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Utility-Optimal Wireless Routing in the
Presence of Heavy Tails

Shuang Xia , Member, IEEE, Pu Wang , and Hyuck M. Kwon , Life Senior Member, IEEE

Abstract—Due to emerging mobile applications and an Internet
of Things, data traffic carried by wireless networks has increased
dramatically. As a result, maximizing the utilization of the limited
network resource is a top priority. To date, there exists a large body
of work on the stochastic network utility maximization (NUM)
problem. On the one hand, the stochastic NUM problem and its
associated solutions have been mainly investigated under the light-
tailed (LT) data condition. On the other hand, empirical results
show that data delivered by wireless networks is not only large
in volume but also highly variable, which can be characterized
by heavy-tailed (HT) distributions. Such HT traffic exhibits high
burstiness and strong temporal correlations, which are fundamen-
tally different from the behavior of LT traffic. In this paper, first it
is shown that the classic stochastic gradient algorithms (SGAs), as
effective solutions for stochastic NUM problems, fail to prevent HT
traffic flows from aggressively competing with LT flows for limited
resources. This leads to unbounded queueing delay for LT flows,
which results in network instability. To counter such a challenge,
the time-average stochastic gradient routing algorithm is proposed,
which prevents competition among HT and LT traffic flows so that
utility optimality and network stability can be achieved simultane-
ously. Moreover, because HT data have unbounded moments, such
as mean and variance, it is not feasible to apply the conventional
convergence analysis, which assumes the moment boundedness of
traffic arrivals. To address this problem, the ordinary differential
equation method is adopted to prove that the proposed algorithm
still converges even with highly variable HT traffic. Comprehen-
sive simulation results are shown to verify the derived theoretical
results.

Index Terms—Stochastic, network utility maximization, routing,
heavy-tailed data, ordinary differential equation.

I. INTRODUCTION

W ITH the rapid development of Internet applications
and technologies, such as wearable devices, vehicle-to-

vehicle (V2V) communications, and an Internet of things, data
traffic has drastically increased and needs higher-speed data
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communication everywhere, anytime. To address these chal-
lenges, there exists a large body of work on stochastic network
utility maximization (NUM), where optimal network control
problems, such as congestion control [1], routing [2]–[4], and
scheduling [5], [6], have been formulated as constrained max-
imization problems of the utility function under stochastic dy-
namics in user traffic and time-varying wireless channels. The
classic stochastic gradient descent (SGD) algorithm has been
adopted to solve stochastic NUM problems. More specifically,
these algorithms transform a constrained stochastic network
utility maximization problem into a non-constrained problem
by using Lagrange multipliers to define a Lagrange function.
Then, Lagrange multiplier analysis is used to convert the net-
work control decisions (e.g., scheduling, routing, and congestion
control) into a Lagrange dual function, and treat the Lagrange
dual variables as a function of queue length. Finally, the queue
length and dual variables are updated along the stochastic gra-
dient direction. These SGD algorithms are widely adopted in
different network settings because they possess very promising
features in the sense that they can guarantee network stability
and maximum network utility without requiring any knowledge
of the statistical information of arrival traffic flows and time-
varying channel conditions. Instead, only current queue length
and channel state information are required [7].

Despite their promising features, these classic SGD algo-
rithms are generally studied and developed under the light-tailed
(LT) traffic condition. However, empirical results show that the
data delivered by wireless networks is not only large in vol-
ume but also high in variability, which can be characterized by
heavy-tailed (HT) distribution. Therefore, heavy tailedness can
be considered as a stochastic attribute of big data. HT traffic
has been identified in a variety of wireless communication and
computer networks, such as mobile ad-hoc networks [8], cellular
networks [9], WiFi networks [10], and data center networks [11].
HT traffic is either caused by the inherent heavy-tailed distribu-
tion in the traffic source, such as file size on Internet servers, traf-
fic volume of cellular base stations [12], message size of mobile
social instant messengers, e.g., wechat and whatsapp [13], and
frame length of variable bit rate (VBR) video streams [14], or by
network protocols themselves, such as retransmissions and ran-
dom access schemes [15]. Different from LT traffic, HT traffic
exhibits high burstiness and strong temporal correlations, which
can lead to a destructive impact on network performance in terms
of stability [16], latency [17], [18], and connectivity [19].

The main goal of the stochastic NUM problem is to achieve
maximum network utility, while ensuring queue stability for
each user, e.g., to guarantee that each user has a bounded
expected queue length [20]. However, because of the unique
stochastic features of HT traffic, we envision that the conven-
tional stochastic gradient algorithm (SGA) could face great dif-
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ficulties in reaching utility optimality and queue stability at the
same time. In particular, our previous research [16] shows that
the queue with HT traffic arrival (i.e., HT flow queues) inherently
experiences heavy-tailed distributed queueing delay. Therefore,
compared to LT traffic arrivals (i.e., LT flow queues), HT queues
have a higher probability of accumulating with a very large
queue length. Nevertheless, the classic SGA updates the dual
variables according to users’ queue length, which may offer HT
queues more service opportunities since they have a larger queue
length than LT queues. Consequently, LT queues are starved and
may not be served until they have an equal or larger queue length
than HT flow queues. This leads to unbounded queue length or
queue instability.

In this paper, we formally prove the instability of classic
SGD-based routing algorithms in the presence of HT traffic
and then develop new routing algorithms to maximize network
utility, while guaranteeing network stability regardless of traffic
type. In particular, this paper considers a multi-hop wireless net-
work that is formed by a collection of interconnected wireless
routers. By exploiting the properties of regenerative processes
[21] along with asymptotic queueing analysis [22], it is shown
that under the classic SGA, the tail distribution of the LT flow
queue is at least one order heavier than the tail distribution of the
HT flow arrivals. According to moment theory [23], this implies
that the queueing delay of the LT queue, i.e., the queue with LT
arrivals, is of unbounded mean. To counter such a challenge, we
propose a time-average stochastic gradient routing algorithm
(TA-SGRA), which separates the queue-length update process
and the dual-variables update process so that both utility opti-
mality and queue stability can be simultaneously achieved in
the presence of HT traffic. More specifically, to prove network
stability, we show that under the TA-SGRA, the transmission
rate for each flow converges to a constant as time proceeds.
Consequently, the LT queues do not need to compete with HT
queues for transmission time, and therefore, all queues behave
as single-user single-server (G1/G/1) queues. We prove that
such a feature, combined with the last-in-first-out (LIFO) intra-
queue scheduling policy, can guarantee the bounded average
queueing delay for both LT and HT queues. To prove that the
network utility converges to the optimal one, we adopt a novel
ordinary differential equation (ODE) approach because the HT
traffic has an unbounded variance, which is not suitable for ap-
plying the conventional convergence analysis that is based on
the Euclidean distance to the optimal set.

The contributions of this paper are summarized as follows:
� We prove that the classic SGD-based routing algorithms

are not effective for HT data delivery by causing queue
instability and infinite average queueing delay.

� We propose a TA-SGRA, which, to the best of our knowl-
edge, is the first routing algorithm that can simultaneously
achieve utility optimality and network stability in the pres-
ence of heavy tails.

� We adopt the ODE-based method to demonstrate the con-
vergence property of the TA-SGRA, which cannot be
proven using conventional convergence analysis due to
the existence of unbounded moments of HT traffic.

The rest of this paper is organized as follows. Section III
introduces the preliminaries and system model. Section IV an-
alyzes the stability performance of classic SGD-based routing
in the presence of HT traffic. Section V introduces the pro-
posed TA-SGRA and proves that it can achieve optimal util-
ity while guaranteeing network stability. Section VI shows

simulation results that verify our theoretical consequences.
Section VII concludes this paper.

II. RELATED WORK

So far, the research on optimal control of wireless net-
works under heavy-tailed traffic is limited. In particular, maxi-
mum power weight scheduling (MPWS) policies were proposed
in [22], [24], [25] for single-hop wireless networks (e.g., WiFi
and cellular networks), where scheduling decisions are made
based on queue backlog or head-of-line (HoL) queueing delay
raised up to the α-th power, where α is determined by the bursti-
ness or heavy tailness of the traffic flows. Intuitively, by properly
selecting α to allocate more service opportunities to LT queues,
MPWS can guarantee that all LT queues experience a bounded
average queueing delay, completely shielding those LT queues
from the destructive impact of HT traffic. MPWS policies are
further extended to multi-hop wireless networks (e.g., sensor
networks and wireless mesh networks) [26]. Although MPWS
policies and their variants can lead to bounded queueing delay
for LT flow queues, they can neither ensure the delay bound-
ness of the HT flow queues, nor achieve utility optimality. To
improve the delay performance of HT flow queues, we recently
proposed the delay-based maximum-weight scheduling policy
with the LIFO service discipline (LIFO-DMWS) [27]. LIFO-
DMWS is proven to be throughput optimal in the sense that
no matter whether the incoming traffic flows are HT or LT, all
queues can experience bounded average queueing delay as long
as the incoming traffic rates are within the network capacity
region. Despite its promising performance under the destructive
impact of HT traffic, LIFO-DMWS is designed for single-hop
networks and is difficult to extend to multiple-hop networks.
More importantly, LIFO-DMWS cannot achieve utility opti-
mality. In this paper, we aim to propose the optimal control
algorithm for multi-hop wireless networks, the first one in the
literature that can achieve utility optimality, which ensures the
delay boundedness of both HT and LT flow queues.

