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Abstract—This paper proposes NeuralWave, an intelligent and
non-intrusive user identification system based on human gait
biometrics extracted from WiFi signals. In particular, the channel
state information (CSI) measurements are first collected from
commodity WiFi devices. Then, a collection of data preprocessing
schemes are applied to sanitize and calibrate the noisy and
erroneous CSI data samples to manifest and augment the gait-
induced radio-frequency (RF) signatures. Next, a 23-layer deep
convolutional neural network, namely RadioNet, is developed to
automatically learn the salient features from the preprocessed
CSI data samples. The extracted features constitute a latent
representation for the gait biometric that is discriminative enough
to distinguish one person from another. Using the latent bio-
metric representation, a softmax multi-class classifier is adopted
to achieve accurate user identification. Extensive experiments
in a typical indoor environment are conducted to show the
effectiveness of our system. In particular, NeuralWave can achieve
87.76 ± 2.14% user identification accuracy for a group of 24
people. To the best of our knowledge, NeuralWave is the first
in the literature to exploit deep learning for feature extraction
and classification of physiological and behavioral gait biometrics
embedded in CSI signals from commodity WiFi.

I. INTRODUCTION

As a critical security enforcement method, user identifi-
cation aims to verify the identity of a user before granting
access to the data, services, devices, and facilities. Recently,
the ubiquitously available WiFi devices have been exploited
to capture human gait biometrics for user identification [1]–
[3]. Gait is a person’s natural walking style and a complex
biological process that involves nervous and musculo-skeletal
systems [4]. Medical studies have shown that gait patterns
are unique to each person [5]–[7]. As shown in Figure 1,
when a person walks, the movement of his/her body parts,
such as arms, legs, and torso, cause unique variations in
the WiFi signals, which can be captured by the fine-grained
channel state information (CSI) available at the WiFi devices.
Then, these CSI data, which serve as the radio-frequency
(RF) gait biometrics, can be exploited for user identification.
The user identification systems based on RF gait biometrics
have three key advantages. First, they are of low cost lead-
ing to wide deployment of WiFi infrastructure. In addition,
with the prosperity of the Internet of Things (IoTs) and the
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proliferation of WiFi-enabled smart devices, such as smart
refrigerator, smart TV, smart thermostat, and home security
system, everyone is surrounded by an invisible system of WiFi
signals. Second, they are non-intrusive and non-disruptive
because the gait-modulated WiFi signals can be captured from
the distance without user awareness and cooperations, which
greatly increases the usability of the authentication procedure.
Third, they are robust to gait spoofing attacks, where a person
tries to imitate the walking style of someone else in order to
gain illegitimate access and advantages. The existing research
shows that gait is potentially difficult to spoof because it is be-
havioural and encompasses the whole body [8]. What is more
counterintuitive, as the spoofers devote more training efforts
into gait mimicking, the results of the gait spoofing attacks
become worse because our physiological habits work against
us when we are trying to modify something as fundamental
as the way we walk [9].

Fig. 1. User identification through gait biometrics embedded in WiFi signals

Despite aforementioned advantages, the performance of
existing RF-biometric identification systems [1]–[3] is far from
satisfactory. They can achieve high identification accuracy
(maximum 93%) only for a very small group of people (i.e.,
between 2 to 10). Their identification accuracy decreases
drastically from around 93% to around 78% as the number
of users increases. These limitations stem from the fact that
all the existing solutions use hand-crafted features to train
a shallow classifier for recognizing different people. The
commonly-adopted hand-crafted features include (1) time-
domain features, such as the maximum, minimum, mean,
skewness, kurtosis and standard deviation of the CSI amplitude
and phase, and (2) the frequency-domain features, such as
entropy, energy and spectrogram signatures of the CSI wave-
forms. These time-frequency domain features are generally
selected in a heuristic and suboptimal manner, and thus fail to
characterize the representative patterns in RF gait biometrics,
which are invariant (or robust) to irrelevant variations in the
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WiFi signals and are discriminative enough to distinguish a
large number of people from each other.

