaxP layer. To avoid overfitting,
we introduced a dropout layer that regularized the network by
randomly deactivating a set of hidden units of a network layer
and then training different subnetworks iteratively while shar-
ing weights. The final two dense layers were identical to those
used in the text-based CNN baseline model. The dimension
size of image embedding was 1,600, and network parameters
were optimized by minimizing the loss function.

Table 2 presents the performances of the baseline mod-
els. P, R, F1, and A in Table 2 represent macro precision,
macro recall, macro F1-measure, and accuracy, respectively.
We first compared w/o TL and w/o_d models without trans-
fer learning across different modalities. The results show that
w/o TL models outperform w/o_d models across all four
performance measures on both politics and health datasets
(p< .001). Therefore, we only use the w/o TL models for
subsequent analyses. To examine the effects of TL and modal-
ity on fake news detection, we performed repeated measures
ANOVA. The results reported in Table 3 yield significant main
effects of TL (p< .001 or .05), modality (p< .001), and their
interaction (p< .001 or .05) across all measures for both the
politics and health datasets, except for the accuracy of political
news (p> .05) and the precision of health news (p> .05).

Given the significant interaction of TL and modality,
we performed post hoc contrast analyses on the effect of
TL for each modality separately. The results show that
TL improves all four performance measures of the text-
only model (p< .001) for both target datasets. Similarly, TL
improved all the measures of the multimodal models with both
politics and health datasets (i.e., target domains). However, TL
has a negative influence on all the performance measures of
the image-only model (p< .001) except the accuracy of health
datasets (p> .05). These results reveal different effects of TL
for different modalities. First, it is important to examine the
effect of multimodal models relative to unimodal counterparts
to gain a deeper understanding of the effect of TL. Second,
there is a need to consider the different roles of textual and
image news content in fake news detection.

5.2.2 Effects of Modality. Given the significant main effect
of modality, we performed post hoc multiple comparisons
of modality with Bonferroni adjustments on the politics and
health datasets. The results are reported in Table 4.

Results reveal that the baseline multimodal model consis-
tently outperforms the unimodal counterparts (i.e., text-only
and image-only models) in all four performance measures
across both datasets (p< .001). In addition, the text-only
model outperforms the image-only model (p< .001). Because
the baseline multimodal TL model performs the best among
all baseline models with and without TL, we only focus on
the multimodal TL model for the remaining modeling and
analyses.
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Table 2. Descriptive statistics for models without and with baseline transfer learning.

Politics Health

Models Modality P R F1 A P R F1 A

w/o_d Text-only 0.530 0.506 0.516 0.459 0.656 0.505 0.549 0.595
Image-only 0.491 0.490 0.475 0.582 0.479 0.478 0.475 0.587
Multimodal 0.498 0.468 0.478 0.457 0.574 0.499 0.527 0.586

w/o_TL Text-only 0.816 0.705 0.757 0.774 0.840 0.718 0.774 0.785
Image-only 0.603 0.585 0.584 0.654 0.622 0.623 0.621 0.711
Multimodal 0.836 0.735 0.782 0.797 0.853 0.735 0.790 0.806

with_TL Text-only 0.835 0.723 0.775 0.802 0.861 0.737 0.794 0.814
Image-only 0.479 0.488 0.450 0.608 0.579 0.549 0.548 0.716
Multimodal 0.859 0.755 0.804 0.826 0.878 0.755 0.812 0.834

Note: The bold indicates the best performance.

Table 3. Effects of transfer learning and modality.

P R F1 A

Variables F-Value p-Value F-Value p-Value F-Value p-Value F-Value p-Value

(a) Politics

TL 29.7 <0.001 1622.1 <0.001 81.0 <0.001 1.321 >0.05
Modality 1383.5 <0.001 43.6 <0.001 2407.1 <0.001 956.7 <0.001
TL* modality 105.6 <0.001 217.3 <0.001 265.2 <0.001 70.9 <0.001

(b) Health

TL 0.027 >0.05 36.1 <0.001 25.0 <0.001 86.5 <0.001
Modality 2675.5 <0.001 1801.6 <0.001 3230.0 <0.001 828.6 <0.001
TL* modality 64.0 <0.001 278.7 <0.001 216.9 <0.001 15.7 <0.001

Table 4. Results of mean comparisons between unimodal and multimodal TL models.

Modalities Politics Health

Measures (I) (J) (I-J) SE p-Value (I-J) SE p-Value

Precision Multi-modal Text 0.028 0.001 <0.001 0.015 0.002 <0.001
Image 0.276 0.005 <0.001 0.265 0.005 <0.001

Text Image 0.248 0.005 <0.001 0.250 0.005 <0.001
Recall Multi-modal Text 0.031 0.001 <0.001 0.018 0.001 <0.001

Image 0.209 0.005 <0.001 0.159 0.004 <0.001
Text Image 0.178 0.005 <0.001 0.141 0.003 <0.001

F1-measure Multi-modal Text 0.028 0.001 <0.001 0.016 0.001 <0.001
Image 0.276 0.005 <0.001 0.217 0.004 <0.001

Text Image 0.248 0.005 <0.001 0.200 0.004 <0.001
Accuracy Multi-modal Text 0.023 0.002 <0.001 0.020 0.001 <0.001

Image 0.180 0.005 <0.001 0.107 0.003 <0.001
Text Image 0.157 0.005 <0.001 0.086 0.003 <0.001

5.3 Task 3: Evaluation of Individual Auxiliary
Mechanisms

5.3.1 Effects of Individual Auxiliary Mechanisms on Detection

Performance. We conduct an ablation experiment to investigate

the effect of the proposed individual auxiliary mechanisms on

the performance of the multimodal TL model in cross-domain

fake news detection. The descriptive statistics of the model

performances with various combinations of the proposed aux-

iliary mechanisms are reported in Table 5, where ‘+’ (or ‘−’)

denotes adding (or not adding) the corresponding auxiliary

mechanism to the baseline multimodal TL model.

