
FedAir: Towards Multi-hop Federated Learning
Over-the-Air

Pinyarash Pinyoanuntapong⇤, Prabhu Janakaraj⇤, Pu Wang, Minwoo Lee and Chen Chen†,
Department of Computer Science, † Department of Electrical and Computer Engineering

University of North Carolina Charlotte
Charlotte, USA

{ppinyoan, pjanakar, pu.wang, minwoo.lee, chen.chen}@uncc.edu,

Abstract—Federated learning (FL) has emerged as a key tech-

nology for enabling next-generation AI at scale. The classical FL

systems use single-hop cellular links to deliver the local models

from mobile workers to edge routers that then reach the remote

cloud servers via high-speed Internet core for global model

averaging. Due to the cost-efficiency, wireless multi-hop networks

have been widely exploited to build communication backbones.

Therefore, enabling FL over wireless multi-hop networks can

make it accessible in a low-cost manner to everyone (e.g.,

under-developed areas and disaster sites). Wireless multi-hop

FL, however, suffers from profound communication constraints

including noisy and interference-rich wireless links, which results

in slow and nomadic FL model updates. To address this, we

suggest novel machine learning-enabled wireless multi-hop FL

framework, namely FedAir, that can greatly mitigate the adverse

impact of wireless communications on FL performance metrics

such as model convergence time. This will allow us to fast

prototype, deploy, and evaluate FL algorithms over ML-enabled,

programmable wireless router (ML-router). The experiments on

the deployed testbed validate and show that wireless multi-hop

FL framework can greatly accelerate the runtime convergence

speed of the de-facto FL algorithm, FedAvg.

Index Terms—Federated Learning, Multi-hop wireless edge,

Wireless Networking

I. INTRODUCTION:

A. Why Multi-hop Federated Learning Over-the-Air?

Distributed machine learning, specially federated learning
(FL), has been envisioned as a key technology for enabling
next-generation AI at-scale. FL significantly reduces privacy
risks and communication costs, which are critical in modern
AI systems. In FL, the workers, i.e., edge devices, collab-
oratively learn a shared global model while keeping their
data locally to prevent privacy leakage. The workers only
need to send their local model updates to the server, which
aggregates these updates to continuously improve the shared
global model. FL can greatly reduce the required number of
communication rounds for model convergence by increasing
computation parallelization, where more edge devices are
involved as the workers, and by increasing local computation,
where the worker performs multiple iterations of model up-
dates before sending the updated model to the server. Through
FL, edge devices can still learn much more accurate models

* These authors contributed equally to this work
This work is supported by NSF 1763182

with small local datasets. As a result, FL has demonstrated its
success for a variety of applications, such as on-device item
ranking, content suggestions for on-device keyboards, and next
word prediction [1].

Recently, FL systems over edge computing networks have
received increasing attention. With single-hop wireless con-
nections, edge devices can quickly reach the FL servers co-
located with cellular base stations [2], [3], [4]. Different from
cellular systems with high deployment and operational costs,
wireless multi-hop networks, consisting of a mesh of intercon-
nected wireless routers, have been widely exploited to build
cost-efficient communication backbones, including wireless
community mesh networks [5] (e.g., NYC mesh [6]), high-
speed urban networks (e.g., Facebook Terragraph network [7],
global wireless Internet infrastructures (e.g., SpaceX Starlink
satellite constellation [8] and Google Loon balloon network
[9]), battlefield networks (e.g., rajant kinetic battlefield mesh
networks [10]), and public safety/disaster recuse networks
[11]. Enabling FL over wireless multi-hop networks not only
can augment AI experiences for urban mobile users, but
also can democratize AI and make it accessible in a low-
cost manner to everyone, including the large population of
people in low-income communities, under-developed regions
and disaster areas.

B. Challenges in Multi-hop Federated Learning:

Despite the impressive features of federated learning and
wireless mesh network, there are incumbent challenges that
could inherently affect the model accuracy:

• Slow convergence speed of single-layer FL architecture:
The FL algorithms generally adopt a single-layer server-
client architecture, where a central server collects and
aggregates the model updates of all workers. The wireless
routing paths towards the central server can be easily
saturated in such flat FL architecture.

• Prolonged per-round training time and potential diver-
gence of synchronous federated computing: the de-facto
FL algorithm, FedAvg [1] and many its variants operate
in a synchronized manner where the server has to wait
and collect a minimum number of local model updates
before performing model aggregation and moving to the

2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

978-1-7281-5478-7/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:18:49 UTC from IEEE Xplore. Restrictions apply.

next round. The long and random multi-hop delay dramat-
ically increases the number of stragglers (slow devices),
therefore prolonging the training time per-round.