To address aforementioned limitations, we propose Neu-
ralWave, an intelligent and non-intrusive user identification
system that offers significantly higher accuracy and scales well
for a large group of human subjects. Our system employs
a sequence of data preprocessing schemes, which sanitize
and calibrate the noisy and erroneous CSI data samples to
augment and manifest the gait-induced radio-frequency (RF)
signatures. Then, a 23-layer deep convolutional neural net-
work (ConvNet), called RadioNet, is designed to automati-
cally extract the salient gait features from the preprocessed
CSI data samples. The extracted features constitute a latent
representation for the gait biometric that is discriminative
enough to distinguish one person from another. Using the
latent biometric representation, a softmax multi-class classifier
is adopted to achieve accurate user identification. Experiments
in a typical indoor environment are conducted to show the
effectiveness of our system. In particular, NeuralWave can
achieve 87.76±2.14% user identification accuracy for a group
of 24 people. To the best of our knowledge, NeuralWave is the
first in the literature to exploit deep learning for feature extrac-
tion and classification of the physiological and behavioral gait
biometrics embedded in CSI signals from commodity WiFi.

The rest of this paper is organized as follows. Section II
introduces the overall system design and Section III presents
the data preprocessing schems. Section IV provides compre-
hensive details about the proposed RadioNet. In Section V,
we show the experimental validation results and conclude the
paper in Section VI.

II. SYSTEM DESIGN

In this section, we first introduce some preliminaries of CSI,
then present the system design challenges, and finally provide
an overview of NeuralWave system.

A. Preliminaries

The multipath propagation of wireless channel can be
characterized by channel impulse response (CIR) as followers

h(τ ; t) =
∑
n∈ps

an δ(τ − τn)︸ ︷︷ ︸
hstatic(τ)

+
∑
m∈pd

am(t) ξ(f) δ(τ − τm(t))

︸ ︷︷ ︸
hdynamic(τ ;t)

(1)
where h(τ ; t) is the received signal at the receiver if the trans-
mitter sends a Dirac pulse signal δ(τ). Due to the presence
of the multiple signal propagation paths, at the receiver, more
than one pulse will be received, and each one of them travels
along a different length. When a person walks, some paths
∀m ∈ pd will experience a time-varying length change caused
by the movements of body parts. This leads to time-varying
propagation delay τm(t) and signal attenuation am(t) on each
path m ∈ pd. The other paths ∀n ∈ ps are not affected by the
moving person and thus have constant path lengths. This leads
to time-invariant delay τn and attenuation an. Furthermore,
ξ(f) is the frequency dependent absorption cross section

coefficient (ACS), which is related to the body specific signal
absorption [10]. For the time-varying impulse response h(τ ; t),
we can define a time-varying channel frequency response
(CFR) H(f ; t) =

∫∞
−∞ h(τ ; t)e−2jπfτdτ , which is also known

as the channel state information (CSI). Similar to h(τ ; t),
H(f ; t) contains both static and dynamic components, i.e.,

H(f ; t) =
∑
n∈ps

an e
−2jπfτn

︸ ︷︷ ︸
Hstatic(f)

+
∑
m∈pd

am(t) ξ(f) e−2jπfτm(t)

︸ ︷︷ ︸
Hdynamic(f ;t)

(2)
where the dynamic component Hdynamic(f ; t) contains the
wireless channel perturbations determined by every individ-
ual’s physiological characteristics such as body shape, height
and natural walking style, i.e. gait. Therefore, Hdynamic(f ; t)
can be treated as the RF biometric, which is unique for each
person and can be exploited for user identification.

B. CSI Data Sample

The CSI measurements can be collected at commercial
off-the-shelf WiFi devices. In particular, current WiFi stan-
dards, e.g., IEEE 802.11n/ac, exploit orthogonal frequency
division modulation (OFDM) along with the multiple-input
and multiple-output (MIMO) technology, where signals are
transmitted and received over multiple subcarriers using multi-
ple antennas at transmitter and receiver sides. Thus both spatial
and frequency diversity features are exploited. In this case, the
CSI between a pair of transmitting antenna x and receiving
antenna y at the subcarrier i with the central frequency fi can
be presented by

