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Abstract

Network mapping is a convenient tool for comparing and
exploring biological networks; it can be used for predict-
ing unknown pathways, fast and meaningful searching of
databases, and potentially establishing evolutionary rela-
tions. Unfortunately, existing tools for mapping paths into
general networks (PathBlast) or trees into tree networks
allowing gaps (MetaPathwayHunter) cannot handle large
query pathways or complex networks.

In this paper we consider homomorphisms, i.e., map-
pings allowing to map different enzymes from the query
pathway into the same enzyme from the networks. Ho-
momorphisms are more general than homeomorphism (al-
lowing gaps) and easier to handle algorithmically. Our
dynamic programming algorithm efficiently finds the min-
imum cost homomorphism from a multisource tree to di-
rected acyclic graphs as well as general networks.

We have performed pairwise mapping of all pathways
for four organisms (E. coli, S. cerevisiae, B. subtilis and T.
thermophilus species) and found a reasonably large set of
statistically significant pathway similarities. Further anal-
ysis of our mappings identifies conserved pathways across
examined species and indicates potential pathway holes in
existing pathway descriptions.

Availability: The software is available from the authors
on request.

1. Introduction

The explosive growth of cellular network databases re-
quires novel analytical methods constituting a new interdis-
ciplinary area of computational systems biology. The main
problems in this area are finding conserved subnetworks,
integrating interacting gene networks, protein networks
and biochemical reactions, discovering critical elements or
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modules and finding homologous pathways. With the im-
mense increase of good-quality data from high-throughput
genomic and proteomic technologies, studies of these ques-
tions are more and more challenging from analytical and
computational perspectives.

Network mapping is a convenient tool for comparing and
exploring biological networks. When mapping metabolic
pathways by matching similar enzymes and chemical reac-
tions chains we can match homologous pathways. Network
mapping can be used for predicting unknown pathways, fast
and meaningful searching of databases, and potentially es-
tablishing evolutionary relations.

Let the pattern be a pathway for which we are search-
ing for homologous pathways in the text, i.e., the known
metabolic network of a different species (see Figure 1).
This problem includes the Isomorphic Embedding problem,
therefore it is NP-hard (see [8]). Given a linear length-`
pathway as the pattern and a graph as the text, PathBlast
(see [9, 8, 14]) finds the image of the pattern in the text such
that no consecutive mismatches or gaps on the pattern and
the text are allowed. The path-to-path mapping algorithm
builds a global alignment graph and decomposes it to linear
pathways mapping.

A single enzyme in one pathway may replace a few se-
quential enzymes in homologous pathway and vise versa.
MetaPathwayHunter [12, 13] finds the optimal homeomor-
phic tree-to-tree mapping allowing an arbitrary number of
gaps. In contrast to the previous approaches, we allow for
the mapping of different enzymes from the pattern into the
same enzyme from the text while keeping the freedom to
map a single edge from the pattern to a path in the text. Such
mappings (homomorphisms) are more general than homeo-
morphisms and easier to handle algorithmically.

Our contributions include: (1) efficient dynamic pro-
gramming based algorithm and its implementation finding
the minimum cost homomorphism from multisource trees
into arbitrary networks, (2) a new protein similarity score
scheme based on 4-digit EC enzyme hierarchy, (3) experi-
mental pairwise comparison of all pathways in four differ-
ent organisms (E. coli, S. cerevisiae, B. subtilis and T. ther-
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Figure 1. An example of network mapping to find an im-
age of pattern in text.

mophilus) resulting in a reasonably large set of statistically
significant pathway similarities, (4) identification of path-
ways conserved across examined species, potential holes in
existing pathway descriptions, and an estimation of the evo-
lutionary relationship between examined species.

The remainder of the paper is organized as follows. The
next section describes previous work. Section 3 presents the
proposed models for mapping with the definition of pro-
tein similarity score scheme. Section 4 introduces neces-
sary definitions and graph-theoretical problem formulation.
Section 5 presents our dynamic programming algorithm and
analyzes its runtime. Section 6 describes our computational
study of metabolic pathways of four organisms. The analy-
sis and validation of experimental study is given in Section
7. Finally, we draw conclusions in Section 8.

2 Previous Work

The earlier papers comparing pathways did not take into
account their topology and instead focused only on sim-
ilarity between proteins or genes. Biochemical pathway
similarity was defined in terms of sequence similarity of
involved genes (see [5]); a multiple pair-wise comparison
algorithm utilizing 4-digit EC enzyme hierarchy was pro-
posed in [15]. The alignment of linear pathways was re-
duced to the sequence alignment problem in [2].