III. SYSTEM MODEL AND PRELIMINARIES

A. Preliminaries

In this paper, we use the following notations: For any two
real functions a(t) and b(t), a(t) ∼ b(t) denotes limt→∞ a(t)/
b(t) = 1. Also, let F (x) = P (X ≤ x) denote the cumulative
distribution function (CDF) of a non-negative random variable
(r.v.) X . Let F (x) = P (X > x) denote its tail distribution func-
tion. Table I lists these and other notations used in this paper.

Definition 1 (Heavy Tail): [28] Random variable X is HT, if
for all θ > 0

lim
x→∞ eθxF (x) = ∞, (1)

and random variable X is LT if it is not heavy-tailed.
The above definition indicates that an r.v. is HT if its tail

distribution decreases slower than exponentially. An r.v. is LT if
its tail distribution decreases exponentially or faster. Represen-
tative HT distributions include Pareto and log-normal, and the
typical LT distributions include exponential and Poisson. Based
on the existence of the moments of an r.v., we define the tail
coefficient of a nonnegative random variable.
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TABLE I
NOTATIONS

Definition 2 (Tail Coefficient): [28] The tail coefficient κ
(X) of a nonnegative random variable X is defined by

κ(X) = − lim
t→∞

log Pr(X > x)
log x

= sup{k ≥ 0 : E[Xk ] < ∞}.
(2)

The tail coefficient defines the maximum order above which
an r.v. possesses infinite moments. In addition, in this paper,
we focus on an important class of HT distributions, namely
regularly varying distributions, which inherently have finite tail
coefficients and infinite moments.

Definition 3 (Regularly Varying): [28] Random variable X
is called regularly varying with tail index β > 0, denoted by
X ∈ RV(β), if

F (x) ∼ x−βV(x), (3)

where V(x) is a slowly varying function.
The tail index β indicates how heavy the tail distribution is,

where the smaller values of β imply heavier tails. Moreover,
for an r.v. X ∈ RV(β), the tail coefficient κX of X is equal to
the tail index β, which defines the maximum order of bounded
moments that X can have. Specifically, if 0 < β < 1, then X

has an infinite mean and an infinite variance. If 1 < β < 2, then
X has a finite mean and an infinite variance.

B. System Model

Consider a multi-hop network G = {N ,L}, where N is the
set of nodes, and L is the set of links between nodes with
|N | = N and |L| = L, respectively. This paper considers a sin-
gle wireless channel between nodes model. Time is slotted with
a unit slot size. We denote the capacity of link (i, j) ∈ L as
Ri,j and define the neighborhood of node i as the set Ni . Let
F denote a set of traffic flows. Each flow f ∈ F has a source
node s(f) and a destination node d(f), where s(f), d(f) ∈ N ,
(s(f), d(f)) ∈ L, and s(f) �= d(f) for all flows f . Moreover,
each node maintains two type of queues according to the corre-
sponding layer:

At the network layer, each node maintains a flow queue
for each flow. Let Qf

i (t) denote the queue length of the flow
queue that temporally stores the packets for flow f at node
i. Let Df

i (t) be the corresponding queueing delay. Let Af
i (t)

denote the number of packets that arrive at queue i for flow f
during time slot t with an average traffic rate or traffic intensity
of E[Af

i (t)] = af
i . Then, the flow queue Qf

i (t) of node i for
flow f can be represented by

Qf
i (t + 1) =

⎡
⎣Qf

i (t) −
∑
j∈Ni

(
rf
i,j (t) − rf

j,i(t)
)

+ Af
i (t)

⎤
⎦

+

,

(4)

where [·]+ = max(·, 0), and rf
i,j (t) is the to-be-determined rout-

ing parameter, which is the number of packets of flow f de-
livered from node i to node j during time slot t with mean
E[rf

i,j (t)] = rf
i,j . If Af

i (t) ∈ HT , then we say that Qf
i (t) is an

HT queue. Otherwise, Qf
i (t) is an LT queue.

Definition 4 (HT and LT Queues): A flow queue Qf
i (t) is

called an HT queue if it has HT traffic arrivals, i. e., Af
i (t) ∈

HT . Otherwise, it is called an LT queue.
At the media access control (MAC) layer, each node builds

link queues for its neighbor nodes. In addition, we use a pro-
tocol model in [29]–[31] to define the collision-free link. More
specifically, consider N nodes arbitrarily located on a plane, and
let di,j denotes the distance between nodes i and j. The commu-
nication range is denoted by Zi , and Z

′
i denotes the interference

range for node i. Then, a successful transmission can be made
by following two conditions:

di,j ≤ Zi (5)

dk,j ≥ Z
′
k , ∀k ∈ N, (6)

where the first condition means that the distance between node
i and node j is within the communication range Zi , and the sec-
ond condition tells us that node j is out of the interference range
of any other nodes k. Thus, we use S to denote the collection of
all collision-free link vectors. A collision-free link vector s ∈ S
is a subset of links that can be activated without any collisions
among each other. Let R = {R1, R2, ..., RS } denote the set of
all collision-free link rate vectors, where Rs = [Rs

(i.j ) ](i,j )∈L
and Rs

(i.j ) is the data rate of link (i.j) when link vector s is se-
lected. Furthermore, to guarantee network stability, the routing
rate of all flows should be within the link capacity region, which
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Fig. 1. Network model.

Fig. 2. Cross-layer network model details.

is a convex hull Co(R). Let Ws(t) be an indicator function at
time slot t for vector Rs . When Ws(t) = 1, the link rate vector
Rs is selected, and thus E[Ws(t)] = ws is the probability that
the collision-free link capacity vector s is selected. Then, the
link capacity region can be represented by

Co(R) =

{
S∑

s=1

wsR
s |(∀s : ws ≥ 0) ∩

S∑
s=1

ws = 1

}
. (7)

Thus, considering link (i, j), its average data rate is given by

Cs
i,j =

S∑
s=1

wsR
s
i,j . (8)

More specifically, Fig. 1 shows a simple network topology with
five nodes, where node 2 receives packets from node 1 with
rate Cs

1,2 under a collision-free link capacity vector Rs
i,j and

also sends packets to nodes 3 and 4 with rates Cs
2,3 and Cs

2,4,
respectively. Fig. 2 shows the details of node 2 shown in Fig. 1.
In node 2, there are two types of flows: red and green. Thus,
there are two flow queues in node 2. Furthermore, since node 2
has two neighbor nodes, it also maintains two link queues: q2,3
and q2,4. In addition, let qi,j (t) denote the MAC-layer link queue
containing packets stored at node i for delivery to neighboring
node j, and let Di,j (t) denote the corresponding queueing delay.

The link queue qi,j (t) of node i receives a number
∑

f∈F
rf
i,j (t) of packets from its network layer, and a maximum num-

ber of Cs
i,j (t) packets can be released from link queue qi,j (t)

and sent over the wireless link (i, j) between nodes i and j. As
a result, the link queue qi,j (t) evolves as

qi,j (t + 1) =

⎡
⎣qi,j (t) − Cs

i,j (t) +
∑
f∈F

rf
i,j (t)

⎤
⎦

+

, (9)

where Cs
i,j (t) =

∑S
s=1 Ws(t)Rs

i,j denotes the instantaneous
data rate of the wireless link between nodes i and j under the
collision-free link rate vector s.

C. System Stability

Definition 5 (Strong Stability): [27] A network is strongly
stable if all flow queues and link queues experience a bounded
average queueing delay, i.e.,

E[Df
i (t)] < ∞ ∀i ∈ N , f ∈ F , (10)

E[Di,j (t)] < ∞. ∀(i, j) ∈ L (11)

IV. NETWORK STABILITY ANALYSIS FOR STOCHASTIC

GRADIENT ROUTING ALGORITHM

In this section, we first formulate the utility routing problem
as a concave optimization framework and utilize the classic
gradient descent algorithm [32, Section 9.3] to solve it. Then,
we prove that the classic stochastic gradient routing algorithm
cannot reach strong stability in the presence of HT traffic. In
particular, we define a non-decreasing concave utility function
U(·), which characterizes diminishing marginal returns. Then,
we formulate the utility-optimal routing problem as follows:

Find rf
i,j (t),Ws(t) ∀(i, j) ∈ L,∀f ∈ F ,∀s ∈ S

Maximize
∑
f ,i,j

U(rf
i,j )

s.t.
∑
j∈Ni

(rf
i,j − rf

j,i) ≥ af
i , ∀f ∈ F , i ∈ N

∑
f∈F

rf
i,j ≤

S∑
s=1

wsR
s
i,j , ∀(i, j) ∈ L,∀s ∈ S

rf
i,j ≥ 0, ∀f ∈ F ,∀(i, j) ∈ L

0 ≤ ws ≤ 1, ∀s ∈ S
S∑

s=1

ws = 1 ∀s ∈ S

E[Df
i (t)] < ∞, ∀f ∈ F , i ∈ N

E[Di,j (t)] < ∞, ∀(i, j) ∈ L,
(12)

where the first constraint is the flow-conservation constraint,
which enforces the arrival traffic rate at each router, which is
smaller than the departure traffic rate; the second constraint is
a link-conservation constraint, which means the average link
rate

∑S
s=1 wsR

s
i,j is larger than the average arrival traffic rate∑

f∈F rf
i,j ; the third and fourth constraints are primal variable

feasibility constraints; the fifth constraint implies that the total
probability of selecting collision-free link vectors is 1; and the
last two constraints enforce the boundedness of the queueing
delay for flow queues and link queues, respectively.
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To solve the above NUM problem, we define Lagrangian
multipliers λi and the Lagrange function as