Hx,y(fi; t) = ‖Hx,y(fi; t)‖ ej∠Hx,y(fi;t) (3)

where ‖Hx,y(fi; t)‖ and ∠Hx,y(fi; t) represent the amplitude
and phase of Hx,y(fi; t), respectively. Let Ntx, Nrx and
NC represent the number of transmitter antennas, receiver
antennas and subcarriers, respectively. The time series of
the CSI measurements between each antenna pair over one
particular subcarrier constitute one CSI waveform. Each CSI
sample consists of Nwave = Ntx×Nrx×NC CSI waveforms
and each waveform consists of NT CSI measurements over
the measurement time duration T . Moreover, since each CSI
measurement contains both amplitude and phase attributes, we
can structure each CSI data by a 2D matrix, i.e.,

XCSI ∈ R2Nwave×NT (4)

which has a dimension of NT × 2Nwave.
In this research, we adopt the 802.11n WiFi transceiver

based on Intel 5300 NIC, which has 3 transmitter antennas
(Ntx = 3), 3 receiver antennas (Nrx = 3) and 30 subcarriers
(NC = 30). Therefore, each CSI observation has Nwave =
Ntx × Nrx × NC = 270 CSI waveforms. While a person
is walking, our system only takes the CSI measurements
for 4 seconds, i.e. T = 4 second, and the WiFi transmitter
sends 2000 packets/second. Thus, each CSI waveform consists
of NT = 8000 CSI measurements. We structure each CSI
data sample XCSI by horizontally concatenating the CSI
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amplitude matrix Xamp ∈ RNwave×NT and CSI phase matrix
Xph ∈ RNwave×NT .

XCSI = [Xamp Xph] (5)

where Xamp and Xph are shown in Fig. 2. Each column i
of the Xamp

CSI is called the CSI amplitude waveform, which
contains the amplitude values of a particular CSI waveform
i. Similarly, each column i of the Xph

CSI constitutes the CSI
phase waveform i, which contains the phase values of a
particular CSI waveform i.

Fig. 2. CSI amplitude and phase matrices. tx i - rx i indicates the antenna pair
between transmitting antenna i and receiving antenna j. The CSI amplitude
and phase time series between each antenna pair on one particular subcarrier
forms a CSI amplitude and phase waveforms

To visualize the gait-signature captured by XCSI , we apply
principle component analysis to reduce the number of columns
or waveforms in XCSI while retaining most information.
This is achieved by exploiting the high correlation among the
270 amplitude/phase waveforms to combine them into several
principle component CSI (PC-CSI) waveforms that keep the
maximum amount of variation or information about how the
original CSI data is distributed. Fig. 3 (top) shows the PC-CSI
waveform of principle component 3. The signal variations are
caused by the movements of body parts (e.g., torso, arms,
and legs). Different body parts move at different speed, which
causes different Doppler frequency shift. To manifest such
effects, we convert the PC-CSI waveform into time-frequency
domain to generate the corresponding spectrogram. As shown
in Fig. 3 (bottom), the high-energy (hot colored) components
correspond to torso reflections and the low-energy components
are caused by the swing of legs and arms during walking.

C. Challenges

The key idea of NeuralWave system is to achieve intelligent
and accurate user identification by exploiting ConvNets to
automatically learn high-level discriminative features of hu-
man gait biometrics embedded in noisy and error-prone WiFi
signals. ConvNets have shown to be astoundingly effective
for a wide range of tasks, such as image classification, ob-
ject recognition, speech recognition, and machine translation.
However, we are facing several challenges that greatly degrade
the robustness and generalization capability of ConvNets.

Fig. 3. Gait signatures captured by WiFi signals

• Noisy and erroneous CSI measurements: CSI data
samples contain profound irrelevant variations, missing
values, and errors due to noises, device imperfections, and
internal state transitions of WiFi transmitter and receiver.
The resulting random fluctuations in the training data can
be picked up and learned as the features by the network,
which significantly degrades the network robustness.

• Limited number of CSI training samples. The publicly-
available large datasets are critical for training deep
neural networks to learn internal structures and distinctive
features from the raw data samples, which are essential
for high-performance classification and recognition tasks.
For example. ImageNet [11], which is a large visual
database that contains 16 million labeled images, is the
key for the success of applying ConvNets to realize
superior object recognition accuracy. However, the CSI
datasets that contain gait biometrics are not publicly avail-
able. Collecting such datasets is time/cost consuming.
The size of such datasets is further limited because of
privacy concerns. In our case, 24 human subjects are
recruited and each of them has 40 CSI samples, 70%
of which are used for training. This leads to a training
dataset of 672 CSI samples. Such small CSI training
dataset would prevent the state-of-the-art ConvNets, e.g.,
VGG-16/-19 [12] and ResNet-101/ResNet-152 [13], from
learning useful features because they need sufficient data
samples to tune tens of millions of learnable parameters.