We ran a repeated ANOVA by using DC, GN, and MP as

within-subjects variables, all taking binary values. The results

reported in Table 6 show that each of the three proposed
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Table 5. Performances of MT-GPD with different auxiliary mechanisms.

Auxiliary mechanisms Politics Health

GN MP DC P R F1 A P R F1 A

− − − 0.859 0.755 0.804 0.826 0.878 0.755 0.812 0.834
− − + 0.871 0.781 0.824 0.845 0.896 0.824 0.858 0.854
− + − 0.875 0.803 0.837 0.851 0.896 0.800 0.845 0.854
− + + 0.915 0.846 0.879 0.874 0.894 0.835 0.864 0.864
+ − − 0.877 0.784 0.827 0.850 0.894 0.775 0.830 0.854
+ − + 0.889 0.815 0.850 0.874 0.898 0.855 0.876 0.869
+ + − 0.912 0.828 0.867 0.875 0.919 0.818 0.866 0.880
+ + + 0.916 0.860 0.885 0.890 0.923 0.898 0.911 0.902

Note: P, R, F1, and A denote precision, recall, F1-measure, and accuracy. The bold indicates the best performance.

Table 6. Effects of auxiliary mechanisms on model performance.

Precision Recall

Politics Health Politics Health

Auxiliary mechanisms F(1,29) P-Value F(1,29) P-Value F(1,29) P-Value F(1,29) P-Value

(a) Macro precision and macro recall

GN 244.5 <0.001 570.2 <0.001 83.2 <0.001 612.7 <0.001
MP 419.0 <0.001 467.9 <0.001 470.0 <0.001 715.0 <0.001
DC 94.8 <0.001 60.7 <0.001 187.1 <0.001 3122 <0.001
GN*MP 0.213 >0.05 108.7 <0.001 5.6 <0.05 28.6 <0.001
GN*DC 49.1 <0.001 4.5 <0.05 0.217 >0.05 75.5 <0.001
MP*DC 11.9 <0.01 28.9 <0.001 2.5 >0.05 41.3 <0.001
GN*MP*DC 53.2 <0.001 33.5 <0.001 2.0 >0.05 36.7 <0.001

F1 Accuracy

Politics Health Politics Health

Auxiliary mechanisms F(1,29) P-Value F(1,29) P-Value F(1,29) P-Value F(1,29) P-Value

(b) Macro F1 and accuracy

GN 127.5 <0.001 1104 <0.001 319.5 <0.001 487.3 <0.001
MP 926.4 <0.001 1116 <0.001 393.4 <0.001 407.9 <0.001
DC 250.8 <0.001 2241 <0.001 194.0 <0.001 215.6 <0.001
GN*MP 4.5 <0.05 75.4 <0.001 6.5 <0.05 44.5 <0.001
GN*DC 9.0 <0.01 52.6 <0.001 .317 >0.05 2.0 >0.05
MP*DC 5.6 <0.05 80.2 <0.001 .982 >0.05 1.5 >0.05
GN*MP*DC 13.2 <0.01 71.9 <0.001 7.1 <0.05 11.7 <0.01

mechanisms has a positive effect on all the performance mea-
sures for both datasets (p< .001). Given the positive roles of
the three auxiliary mechanisms, the proposed MT-GPD inte-
grates all of them. To understand whether those facilitative
mechanisms have additive effects, we conducted another abla-
tion experiment. To this end, we performed repeated measures
ANOVA by using an auxiliary mechanism as the independent
variable, followed by post hoc multiple comparisons between
MT-GPD and other multimodal TL models incorporating
fewer mechanisms with Bonferroni adjustments.

The results reported in Table 7 show that with the health
target domain, MT-GPD outperforms all other models in all
the performance measures (p< .001) except the precision of

the TL+GN+MP (i.e., removing DC from MT-GPD) model

(p> .05). For the politics dataset, first, MT-GPD outperforms

all the other models incorporating one or no auxiliary mech-

anism across all the performance measures (p< .001). It also

consistently outperforms TL+GN+DC (i.e., removing MP)

across all the performance measures (p< .001). Second, MT-

GPD outperforms TL+MP+DC in terms of recall and accu-

racy (p< .001), but the improvements in precision and F1

are insignificant (p> .05). Similarly, MT-GPD outperforms

TL+GN+MP in recall (p< .001), F1 (p< .001), and accu-

racy (p< .05), but not precision (p> .05). The results show

that MT-GPD can better facilitate TL for fake news detection
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Table 7. Multiple comparison results of auxiliary mechanisms.