L(r, λ) =
∑
f ,i,j

U(rf
i,j) +

∑
f ,i

λ
f
i

⎛
⎝∑

j∈Ni

(rf
i,j − rf

j,i) − af
i

⎞
⎠. (13)

Then, we reorder eq. (13) and obtain

L(r, λ) =
∑
f ,i,j

(
U(rf

i,j ) + rf
i,j (λ

f
i − λ

f
j )
)
−
∑
f ,i

λ
f
i af

i . (14)

Thus, we have the Lagrange dual function as

D(λ) = sup
r

L(r, λ). (15)

To find the primal Lagrangian maximizers (rf
i,j )

∗, we have

(rf
i,j )

∗ = arg max
r

L(r, λ)

s.t.
∑
f∈F

rf
i,j ≤

S∑
s=1

wsR
s
i,j , ∀(i, j) ∈ L,∀s ∈ S

rf
i,j ≥ 0, ∀f ∈ F ,∀(i, j) ∈ L
S∑

s=1

ws = 1, ∀s ∈ S

0 ≤ ws ≤ 1, ∀s ∈ S. (16)

To obtain the Lagrangian maximizers (rf
i,j )

∗, we first find the
flow that has the maximum dual difference between nodes i and
j as

f ∗ = arg max
f∈F

(λf
i − λ

f
j ). (17)

Then, we select a collision-free link-rate vector Rs and obtain
the primal Lagrangian maximizers as

(rf ∗
i,j )

∗ = arg max
rf ∗

i , j =ws Rs
i , j

L(r, w, λ)

= arg max
rf ∗

i , j =ws Rs
i , j

∑
i,j

(
U(rf ∗

i,j ) + rf ∗
i,j (λ

f ∗
i − λ

f ∗
j )
)

, (18)

The last equation holds because the last term of eq. (14) does
not affect the primal Lagrangian maximizers (rf ∗

i,j )
∗. Then, we

define the stochastic gradient (gf ∗
i )∗(t) by taking the derivative

of the objective function in eq. (13) with respect to λ
f
i as

(gf ∗
i )∗(t) =

∑
j∈Ni

(
(rf ∗

i,j )
∗(t) − (rf ∗

j,i)
∗(t)

)
− Af ∗

i (t). (19)

Therefore, the dual variable λ can be updated in the direction of
the stochastic gradient descent as

λ
f ∗
i (t + 1) = λ

f ∗
i (t) − α1(t)(g

f ∗
i )∗(t)

= λ
f ∗
i (t) − α1(t)

(∑
j∈Ni

(
(rf ∗

i,j )
∗(t)

− (rf ∗
j,i)

∗(t)
)− Af ∗

i (t)
)+

, (20)

Algorithm 1: Conventional Stochastic Gradient Routing
Algorithm.

1: Observe Qf
i (0). Initialize λ

f
i (0) = Qf

i (0) for all nodes
2: for t = 0, 1, 2, ... do
3: for all neighbors j ∈ Ni do
4: Find the largest dual-variable difference flow f ∗

5: f ∗ = arg maxf∈F

(
λ

f
i (t) − λ

f
j (t)

)

6: Find optimal primary variables (rf ∗
i,j )

∗(t)
7: (rf ∗

i,j )
∗(t) = arg max

rf ∗
i , j (t)=Ws (t)Rs

i , j

∑
i,j U

8: (rf ∗
i,j (t)) + rf ∗

i,j (t)
(
λ

f ∗
i (t) − λ

f ∗
j (t)

)

9: Transmit packets at (rf ∗
i,j )

∗(t) between nodes i and
j for flow f ∗

10: end for
11: Update the dual variable λ

f ∗
i (t + 1) = λ

f ∗
i (t) − α1(t)[∑

j∈Ni

(
(rf ∗

i,j )
∗(t) − (rf ∗

j,i)
∗(t)

)− Af ∗
i (t)

]+

12: end for

where α1(t) is the step size for all routers i. Now, we summa-
rize the above classic stochastic gradient routing algorithm in
Algorithm 1. The Algorithm 1 is the classic stochastic gradi-
ent descent algorithm. Therefore, it converges as time proceeds
[33]. At each time round t, the computation complexity is O(N),
where N is the maximum number of neighboring nodes for each
node, which is equal to the total number of nodes in the net-
work. If arrival traffic Af

i (t) is light tailed, it is easy to show that
Algorithm 1 can achieve utility optimality and network stabil-
ity. Next, we show that Algorithm 1 is not strongly stable in the
presence of HT traffic.

Theorem 1: For any router, if there is a heavy-tailed flow
with a tail index smaller than two, i.e.,

min
i∈N

κ(AfH

i (t)) < 2, (21)

then all flow queues in this router can experience unbounded
queueing delay (i.e., E[Df

i (t)] = ∞).
Proof: See Appendix A. �
Remark 1: Intuitively, the instability of classic SGD-based

routing is due to the fact that HT flow can induce quick queue-
length build-up and consequently create large a queue-length
difference between two neighboring nodes. This leads to a large
dual variable difference between two neighboring nodes be-
cause the dual variable is positively proportional to the queue
length. Then, the classic SGD-based routing seeks to route data
in directions that maximize the differential dual variable. Conse-
quently, HT flows receive more service opportunities, while LT
flows are starved. This leads to an unbounded average queueing
delay.

V. TIME-AVERAGE STOCHASTIC GRADIENT

ROUTING ALGORITHM

In this section, to counter the instability problems of the
classic stochastic gradient routing algorithm, we propose a
TA-SGRA that can achieve utility optimality and queue sta-
bility simultaneously, even under a heavy-tailed environment.
In particular, we first reconsider the Lagrange dual function in

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 28,2020 at 22:22:06 UTC from IEEE Xplore.  Restrictions apply. 



XIA et al.: UTILITY-OPTIMAL WIRELESS ROUTING IN THE PRESENCE OF HEAVY TAILS 785

eq. (15),

D(λ) = sup
r

L(r, λ)

s.t.
∑
f∈F

rf
i,j ≤

S∑
s=1

wsR
s
i,j , ∀(i, j) ∈ L,∀s ∈ S

rf
i,j ≥ 0, ∀f ∈ F ,∀(i, j) ∈ L
S∑

s=1

ws = 1, ∀s ∈ S

0 ≤ ws ≤ 1, ∀s ∈ S. (22)

To find primal Lagrangian maximizers (rf
i,j )

∗, we redefine a
new Lagrange function as

L̄(r, w, μ, υ) = L(r, λ) +
∑
i,j

μi,j

⎛
⎝

S∑
s=1

wsR
s
i,j −

∑
f∈F

rf
i,j

⎞
⎠

+
∑
i,j

υi,j r
f
i,j , (23)

where μi,j and υi,j are Lagrange multipliers. The expression∑S
s=1 wsR

s
i,j −

∑
f∈F rf

ij comes from the first constraint in

eq. (22), and rf
i,j ≥ 0 comes from the second constraint in eq.

(22). Then, we have a new dual function of eq. (23) as

D(μ, υ) = sup
r,w

L̄(r, w, μ, υ)

s.t.
S∑

s=1

ws = 1, ∀s ∈ S

0 ≤ ws ≤ 1, ∀s ∈ S, (24)

and a dual problem as

min
μ,υ

D(μ, υ) = min
μ,υ

sup
r,w

L̄(r, w, μ, υ). (25)

According to L̄(r, w, μ, υ) defined in (23), the determination of
Lagrange maximizers r and w is equivalent to the maximization
of separate summands, which corresponds to the optimization
of the MAC-layer parameter w and network-layer parameter r,
respectively. In particular, at the MAC layer, to find the maxi-
mum value of w∗

s , we need to solve the following optimization
problem.

w∗
s = arg max

ws

∑
i,j

S∑
s=1

μi,jwsR
s
i,j

s.t.
S∑

s=1

ws = 1, ∀s ∈ S

0 ≤ ws ≤ 1, ∀s ∈ S. (26)

Note that, at time slot 0, we randomly select a collision-free
link rate vector Rs , s ∈ S. Then, considering time slot t, t ≥ 1,
Ws(t) denotes an indicator function of two values, 1 and 0,
depending on whether a collision-free link-rate vector Rs =
{Rs

1 , R
s
2 , ..., R

s
L} is active or not. If the collision-free link-rate

vector Rs is active, then Ws(t) = 1; otherwise, Ws(t) = 0. In

addition, if the link l is in the collision-free link-rate vector Rs ,
then Rs

l > 0; otherwise, Rs
l = 0. Therefore, if it is active (i.e.,

Ws(t) = 1), then
∑

i,j μi,j (t − 1)Ws(t)Rs
i,j will be maximum

out of⎧
⎨
⎩
∑
i,j

μi,j (t − 1)W1(t)R1
i,j ,

∑
i,j

μi,j (t − 1)W2(t)R2
i,j , ...,

∑
i,j

μi,j (t − 1)WS (t)RS
i,j

⎫
⎬
⎭ , t ≥ 1. (27)

Thus,
∑

i,j

∑S
s=1 μi,j (t − 1)Ws(t)Rs

i,j will be equal to
∑

i,j

μi,j (t − 1)W ∗
s (t)Rs

i,j . Then, we denote

W ∗
s (t) = arg max

Ws

⎧
⎨
⎩
∑
i,j

μi,j (t −1)W1(t),
∑
i,j

μi,j (t −1)

W2(t), . . . ,
∑
i,j

μi,j (t − 1)WS (t)

⎫
⎬
⎭

= arg max
Ws

⎧
⎨
⎩
∑
i,j

μi,j (t − 1)W1(t)R1
i,j ,

∑
i,j

μi,j (t − 1)

W2(t)R2
i,j , ...,

∑
i,j

μi,j (t − 1)WS (t)RS
i,j

⎫
⎬
⎭

= arg max
Ws

∑
i,j

S∑
s=1

μi,j (t − 1)Ws(t)Rs
i,j , t ≥ 1.