A series of papers [9, 8, 14] has taken into account
the nonlinearity of protein network topology and formu-
lated the mapping problem as follows. Given a linear
length-` pathway pattern T = (V T, ET ) and text graph
G = (V G,EG), find an image of the pattern in the text
without consecutive gaps and minimizing mismatches be-
tween proteins. A global alignment graph in [9] was built
in which each vertex represents a pair of proteins and
each edge represents a conserved interaction, gap, or mis-

matches; their objective is to find the k-highest-scoring
path with limited length ` and no consecutive gaps or mis-
matches based on the built global graph. The approach takes
O(|V T |`+2|V G|2)).

PathBlast with the same problem formulation as [9] was
presented in [8]. However, PathBlast’s solution is to ran-
domly decompose the text graph into linear pathways which
are then aligned against the pattern and then to obtain op-
timal mapping based on standard sequence alignment algo-
rithms. The algorithm requires O(`!) random decomposi-
tions to ensure that no significant alignment is missed, ef-
fectively limiting the size of the query to about six vertices.

In [13], metabolic pathways were modeled as outgo-
ing trees; the problem was reduced to the approximately
labeled tree homeomorphism problem. The proposed
bottom-up dynamic programming algorithm has runtime
O(m2n/ log m+mn log n) where m and n are the number
of vertices in pattern and text, respectively.

In [11] the problem was formulated as an integer
quadratic problem to obtain the global similarity score
based on the mapping of as many as node-to-node similar-
ity and as many as edge-to-edge similarity. An exhaustive
searching approach was employed in [17] to find the vertex-
to-vertex and path-to-path mappings with the maximal map-
ping score under the condition of limited length of gaps or
mismatch. The algorithm has worst case time complexity
O(2m × m2). A label-diversity back-track algorithm was
proposed in [16] to align two networks with cycles based
on the mapping of as many as path-to-path similarity.

Finally, a more general approach to aligning of metabolic
pathways – homomorphisms allowing edge-to-path map-
ping – has been first proposed in [3].

3 Modeling Metabolic Pathway Mappings

A metabolic pathway is a series of chemical reactions
catalyzed by enzymes that occur within a cell. Metabolic
pathways are represented by directed networks in which
vertices correspond to enzymes and there is a directed edge
from one enzyme to another if the product of the reaction
catalyzed by the first enzyme is a substrate of the reaction
catalyzed by the second.

Mapping metabolic pathways should capture the similar-
ities of enzymes represented by proteins as well as topolog-
ical properties that cannot be always reduced to sequential
reactions represented by paths. Below we first describe our
approach to measure enzyme similarity and then discuss ad-
vantages and drawbacks of the homomorphism mappings of
metabolic networks.

Our implementation provides two alternative enzyme
similarity scores. One approach is to employ the lowest
common upper class distribution proposed in [15] and dis-
cussed in [13]. The corresponding penalty score for gap is



2.0.
Our new approach makes full use of EC encoding and the

tight reaction property classified by EC. The EC number is
expressed with a 4-level hierarchical scheme. The 4-digit
EC number, d1.d2.d3.d4 represents a sub-sub-subclass in-
dication of biochemical reaction. If d1.d2 of two enzymes
are different, their similarity score is infinite; if d3 of two
enzymes are different, their similarity score is 10; if d4 of
two enzymes are different, their similarity score is 1; or else
the similarity score is 0. The corresponding penalty score
for gap is 0.5. Our experimental study indicates that the
proposed similarity score scheme results in biochemically
more relevant pathway matches.

The topology of most metabolic pathways is a simple
path, but frequently pathways may branch or have several
incoming arcs – all such topologies are instances of a mul-
tisource tree, i.e., a directed graph which becomes an undi-
rected tree when edge directions are disregarded. The query
pathways are usually simple and can be represented as a
multisource tree but in some cases they can have a cycle or
alternative ways to reach the same vertex. Then we sug-
gest to follow the standard practice of breaking such cycle
or paths by removing edges.