• High-dimensional CSI sample: Each CSI sample is of
high dimension in the sense that the number of feature el-
ements in each sample is much larger than the number of
available training samples. For example, a 4-second CSI
sample could contain over 4, 320, 000 feature elements,
which is way above the size of our CSI training dataset
that only contains around 672 CSI samples. Such high-
dimensional data could easily make the network overfit
the training dataset so that it wont generalize well to
unseen and untrained data samples.

D. System Architecture Overview

As shown in Figure 4, NeuralWave system first collects
CSI measurements to construct CSI data samples, each of
which consists of 270 CSI phase waveforms and 270 CSI
amplitude waveforms. Different from previous research [1]–
[3] that only exploit CSI amplitude information, we employ
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Fig. 4. NeuralWave System Architecture Overview

both CSI amplitude and phase to capture more particularities
of human gait patterns. Then, a set of data preprocessing
schemes are developed to sanitize and calibrate the raw CSI
data samples so that more robust features can be learnt by deep
neural networks. In particular, the number of active transmitter
antennas of community WiFi is changing over time, and the
CSI measurements coming from these inactive antennas will
be unavailable. Therefore, data imputation is first applied to fill
in the missing values in the CSI data samples. Then, we cali-
brate the CSI phase values to correct the errors caused by the
sampling and carrier frequency offsets. These offsets are due
to the lack of clock and frequency synchronization between
transmitter and receiver. Next, wavelet denoising technology is
adopted to preserve the essential information in both CSI phase
and amplitude measurements, while suppressing the profound
noises. With the preprocessed CSI data samples as inputs,
we develop and train a 23-layer deep convolutional neural
network, called RadioNet, which acts as an effective feature
extractor to automatically extract the salient and distinctive
features, which characterize the physiological and behavioral
gait patterns. Then, the extracted features constitute the high-
level latent representation of each gait-modulated CSI sample.
The learnt latent representations are used by a softmax multi-
class classifier for user identification. To mitigate over-fitting
problem and improve network generalization capability, we
first reduce the dimension of the preprocessed CSI data
samples by employing principle component analysis (PCA)
technology. Then, the hyperparameters of RadioNet, e.g.,
network depth, layer types, number of filers, and filter size, are
fine-tuned to make sure the network architecture has sufficient
capacity to characterize the complexity of CSI data, while the
number of learnable parameters is not excessively large to
ensure the network generalizes well even through the small
training dataset is available to train the network.

III. CSI DATA PREPROCESSING

The CSI measurements come from off-the-shelf WiFi de-
vices, which are generally contaminated due to noises and
device imperfections. In particular, lots of irrelevant variations
appear in the CSI measurements because of the ambient noise,
measurement noise, and impulse noise induced by internal

state transitions at the transmitter and receiver. Moreover, the
hardware imperfections, e. g., clock and frequency offsets,
lead to the error-prone CSI phase estimations. To learn the
salient features of CSI tensors for user identifications, it is of
significant importance to perform effective data sanitization
to recover clean and genuine CSI samples from contaminated
and erroneous ones.

A. Missing Data Imputation

The WiFi devices can dynamically change the opera-
tion modes between SIMO (single-input-multiple-output) and
MIMO. When SIMO is adopted, only one or two transmission
antennas are used for data transmissions. As a result, the
amplitude and phase matrices can have some missing elements
for certain antenna pairs. For example, if antenna 1 is not
used during transmission at time instant 1, A1,1, A1,2, and
A1,3 in matrix Xamp

CSI (shown in Fig. 2) will be missing.
To fill in or impute missing values, a variety of imputation
approaches can be used, such as mean, KNN, and regression
imputation [14]. In NeuralWave system, we adopt row-wise
mean imputation, where the missing values are replaced by
the mean of the available ones, which are in the same row
as the missing one. The motivation of performing mean
imputation is that each row of the amplitude or phase matrix
contains Ntx × Nrx × NC elements, which represent the
CSI measurements of the CSI waveforms at a particular time
instance. Since the CSI waveforms are correlated at each time
instance, the mean imputation will not introduce much bias.
Moreover, mean imputation is computationally light, which is
suitable for real-time implementation. An example of imputed
CSI waveform is shown in Fig. 5.