(28)

Furthermore, the time-average w∗
s(t) can be computed by

w∗
s(t) =

{
W ∗

s (t), t = 0
∑t

k=1
W ∗

s (k)
t t ≥ 1.

(29)

At the network layer, to find the primal Lagrangian maximizers
(rf

i,j )
∗, we first re-order eq. (23) and obtain

L̄(r, w, λ, μ, υ) =
∑
f ,i,j

(
U(rf

i,j ) + rf
i,j (λ

f
i − λ

f
j )
)−

∑
f ,i

λ
f
i af

i

+
∑
i,j

μi,j

⎛
⎝

S∑
s=1

wsR
s
i,j −

∑
f∈F

rf
i,j

⎞
⎠

+
∑
i,j

υi,j r
f
i,j . (30)

Then, considering Karush-Kuhn-Tucker (KKT) conditions, we
take the first derivative of the Lagrange function in eq. (30) with
respect to rf

i,j , which yields

∂L̄(r, λ, μ, υ)

∂rf
i,j

= U
′
(rf

i,j ) + (λf
i − λ

f
j ) − μi,j + υi,j . (31)

By stationarity condition, we have

U
′
(rf

i,j ) + (λf
i − λ

f
j ) − μi,j + υi,j = 0. (32)
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In addition, by applying the complementary slackness condition
[32, Section 5.5],

υi,j r
f
i,j = 0 and υi,j ≥ 0 (33)

μi,j

⎛
⎝

S∑
s=1

wsR
s
i,j −

∑
f∈F

rf
i,j

⎞
⎠ = 0 and μi,j ≥ 0. (34)

From eq. (32), we obtain υi,j as

υi,j = μi,j − (λf
i − λ

f
j ) − U

′
(rf

i,j ). (35)

Because υi ≥ 0, we obtain the following relationship:

U
′
(rf

i,j ) ≤ μi,j − (λf
i − λ

f
j ). (36)

In addition, since Ui(·) is a concave increasing, U
′
i(·) is mono-

tone, decreasing, and positive. Then, we obtain

rf
i,j ≥ U

′−1
(
μi,j − (λf

i − λ
f
j )
)
. (37)

If U
′−1
(
μi,j − (λf

i − λ
f
j )
)

> 0, then rf
i,j > 0. Therefore, to

meet the complementary slackness condition [32, Section 5.5]
in eq. (33), we conclude that υi,j = 0. Then, according to eq.
(32), we have

rf
i,j = U

′−1
(
μi,j − (λf

i − λ
f
j )
)
, (38)

if U
′−1
(
μi,j − (λf

i − λ
f
j )
) ≤ 0. This combined with (37) im-

plies that rf
i,j ≤ 0. Thus, we can conclude that rf

i,j = 0. Then,
we get

rf
i,j

=

{
U

′−1
(
μi,j − (λf

i − λ
f
j )
)
, U

′−1
(
μi,j − (λf

i − λ
f
j )
)

> 0

0 U
′−1
(
μi,j − (λf

i − λ
f
j )
) ≤ 0

.

(39)

Therefore, to re-express eq. (39), we obtain

rf
i,j =

[
U

′−1
(
μi,j − (λf

i − λ
f
j )
)]+

. (40)

Taking the summation on both sides of eq. (40) and according
to the second equality constraint in eqs. (12) and (28) yields

∑
f∈F

U
′−1

([(
μi,j (t) − (λf

i (t) − λ
f
j (t)

)]+)
= w∗

s(t)R
s
i,j .

(41)

Since the dual variables λ
f
i (t), λ

f
j (t) and link rate w∗

s(t)R
s
i,j

are known, the dual variable μi,j (t) can be calculated by using
eq. (41). In addition, according to the complementary slackness
condition, we know that μi,j (t) > 0. Then, we can easily obtain
the routing rate rf

i,j (λ, μ, t) through

(rf
i,j )

∗(t) = (rf
i,j )

∗(λ, μ, t)

= U
′−1

([(
μi,j (t) − (λf

i (t) − λ
f
j (t)

)]+)
. (42)

Taking the partial derivatives of the dual function (24) with
respect to λ yields the stochastic gradient gf

i (t) as

gf
i (t) =

∑
j∈Ni

(
(rf

i,j )
∗(t) − (rf

j,i)
∗(t)

)
− Af

i (t). (43)

Thus, we can update our stochastic gradient using Lagrangian
maximizer (rf

i,j )
∗(t) in (42). Moreover, we can calculate the

time-average value (r̄f
i,j )

∗(t) as follows.

(rf
i,j )

∗(t) =
1
t

t∑
k=1

(rf
i,j )

∗(k)

=
t − 1

t
(rf

i,j )
∗(t − 1) +

1
t
(rf

i,j )
∗(t), t ≥ 1. (44)

Now, we adopt the LIFO intra-queue scheduling policy for flow
queues, which are updated as follows:

Qf
i (t +1) =

⎡
⎣Qf

i (t) −
∑
j∈Ni

(
(rf

i,j)
∗(t) − (rf

j,i)
∗(t)

)
+ Af

i (t)

⎤
⎦

+

.

(45)

For link queues, we adopt the first-in-first-out (FIFO) intra-
queue scheduling policy, and link queues evolve as follows:

qi,j (t + 1) =

⎡
⎣qi,j (t) − W ∗

s (t)Rs
i,j +

∑
f∈F

r̄f
i,j (t)

⎤
⎦

+

. (46)

In addition, we can also update multiplier λ along the stochastic
gradients (43) using

λ
f
i (t + 1) = λ

f
i (t) − α2(t)g

f
i (t)

=
[
λ

f
i (t) − α2(t)

(∑
j∈Ni

(
(rf

i,j )
∗(t)

− (rf
j,i)

∗(t)
)− Af

i (t)
)]+

, (47)

where α2(t) is the step size for all routers i. Note that (rf
i,j )

∗(t)
is used in the flow-queue length and link-queue length update
in eqs. (45) and (46), not in the stochastic gradient descent in
eq. (47).

The proposed time-average stochastic gradient routing algo-
rithm is summarized in Algorithm 2, we will prove in Theorem 2
that Algorithm 2 converges as time proceeds. Such convergence
is also verified experimentally in Figs. 12 and 13. At each time
round t, the computation complexity is O(N). Initially, we set
λ

f
i (0) = Qf

i (0) for all routers and let flow queues follow the
LIFO policy and link queues the FIFO policy. Then, at the net-
work layer, we first calculate the Lagrange dual variable μi,j

in step 6. Based on μi,j , we can further compute the maximum
routing rate for each router in step 9, which leads to a time-
average routing rate of (rf

i,j )
∗(t). Then, at the MAC layer, we

calculate the optimal value W ∗
s (t) in step 15, and time-average

w∗
s(t) in step 18. Then, each node can update its flow-queue

function in step 20 and link-queue function in step 21. In addi-
tion, each node also updates the Lagrange multiples λ in steps
22. More specifically, the proposed TA-SGRA has two key fea-
tures: First, we separate routing and scheduling algorithms to
satisfy the layered architecture of network routers. Second, we
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Algorithm 2: Time-Average Stochastic Gradient Routing
Algorithm (TA-SGRA).

1: Observe Qf
i (0). Initialize λ

f
i (0) = Qf

i (0) for all routers
2: Let flow queues adopt the LIFO intra-queue scheduling

policy and let link queues adopt the FIFO policy
3: for t = 0, 1, 2, ... do
4: When t = 0, randomly select a collision-free link-rate

vector Rs, s ∈ S. i.e., W ∗
s (0) = 1, and let w∗

s(0) =
W ∗

s (0)
5: for j ∈ Ni do
6: At the network layer, compute μi,j (t) > 0 such

that

7:
∑

f∈F U
′−1

([(
μi,j (t) − (λf

i (t) − λ
f
j (t)

)]+)

8: = w∗
s(t)R

s
i,j

9: Compute the Lagrange maximizer (rf
i,j )

∗(t), where

10: (rf
i,j )

∗(t) = U
′−1

([
μi,j (t) −

(
λ

f
i (t) − λ

f
j (t)

)]+
)

11: Compute the time-average routing rate (rf
i,j )

∗(t),
where

12: (rf
i,j)

∗(t) =

{
0, t = 0
t−1
t (rf

i,j)
∗(t −1) + 1

t (r
f
i,j)

∗(t) t ≥ 1

13: Transmit packets at rate (rf
i,j )

∗(t)
14: end for
15: At the MAC layer, find an optimal W ∗

s (t + 1) using
16: W ∗

s (t + 1) = arg maxWs

∑
i,j

∑S
s=1 μi,j (t − 1)

17: ·Ws(t + 1)Rs
i,j

18: Compute the time-average w∗
s(t + 1), where

19: w∗
s(t + 1) =

∑t+1
k=1

W ∗
s (k)

t+1

20: Update the flow-queue function Qf
i (t + 1) =[

Qf
i (t) −∑

j∈Ni

(
(rf

i,j )
∗(t) − (rf

j,i)
∗(t)

)
+ Af

i (t)
]+

21: Update the link-queue function qi,j (t + 1) =[
qi,j (t) − W ∗

s (t)Rs
i,j +

∑
f∈F r̄f

i,j (t)
]+

22: Update the dual variable λ
f
i (t + 1) =

[
λ

f
i (t) − α2(t)(∑

j∈Ni

(
(rf

i,j )
∗(t) − (rf

j,i)
∗(t)

)− Af
i (t)

) ]+

23: end for

also decouple the queue-length update process in eq. (45) and
the dual-variable update process in eq. (47) so that we can use
the time-average Lagrange maximizer to manage the transmis-
sion rates and the instantaneous Lagrange maximizer to control
the dual variables.