Politics Health

(J) (MT-GPD-J) SE p-Value (MT-GPD-J) SE p-Value

(a) Precision

TL 0.057 0.002 <0.001 0.046 0.002 <0.001
TL+DC 0.046 0.003 <0.001 0.028 0.001 <0.001
TL+GN 0.039 0.002 <0.001 0.029 0.001 <0.001
TL+MP 0.041 0.002 <0.001 0.028 0.001 <0.001
TL+MP+DC 0.001 0.002 >0.05 0.029 0.001 <0.001
TL+GN+DC 0.028 0.002 <0.001 0.025 0.001 <0.001
TL+GN+MP 0.005 0.003 >0.05 0.005 0.002 >0.05

(b) Recall

TL 0.105 0.003 <0.001 0.143 0.003 <0.001
TL+DC 0.079 0.003 <0.001 0.074 0.003 <0.001
TL+GN 0.077 0.009 <0.001 0.124 0.003 <0.001
TL+MP 0.058 0.003 <0.001 0.098 0.003 <0.001
TL+MP+DC 0.014 0.004 <0.05 0.063 0.005 <0.001
TL+GN+DC 0.045 0.003 <0.001 0.043 0.003 <0.001
TL+GN+MP 0.033 0.005 <0.001 0.08 0.003 <0.001

(c) F1

TL 0.081 0.003 <0.001 0.099 0.003 <0.001
TL+DC 0.062 0.003 <0.001 0.052 0.003 <0.001
TL+GN 0.058 0.003 <0.001 0.081 0.003 <0.001
TL+MP 0.048 0.003 <0.001 0.065 0.003 <0.001
TL+MP+DC 0.006 0.003 >0.05 0.047 0.003 <0.001
TL+GN+DC 0.035 0.003 <0.001 0.034 0.003 <0.001
TL+GN+MP 0.018 0.003 <0.001 0.045 0.003 <0.001

(d) Accuracy

TL 0.065 0.003 <0.001 0.068 0.001 <0.001
TL+DC 0.046 0.003 <0.001 0.048 0.002 <0.001
TL+GN 0.041 0.005 <0.001 0.048 0.002 <0.001
TL+MP 0.040 0.003 <0.001 0.048 0.002 <0.001
TL+MP+DC 0.016 0.003 <0.001 0.038 0.001 <0.001
TL+GN+DC 0.017 0.002 <0.001 0.033 0.001 <0.001
TL+GN+MP 0.015 0.004 <0.05 0.022 0.002 <0.001

by incorporating the proposed auxiliary mechanisms. Incorpo-
rating more auxiliary mechanisms leads to better performance.

5.3.2 The Benefits of Model Patch. We conducted a sensitiv-
ity test on our current model patch design (i.e., the baseline)
by gradually adding (or removing) network layer(s) from the
proposed model patch, and then tested the updated MT-GPD
model with test news samples in the technology dataset. The
sensitivity analysis results presented in Table G1 in Online
Appendix G in the E-companion show that our current model
patch design leads to the optimal model performance in fake
news detection than other alternative designs of model patch
(MP). We also assessed the impact of MP on computational
cost measured by (a) FLOPS (Floating Point Operations Per
Second) and (b) memory usage required for fine-tuning of
MT-GPD, (c) inference time (i.e., the time that MT-GPD uses
to predict), and d) model performance. We fine-tuned and

assessed the model using the technology dataset on a server,
including four NVIDIA RTX A5000 GPU cards with 128
CPUs. As shown in Table 8, compared to MT-GPD with
full-parameter fine-tuning, MT-GPD with the proposed MP
required significantly less FLOPS and memory for fine-tuning,
took similar inference time (because both models shared the
identical network architecture), and achieved better detection
performance. These results clearly demonstrate the benefits of
the proposed model patch for fine-tuning MT-GPD.

Lastly, considering that there are other PEFT methods,
such as LoRA (Hu et al., 2022), we implemented and tested
another variant of MT-GPD by replacing the MP with LoRA.
The results, as reported in Table 9, show that replacing MP
with LoRA in MT-GPD significantly worsens the performance
of MT-GPD in fake news detection across different target
domains.
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Table 8. Comparison of partial (with MP) vs. full-parameter fine-tuning (w/o MP) of MT-GPD.

Scale of fine-tuning Memory usage FLOPS Inference time (seconds) P R F1 A

Partial fine-tuning via MP 2,761 MB 96.2 0.729 0.975 0.934 0.952 0.964
Complete fine-tuning 8,580 MB 12,900 0.733 0.918 0.915 0.931 0.936

Table 9. The performance of MT-GPD with different PEFT methods and target datasets.

Politics Health Technology

PEFT methods P R F1 A P R F1 A P R F1 A

LoRA 0.896 0.783 0.803 0.870 0.393 0.502 0.437 0.730 0.745 0.678 0.662 0.785
MP 0.916 0.860 0.885 0.890 0.923 0.898 0.911 0.902 0.975 0.934 0.952 0.964

Table 10. Performances of the baseline models vs. MT-GDP.