The obvious way to preserve the pathway topology is
to use isomorphic embedding – one-to-one correspondence
between vertices and edges of the pattern and its image in
the text. The requirement on edges can be relaxed – an
edge in the pattern can be mapped to a path in the text
([12, 13]) and the corresponding mapping is called a homeo-
morphism. The computational drawback of isomorphic em-
bedding and homeomorphism is that the problem of finding
optimal mapping is NP-complete and, therefore, requires
severe constraints on the topology of the text to become ef-
ficient. In [12, 13], the text is supposed to be a tree, the pat-
tern should a directed tree while allowing multisource-tree
pattern complicates the algorithm. Their algorithm is com-
plex and slow because it repeatedly finds minimum weight
perfect matchings.

In this paper we propose to additionally relax one-to-one
correspondence between vertices – instead we allow differ-
ent pattern vertices to be mapped to a single text vertex. The
corresponding mapping is called a homomorphism. Such
relaxation may sometimes cause confusion – a path can be
mapped to a cycle. For instance, if two enzymes with sim-
ilar functions belong to the same path in the pattern and a
cycle with similar enzyme belongs to the text, then the path
can be mapped into a cycle (see Figure 2). However, if the
text graph is acyclic this cannot happen. Even if there are
cycles in the text, still one can expect that functionally sim-
ilar enzymes are very rare in the same path.

Computing minimum cost homomorphisms is much
simpler and faster than homeomorphisms. We will show
that a fast dynamic programming algorithm can find the
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Figure 2. Homomorphism of a path (A, B, . . . , C, D) in
the pattern onto a cycle (A′, B′, . . . , C′, D′ = A′) in the
text.

minimum cost homomorphism that allows edge-to-path
mapping for the multisource tree pattern and an arbitrary
text graph.

4 Graph-Theoretical Problem Formulation

We first give notations and definitions and then formulate
the corresponding graph-theoretical problem.

A pattern T = (V T, ET ) is a directed graph with vertex
set V T and edge set ET . We only consider the case of
T being a multisource tree. Following [13], a multi-source
tree is a directed graph, whose underlying undirected graph
is a tree. It is not necessarily a directed tree – each node can
have several incoming as well as several outgoing edges.

A text G = (V G,EG) is a directed graph with vertex set
V G and edge set EG. We further distinguish the case when
G is a general network and the case when G is a directed
acyclic graph.

A mapping f : T → G from pattern T = (V T, ET ) to
text G = (V G,EG) is called a homomorphism if

(1) every vertex in V T is mapped to a vertex in V G ;

(2) every edge e = (u, v) ∈ ET is mapped to a directed
path f(e) = (u0 = f(u), u1, u2, ..., uk = f(v)) in G.

We will now introduce the cost of a homomorphism. Let
∆(u, v), u ∈ V T , v ∈ V G, be the cost of mapping an en-
zyme corresponding to the pattern vertex u into an enzyme
corresponding to the text vertex v.

Following [13], the rule (2) allows edge-to-path map-
ping, but edge-to-edge mapping is still preferable. There-
fore, the homomorphism cost should increase proportion-
ally to the number of extra hops in the images of edges, i.e.,∑

e∈ET

(|f(e)| − 1)

where |f(e)| = k is the number of hops in the path f(e) =
(u0 = f(u), u1, u2, ..., uk = f(v)).



Following [13], the cost of a homomorphism f : T → G
takes in account cost of enzyme mapping and edge-to-path
mapping as follows

cost(f) =
∑

v∈V T

∆(v, f(v)) + λ
∑

e∈ET

(|f(e)| − 1)

where λ is the cost of a single extra hop in an edge-to-
path mapping. This parameter balances enzyme mapping
and edge-to-path costs. If λ = 0, then only the enzyme
mapping cost is taken into account. If λ is very large, then
the enzyme mapping cost contribution is negligible. In our
computational experiments we use λ = 0.5.

Finally, the graph-theoretical problem formulation is as
follows.

Minimum Cost Homomorphism Problem. Given a multi-
source pattern tree T and a text graph G, find the minimum
cost homomorphism f : T → G.

5 Dynamic Programming Algorithm

We will first describe preprocessing of the text graph G
and ordering of vertices of the pattern graph T . Then we
define the dynamic programming table and show how to fill
that table in a bottom-up manner. We conclude with the
runtime analysis of the entire algorithm.