A. Utility and Stability Analysis

In this section, we first prove that the TA-SGRA is utility
optimal. More specifically, since our algorithm uses an iterative
method, which means that it generates a sequence of improving
approximate solutions for the problem, we can prove that the
utility converges to the optimal value over time. In addition, the
conventional convergence analysis is based on the Euclidean
distance to the optimal set [34]. Hence, it requires a traffic
arrival of bounded mean and variance. However, in our case,
if the arrival traffic is heavy tailed, then the arrival will have
the unbounded moments, such as variance. To overcome this

issue, we adopt the ordinary differential equation method in [35,
Section 2], which treats the discrete stochastic approximation
scheme as a discretization version of the ODE with HT noise
that is asymptotically negligible in the εth mean. Then, we have
the following theorem:

Theorem 2: The time-average stochastic gradient routing al-
gorithm is utility optimal.

Proof: See Appendix B. �
Next, we will prove that the network is strongly stable under

the TA-SGRA. The following theorem first shows that the time-
average transmission rate converges to some constant as time
proceeds so that LT flow queues will no longer compete with
HT flow queues for transmission time.

Theorem 3: Under the proposed Algorithm 2, the time-
average transmission rate r(t) of each flow, even in the presence
of both LT and HT traffic, converges to a constant almost sure,
i.e.,

lim
t→∞ rf (t) = U−1(D∗) almost sure, (48)

where D∗ = U(r∗f ).
Proof: See Appendix C. �
Theorem 3 implies that LT and HT traffic flows eventually re-

ceive dedicated network resources without competing with each
other. Under such a condition, we show that all flow queues are
strongly stable by employing the LIFO intra-queue scheduling
policy.

Theorem 4: Under the proposed time-average stochastic gra-
dient routing algorithm, the LT flow queue has a bounded mean,
even if an HT traffic flow is present.

Proof: According to Theorem 3, we know that when t → ∞,
the transmission rate of each flow converges to a constant value,
which implies that every flow queue behaves as a G1/G1/1
queue asymptotically with a constant service rate. As a re-
sult, all LT traffic flows have a bounded average queueing de-
lay, i.e., E[Df

i (t)] < ∞, f ∈ LT . For HT flow, the LIFO dis-
cipline allows the waiting time or queueing delay to be “as
heavy as” the service time in the case of HT arrival. Specifi-
cally, the tail distribution of the queueing delay of a G1/G1/1
queue with the LIFO discipline follows Pr(Df

i (t) > x|LIFO) ∼
1

1−ρ Pr(Bf
i (t) > x(1 − ρ)) [36], where Bf

i (t) denotes service
time. This indicates that if traffic arrival is HT with tail index
κ(Af

i (t)), then the service time Bf
i (t) for Af

i (t) follows an HT
distribution, which asymptotically behaves as

lim
t→∞

log Pr(Bf
i (t) > x|LIFO)
log x

= −κ(Af
i (t)). (49)

Consequently, the queueing delay tail distribution will behave
as

lim
t→∞

log Pr(Df
i (t) > x|LIFO)
log x

= −κ(Af
i (t)). (50)

This means that the queueing delay is “as heavy as” the arrival
process. Since the arrivals have a bounded mean, this implies that
κ(Af

i (t)) > 1. By Definition 2, this indicates that the average
queueing delay of HT queues is bounded. �

Theorem 4 proves that at the network layer, flow queues have
a bounded queueing delay. Next, we evaluate the stability of the
link queues by the following theorem:

Theorem 5: Under the proposed time-average stochastic gra-
dient routing algorithm, the link queue has a bounded mean.

Proof: See Appendix D. �
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Fig. 3. Simulation model.

Fig. 4. Tail distribution of arrival traffic.

According to Theorems 4 and 5, we know that both flow
queues and link queues have a bounded average queueing delay.
Thus, the network is strongly stable.

VI. SIMULATION RESULTS

In this section, we use simulations to verify our theoreti-
cal results. We first define a log utility function as the pro-
portional fairness metric in [37]. Thus, the utility function is
set to U(rf

i,j ) = log(rf
i,j ). Moreover, we select Pareto and ex-

ponential distributions to represent HT and LT distributions,
respectively. We refer to a random variable X ∈ PAR(α, xm ),
if it follows a Pareto distribution with parameters α and xm ,
i.e., P (X > x) = (xm /x)α . We refer to a random variable
X ∈ EXP(λ), if it follows an exponential distribution with
parameter λ, i.e., P (X > x) = e−λx . All of the following simu-
lation results are run in the 106 time slots and plotted on log-log
coordinates, by which an HT distribution can manifest itself as
a straight line with the slope equal to the negative value of the
tail index α.

To illustrate our theoretical results, we use a small, four-node
network topology, as shown in Fig. 3. At the network layer, at
node 1, there is an LT flow fL with an arrival process AfL

1 (t) ∈
EXP(1/2) and afL

1 = E[AfL

1 ] = 1/λ1 = 2. The destination of
this LT flow fL is node 4. At node 3, an HT flow is injected
into the network with arrival processes AfH

3 (t) ∈ PAR(1.5, 1)
and afH

3 = E[AfH

3 (t)] = αxm /(α − 1) = 3, and the HT flow
destination is also node 4. Fig. 4 shows the complimentary cu-
mulative distribution function (CCDF) of the HT and LT flows
used in our simulations. Observe in Fig. 4 that the CCDF or
tail distribution of LT arrival process decays much faster than
the CCDF or tail distribution of HT arrival process. This means
that compared with the LT flow, the HT traffic flow has a much
higher probability to generate a large volume of packets instanta-
neously, Therefore, the HT traffic is generally very bursty. Also,
Fig. 5 shows the instantaneous traffic of HT and LT flows over

Fig. 5. Instantaneous generated packets of arrival traffic.

Fig. 6. Queue-delay tail distribution under conventional FIFO SGRA.

time. Observe in Fig. 5 that even though the average arrival num-
ber of packets of the HT and LT traffics are close to each other,
e.g., 3 and 2 packets per time slot, respectively, the instantaneous
number of arrival packets for the HT traffic can be much larger
than its average traffic arrivals, while the instantaneous traffic
volume of LT flow do not deviate too much from its mean. For
example, observe that 750 packets arrive at a slot time around
5000 for the HT traffic. However, the instantaneous number of
arrived packets for the LT traffic is generally not far away from
its average arrivals of 2 packets per time slot. Such highly vari-
able and bursty traffic arrivals for the HT traffic cause challenges
in the cross-layer network flow control designs. In addition, at
the MAC layer, we assume that the link capacity Ri,j between
two nodes is 16, and Rs = [Rs

(1,2) , R
s
(2,3) , R

s
(1,3) , R

s
(3,4) ]. From

Fig. 3, we can conclude that there are four collision-free link-
rate vectors R1, R2, R3 and R4, which are [16 0 0 0], [0 16 0 0],
[0 0 16 0], and [0 0 0 16] respectively. The probabilities of se-
lecting link-rate vectors R1, R2, R3, and R4 are w1, w2, w3, and
w4, respectively.

Because both HT and LT flows have the same destination,
which is node 4, we observe and analyze HT and LT flows
between nodes 3 and 4. In this case, according to Theorem 1,
the light-tailed traffic flow fL will have an unbounded average
queue delay when the conventional FIFO SGRA (Algorithm 1)
is used. As shown in Fig. 6, the queueing delay of the LT flow
(i.e., fL ) has a tail distribution that exhibits itself as a straight
line parallel to that of the reference Pareto distribution with
tail index α = 0.5. This indicates that the queueing delay of
LT flow is heavy tailed with a tail index equal to 0.5. This,
by moment theory [23], indicates that the LT flow experiences
unbounded queueing delay. Such a high queueing delay is due to
the fact that under classic SGD algorithms, LT flows are starved,
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Fig. 7. Routing rate under conventional SGRA.

Fig. 8. Queue-delay tail distribution under proposed TA-SGRA.

while HT flows receive considerable resources. As shown in
Fig. 7, before time slot 57960, since the queue-length difference
of HT and LT flows between two neighboring nodes is very
small, which leads to a small dual variable difference between
two neighboring nodes because the dual variable is positively
proportional to the queue length, they compete for the chance
to transmit under the classic SGRA. Thus, we observe that the
two curves oscillate before the LT traffics not being served in
Fig. 7. However, due to the high variability and burstiness of HT
traffic, a large number of packets can arrive abruptly during one
time slot, which leads to a large queue-length difference, and
the dual-variable difference between two neighboring nodes at
these time slots becomes large. Then, to reduce the queue-length
difference for the HT flow under the conventional SGRA, the
HT flow will keep transmitting at rate 16, and the LT flow will
be starved with zero rates between time slots 57960 and 58100.
After time slot 58100, since the queue length difference of the
HT flow becomes smaller than or equal to the queue length
difference of the LT flow, competition resumes between the HT
and LT flows. Hence, in Fig. 7, the two curves oscillate again.