Politics Health Technology

Models P R F1 A P R F1 A P R F1 A

SpotFake+ 0.759 0.709 0.709 0.770 0.740 0.638 0.601 0.744 0.746 0.700 0.657 0.772
EANN 0.765 0.732 0.735 0.772 0.739 0.647 0.654 0.782 0.837 0.799 0.805 0.854
IMD 0.768 0.705 0.709 0.766 0.834 0.550 0.511 0.772 0.752 0.614 0.777 0.835
EM-FEND 0.740 0.686 0.676 0.763 0.741 0.632 0.636 0.786 0.835 0.807 0.812 0.856
MVAE 0.786 0.754 0.756 0.791 0.736 0.697 0.701 0.794 0.872 0.864 0.864 0.893
MCAN 0.790 0.757 0.761 0.797 0.767 0.652 0.661 0.797 0.830 0.798 0.802 0.851
MMFND 0.790 0.679 0.684 0.765 0.706 0.568 0.549 0.770 0.809 0.773 0.784 0.846
LLaVA 0.577 0.596 0.501 0.508 0.515 0.519 0.468 0.489 0.549 0.558 0.481 0.487
LLaMA-3 0.513 0.510 0.507 0.670 0.511 0.512 0.511 0.625 0.500 0.500 0.500 0.500
FT LLaVA 0.834 0.917 0.855 0.875 0.859 0.715 0.751 0.847 0.932 0.965 0.946 0.956
FT LLaMA-3 0.924 0.786 0.828 0.890 0.750 0.663 685 0.801 0.898 0.886 0.892 0.916
attRNN 0.778 0.686 0.690 0.761 0.744 0.614 0.607 0.772 0.812 0.787 0.791 0.840
FT2 0.813 0.715 0.761 0.771 0.786 0.677 0.728 0.740 0.933 0.796 0.836 0.890
FT2-GD 0.913 0.853 0.882 0.889 0.918 0.895 0.906 0.901 0.964 0.896 0.922 0.944
MT-GPD 0.916 0.860 0.885 0.890 0.923 0.898 0.911 0.902 0.975 0.934 0.952 0.964

Note: The bold indicates the best performance.

5.4 Task 4: Comparison of MT-GPD vs. the
PTM-Based TL Baselines

5.4.1 Performance Comparison. We compared the effective-
ness of MT-GPD in cross-domain fake news detection against
that of 14 baseline models introduced in Section 4.2 using the
politics, health, and technology datasets as the target domain.
Those datasets differ in not only news domains but also sam-
ple sizes and real-fake news ratios, which can provide insights
into the robustness of MT-GPD. The results are reported in
Table 10.

We compared the performances between MT-GPD and
individual baseline models. The results reported in Table 11
reveal that MT-GPD consistently and significantly outper-
forms all non-LLM baseline models across all measures for all
three target domains (p< .001), with the exception of insignif-
icant improvements in F1 and accuracy for political news and
in recall and accuracy for health news when compared to
FT2-GD (p> 0.05). In addition, both double fine-tuned FT2
and FT2-GD models generally outperform the other three

models with single fine-tuning, and FT2-GD outperforms
FT2. These results demonstrate the superior performance and
robustness of our proposed individual auxiliary mechanisms,
as well as MT-GPD as a whole. Furthermore, the results of
FT2 and FT2-GD suggest that PTM-based TL models should
undergo double fine-tuning with both source and target domain
data, instead of single fine-tuning with target domain data
only, which has been commonly deployed in existing studies.
MT-GPD also significantly outperforms both LLaMA-3 and
LLaVA without fine-tuning (i.e., direct testing).

To gain more insights, we also tested the performance of
the fine-tuned LLaMA-3 and LLaVA using LoRA. Fine-tuning
those large models is very computationally intensive and time-
consuming. For example, fine-tuning LLaMA and LLaVA on
the server with four NVIDIA A100 GPUs using the tech-
nology dataset alone and Monte Carlo cross-validation took
approximately 30 days, in contrast to approximately 504 min
required for fine-tuning MT-GPD on less powerful GPUs (e.g.,
four NVIDIA RTX A5000) with the same dataset. Thus, we
only fine-tuned and tested LLaMA and LLaVA with each of
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Table 11. Multiple comparisons between MT-GPD and individual baselines.

Politics Health Technology

Baselines (J) M (MT-GPD-J) SE p-Value (MT-GPD-J) SE p-Value (MT-GPD-J) SE p-Value

SpotFake+ P 0.158 0.017 <0.001 0.183 0.023 <0.001 0.229 0.045 <0.001
R 0.152 0.014 <0.001 0.260 0.017 <0.001 0.235 0.029 <0.001
F1 0.176 0.016 <0.001 0.310 0.020 <0.001 0.294 0.039 <0.001
A 0.121 0.009 <0.001 0.158 0.016 <0.001 0.192 0.030 <0.001

EANN P 0.151 0.010 <0.001 0.185 0.009 <0.001 0.138 0.007 <0.001
R 0.128 0.010 <0.001 0.252 0.009 <0.001 0.136 0.012 <0.001
F1 0.151 0.009 <0.001 0.256 0.009 <0.001 0.147 0.129 <0.001
A 0.118 0.008 <0.001 0.120 0.005 <0.001 0.110 0.098 <0.001

IMD P 0.148 0.011 <0.001 0.089 0.012 <0.001 0.223 0.018 <0.001
R 0.156 0.013 <0.001 0.348 0.017 <0.001 0.320 0.023 <0.001
F1 0.176 0.015 <0.001 0.400 0.019 <0.001 0.175 0.009 <0.001
A 0.124 0.010 <0.001 0.130 0.008 <0.001 0.128 0.006 <0.001

EM-FEND P 0.177 0.148 <0.001 0.182 0.049 <0.001 0.140 0.007 <0.001
R 0.174 0.109 <0.001 0.266 0.070 <0.001 0.128 0.009 <0.001
F1 0.209 0.139 <0.001 0.274 0.078 <0.001 0.139 0.007 <0.001
A 0.127 0.069 <0.001 0.116 0.022 <0.001 0.108 0.005 <0.001