• Difficulties of model-based optimization for multi-hop
FL system: so far, there are limited research efforts
on optimizing wireless FL systems. Existing efforts all
focus on single-hop FL over cellular edging computing
system [2], [12], [4]. With such assumption, the impact of
wireless communication control parameters (e.g., trans-
mission power) on the FL related metrics (e.g., model
update delay and loss reduction) can be formulated in an
explicit closed-form mathematical model, which greatly
eases the FL system optimization. Such model-based
optimization is not feasible in multi-hop FL, where the FL
performance metrics (e.g., FL convergence time) cannot
be explicitly formulated as a closed-form function of
the networking control parameters, such as transmission
power and packet forwarding decision at each router.

C. Our Contributions:
Our objective in this work is to develop a platform for multi-

hop wireless FL that can guarantee high accuracy and faster
convergence by taming communication latency.

• This is the first work in the literature to reveal, formulate,
and experiment on the inherent interplay between multi-
hop wireless networking and federated learning.

• We propose and prototype the FedAir, which is the first
federated learning system that is optimized by multi-agent
reinforcement learning algorithms.

• We demonstrate in the physical testbed that multi-agent
reinforcement routing algorithms have the great potential
to significantly improve the convergence of federated
learning, compared to the widely-adopted standardized
IEEE 802.11s [13] protocol.

II. FEDERATED LEARNING OVER MULTI-HOP NETWORKS

A. Federated Learning as the Local SGD
Wireless multi-hop FL system consists of central server

as aggregator with multi-hop link wireless to edge servers,
termed as workers. Fig. 1 shows the architecture of federated
learning over multi-hop wireless network. Federated learning
methods are designed to handle distributed training of neu-
ral networks over multiple devices, where the devices have
their local training data and aim to find a common model
that yields the minimum training loss. Such a scenario can
be modeled as the following distributed parallel non-convex
optimization minw F (w) =

PN
k=1 �

k
F

k(w), F
k(w) =

xk⇠Dk

⇥
f(wk;xk)

⇤
where F (w) is the global loss, F k(w) is

the local loss of device k, N is the number of devices, �k = nk

n

and
PN

k=1 �
k = 1, where n

k is the number of training samples
on device k and n =

P
k n

k is the total number of training
samples in network. The local loss F

k(w) is a non-convex
function over data distribution D

k, which is possibly different
for different device k.

To solve above optimization problem, FL methods are
following a common stochastic optimization technique, called

�

'LVWULEXWH�8SGDWHG�
*OREDO�0RGHO�WR�:RUNHUV
�

6\QFKURQRXV�(GJH�0RGHO
$JJUHJDWLRQ��

&HQWUDO
6HUYHU

0/�5RXWHU

0/�5RXWHU

,QWHUQHW�

*OREDO�0RGHO

/RFDO�0RGHO�XSGDWH���
0LQLPL]H�5HJXODUL]HG�/RFDO�/RVV

3HUIRUP�6*'�IRU�,WHUDWLRQV
Z(

ZW��
&

0/�5RXWHU

Fig. 1. Federated Learning over Multi-hop wireless network
local stochastic gradient descent (SGD), which alternates
between local SGD iteration and global model averaging for
multiple (server-worker communication) rounds, where the
worker is the device that participates in the collaborative model
training. During each round, the worker tries to reduce its
local loss F

k(w) by performing H mini-batch SGD iterations
with each iteration following local SGD update: wk

 w
k
�

⌘
1
B

P
xk2Ik rf(wk;xk), where I

k is a subset (mini-batch)
of the training samples on worker k and B = |I

k
| is the

size of the mini-batch. After finishing H local SGD iterations,
the workers send their local models {w

k
}kK to the central

server, which averages them and updates the global model
accordingly w

c =
PK

k=1 �
k
w

k , where K is the number of
devices selected to be the workers. The new global model is
sent to the workers and the above procedure is repeated.