Now, we verify the stability performance of the proposed
TA-SGRA under the same network settings as in the previous
case. Specifically, we define the step size in Algorithm 2
as α2(t) = 1/(t + 1), which satisfies

∑∞
t=0 α2(t) = ∞ and∑∞

t=0 α2(t)2 < ∞. It is shown in Fig. 8 that the queueing delay
of both HT and LT flows decreases faster than the reference
Pareto parameter α = 1, which means that the average queueing
delay of both LT and HT flows is bounded. To show the benefit
of the LIFO policy, Fig. 9 displays the performance of the
proposed TA-SGRA with the FIFO policy adopted for flow
queues. It can be observed that the HT flow has a queueing
delay, whose tail distribution decays much slower than the

Fig. 9. Queue-delay tail distribution under proposed FIFO TA-SGRA

Fig. 10. Bounded mean of link-queue length.

Fig. 11. Converged probability of selected link-rate vector.

reference Pareto distribution with tail index 1, which indicates
that the HT flow’s queueing delay has a tail index smaller
than 1 and thus has an unbounded mean. In addition, as shown
in Fig. 10, the mean of the link-queue length converges to a
constant value, which means the link queue is also of a bounded
average queueing delay.

Furthermore, to show that the proposed TA-SGRA is util-
ity optimal, we first set the initial probabilities of the selected
collision-free link rate vectors R1, R2, R3, and R4 to zero and
show that each selected vector of probabilities also converges
as time proceeds. As shown in Fig. 11, the probabilities of
w1, w2, w3, and w4 converge to 0.4, 0.2, 0.2, and 0.2, respec-
tively. Thus, the mean of the data rate between nodes 3 and
4 is 16 × 0.4 = 6.4. Consequently, in Fig. 12, we can see that
the allocated routing rate of HT and LT flows converges to 3.2,
the sum of which is smaller than the link capacity 6.4. In this
case, the TA-SGRA algorithm can reach the maximum utility
of 2 × ln(3.2) = 2.3263, as shown in Fig. 13.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 28,2020 at 22:22:06 UTC from IEEE Xplore.  Restrictions apply. 



790 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 1, JANUARY 2019

Fig. 12. Allocated routing rate under proposed TA-SGRA.

Fig. 13. Network utility under proposed TA-SGRA.

VII. CONCLUSION

In this paper, we investigate the impact of heavy-tail data
on the performance of utility-maximum routing algorithms. We
first proved that under the classic SGD-based routing algorithm,
the tail distribution of the LT flow queue is at least one order
heavier than the tail distribution of an HT flow queue, which
implies that the LT flow queue has an unbounded queue length.
To counter such a challenge, we proposed a new stochastic
routing algorithm, namely the TA-SGRA, which separates the
queue-length update process and Lagrange dual-variable pro-
cess so that both utility optimality and queue stability can be
achieved simultaneously. More specifically, it has been proven
that the time-average transmission rate for each flow converges
to a constant as time proceeds, which addresses the solution
of the problem that the HT flow queue competes with the LT
flow queue for transmission time. In addition, to address the
methodology challenges brought about by the unbounded mo-
ments of HT data, we adopted an ordinary differential equation
approach to prove the convergence and stability properties of
the proposed TA-SGRA. To the best of our knowledge, TA-
SGRA is the first routing algorithm in the literature that can
simultaneously achieve network stability and utility optimality
in the presence of heavy tails. Multi-channel scenarios and a
network with propagation variations, such as white space and
fading channels, will be good problems for future work.

APPENDIX A
PROOF OF THEOREM 1

Proof: To prove that the queue length of an LT flow fL

is unbounded under the conventional SGRA, we consider a
node i that has both HT and LT flow arrivals. In addition, we

assume that the queueing system is in the steady state. Then,
the queue-length process is in a positive recurrent regenerative
process. Moreover, we let T denote the time interval between
two consecutive instances when all queues are empty. Then,
E[T ] < ∞ always holds. More specifically, assume at time slot
zero that the HT flow arrival (i.e., fH ) with the smallest tail
index, i.e., κ(AfH

i (t)) = minf∈Fκ(Af
i (t)), receives a file of

size M number of packets, and all other flows receive no traffic.
Furthermore, let TM denote the first time slot when the flow-
queue length difference of flow fH becomes less than or equal to
the flow-queue length difference of the flow fL between nodes
i and j. In particular, node j, j ∈ Ni , is the neighbor of node i.
Then, we can denote TM using the following equation:

TM := min{t > 0|QfL

i (t) − QfL

j (t) ≥ QfH

i (t) − QfH

j (t)}
i ∈ N , j ∈ Ni , (fL , fH ) ∈ F . (51)

Under Algorithm 1, we not only know that the LT flow will not
obtain any service since it has a smaller flow-queue difference
than the HT flow, but also that the LT flow will keep receiving
new arrivals AfL

i (t) from the external network and packets from
last-hop neighbor nodes j, j ∈ Ni . At the same time, the HT
flow is always served at rfH

i,j rate until time slot TM . Thus, for
the LT flow, we have

QfL

i (TM ) =
TM −1∑
t=0

⎛
⎝AfL

i (t) +
∑
j∈Ni

rfL

j,i (t)

⎞
⎠ . (52)

According to the strong law of large numbers (SLLN) [38,
Chapter 1], we have

∑TM −1
t=0 (AfL

i (t) +
∑

j∈Ni
rfL

j,i (t)) ≥ (afL

i

+
∑

j∈Ni
rfL

j,i )TM − δM and
∑TM −1

t=0

∑
j∈Ni

rfH

i,j (t) ≥∑
j∈Ni

rfH

i,j TM − ςM , with probability 1. Thus, according to step 7 of
Algorithm 1, we have the following relationship, which shows
the first time slot of the queue length of LT flow larger or equal
to the queue length of HT flow, as

⎛
⎝afL

i +
∑
j∈Ni

rfL

j,i

⎞
⎠TM − δM ≥ M −

⎛
⎝∑

j∈Ni

rfH

i,j TM − ςM

⎞
⎠,

(53)

where M is number of packets, rfL

j,i =arg max
r

f L
j , i =ws Rs

j , i

∑
j,i(

U(rfL

j,i ) + rfL

j,i (Q
fL

j − QfL

i )
)
, and rfH

i,j = arg max
r

f H
i , j =ws Rs

i , j∑
i,j

(
U(rfH

i,j ) + rfH

i,j (QfH

i − QfH

j )
)
. In addition, there exists a

constant K, such that

TM ≥ M + ςM + δM

afL

i +
∑

j∈Ni
rfL

j,i +
∑

j∈Ni
rfH

i,j

≥ M

afL

i +
∑

j∈Ni
rfL

j,i +
∑

j∈Ni
rfH

i,j

= KM, (54)

where K = 1
a

f L
i +

∑
j ∈Ni

r
f L
j , i +

∑
j ∈Ni

r
f H
i , j

, and δM , ςM > 0. In ad-

dition, by the property of the regenerative process with cycle
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length T , we have

Pr(QfL

i >
KM(afL

i +
∑

j∈Ni
rfL

j,i )
2

= lim
t→∞

1
t

t−1∑
τ =0

I⎧⎪⎪⎨
⎪⎪⎩

Q
f L
i (τ )>

K M

(
a

f L
i

+
∑

j ∈Ni
r

f L
j , i

)
2

⎫⎪⎪⎬
⎪⎪⎭

=

E

⎡
⎢⎢⎢⎢⎢⎣
∑T

t=0 I⎧⎪⎪⎨
⎪⎪⎩

Q
f L
i (t)>

K M

(
a

f L
i

+
∑

j ∈Ni
r

f L
j , i

)
2

⎫
⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎦

E[T ]
. (55)

Then, we obtain

E

⎡
⎢⎢⎣

T∑
t=0

I⎧⎨
⎩Q

f L
i (t)>

K M (a
f L
i

+
∑

j ∈Ni
r

f L
j , i

)

2

⎫
⎬
⎭

⎤
⎥⎥⎦

≥ E

[
I(AfH

i (0) > M)

·
T∑

t=0

I

(
QfL

i (t) >
KM(afL

i +
∑

j∈Ni
rfL

j,i )
2

)]

≥ Pr(AfH

i (0) > M)

·
TM∑

t= T M
2

Pr

(
QfL

i (t) >
KM(afL

i +
∑

j∈Ni
rfL

j,i )
2

)
. (56)

By the queueing dynamic in eq. (4) and QfL

i (0) = 0, we have
QfL

i (t)=
∑t−1

τ =0[A
fL

i (τ)−∑j∈Ni
(rfL

i,j (τ)−rfL

j,i(τ))I{QfL
i (τ)>0}].