MVAE P 0.130 0.050 <0.001 0.188 0.036 <0.001 0.103 0.005 <0.001
R 0.107 0.061 <0.001 0.201 0.056 <0.001 0.070 0.008 <0.001
F1 0.130 0.061 <0.001 0.209 0.056 <0.001 0.088 0.006 <0.001
A 0.099 0.048 <0.001 0.108 0.025 <0.001 0.071 0.004 <0.001

MCAN P 0.127 0.042 <0.001 0.157 0.039 <0.001 0.145 0.007 <0.001
R 0.104 0.062 <0.001 0.247 0.062 <0.001 0.137 0.011 <0.001
F1 0.125 0.060 <0.001 0.250 0.072 <0.001 0.149 0.009 <0.001
A 0.093 0.045 <0.001 0.105 0.017 <0.001 0.113 0.005 <0.001

MMFND P 0.151 0.006 <0.001 0.153 0.004 <0.001 0.128 0.007 <0.001
R 0.070 0.007 <0.001 0.193 0.026 <0.001 0.125 0.017 <0.001
F1 0.206 0.012 <0.001 0.343 0.011 <0.001 0.178 0.014 <0.001
A 0.125 0.007 <0.001 0.132 0.004 <0.001 0.117 0.007 <0.001

attRNN P 0.155 0.007 <0.001 0.151 0.003 <0.001 0.134 0.006 <0.001
R 0.082 0.009 <0.001 0.154 0.012 <0.001 0.122 0.010 <0.001
F1 0.199 0.012 <0.001 0.297 0.012 <0.001 0.165 0.010 <0.001
A 0.129 0.007 <0.001 0.130 0.003 <0.001 0.123 0.007 <0.001

FT2 P 0.104 0.001 <0.001 0.137 0.001 <0.001 0.042 0.003 <0.001
R 0.145 0.003 <0.001 0.221 0.003 <0.001 0.139 0.007 <0.001
F1 0.125 0.003 <0.001 0.183 0.002 <0.001 0.116 0.006 <0.001
A 0.119 0.003 <0.001 0.162 0.001 <0.001 0.074 0.004 <0.001

FT2-GD P 0.004 0.001 <0.05 0.006 0.001 <0.001 0.011 0.003 <0.001
R 0.008 0.003 <0.05 0.004 0.003 >0.05 0.038 0.007 <0.001
F1 0.004 0.003 >0.05 0.005 0.002 <0.05 0.030 0.006 <0.001
A 0.002 0.003 >0.05 0.001 0.003 >0.05 0.020 0.004 <0.001

the three target-domain datasets once, instead of repeating
the test for 30 runs like other baseline models. As a result,
we were not able to perform a statistical test in performance
differences between MT-GPD and LLaMA-3/LLaVA. The
performances of the fine-tuned LLaMA-3 and LLaVA shown
in Table 10 suggest that overall, MT-GPD outperforms both in
fake news detection. This is not totally surprising in that those
large language/multimodal models are not pre-trained for this
specific down-streaming task.

5.4.2 The Impact of Source-Domain and Target-Domain Data
Sizes and Class Balance on the Performance of MT-GPD in

Fake News Detection. To investigate the impact of the sam-

ple size of the source-domain dataset on the performance of

MT-GPD, we collected approximately 5000 additional enter-

tainment news. Half of them were fake news collected from

the Onion website (theonion.com), and the other half were real

news collected from FakeNewsNet that did not overlap with

our current entertainment news dataset. Then, we ran a sen-

sitivity analysis on MT-GPD’s performance by increasing the

size of the source-domain dataset from 1000 to 10,000 ran-

domly selected entertainment news articles, with an increment

of 1000 news articles.
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Figure 6. Results of sensitivity analysis on the impact of source-domain data size on MT-GPD performance.

Table 12. Performances of MT-GDP on various target-domain data sizes.

Politics Health Technology

Data P R F1 A P R F1 A P R F1 A

1/3 of data 0.827 0.786 0.805 0.814 0.838 0.806 0.821 0.819 0.873 0.842 0.855 0.874
2/3 of data 0.883 0.836 0.858 0.862 0.871 0.878 0.874 0.868 0.934 0.896 0.915 0.924
Full data 0.916 0.860 0.885 0.890 0.923 0.898 0.911 0.902 0.975 0.934 0.952 0.964

Note. P= Precision; R=Recall; F1= F1-score; A=Accuracy.

Table 13. Performances of MT-GDP with balanced and imbalanced target-domain datasets.

Politics Health Technology

Data P R F1 A P R F1 A P R F1 A

Balanced 0.914 0.859 0.885 0.888 0.921 0.895 0.908 0.890 0.970 0.930 0.950 0.960
Imbalanced 0.916 0.860 0.885 0.890 0.923 0.898 0.911 0.902 0.975 0.934 0.952 0.964

Note. P= Precision; R=Recall; F1= F1-score; A=Accuracy; imbalanced class is the full data.