Fig. 5. Mean Imputation of CSI waveform. The red points are the imputed
data that do not exist in the original CSI measurements

B. Phase Calibration

Besides the CSI amplitude, the CSI phase information is
also exploited by NeuralWave system to extract the unique gait
features of each person. However, the CSI phase measurements
are highly random and inaccurate. The phase errors come
from two sources: sampling frequency offset (SFO) and carrier
frequency offset (CFO). SFO and CFO are due to the lack
of clock and frequency synchronization between transmitter
and receiver, respectively. As a result, the raw CSI phase
measurement ̂Hx,y(fi; t) consist of four parts:

̂∠Hx,y(fi; t) = ∠Hx,y(fi; t) + εs × i+ εc + Z (6)

where ∠Hx,y(fi; t) is the genuine phase, εs is the error
caused by SFO, i is the index of subcarrier fi, εc is the
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error caused by CFO, and Z is the measurement noise.
To estimate the true phase information, we adopt the linear
transformation method [15]. In particular, let ˜∠Hx,y(fi; t)
denote the estimation of the true phase ∠Hx,y(fi; t) and we
have ˜∠Hx,y(fi; t) = ̂∠Hx,y(fi; t) − α × i − β, where α
and β are the slope and offset of the phase change across
all subcarriers. For example, Intel 5300 WiFi NIC has the
phase measurements of 30 subcarriers and correspondingly
we have the slope α =

̂∠Hx,y(f30;t)− ̂∠Hx,y(f1;t)
30−1 and the phase

offset β = 1
30

∑30
i=1

̂∠Hx,y(fi; t). It can be seen in Fig. 6
that the raw phase measurements (as red dots) are distributed
randomly over all feasible angles between 0◦ and 360◦, while
the calibrated phases after linear transformation are much more
stable and reside within a small sector.

Fig. 6. Raw vs corrected phase of a CSI waveform that consists of 200
consecutively received packets

C. Wavelet Denoising

To mitigate the profound noise in CSI samples, we ap-
ply wavelet denoising for each CSI sample XCSI . The key
principle of wavelet denoising technique is to apply wavelet
transform on the original noisy data, which concentrates data
features in a few large-magnitude wavelet coefficients. The
small wavelet coefficients are typically noise and those coef-
ficients that can be shrunk to remove noise, while preserving
the important signal data features. After thresholding the
coefficients, we apply the inverse wavelet transform to recon-
struct the denoised data. In NeuralWave system, we adopt the
maximal overlap discrete wavelet transform to denoise each
CSI sample XCSI with Donoho and Johnstone’s universal
threshold and level-dependent thresholding of level 2 [16].
Figure 7 shows that by applying wavelet denoising, the high-
frequency noise has been removed from the CSI waveform
without distorting the trends of the waveform.

Fig. 7. Original CSI waveform vs denoised waveform

IV. DEEP CONVOLUTIONAL RADIO NETWORK

A. Why Deep Convolutional Neural Networks?
Deep neural network uses a multilayer stack of non-linear

processing layers, where each layer’s output is the successive
layer’s input. As a special type of deep learning architecture,
deep convolution neural network (ConvNet) is mainly com-
posed by two types of layers: convolutional layers and pooling
layers. The convolutional layers are organized in feature maps.
Each unit of a feature map is connected to local patches in the
feature maps of the previous layer through a set of weights
called filter bank [17]. The filtered results are then passed
through a non-linearity unit such as ReLU. The convolutional
layer aims to detect local conjunctions of features from the
previous layer, while the pooling layer aims to reduce the
dimension of the feature maps by merging multiple feature
units into one [17]. ConvNet is the well-suited feature extractor
for RF biometrics, i.e., gait-modulated CSI waveforms. First,
by stacking multiple non-linear layers, ConvNet can learn
hierarchical features, where the lower layers extract low-level
features, which are passed through higher layers to generate
high-level features. The learnt high-level features are gen-
erally discriminative enough to distinguish different classes,
e.g., the RF biometrics of different human subjects. Second,
the features extracted by ConvNet are translation-invariant,
which means they are insensitive to small transformations,
distortions and translations of the input data. For example,
signal variations caused by human movement are the raw gait
features, which can happen at any time in a CSI waveform. It
is highly desirable that the learnt features are shift-invariant,
i.e., insensitive to the time shift of raw features in the CSI
waveform.