This implies that

lim
M →∞

1
M

TM∑

t= T M
2

Pr

(
QfL

i (t) >
KM(afL

i +
∑

j∈Ni
rfL

j,i )
2

)

≥ lim
M →∞

1
M

K M∑

t= K M
2

Pr

(
t−1∑
τ =0

AfL

i (τ) >

KM(afL

i +
∑

j∈Ni
rfL

j,i )
2

)

=
K

2
. (57)

The last equality in eq. (57) holds, due to the fact that
flow fH occupies the entire channel service during the
time interval 0 ≤ t ≤ KM/2 so that Pr

(∑t−1
τ =0 AfL

i (τ) >
K M (af L

i +
∑

j ∈Ni
r

f L
j , i )

2

)
= 1 always holds when KM/2 ≤ t ≤

KM . Then, we have

Pr

(
QfL

i >
KM(afL

i +
∑

j∈Ni
rfL

j,i )
2

)

≥ Pr(AfH

i (0) > M)
E[T ]

·
∑TM

t= T M
2

Pr
(
QfL

i (t) >
K M (af L

i +
∑

j ∈Ni
r

f L
j , i )

2

)

E[T ]
, (58)

according to [39, Page 7], and combining eq. (55) with eqs.
(56)–(57), it follows from the condition in eq. (21) that

lim
M →∞

log
[
Pr
(

QfL

i >
K M (af L

i +
∑

j ∈Ni
r

f L
j , i )

2

)]

log
[

K M (af L
i +

∑
j ∈Ni

r
f L
j , i )

2

]

≥ −min
f∈F

κ(Af
i (t)) + 1 ≥ −1. (59)

By applying the moment theorem [23], the steady-state queue
length and queueing delay, E[QfL

i ] and E[DfL

i ], respectively,
are of unbounded mean. Thus, the strong stability cannot be
achieved under the classic stochastic gradient algorithm. �

APPENDIX B
PROOF OF THEOREM 2

Proof: To explore convergence and stability properties of our
algorithm and prove that it is utility optimal, we adopt a similar
technique in [40], which uses the ordinary differential equation
approach.

From eq. (47), we have vector λf (t + 1):

λf (t + 1) = λf (t) − α2(t)gf (t)

= λf (t) + α2(t)

(
af

i −
∑
j∈Ni

(rf
i,j (t) − rf

j,i(t)
)

+ α2(t)
(
Af (t) − af

i )

)

= λf (t) + α2(t)(hf (t) + Âf (t)), (60)

where hf (t) := af
i −∑

j∈Ni

(
rf
i,j (t) − rf

j,i(t)
)

and Âf (t) :=
Af (t) − af

i . Since, according to the first constraint of eq. (12),
we know hf (t) is larger than some negative constant c and
smaller than 0, it is in a strong form of uniform continuity in
the range [c, 0], i.e., Lipschitz [41, Section 12.3]. Moreover, for
stochastic gradient algorithms, the associated ODE is λ̇f (t) =
−gf (λf (t)). Thus, we have the following relationship

λ̇f (t) = hf (λf (t)). (61)

Then, we define j(t) =
∑t−1

k=0 α2(k), and let n = inf{k : j(k)
> j(t) + T} and T = j(n) − j(t). Therefore, the continuous,
piecewise linear interpolated version of λf (t) can be defined
by λ̄f (j(t)) = λf (t), with linear interpolation on each inter-
val T . In addition, to find the supreme of the difference norm
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supt≤k≤n ||λ̄f (j(k)) − λ
f
t (j(k))|| when t ≤ k ≤ n, we rewrite

λ̄f (j(k)) and λ
f
t (j(k)), respectively, as

λ̄f (j(k)) = λ̄f (j(t)) +
k−1∑
i=t

α2(i)
(
hf (λ̄f (j(i)) + Âf (i)

)

(62)

and

λ
f
t (j(k)) = λ̄f (j(t)) +

∫ j (k)

j (t)
hf (λf

t (v))dv

= λ̄f (j(t)) +
k−1∑
i=t

{
α2(i)hf (λf

t (j(i)))

+
∫ j (i+1)

j (i)

(
hf (λf

t (v)) − hf (λf
t (j(i))

)
dv

}
, (63)

where
∫ j (i+1)

j (i) dv = α2(i). Then, we subtract eq. (63) from eq.
(62), obtaining

sup
t≤k≤n

||λ̄f (j(k)) − λ
f
t (j(k))||

≤ sup
t≤k≤n

k−1∑
i=t

∫ j (i+1)

j (i)
||hf (λf

t (v)) − hf (λf
t (j(i)))||dv

+ sup
t≤k≤n

∥∥∥∥∥
k−1∑
i=t

α2(i)Âf (i)

∥∥∥∥∥ . (64)

Then, we let

I = sup
t≤k≤n

k−1∑
i=t

∫ j (i+1)

j (i)
||hf (λf

t (v)) − hf (λf
t (j(i)))||dv (65)

and

II = sup
t≤k≤n

∥∥∥∥∥
k−1∑
i=t

α2(i)Âf (i)

∥∥∥∥∥ . (66)

For term I , according to eq. (63), we know that

λ
f
t (j) = λf (t) +

∫ j (n)

j (t)
hf (λf

t (v))dv, (67)

where j ∈ [j(t), j(n)], and λ
f (j(t)) = λf (t). Then, we take the

norm on both sides of eq. (67) and obtain

||λf
t (j)|| ≤ ||λf (t)|| +

∫ j (n)

j (t)
||hf (λf

t (v))||dv. (68)

Since hf is Lipschitz continuous and grows linearly, we have
||hf (x) − hf (0)|| ≤ L||x|| and ||hf (x)|| ≤ ||hf (0)|| + L||x||,
where L > 0 denotes the Lipschitz constant. Then, we obtain

||hf (λf
t (v))|| ≤ ||hf (0)|| + L||λf

t (v)||. (69)

By defining B0 = λ
f
t (j(t)) = λ(j(t)) = λf (t)≤supt ||λf (t)||,

we can rewrite eq. (68) as

||λf
t (j)|| ≤ ||λf (t)|| +

∫ j (n)

j (t)
||hf (0) + L(λf

t (v))||dv

= (B0 + T ||hf (0)||) + L

∫ j (n)

j (t)
||hf (λf

t (v))||dv.

(70)

In addition, by using Gronwall’s inequality in [42], we further
have

||λf
t (j)|| ≤ (B0 + T ||hf (0)||)eL

∫ j (n )
j ( t ) ||hf (λf

t (v ))||dv

≤ (B0 + T ||hf (0)||)eLT , (71)

where, since hf (·) = 1,
∫ j (b)

j (t) ||hf (λf
t (v))||dv = j(b) − j(t) =

T always holds. Then, according to Lipschitz continuity,

||hf (λf
t (j))|| ≤ ||hf (0)|| + L||λf

t (j)||
≤ ||hf (0)|| + L(B0 + T ||hf (0)||)eLT

= B, (72)

where B := ||hf (0)|| + L(B0 + T ||hf (0)||)eLT . Moreover,
when j ∈ [j(i), j(i + 1)], we have

||λf
t (j) − λ

f
t (j(i))|| ≤

∫ j (i+1)

j (i)
||hf (λf

t (v))||dv ≤ Bα2(i).

(73)

Since hf has Lipschitz continuity, we obtain the following rela-
tionship:

∫ j (i+1)

j (i)
||hf (λf

t (v)) − hf (λf
t (j(i)))||dv ≤ BL(α2(i))2.

(74)

Then, we take the summation on both sides of eq. (74) and
obtain

k−1∑
i=t

∫ j (i+1)

j (i)
||hf(λf

t (v)) − hf (λf
t (j(i))||dv ≤

k−1∑
i=t

BL(α2(i))2,

(75)

and by taking the limitation on both sides of eq. (75), we have

lim
t→∞ sup

t≤k≤n

k−1∑
i=t

∫ j (i+1)

j (i)
||hf (λf

t (v)) − hf (λf
t (j(i)))||

≤ lim
t→∞

k−1∑
i=t

BL(α2(i))2 = 0, (76)

where limt→∞
∑k−1

i=t (α2(i))2 = 0. Thus, eq. (76) holds.
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For II , according to [43], we have

P

(
sup

t≤k≤n
||

k−1∑
i=t

α2(i)Âf (i)|| ≥ x

)

≤ K
(∑n

i=t(α2(i))
β 2−1

β +1) β
β + 1

xβ
(77)

for x > K
(∑n

i=t(α2(i))
β 2−1

β +1) 1
β + 1 , where β is larger than 1.

We define the following:

μ(t) := K

(
n∑

i=t

(α2(i))
β 2−1

β +1

) 1
β + 1

= K

(
n∑

i=t

α2(i)
β 2−1

β α2(i)

) 1
β + 1

= K

(
α2(t)

β 2−1
β α2(t) + α2(t + 1)

β 2−1
β α2(t + 1), ...,

+α2(n)
β 2−1

β α2(n)
) 1

β + 1

≤ K

(
(T + 1)α2(t)

β 2−1
β α2(t)

) 1
β + 1

≤ K(T + 1)
1

β + 1 α2(t)
β −1
β (78)

Eq. (78) holds since supt ||α2(t)|| ≤ 1. In addition, when t →
∞, μ(t) → 0. Furthermore, we use a similar method in [44], for
1 < ε < β, and we obtain the following relationship:

E

[
sup

t≤k≤n

∥∥∥∥∥
k−1∑
i=t

α2(i)Âf (i)

∥∥∥∥∥
ε]

≤ K

∫ ∞

0
xε−1P

(
sup

t≤k≤n

∥∥∥∥∥
k−1∑
i=t

α2(i)Âf (i)

∥∥∥∥∥ ≥ x

)
dx

= K

∫ μ(t)

0
xε−1P

(
sup

t≤k≤n

∥∥∥∥∥
k−1∑
i=t

α2(i)Âf (i)

∥∥∥∥∥ ≥ x

)
dx

+ K

∫ ∞

μ(t)
xε−1P

(
sup

t≤k≤n

∥∥∥∥∥
k−1∑
i=t

α2(i)Âf (i)