The analysis results, as shown in Figure 6, reveal that in
general, MT-GPD performs the best when using 5000 source-
domain entertainment news articles for knowledge learning.
Further increasing this sample size does not lead to significant
improvements in model performance. This finding confirms
that our initial 5201 entertainment news samples in the orig-
inal source-domain dataset are adequate and appropriate for
effective knowledge learning and transfer in MT-GPD. We
also examined the impact of target-domain data size on the
performance of MT-GPD. Considering the already small sam-
ple size in our target domains, we randomly split the data in
each target domain into three folds and compared the perfor-
mances of MT-GPD when using one-third, two-thirds, and full
set of news articles in each target domain. The results shown
in Table 12. reveal that the model performance increases as
the target domain data size grows. In addition, the perfor-
mance improvement from 2/3 data to full data is smaller than
the performance improvement from 1/3 data to the 2/3 data). The
results also demonstrate the high effectiveness of MT-GPD

even when the target training dataset is very small (e.g., a cou-
ple of hundred news articles when only 1/3 of samples were
used).

We also examined the impact of balanced target-domain
data on the model performance by re-training the MT-GPD
model with balanced data (i.e., equal numbers of fake and real
news) in each target domain after removing the extra samples
from the majority class. Table 13 suggest that the performance
of MT-GPD trained on a balanced target-domain dataset is
similar to that trained on an imbalanced dataset. This find-
ing may be attributable to the relatively small size of each
target-domain full dataset.

5.4.3 Robustness Check of MT-GPD in Detection of Fake News
Created with Different Strategies. We also conducted a prelim-
inary robustness check of MT-GPD by testing it using ten
political and health-related multimodal fake news articles cre-
ated by different fabrication strategies, such as the negation of
real news text; real text with a fake image created by Genera-
tive AI; combining real text and a real image from two different
news articles; and real text with a fabricated image for another
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piece of news). The online Appendix F in the E-companion
reports the descriptions of those ten fake news articles, the
manipulation strategies used, the detection results from MT-
GPD, and the probability of news being fake. The results show
that the predicted probabilities of those sample articles being
fake range from 0.705 to 0.905, which provides preliminary
evidence for the high robustness of the MT-GPD model against
different fake news fabrication strategies.

6 Discussion

6.1 Major Findings and Alternative Explanations
The main objective of this research is to design and evaluate
a novel multimodal TL model enhanced by auxiliary mecha-
nisms for cross-domain fake news detection. First, basic TL
leads to improved fake news detection performance of the
text-only and multimodal models, but worse performance of
the image-only model. There are several possible explanations
for the latter (negative) effect: 1) the CKA scores reported in
the task 1 results indicate that the degrees of image similarity
among news articles across different domains are lower than
those of text similarity, which makes image-based TL more
challenging. The basic TL approach may be inadequate in
capturing and transferring pertinent knowledge from intricate
image data for the detection of fake news; 2) manipulating
images presents a greater challenge compared to fabricating
textual content in news. Consequently, fake news is more
likely to feature manipulated textual content than manipu-
lated images. This suggests that the knowledge acquired from
images in news articles from the source domain may be insuf-
ficient for fake news detection in a target domain; and 3) in our
datasets, the class labels of news articles were annotated at the
level of entire news articles, rather than at the level of indi-
vidual news text or image components. There was no ground
truth available regarding the presence of either manipulated
text, image content, or both, within a fake news article. Thus,
transferring fake news labels to image-only data may not work
well.

Second, the multimodal TL baseline model without
any auxiliary mechanisms consistently outperforms its uni-
modal counterparts. The observed performance improvement
becomes even more salient after incorporating the three pro-
posed auxiliary mechanisms.

Third, the conducted ablation experiment demonstrates that
each of the three proposed auxiliary mechanisms contributes
to improving the detection performance of the multimodal TL
model. Generally, more auxiliary mechanisms lead to better
detection performance. The findings of task 4 further indi-
cate that integrating the proposed auxiliary mechanisms into
existing PTM-based TL models with double fine-tuning can
also improve detection performance. These results underline
the efficacy, robustness, and generalizability of the proposed
auxiliary mechanisms in support of TL.

Fourth, MT-GPD outperforms the PTM-based TL models.
Our findings highlight the necessity and benefits of customized

TL. Additionally, double fine-tuning of PTM (i.e., FT2 and
FT2-GD) seem to be more effective than a single fine-tuning
counterpart. MT-GPD also shows much better performance
in fake news detection than LLaVA and LLaMA-3 when the
latter two models are directly applied to fake news detection
without fine-tuning. Even after fine-tuning those two large
language/multimodal models, MT-GPD still generally outper-
forms both. Moreover, fine-tuning LLaVA and LLaMA-3 is
much more computationally expensive and time consuming
than fine-tuning MT-GPD.

Finally, the results of evaluation suggest that the per-
formance in fake news detection depends on the similarity
between fake and real news within the same domain. Based on
the similarity values of fake vs. real news in the same domains,
as reported in the last column of Table 1, the similarity between
fake and real news within the politics domain is much higher
than that within the health domain for both text and image,
despite that the politics domain has a higher similarity to the
source domain. The specific characteristics of fake news in
each domain can also influence the detection performance.
The health domain news dataset was in the specific context of
Covid-19, whereas the political news covers a wide range of
politics topics. Thus, the amount of available data, similarity
between fake and real news within the same target domain, and
the specificity of the target domain can all be potential deter-
minants of the success of the fine-tuned fake news detection
models.