B. Normalization and PCA Dimension Reduction
The preprocessed CSI sample is of large size/dimension.

Such high-dimensional CSI data can easily lead to overfitting
problem for ConvNet. Take the Intel 5300 WiFi device as an
example. For a CSI observation of T = 4 seconds, it consists
of Ntx × Nrx × NC = 3 × 3 × 30 = 270 CSI amplitude
and phase waveforms, respectively. Each waveform is made
up of NT = 8000 CSI measurements. Thus, each CSI sample,
defined in eq. (5), consists of 270 × 8000 × 2 = 4, 320, 000
feature elements. To reduce the dimension of the CSI data
samples, principle component analysis (PCA) is adopted. PCA
allows the data matrix X to be described using a small number
of uncorrelated variables (the principal components), while
retaining as much information as possible. As shown in Fig. 2,
each CSI sample XCSI has a shape of 8000× 540, where the
first 270 columns represent amplitude, the next 270 columns
represent phase and the rows represent each time step. We
reshape each 2D sample to a 1 dimensional vector containing
all 8000×540 = 4, 320, 000 features and split our dataset into
training and testing sets, i.e., Xtrain and Xtest. We normalize
the training data set so that the features are centered around
0 with a standard deviation of 1, i.e.,

Xnorm
train =

Xtrain −mean(Xtrain)

std(Xtrain)
(7)
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Fig. 8. RadioNet Architecture with 6 stages. The first 5 stages are for feature learning and the last stage is for classification. There are 6 types of layer in
RadioNet including convolutional layer (Conv), batch normalization layer (Norm), ReLu activation layer (RelU), Maxpooling layer (Maxpool), Flatten layer,
and fully-connected layer

The mean and standard deviation of the training set are used to
obtain the normalized testing set Xnorm

test . Ensuring normalized
feature values implicitly weights all features equally in their
representation, which makes convergence faster while training
the network. Moreover, normalization also subtracts mean
from the data set, which implicitly removes the impact of the
CSI static component, i.e., Hstatic(f) in eq. (2), which arises
from the propagation paths reflected by the static objects in
the environment, e.g., walls and furnitures.

Next, we apply PCA on the normalized training set.
In particular, we first calculate the covariance matrix
C of Xstd

train, then compute its eigenvectors Wtrain =
[w1 w2 , ..., w4,320,000] and arrange the eigenvectors in de-
scending order of the eigenvalues V = (λ1, λ2, ..., λ4,320,000),
where λ1 > λ2 >, ..., > λ4,320,000. Now, we obtain the
representation of Xstd

train in the principal component (PC)
space, i.e., XPCA

train = Xstd
trainWtrain, and each row of XPCA

train

can be considered as a PC-CSI sample. We take the first
k = 354 eigenvectors that capture 95% of the total vari-
ance. This transforms the high-dimensional CSI sample with
4, 320, 000 features into the low-dimensional PC-CSI sample
with 354 features that contain 95% original information. We
apply the same transformations on the testing set by using
the eigenvectors Wtrain derived from the training set so that
the testing sample also has the same number of features as
the training sample. Moreover, since noise is also distributed
among all eigenvectors, PCA dimension reduction can further
reduce noise.