B. Runtime Convergence Time of Multi-hop FL
Local SGD methods (e.g., de-factor FL algorithm FedAvg)

is generally implemented in a synchronous manner, where the
SGD update sequences on the workers are synchronized (by
model averaging). In other words, the server needs to wait for
the model updates from all workers and then it can perform
model aggregation, after which the workers can resume their
local SGD updates for the next round. As a result, if the
actual training runtime (wallclock time) t is used instead of
iteration index T , the convergence of local SGD could be as
worst as O(

p
⌧max/

p
Kt) (where each worker only performs

one local iteration) [14]. ⌧max is the delay of the slowest
worker (straggler) to deliver its local model to the server,
which could be very small in high-speed data center networks
and wireless single-hop networks (e.g., WiFi or cellular). In
wireless multi-hop networks, ⌧max will become a more dom-
inant factor affecting the true runtime convergence due to the
large, random and heterogeneous E2E communication delays
experienced by the workers. As a result, the theoretically fast
convergence of local SGD can be practically slowed down in
wireless multi-hop networks. Moreover, the linear convergence
speedup by increasing the number of workers K could be also
accompanied with the (linearly) increased delay ⌧max due to
escalated network congestion characterized by Little’s theory,
which leads to convergence slowdown. Thus, the true runtime
convergence of synchronous local SGD is still unknown in
wireless networks.

C. Convergence Optimization of Multi-hop FL via MA-MDP
Our overall objective is to minimize the runtime con-

vergence time to achieve a required FL accuracy. Towards

2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:18:49 UTC from IEEE Xplore. Restrictions apply.

this goal, the optimal strategy is to minimize the worker-
server delay of the straggler, which experiences the maximum
delay among all workers. However, in the highly dynamic
wireless environments, the role of straggler can be randomly
switched among different workers as time proceeds. In this
paper, we sought a sub-optimal solution, where we minimize
the average end-to-end (E2E) delay between all workers and
the server. However, even for such sub-optimal solution, we
cannot apply the classic model-based optimization because the
server-worker E2E delay cannot be explicitly formulated as
a closed-form function of the routing/forwarding decisions.
As a result, the model-free optimization strategy based on
multi-agent reinforcement learning is much more desirable,
where each wireless router exploits its instantaneous local
experiences to collaboratively learn the delay-optimal routing
paths between the workers and the server.

In particular, this problem can be formulated as the multi-
agent Markov decision processes (MA-MDP), which can
be solved by multi-agent reinforcement learning algorithms.
Given the local observation oi, which is the source IP and
destination IP of the incoming FL packet, each router i selects
an action a, i.e., the next-hop router, to forward this packet,
according to a local forwarding policy ⇡i. After this packet
is forwarded, the router i receives a reward ri, which is the
negative one-hop delay between router i and the selected next-
hop router. The return Gi =

PT
k=i rk is the total reward from

intermediate state si to final state sT , where si and sT are
the states when a FL packet arrives at the relay router i and
destination router T , respectively. Let s1 be the initial state
when a FL packet enters the network from its source router.
The source/destination router is the router that a worker or the
server is attached to. The goal is to find the optimal policy
⇡i for router i so that the expected return J(⇡) from the
initial state (i.e.,E2E server-worker delay) is optimal, where
J(⇡) = E[G1|⇡] = E[

PT
i=1 ri|⇡] where ⇡ = ⇡1, ...,⇡N .

III. FEDAIR FRAMEWORK DESIGN AND PROTOTYPING

In this section, we will introduce our ML-enabled wireless
edge device design. Our system design is based on the
integrated wireless edge hardware platform that can execute
federated learning tasks, in addition to the functioning as a
wireless mesh router. Fig. 2 shows our proposed wireless edge
router design. The framework is composed of an edge ML
engine and programmable wireless router as detail follows.

Edge ML Engine for Federated Learning: The motivation
of the system design is to facilitate an edge ML engine
for federated wireless edge node that is highly modular and
configurable. At first, the service provider should be able to
deploy any model on our edge nodes and train seemlessly
without requiring additional system tuning. To facilitate our
design objective, we decouple our edge ML engine into 4
layers (1) user data (2) local model trainer (3) local model
exchange (4) global model exchange. We leverage two popular
opensource frameworks Tensorflow[15] and Flask[16] to build
our Edge ML system. User data module owns the data for
federated model training and pre-processing handlers. Local

Edge ML Engine - Federated Learning

ML-Enabled Wireless Edge Device

User Data Local Model
Parameters

input layer
i

hidden layer output layer
Oh1 h2

input layer
i

hidden layer output layer
Oh1 h2

MAC / PHY
(mac80211)

Telemetry Enabled
Openflow Switch

Actor

π

Critic

Q table

Critic

Q table

Global Model
Parameters

Openflow
Manager

Network State
DB / Telemetry

Manager

Neighbor Q
Estimator

Programmable Wireless Router

Radio Interface
Manager

Q network

Fig. 2. Architecture of our ML-Enabled Programmable Router (ML-router)

model trainer built on top of tensorflow provides external
API-service accessible for deploying new models, initiating
training and querying the model status. Local and global model
exchange modules are built using light weight Flask web
framework to handle the exchange of model updates between
the central server and the wireless router.