∥∥∥∥∥ ≥ x

)
dx

≤ Kμ(t)ε + K

∫ ∞

μ(t)
xε−1

(
μ(t)β

xβ

)
dx

= Kμ(t)ε + Kμ(t)β

∫ ∞

μ(t)
xε−β−1dx

= Kμ(t)ε + Kμ(t)β 1
ε − β − 1

xε−β |∞μ(t)

= Kμ(t)ε − 1
ε − β − 1

Kμ(t)ε

= K̂μ(t)ε . (79)

where K̂ = (1 − 1
ε−β−1 )K. Moreover, according to eq. (78),

we know that when t → ∞, TII → 0. Then, combining (76)
and (79), we obtain

lim
t→∞ sup

t≤k≤n
||λ̄f (j(k)) − λ

f
t (j(k))|| = 0. (80)

Then, considering the linear interpolation error in [35, Section
2.1], if j(k) ≤ j ≤ j(k + 1), we have

λ̄f (j) = κλ̄f (j(k)) + (1 − κ)λ̄f (j(k + 1)) (81)

for some κ ∈ [0, 1]. Thus,

||λ̄f(j) − λ
f
t(j)|| = ||κ(λ̄f (j) − λ

f
t (j(k)))

+ (1 − κ)(λ̄f (j) − λ
f
t (j(k + 1)))||. (82)

In addition, eq. (82) can be upper bounded as

||λ̄f (j) − λ
f
t (j)||

≤ κ||λ̄f (j(k)) − λ
f
t (j(k))||

+ (1 − κ)||λ̄f (j(k + 1)) − λ
f
t (j(k + 1))||

+ κ

∫ j

j (k)
||hf (λf

t (v))||dv

+ (1 − κ)
∫ j (k+1)

j

||hf (λf
t (v))||dv. (83)

Thus, we obtain

lim
t→∞ sup

j∈[j (t),j (n)]
||λ̄f (j) − λ

f
t (j)||

≤ lim
t→∞ sup

t≤k≤n
||λ̄f (j(k)) − λ

f
t (j(k))|| = 0.

(84)

By taking the εth mean on both sides of eq. (84), we get

lim
t→∞E

[
sup

j∈[j (t),j (n)]
||λ̄f (j) − λ

f
t (j)||ε

]

≤ lim
t→∞E

[
sup

t≤k≤n
||λ̄f (j(k)) − λ

f
t (j(k))||ε

]
= 0, (85)

where 1 < ε < β. Then, according to [44], we know that

lim
t→∞E

[||λf (t) − λ∗||ε] = 0 (86)

which implies that

lim
t→∞E[rf (t) − r∗f ] = 0. (87)

Furthermore, we can conclude that

lim
t→∞

(
U(E[rf (t)]) − U(r∗f )

)
= 0. (88)

Thus, we can conclude that the TA-SGRA is utility optimal,
since the utility converges to a optimal value U ∗ as time
proceeds. �

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 28,2020 at 22:22:06 UTC from IEEE Xplore.  Restrictions apply. 



794 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 1, JANUARY 2019

APPENDIX C
PROOF OF THEOREM 3

Proof: To prove that the time-average transmission rate con-
verges to a constant, we use the same technique in [5]. Then,
considering strong convexity [32], we have

f(y) − f(x) ≤
〈
f

′
(x), y − x

〉
+

L

2
||y − x||2 (89)

where < ·, · > denotes the inner product, and G is a positive
constant. Moreover, since λf (t + 1) = λf (t) − α2(t)gf (t) and
according to eq. (89), we obtain the following relationship:

D(λf(t +1)) ≤ D(λf (t)) +
〈
D

′
(λf (t)), λf (t + 1) − λf (t)

〉

+
L

2
||λf (t + 1) − λf (t)||2

= D(λf (t)) − α2(t)||D′
(λf (t))||2

+
L

2
α2(t)2||D′

(λf (t))||2

= D(λf (t)) −
(
1 − L

2
α2(t)

)
α2(t)||D′

(λf (t))||2.
(90)

In addition, since gf (t) = D
′
(λf (t)), we have

E[D(λf (t)) − D(λf (t + 1))]

≥
(

1 − L

2
α2(t)

)
α2(t)E[||gf (t)||]2. (91)

According to Theorem 2, when t → ∞, we obtain

lim
t→∞E[D(λf (t)) − D(λf (t + 1))] = lim

t→∞E[D(λf (t)) − D∗]

= 0, (92)

where D∗ is the optimal value of the dual function. Therefore,
from the first-order optimality condition, we can conclude that

lim
t→∞E[||gf (λf (t))||] = 0. (93)

Since strong duality exists, the minimum value of the dual func-
tion is the optimal solution of the primal function. Then, we
obtain

U(r∗f ) = D∗, (94)

and thus,

r∗f = U−1(D∗). (95)

In addition, from eq. (44), we have

rf (t) =
t − 1

t
rf (t − 1) +

1
t
rf (t), t ≥ 1. (96)

and

trf (t) − (t − 1)rf (t − 1) − rf (t) = 0. (97)

Furthermore, by taking the expectation on both sides of eq. (97),
we have

E[tr̄f (t) − (t − 1)r̄f (t − 1)] = E[rf (t)]. (98)

Then, when t → ∞, taking the limitation on both sides of eq.
(98), we have the following relationship:

lim
t→∞E[trf (t) − (t − 1)rf (t)] = lim

t→∞E[rf (t)]. (99)

From eq. (87), we know that limt→∞ E[rf (t)] = r∗f . Then, we
have

lim
t→∞E[r̄f (t)] = r∗f . (100)

In addition, according to the convergence properties of time-
average stochastic gradient descent algorithms [45], we obtain

P
(

lim
t→∞ r̄f (t) = r∗f

)
= 1 (101)

Thus, we have

lim
t→∞ rf (t) = U−1(D∗), almost sure, (102)

which completes the proof. �

APPENDIX D
PROOF OF THEOREM 5

Proof: To prove that the link queue qi,j has a bounded mean,
we adopt the Lyapunov drift theory. First, we define a quadratic
Lyapunov function as

L(q(t)) =
∑
i,j

q2
i,j (t). (103)

Then, we consider

L(q(t + 1)) − L(q(t))

=
∑
i,j

(qi,j (t + 1) − qi,j (t))(qi,j (t + 1) − qi,j (t) + 2qi,j (t))

=
∑
i,j

(qi,j (t + 1) − qi,j (t))2 +
∑
i,j

2qi,j (t)(qi,j (t + 1)

− qi,j (t)). (104)

Taking conditional expectations on eq. (104), we obtain

E[L(q(t + 1)) − L(q(t))|q(t)]

= E

⎡
⎣∑

i,j

(qi,j (t + 1) − qi,j (t))2|q(t)
⎤
⎦

+ E

⎡
⎣∑

i,j

2qi,j (t)(qi,j (t + 1) − qi,j (t))

⎤
⎦ . (105)

Then, we let

I = E

⎡
⎣∑

i,j

(qi,j (t + 1) − qi,j (t))2|q(t)
⎤
⎦ (106)

II = E

⎡
⎣∑

i,j

2qi,j (t)(qi,j (t + 1) − qi,j (t))

⎤
⎦ . (107)
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For I , from eq. (9), we have

I = E

⎡
⎣∑

i,j

(
ri,j (t) −

∑
s∈S

Ws(t)Rs
i,j

)2

|q(t)
⎤
⎦

≤ E

⎡
⎣∑

i,j

r2
i,j (t)|q(t)

⎤
⎦

=
∑
i,j

E
[
r2

i,j (t)
]
. (108)

For II , using eq. (9), we obtain

II = E

⎡
⎣∑

i,j

2qi,j (t)

(
ri,j (t) −

∑
s∈S

Ws(t)Rs
i,j

)
|q(t)

⎤
⎦

= E

⎡
⎣∑

i,j

2qi,j (t)ri,j (t)|q(t)
⎤
⎦

− E

⎡
⎣∑

i,j

2qi,j (t)
∑
s∈S

Ws(t)Rs
i,j

⎤
⎦ . (109)

Then, we define

III = E

⎡
⎣∑

i,j

2qi,j (t)ri,j (t)|q(t)
⎤
⎦ (110)

IV = E

⎡
⎣∑

i,j

2qi,j (t)
∑
s∈S

Ws(t)Rs
i,j

⎤
⎦ . (111)

For III , we have

III = 2qi,j (t)ri,j . (112)

For IV , we get

IV = 2
∑
i,j

qi,j (t)
∑
s∈S

wsR
s
i,j . (113)

Therefore, we have

E

⎡
⎣∑

i,j

2qi,j (t)(qi,j (t + 1) − qi,j (t))

⎤
⎦

= 2
∑
i,j

qi,j (t)

(
ri,j −

∑
s∈S

wsR
s
i,j

)
. (114)

According to the second constraint of eq. (12), we can bound
eq. (114) as follows:

E

⎡
⎣∑

i,j

2qi,j (t)(qi,j (t + 1) − qi,j (t))

⎤
⎦≤ 2ξ

∑
i,j

qi,j (t),

(115)

where ξ is a small constant. Then, from eqs. (105), (108), and
(115), we have

E[L(q(t + 1)) − L(q(t))|q(t)]
≤
∑
i,j

E[r2
i,j (t)] + 2ξ

∑
i,j

qi,j (t). (116)

Using Foster’s criterion for the ergodic Markov chain, the link-
queue-length process converges in distribution. Using the iter-
ated mean and telescoping sums [46, Section 3.4], we have

∑
i,j

E[qi,j (t)] ≤ − 1
2ξ

∑
i,j

E[r2
i,j (t)], (117)

which completes the proof. �
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