C. RadioNet Overview

Some celebrated ConvNet architectures already exist in the
literature, e.g., VGG-16/-19 [12] and ResNet-101/ResNet-152
[13]. However, they are designed for computer vision applica-
tions based on 2-D images and thus are not suitable to handle
1-D CSI data samples. What is more important, these existing
ConvNets have tens of millions of learnable parameters and
thus can learn more complicated structures and patterns of
input data. However, it makes the network more difficult to
generalize, specially when our CSI training dataset is small. To

TABLE I
THE CONFIGURATION OF RADIONET

No. Layer Dimension Filter # Filter Size Stride Padding Parameters #

0 Input 354 × 1 0

1 Convolution 354 × 16 16 17 1 SAME 288
2 Batch Normalization 354 × 16 64
3 ReLU 354 × 16 0
4 MaxPool 177 × 16 2 2 0

5 Convolution 177 × 16 16 11 1 SAME 2832
6 Batch Normalization 177 × 16 64
7 ReLU 177 × 16 0
8 MaxPool 88 × 16 2 2 0

9 Convolution 88 × 16 16 11 1 SAME 2832
10 Batch Normalization 88 × 16 64
11 ReLU 88 × 16 0
12 MaxPool 44 × 16 2 2 0

13 Convolution 44 × 16 16 7 1 SAME 1808
14 Batch Normalization 44 × 16 64
15 ReLU 44 × 16 0
16 MaxPool 22 × 16 2 2 0

17 Convolution 22 × 16 16 7 1 SAME 1808
18 Batch Normalization 22 × 16 64
19 ReLU 22 × 16 0
20 MaxPool 11 × 16 2 1 0

21 Flatten 176 × 1 0
22 Fully-Connected 24 × 1 4248

Total Parameters 14,136
Trainable Parameters 13,976
Non-Trainable Parameters 160

address these issues, we develop a customized 1-D ConvNet,
called RadioNet, which follows the generic multilayer stack
design of ConvNets with fine-tuned hyperparameters, e.g.,
network depth, layer types, filter size, and number of filters.
As shown in Fig. 8, the RadioNet architecture has 23 layers
with 13, 976 learnable parameters. The specific configuration
of each layer is shown in Table I. In particular, the first layer
represents the input layer, which has the same size, i.e., 354×1,
as the preprocessed CSI sample. The remaining 22 layers is
organized into six stages. The first five convolutional stages,
which are used for feature learning and extraction, follow the
same pipeline pattern that comprises one convolution layer,
one batch normalization layer [18], one ReLU activation layer
[19], and one maxpooling layer [20]. The last stage, which
is used for user classification, consists of one flatten layer,
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Fig. 9. NeuralWave System Setup Fig. 10. Convergence of test and training accuracies Fig. 11. Convergence of loss function for test and
training datasets

one fully-connected layer, and one output layer. The flatten
layer gets the feature maps of the last convolutional stage and
flattens them to create a single long feature vector. This feature
vector is used by the fully-connected layer to generate a score
vector or logits Z and each element in Z is the score for
a particular class, given a data sample i. The score vector
constitutes the latent representation for each CSI data sample.
The output layer implements the softmax activation, which
uses exponentiation and normalization to transfer the score
vector into a class probability vector yi = [yi1, yi2, ..., yiC ],
where C is the number of classes (number of users). Each
element yic of yi is the probability that a CSI sample i is
predicted to be class c, i.e.,

yic = P (c|i) = expZ(c)∑C
j=1 exp

Z(j)
(8)

Then, the class c∗ with the maximal prediction value is the
predicted class for unknown CSI sample i, i.e.,

c∗ = argmax
c∈C

P (c|i) (9)

The above classifier is called softmax classifier. RadioNet is
trained to maximize its classification accuracy by minimizing
the cross-entropy loss function, i.e.,

L(t, y) = −
N∑
i=1

∑
c≤C

ticlog(yic) (10)

where tic is 1 if and only if sample i belongs to class c. N is
the number of samples in each training batch.

V. EXPERIMENTAL VALIDATION

In this section, we present the experimental results of our
proposed NeuralWave human identification system.

A. NeuralWave System Setup

The data collection campaign was conducted in a typical
indoor laboratory environment as shown in Fig. (9). The ex-
perimental NeuralWave system consists of two WiFi devices.
In particular, the WiFi transmitter is based on Gateworks
GW5400 single board computer, which is equipped with a
compex WLE900VX-I 802.11a/b/g/n/ac WiFi card and 3x3
MIMO antennas. The WiFi receiver is a HP 6930p laptop with
Intel 5300 3x3 MIMO WiFi card. The transmitter node runs

OpenWRT embedded linux operating system and operates in
5 GHz frequency band with 40MHz bandwidth. The data rate
of the transmitter is fixed at 2000 packets/second. The receiver
laptop runs Ubuntu 16.04 operating system with kernel version
3.34 with a modified Intel WiFi driver [21], which is capable
of collecting the CSI measurements from the Intel 5300 WiFi
card. Each CSI measurement consists of 30 subcarrier groups
covering 114 OFDM subcarriers across 40Mhz channel.