Programmable Wireless Router: The commercial wireless
routers are not suitable for implementing our proposed multi-
agent reinforcement routing algorithms due to lack of pro-
grammable packet forwarding architecture and telemetry fea-
tures for wireless multi-hop networking. The three key compo-
nents of our router includes (1) telemetry-enabled OpenFlow
switch with mac80211 interface, (2) programmable flow man-
ager, and (3) reinforcement learning (RL) routing module.

1) Telemetry-enabled OpenFlow Switch with Mac80211:
Datapath and wireless radio support are enabled in our wire-
less router by Linux mac80211 wireless kernel module and
Ofsoftswitch13 [17] software switch, designed based on the
specifications of SDN [18] OpenFlow protocol version 1.3
[19] for programmable forwarding. Moreover, we modified
Ofsoftswitch13 to incorporate in-band network telemetry that
allows us to use normal data traffic packets to exchange
network measurement data for RL training. In this work, the
timestamps that record when each packet left a router are
embedded in each packet header to measure the per-hop delay
(i.e., reward).

2) Flow Manager: The core function of this module is to
enable programmable packet forwarding and radio interface
control in wireless multi-hop network. OpenFlow manager
receives the human-understandable actions generated by the
RL routing module and convert them into the flow rules that
can be executed by the OpenFlow switch Ofsoftswitch13. Our
radio interface manager module enables dynamic power and
channel control.

3) Reinforcement Learning Routing Module: We followed
our proposed multi-agent actor-critic (MA-AC) TE framework
[20] to solve the above MA-MDP problem, which each router
individually runs local actor and critic. Local Critic for

Policy Evaluation: The task of critic is to criticize how agent
behave from the selected policy. This can be evaluated by the
action-value q

⇡
i (s, a), which is an E2E performance metric.

The action-value q
⇡
i (s, a) of router i can be written as the

sum of 1-hop reward of router i and the action-value of

2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:18:49 UTC from IEEE Xplore. Restrictions apply.

43
5*

43
5)

43
5E

43
5D

43
5C

43
5B

43
5A

42
3E

42
3C

42
3B

42
3A

43
0E

43
0D

43
0C

43
0B

43
0A

42
5

40
4

R3

WRUkeU 3

WRUkeU 4

WRUkeU 540
5

BackgURXQd TUafÀc
WRUkeU 1

41
0+

41
0*

41
0)

41
0E

41
0D

41
0C

41
0B

40
9

SHUYHU R4 40
3*

40
3)

40
3E

40
3D

40
3C

40
3B 40
3A

40
2A

�/�
40
2

40
1

43
1

43
2A

�/�
43
2B

67
5
1

R6

R2

41
2

R5

43
7

41
1

43
6

42
4

42
2C

42
1A

67
5
2 43
2A

�/�
43
2B

R1

WRUkeU 2

(a) (b)
Fig. 3. (a) Testbed deployed in a campus building (b) Wireless Router built
on the top of Nvidia Jetson Xavier running WINOS

the next-hop router i + 1. q⇡i
i (s, a) = E

⇥
ri + q

⇡i+1

i+1 (s0, a0)
⇤
.

The estimation of q⇡i
i (s, a) used exponential weighted average

q
⇡i
i (s, a), denoted by Q

⇡i
i (s, a), can be updated based on

1-hop experience tuples (s, a, ri, s0, a0) and the estimate of
q
⇡i+1

i+1 (s0, a0) of next-hop router, denoted by Q
⇡i+1

i+1 (s0, a0).
Local Actor for Policy Improvement: The task of actor
aims to improve the local policy, which can maximize the
cumulative sum of reward J(⇡). In this work, two near-greedy
policies can be used for encouraging exploration. (1) ✏�greedy
policy, where with probability 1 � ✏, select the best action
and with probability ✏, other actions are selected, and (2)
softmax-greedy policy, where each action a is selected with
a probability P (a) according to the exponential Boltzmann
distribution, P (a) =

exp(Q
⇡i
i (s,a)/⌧)P

b2Ai
exp(Q

⇡i
i (s,b)/⌧)

.