Text Graph Preprocessing. In order to compute the cost
of a homomorphism it is necessary to know the number of
hops for any shortest path in the text graph G. Although
finding single-source shortest paths in general graphs is
slow, in our case it is sufficient to run breadth-first-search
with runtime O(|EG| + |V G|). Assuming that G is con-
nected, i.e., |EG| ≥ |V G|, we conclude that the total run-
time of finding all shortest paths is O(|V G||EG|). In the
resulting transitive closure G′ = (V G,EG′) of the graph
G, each edge e ∈ EG′ is supplied with the number of hops
h(e) in the shortest path connecting its ends.

Pattern Graph Ordering. We will further need a cer-
tain fixed order of vertices in V T as follows. Let T ′ =
(V T, ET ′) be the undirected tree obtained from T by dis-
regarding edge directions. Let us choose an arbitrary vertex
r ∈ V T as a root and run depth-first search (DFS) in T ′

from r. Let {r = v1, . . . , v|V T |} be the order of the DFS
traversal of V T and let e′i = (vi, v) ∈ ET ′ (corresponding
to directed edge ei ∈ ET ) be the unique edge connecting
vi to the set {v1, . . . , vi−1}. The vertex v ∈ {v1, . . . , vi−1}
is called a parent of vi and vi is called a child of v.

DP Table. Now we will describe our dynamic program-
ming table DT [1, . . . , |V T |][1, . . . , |V G|]. Each row and
column of this table corresponds to a vertex of T and
G, respectively. While the columns u1, . . . , u|V G| of DT
are in no particular order, the rows {r = v1, . . . , v|V T |}

of DT are sorted according to the DFS traversal of T ′.
Each element DT [i, j] is equal to the best cost of a ho-
momorphism from the subgraph of T induced1 by vertices
{v|V T |, v|V T |−1, . . . , vi} into G′ which maps vi into uj .

Filling DP Table. The table DT is filled bottom-up for
i = |V T |, |V T | − 1, . . . , 1 as follows. If vi is not a parent
for any vertex in T , then vi is a leaf and

DT [i, j] = ∆(vi, uj)

In general, let vi be a parent for the vertices vi1 , . . . , vik
.

In order to compute DT [i, j], we should find the cheapest
mapping of each of the children vi1 , . . . , vik

subject to vi

being mapped to uj . The mappings of the children do not
depend on each other since the only connection between
them in the tree T is through vi. Therefore, each child vil

,
l = 1, . . . , k should be mapped into ujl

minimizing the con-
tribution of vil

to the total cost

C[il, jl] = DT [il, jl] + λ(h(j, jl)− 1)

where h(j, jl) depends on direction of eil
, i.e., h(j, jl) =

h(uj , ujl
) if eil

= (vi, vil
) and h(j, jl) = h(ujl

, uj) if
eil

= (vil
, vi). Finally,

DT [i, j] = ∆(vi, uj) +
k∑

l=1

min
j′=1,...,|V G|

C[il, j′]

Runtime Analysis. As we mentioned earlier, the runtime
for constructing the transitive closure G′ = (V G,EG′) is
O(|V G||EG|). The runtime to fill a cell DT [i, j] is propor-
tional to

tij = degT (vi)degG′(uj)

where degT (vi) and degG′(uj) are degrees of vi and uj in
graphs T and G′, respectively. Indeed, the number of chil-
dren of vi is degT (vi)− 1 and for each child vil

of vi there
are at most degG′(uj) feasible positions in G′ since f(vi)
and f(vil

) should be adjacent. The runtime to fill the entire
table DT is proportional to

|V G|∑
j=1

|V T |∑
i=1

tij =
|V G|∑
j=1

degG′(uj)
|V T |∑
i=1

degT (vi) = 2|EG′||ET |

Thus the total runtime is O(|V G||EG|+|EG′||V T |). Even
though G is sparse, |EG′|may be as large as O(|V G|2), i.e.,
the runtime is O(|V G|(|EG|+ |V G||V T |)).

6 Mapping Metabolic Pathways

In this section we first describe the metabolic pathway
data, then explain how we measure statistical significance

1A subgraph induced by the subset of vertices S includes only edges
that have both ends in S.



pattern network text network (number of pthways)
(tree pathways) T. thermophilus(208) B. subtilis(226) E. coli(113) S. cerevisiae(151)
T. thermophilus # of mapping pairs 38 21 18 18

# of mapped pattern pathways 28 14 12 13
# of mapped text pathways 35 20 18 17

B. subtilis # of mapping pairs 162 217 121 58
# of mapped pattern pathways 80 143 85 39

# of mapped text pathways 106 153 92 40
E. coli # of mapping pairs 9 5 38 3

# of mapped pattern pathways 2 3 3 2
# of mapped text pathways 9 5 14 5

S. cerevisiae # of mapping pairs 24 12 12 14
# of mapped pattern pathways 9 7 6 13

# of mapped text pathways 21 12 12 14

Table 1. Pairwise statistical homomorphisms among T. thermophilus, B. subtilis, E. coli and S. cerevisiae.

of homomorphisms and report the results of pairwise map-
pings between four species.