Many factors may contribute to the differences in the per-
formance of different models across different studies. For
example, datasets used are definitely one of the primary rea-
sons; variations in the architectural design of the models,
hyperparameter tuning, training process, and the ways that
models learn to extract features from data, which may result
in different patterns being emphasized during learning, etc. In
fact, one may even get different results when training the same
deep learning model with the same datasets multiple times due
to the stochastic nature of the training process. That is why we
trained and tested our model 30 times and reported the average
performance across those 30 runs as the model performance.

6.2 Research Contributions
From a design science research aspect, this study advances
fake news detection and transfer learning techniques, con-
tributing several novel research insights. First, this study intro-
duces a novel TL model for cross-domain fake news detection.
Current TL approaches primarily employ PTMs to gener-
ate domain-independent representations from very large yet
open-domain datasets. The fine-tuning of PTMs using news
data can be compromised by superfluous features inherent in
word or image embeddings pre-learned by those models, thus
resulting in sub-optimal model performance (Kim and Kang,
2022). In contrast, MT-GPD learns and transfers fake news
patterns learned from a source domain, demonstrating greater
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effectiveness in capturing both important domain-specific and
domain-independent patterns for fake news detection.

Second, we propose and evaluate three auxiliary mecha-
nisms as novel design artifacts to facilitate transfer learning,
including gating network, model patch, and domain classifier.
Ablation experiment results show that each of these artifacts
contributes to the performance of MT-GPD positively:

1. Effective and dynamic multimodal fusion: the proposed
GN innovatively and dynamically assesses the relative
importance of text and image representations of individual
news articles to fake news detection. By deriving gat-
ing scores for multimodal news content representations,
the GN facilitates TL more effectively than the simple
concatenation of multimodal representations.

2. Parameter-efficient TL: our MP mechanism sets the BN
and LN layers to separate domain-specific and domain-
independent knowledge. By restricting fine-tunable layers
to the domain-specific layers only, MT-GPD achieves
enhanced performance and computational efficiency.
Fine-tuning the entire PTMs is often neither efficient nor
generalizable. While our MP design requires refining the
multimodal representation fusion module for a target news
domain, this requirement could potentially be relaxed
in the future as research progresses toward more robust
and generalizable multimodal representations, which can
further improve the efficiency of transfer.

3. Transformation of multimodal representation across dif-
ferent domains: the proposed DC learns domain-specific
characteristics through self-supervised learning and trans-
forms them directly to align the multimodal representation
with a target news domain.

Third, this is the first study that empirically examines the
impacts of a dynamic fusion of weighted multimodal represen-
tations of news content and individual auxiliary mechanisms
on a multimodal transfer learning-based model for fake news
detection. The evaluation results demonstrate the positive
impacts of those design artifacts on detection performance. In
addition, the superior performance of FT2-GD to FT2 indi-
cates the effectiveness and generalizability of the auxiliary
mechanisms in other deep network architectures employing
diverse TL practices.

Last but not least, MT-GPD makes a noteworthy contri-
bution to TL beyond the task of fake news detection. While
the designs of the proposed auxiliary mechanisms are cus-
tomized to fake news detection in this study, their underlying
design principles are generic and extendable to other tasks
involving multimodal TL. For example, this study introduces
a novel application of a gating network to discern the rel-
ative importance of multimodal content in an article for a
classification task, and a domain classifier that aids in align-
ment of the multimodal representations with a target domain
without domain knowledge. The online Appendix B in the E-
companion summarizes major differences between MT-GPD

and some state-of-the-art multimodal and/or TL models for
fake news detection, demonstrating the uniqueness and nov-
elty of the former.

6.3 Practical Implications

Our research findings provide multi-fold practical implica-
tions. First, TL emerges as a promising solution to address the
challenge posed by the lack of labeled news data and the poor
generalizability issues of multimodal deep neural networks in
cross-domain fake news detection due to the heterogeneous
news domains. As this research verifies, news articles in differ-
ent domains vary significantly in their content, which makes
a “universal” or generic fake news detection model ineffec-
tive for news in some domains. Leveraging the knowledge
learned from one news domain to build a model for fake
news detection in another domain could significantly improve
detection performance. Therefore, online platform managers,
seeking to adopt automatic approaches to combat the spread
of fake news on their platforms, are encouraged to develop
and/or deploy TL-based models customized to the nuances of
different news domains.

Second, our investigation of the gating scores of news text
and images reveals that text gating scores generally surpass
their image counterparts, implying greater importance of tex-
tual content for detecting fake news in our datasets. However,
it is essential to underline that the inclusion of news image con-
tent is valuable to the fake news detection model, contributing
to the overall model performance when integrated with tex-
tual content. This insight suggests that stakeholders, such as
social media platforms, news agencies, and general news con-
sumers, could enhance their fake news detection capabilities
by incorporating image content alongside text analysis. This
multi-modal approach presents a more comprehensive strategy
for platforms to optimize their operations through automatic
fake news detection methods.

Our research has broader practical implications beyond the
detection of fake news on online platforms. Our research sheds
light on big data analytics-related research focusing on pro-
cessing multimodal unstructured data from various sources
(Cezar et al., 2020; Choi et al., 2018; Ng et al., 2023; Zhang
et al., 2022). Big data analytics is important to many OM-
related problems, which often involve a large amount of data
from various sources (Choi et al., 2018; Ng et al., 2023).
Our proposed TL model, augmented by auxiliary mechanisms,
can enhance the big data analytics capability in addressing
many OM-related problems. In addition, MT-GPD enables
early detection and intervention of fake news, minimizing its
negative impact. Online platforms and websites grappling with
managing the formidable challenge of combating online mis-
information can leverage automated techniques like MT-GPD
to improve the efficiency and effectiveness of screening and
analyzing user-generated content.