IV. EXPERIMENTAL EVALUATION

We investigate and study how RL-based networking can
efficiently improve the convergence speed performance of FL
algorithms in a physical testbed with our proposed system de-
sign. The performance of our solution is compared with IEEE
802.11s, which is the most widely-adopted and standardized
wireless multi-hop routing protocol.

Testbed Setup: As shown in Fig. 3, a software-defined
wireless mesh network testbed was deployed on the 4th
floor of Woodward Hall at UNCC. This testbed consists of
six Nvidia Jetson Xavier nodes connected with WLE900VX
wireless interface card and WINOS system on top of Ubuntu
18.04 Linux operating system running on each Nvidia Jetson
node. Each mesh router was configured to operate in Mesh
point (MP) mode, with fixed 5 Ghz channel, 40 Mhz channel
width in 802.11ac operating mode, and 30 dBm transmission
power. The Nvidia Jetson not only serves as a wireless mesh
node to form a wireless multi-hop backbone, but also host local
workers to train the federated learning model. We deployed
five local workers on three routers (R1, R2, and R3), where
each local worker has its own IP address. The server is
connected to R4 to run the global model updates as shown in
Fig. 3. Worker 1 and a background traffic client were attached
to R1. Worker 2 was deployed on R2. We deployed the other
workers on R3.

We study the FL convergence time under different network
congestion conditions by varying the background traffic in-
tensity from none to 1 Mbps and 2 Mbps respectively from
a client at R1 and with different model complexities. The
background traffic is generated by the client at R1 and sent

TABLE I
FL HYPERARAMETERS

Parameter MNIST CNN MNIST LSTM

Number of global rounds 20 20
Number of local iterator 1 1
Batch size 32 32
learning rate 0.01 0.01
Model size 5.8 Mbytes 0.8 Mbytes

to server following a fixed routing path of (R2 ! R3 ! R4).
To emphasize the impact of networking, we use the exactly
same parameters shown in Table I for FL across different
experiments.

Models and Dataset: To evaluate the performance of Fed-
erate learning, we used FedAvg, which trains a deep learning
model on the MNIST [21] digit recognition task. The training
experiments are performed over two separate models whose
weights get updated using federated learning.

• MNIST CNN: we used a CNN with two convolution
layers, with 32 and 64 filters respectively. Each convolu-
tional layer was followed by a 2x2 max pooling layer.
The convolutions were followed by a fully connected
layer with 128 units with Relu activation. A final fully
connected layer with softmax activation was used as the
final output layer. The model has a size of 5.8 Mbytes.

• MNIST LSTM: we used two stacked LSTM layers each
with 128 hidden units. We added a dropout layer after
each LSTM layer. The LSTMs were followed by a fully
connected layer with 32 units and Relu activation, and a
fully connected layer with softmax activation was used
as the model output layer. The model has a size of 0.8
Mbytes.

Experiment Results: Fig. 4 and Fig. 5 depict the FL
performance in accuracy and convergence time when varying
the network traffic load and model complexity. When there
is no injected background traffic (solid line with diamond
marker), FL traffic can fully utilize all the network resources
without any interference from other application traffic. As the
straggler (worker 1) can freely send the FL packets to the right
path straight away, which is faster than the left one, we can
observe that all algorithms achieved a similar performance in
terms of accuracy with (98.7%).

In the case of 1 Mbps background traffic load, both on-
policy softmax and ✏�greedy RL-based routing algorithms
performed slightly better than the baseline (802.11s) in terms
of the total convergence time. Both RL-based routing algo-
rithms converged to select the left path and learned to avoid
sending the FL traffic of worker 1 at R1 to the right path,
which is congested by a continuous background traffic flow
and FL traffic from the workers (2-5). However, the benefit of
selecting the left path is not that evident in this case because
the end-to-end throughput of the left path was less than the
right path and the model size of MNIST CNN (5.8 Mbytes)
is relatively large,

The performance gain significantly increased when the
background traffic increased to 2 Mbps (dotted-line with

2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:18:49 UTC from IEEE Xplore. Restrictions apply.

(a) MNIST CNN (b) MNIST LSTM
Fig. 4. Comparison results after 20 epochs of accuracy over time of 802.11s
routing (black), On-policy ✏�greedy (red), and On-policy softmax (blue) RL-
based routing, respectively, by varying the load of background traffic from
None, (1) Mbps, and (2) Mbps (solid, dashed, dotted)-lines.

