
Project 3
By: Mikiyas Solomon
Class: ITIS 4221
Date: May 8, 2023



VULNERABILITY ASSESSMENT AND SYSTEMS ASSURANCE REPORT

TABLE OF CONTENTS

Section

1.0 Purpose Page# 1

2.0 SQL Injection Page#2-4

2.1 XSS Prevention Page#5-8

2.2 Command Injection Page#9-12

2.3 Path Manipulation Page#13-15

2.4 Log Forgery/Injection Page#16-19

2.5 SMTP Page#20-22

2.6 XPATH Query Page#23-18



1.0 Purpose

The purpose of this security assessment is to identify Vulnerabilities that
ZAP found and the vulnerabilities in the source code.



2.0 SQL Injection

● Logging into the SQL injection site, once you login as a employee you
are able to update not only your address but other user's address as
well by doing an SQL injection



● By inserting this SQL injection “You just got hacked' where username
= 'pau01' #” you are able to change someone's address that's not the
person logged in as shown in the image above. The image below
shows the vulnerable part of this code where any user can update
any address and it doesn’t specify that the logged-in user can only
change their own address



● The updated code below fixes the vulnerability by making the Update
employee address into a direct parameter and making sure that only
a logged-in user can edit their own address

● Now input the same SQL injection no longer updates other user's
addresses and only updates the logged-in users



2.1 XSS Prevention

● This site is easily susceptible to cross-site scripting as each input
lacks input validation which makes it really easy for an attacker to do
what he wants as shown in the pictures below



● Looking into the source code of the vulnerability it's clear that there
has been absolutely no attempt at input validation

● There is a really simple fix for some input validation and that's to
match if statements to “^[\\w\\s\\-_]*$” this way the text box will only
contain alphanumerical numbers and if it doesn’t it will throw an error.



● Now trying to implement the same attack fails as all user input has
been validated





2.2 Command Injection

● The command injection allows you to ping an ip and a console will
send a response back based on that ping the problem with it is that
there is no input validation on this so an attacker can include
malicious commands and gain access to unauthorized files.





● The code above shows the vulnerable part of the code and the code
below fixes that by using ProcessBuilder we can sanitize user input





2.3 Path Manipulation

● The site below takes advantage of the lack of input validation to
directly access sever files without authorization

● The code below shows the vulnerable part of it as all the code does is
get the file for the user without verifying what the user wants and if it
matches with anything in the server



● In order to mitigate this vulnerability I made a string of allowed
characters and if the input matches with anything not in the list then
an error is returned





2.4 Log Forgery/Injection

● Going to the Log injection page I immediately noticed that this page
too is vulnerable as there is no input sanitation so anything you type
can attack this site. As an example, I did a simple script into an alert
and it went through



● After further examination of the source code, I found the vulnerable
part of the code in the image below



● All that was left to do was sanitize the user input so certain characters
won't go through and the vulnerability was patched





2.5 SMTP

● When looking at the SMTP header page nothing seemed wrong at
first but when I attempted to do a header injection it successfully
worked and I was able to add a “bcc:” to the email even when no
input allowed me to do so



● The vulnerable part of this is a missing class to further sanitize user
inputs to prevent header injection. The code below is the class I
added with three methods to prevent this



● Now when the attack is typed nothing gets returned



2.5 XPATH query

● The vulnerability present takes advantage of the lack of data
sanitization and allows the user to maliciously manipulate the Xpath
and gain access to unauthorized information in the XML file which in
this case is a user's id.





● The vulnerability lies in line 59 of the source code as there is no
safeguarding of the XPath compilation

● By Making a new class called SimpleVariableResolver I was able to
successfully mitigate the vulnerability. This new class makes it so the
SimpleVariableResolver class sets the email address as a variable
first before it compiles the Xpath expression this was the email
address isn’t directly in the Xpath expression and as such cannot be
modified by an attacker.



● The image below is the modifications made to the source code to
accommodate the new class



● As you can see in the image below the attack fails