20 Production and Operations Management 0(0)

The proposed MT-GPD model and its three individual
auxiliary mechanisms are designed to be generic and indepen-
dent of specific fake news characteristics or specific detection
knowledge, making them applicable to other problems, par-
ticularly those with limited labeled data and scenarios that can
benefit from TL. For example, the widespread use of social
media platforms offers a promising venue for early detection
of users’ mental health problems for proactive and timely
intervention (Chau et al., 2020). Previous work has built
models for detecting mental health problems, such as post-
traumatic stress disorder (PTSD) (Coppersmith et al., 2014),
depression (Chau et al., 2020), schizophrenia (Bae et al.,
2021), and suicidal ideation (Zhang et al., 2024) from social
media posts. However, the vast majority of them focus on the
textual content of those posts only, despite the fact that multi-
modal social media content has become increasingly popular
nowadays. Research has shown that visual features manifested
in images can indicate self-disclosure needs: expressions of
emotional distress, calls for help, and displays of vulnera-
bility (Manikonda and Choudhury, 2017). More importantly,
despite some differences, various mental health problems
share some common warning signs, such as stress, social
isolation, excessive worrying or fear, and sleep problems
(www.psychiatry.org/patients-families/warning-signs-of-men
tal-illness). Therefore, MT-GPD holds great potential for
detecting various mental health problems from multimodal
social media content. Moreover, it can transfer and adapt
knowledge learned from detecting one type of mental health
disorder (e.g., depression) to another (e.g., suicidal ideation).

While fine-tuning LLMs may tailor those models for spe-
cific domains and tasks, it remains a significant practical chal-
lenge due to their inherent complexity and the vast number of
potential domains. The computational resources required for
fine-tuning those models are substantial, making it economi-
cally prohibitive for many organizations, especially those with
limited resources or niche domains. However, as computa-
tional costs continue to decrease and hardware becomes more
powerful, accessible, and affordable, the effectiveness of fine-
tuning LLMs for fake news detection may gradually increase.
This is particularly true for scenarios where fine-tuning is a
one-time process and the fine-tuned model is deployed in a
large variety of settings and/or applicable for multiple tasks to
compensate the considerable fine-tuning cost.

6.4 Limitations and Future Research
This research has limitations that offer future research oppor-
tunities. First, the current model only analyzes a single image
within each news article because the vast majority of the news
articles in our datasets only contain one image. Analyzing
one image is also common in existing studies (e.g., Khattar
et al., 2019; Wang et al., 2018). Future research should aim to
develop more advanced methods for processing images within
news articles for a multimodal fake news detection model.
These methods should first identify the types of images and

then extract relevant features while assessing their relative
importance. This approach will enable the model to capture
domain-specific image features of news articles with greater
precision, enhancing its effectiveness in fake news detection.

Second, beyond text and images, news encompasses other
features, such as user and social context features. Future
research could benefit from the integration of those supple-
mentary features, further enhancing the depth and breadth of
knowledge in TL models.

Third, how to bridge the gap between pre-training and
task-specific fine-tuning is crucial. Efficient and effective task-
specific fine-tuning is an important research direction for the
future application of PTMs (Li et al., 2023). Additionally, it
is worth exploring whether incorporating universal computa-
tion engines and adaptive fine-tuning could provide unified
representations of news and further enhance the integration of
multimodal features.

Fourth, deceivers are engaged in both strategic and non-
strategic behaviors (Zhou et al., 2004). Despite the potential
strategic adaptation of fake news strategies to various domains,
non-strategic leakage can be generic and extensible across
different domains. This observation reinforces the theoreti-
cal underpinning of TL for cross-domain fake news detec-
tion. Our comprehensive evaluation involving multiple news
datasets from diverse domains demonstrates the high level of
robustness of MT-GPD. To address the potential evolution of
strategies for creating fake news, researchers need to continu-
ously explore TL-based models capable of effectively adapting
to future changes in the deceptive strategies employed by indi-
viduals creating fake news. Moreover, advancing incremental
learning methods is essential, as they can progressively and
continuously enhance the knowledge of existing models with
newly acquired data.

Fifth, in this study, we used VGG-19 to represent images.
Future research could focus on developing a domain-specific
classifier for images to enhance the image classification algo-
rithm (i.e., image-CNN). Additional features, such as the
presence of human faces, gender, and emotions, may serve
as indicators of news authenticity. Future studies should also
explore theory-driven feature engineering for TL in a multi-
modal context.

Last but not least, the proposed MT-GPD model integrates
deep learning and transfer learning, making the interpretation
of its detection outcome challenging. While providing inter-
pretation for the detection outcomes of MT-GPD is beyond the
scope of this research, we recognize that the lack of explain-
ability in fake news detection models presents a challenge to
the field. Deep learning models are characterized as “black
boxes” because they are often considered incapable of pro-
viding the rationale or explanations for their outcomes. This
may negatively affect users’ trust in and adoption of fake
news detection models, as well as pose challenges for model
refinement and enhancement. Thus, there is a strong need for
advancing and leveraging explainable AI research to improve
the interpretability of these models.
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