(a) MNIST CNN (b) MNIST LSTM
Fig. 5. Total convergence time comparison of 802.11s routing, On-policy
✏�greedy, and On-policy softmax.

square marker). Since 802.11s is a layer 2 unicast routing
protocol, only the destination MAC address is used to route
the packet without taking into account the traffic source
information. As a result, 802.11s was not able to distinguish
the background traffic flow from FL traffic from worker 1.
Therefore, it forwarded both background and FL traffic flows
to the same link/path, which increased the communication time
between straggler (worker 1) and the server. As shown in Fig.
5(a), 802.11s took almost up to 3 hours (171 Minutes) to
finish the 20 rounds of training whereas both RL-based routing
algorithms took less than 2 hours (110 Minutes) because they
learned to optimally distribute different flows among different
routing paths.

By varying the model complexity, we investigate how
computational and communication overhead affect the FL
performance. For both CNN and LSTM, when there is no
communication overhead, CNN enjoys the fast local compu-
tation. Thus, we observe about 30 minutes of convergence time
for CNN and a bit longer 37 minutes for LSTM. However,
when the background traffic is injected, the simplicity of the
model benefits as it lowers the communication overhead. We
can observe that the overall time is greatly reduced with LSTM
(even with 802.11s).

Our experiments showed that RL-based networking can
efficiently improve the convergence performance of FL algo-
rithms especially when model is complex and the network
traffic load is high. Interestingly, the results also show that the
choice of model complexity can be another factor to affect the
performance of FL.

V. CONCLUSION

FL over wireless multi-hop networks is challenging due
to dynamic network performance resulting in non-optimal

routing paths and high communication delay. To maximize
the FL accuracy with minimum convergence time, we pro-
posed MARL methods as model-free optimization approaches,
where the distributed routers exploit their instantaneous local
experiences to collaboratively tune networking parameters on-
the-fly. To analyze the convergence of FL system with MARL
routing solution, we developed a modular wireless edge system
for federated learning with programmable network control.
Our experimental results show that the RL-routing algorithms
have a great potential to accelerate the convergence of FL in
the wireless multi-hop networks, compared with the widely-
adopted standardized IEEE 802.11s protocol. To the best of
our knowledge, this is the first work to prototype, optimize
and demonstrate the wireless multi-hop FL system.

REFERENCES

[1] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, 2016.

[2] M. Chen, Z. Yang, W. Saad, C. Yin, and S. C. H. Poor, “A joint learning
and communications framework for federated learning over wireless
networks,” 2019, available: https://arxiv.org/abs/1909.07972.

[3] M. Amiri and D. Gunduz, “Over-the-air machine learning at the wireless
edge,” in Proc. IEEE SPAWC, 2019.

[4] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning based on
over-the-air computation,” in Proc. IEEE ICC, 2019.

[5] “wireless community networks,” available: http://bit.ly/2Hugn4c.
[6] “New york city (nyc) mesh network,” available:

https://www.nycmesh.net/.
[7] “Facebook terragraph network,” available: https://terragraph.com/.
[8] “Spacex satellite constellation wireless internet,” available:

http://bit.ly/2uRWDEG.
[9] “Google balloon powered global wireless internet,” available:

https://loon.com/technology/.
[10] “rajant kinetic mesh networks for battlefield communication,” available:

https://rajant.com/markets/federal-military-civilian/.
[11] M. Portmann and A. Pirzada, “Wireless mesh networks for public safety

and crisis management applications,” IEEE Internet Computing, vol. 12,
no. 1, pp. 18–25, 2008.

[12] M. Amiri and D. Gunduz, “Federated learning over wireless fading
channels.” Available: https://arxiv.org/abs/1907.09769, 2019.

[13] M. Bahr, “Proposed routing for ieee 802.11 s wlan mesh networks,”
in Proceedings of the 2nd annual international workshop on Wireless
internet. ACM, 2006, p. 5.

[14] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster con-
vergence and less communication: Demystifying why model averaging-
works for deep learning,” in Proc. AAAI 2019, 2019.

[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[16] Flask is a lightweight WSGI web application framework. [Online].
Available: https://www.palletsprojects.com/p/flask/

[17] “Ofsoftswitch13,” available: https://github.com/CPqD/ofsoftswitch13.
[18] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,

vol. 17, no. 2, pp. 30–32, 2009.
[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[20] P. Pinyoanuntapong, M. Lee, and P. Wang, “Delay-optimal traffic engi-
neering through multi-agent reinforcement learning,” in IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2019.

[21] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, Nov 2012.

2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:18:49 UTC from IEEE Xplore. Restrictions apply.