B. Datasets and Training Methodology

During data collection campaign, we recruited 24 volunteers
with the age range bettween 21 and 40. As shown in the
Fig. 9, each participant was asked to walk in his/her natural
way between the start and end points, which is counted as
one walk instance. During each walk instance, the laptop
records the received CSI measurements to generate one CSI
data sample. We collected 40 CSI samples for each human
subject. The CSI dataset is randomly split into a training
dataset and validation dataset (70% / 30%) and Monte-Carlo
cross-validation is performed, where the results are averaged
over 20 splits. We divide the training dataset into mini-batches
that are used to update network parameters. Each mini-batch
contains 32 training samples. Adam optimizer [22] is applied
to train RadioNet with an initial learning rate of 0.001 with a
decay rate of 0.0001 for 20 epochs.

C. Evaluation Results

1) User Identification Accuracy: We first evaluate the per-
formance of our system on user identification accuracy (i.e.,
test accuracy), which is the percentage of correct identity
predications over all test samples. Formally, it is defined as

Test Accuracy =
Total number of correct predications

Total number of test samples
Since the test samples are not seen by the network during
training, the test accuracy measures the generalization capa-
bility and predictive power of the trained network. Besides test
accuracy, training accuracy measures the descriptive power of
the network, which indicates how well the network fits the
training dataset and estimates the likely performance of the
network on out-of-sample (unseen) data. Formally, it is defined
as

Training Accuracy =
Total number of correct predications

Total number of training samples

764

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 28,2020 at 22:06:31 UTC from IEEE Xplore.  Restrictions apply. 



Our system achieves 87.76±2.14% test identification accuracy
and 100% training accuracy. Moreover, as seen in Figure 10
and 11, both classification accuracy and loss converge after
10 epochs, which means our network can be quickly trained.
Note that the curves in Figure 10 and 11 are plotted with the
mean accuracy or loss with the shaded areas that represent a
standard deviation above and below the mean for all cross-
validations

Fig. 12. Confusion matrix for the validation dataset that achieves 90%
identification accuracy

2) Confusion matrix: Confusion matrix is a widely-adopted
tool to summarize the prediction results on classification
problems. The number of correct and incorrect predictions
are summarized with count values and broken down by each
class. Confusion matrix contains four performance metrics:
true positives (TPs), true negatives (TNs), false positives (FPs)
and false negatives (FNs). TPs are instances classified as
positive by the network, which actually are positive. TNs are
instances classified as negative by the network, which actually
are negative. FPs are instances classified as positive, which
actually are negative. FNs are instances classified as negative,
which actually are positive. Each row of the matrix represents
the instances in a predicted class, while each column repre-
sents the instances in an actual class. The diagonal elements
of the matrix represent the TPs for each class. The TNs for a
class are obtained by subtracting the true positives of this class
from the total true positives of all classes. After removing the
diagonal elements, the remaining elements in each row show
the FPs and the remaining elements in each column count the
FNs. As shown in Figure 12, NeuralWave system achieves
very high TPs along with very low FPs and FNs for almost
every user.

VI. CONCLUSION

In this paper, we developed an user identification system
based on gait biometrics extracted from WiFi signals. Funda-
mentally different from existing solutions that rely on hand-
crafted features and shallow classifiers, our system exploited
deep learning to automatically extract the salient features
from gait-modulated CSI waveforms, which are discriminative
enough to distinguish one person from another. In particular,

a 23-layer 1-D deep convolutional neural network, called
RadioNet, was proposed, whose hyperparameters were fine-
tuned to mitigate the over-fitting problem cased by the high-
dimensional CSI data samples. As a result, for a group of
24 human subjects, our system can achieve 87.76 ± 2.14%
identification accuracy. For the future work, we will improve
the identification accuracy by exploiting different data pre-
processing schemes, autoencoder-based dimension reduction
approaches, and different ConvNet architectures (such as deep
residual networks). Moreover, we will recruit more volunteers
to increase the size of training data set.
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