Data. The genome-scale metabolic network data in our
studies were drawn from BioCyc [1, 7, 10], the collection of
260 Pathway/Genome Databases, each of which describes
metabolic pathways and enzymes of a single organism. We
have chosen metabolic networks of E. coli, the yeast S. cere-
visiae, the eubacterium B. subtilis and the archeabacterium
T. thermophilus so that they cover major lineages Archaea,
Eukaryotes, and Eubacteria. The bacterium E. coli with
113 pathways is the most extensively studied prokaryotic
organism. T. thermophilus with 208 pathways belongs to
Archaea. B. subtilis with 226 pathways is one of the best
understood Eubacteria in terms of molecular biology and
cell biology. S. cerevisiae with 151 pathways is the most
thoroughly researched eukaryotic microorganism.

Statistical Significance of Mapping. Although the cost
of a homomorphism reflects the similarity of pathways, it
alone cannot assure us that such cost is not obtained by
chance. Only statistically significant cost values can be
taken in account. Statistical significance is measured by p-
value, i.e., the probability of the null hypothesis that the cost
value is obtained by pure chance. Following a standard ran-
domization procedure, we randomly permute pairs of edges
(u, v) and (u′, v′) if no other edges exist between these 4
vertices u, u′, v, v′ in the text graph by reconnecting them
as (u, v′) and (u′, v). This allows us to keep the incoming
and outgoing degree of each vertex intact. We find the min-
imum cost homomorphism from the pattern graph into the
fully randomization of the text graph and check if its cost is
at least as big as the minimum cost before randomization of
the text graph. We say that the homomorphism is statisti-
cally significant with p < 0.01 if we found at most 9 better
costs in 1000 randomization of the text graph.

Experiments. For each pair of four species (B. subtilis, E.
coli, T. thermophilus and S. cerevisiae), using our algorithm
we find the best homomorphism from each pathway of one

species to each pathway of the other and check if this homo-
morphism is statistically significant, i.e., if p < 0.01. We
have run our experiments on a Pentium 4 processor, 2.99
GHz clock with 1.00 GB RAM. The total runtime was 1.5h
for the input/output of pathways and computing the opti-
mal pattern-to-text mapping and its p-value for every pair
of pathways (there are in total 516052 pattern-text pathway
pairs).

Results. The results of our experiments are reported in Ta-
ble 1. The first column contains the name of the species
from whose metabolic network the pattern pathways have
been chosen. Note that if a pathway is not a multisource
tree or degenerate (i.e., has less than 3 nodes), then it is
omitted. We did not omit any pathway from the text species
since our algorithm supports any network as a text. For
every species-to-species mapping, we compute the number
of mapped pairs with p < 0.01, the number of the pattern
pathways that have at least one statistically significant ho-
momorphic image and the number of the text pathways that
have at least one statistically significant homomorphic pre-
image.

For example, for homomorphism from T. thermophilus
to B. subtilis, there are in total 21 statistically significant
mapped pairs, 14 non-degenerate tree T. thermophilus path-
ways have statistically significant homomorphic images in
B. subtilis and 20 out of 226 B. subtilis pathways have sta-
tistically significant homomorphic pre-images.

7 Implications of Pathway Mappings

In this section we identify pathways conserved across
multiple species, show how one can resolve enzyme am-
biguity and identify potential holes in pathways, and phylo-
genetically validate our pathway mappings.

Identifying Conserved Pathways. We first have identified
the pathways that are conserved across all 4 species under
consideration. Table 2 contains a list of all 20 pathways in



Pathway name
alanine biosynthesis I
biotin biosynthesis I
coenzyme A biosynthesis
fatty acid beta
fatty acid elongation saturated
formaldehyde oxidation V (tetrahydrofolate pathway)
glyceraldehyde 3 phosphate degradation
histidine biosynthesis I
homoserine biosynthesis
lysine biosynthesis I
ornithine biosynthesis
phenylalanine biosynthesis I
phenylalanine biosynthesis II
polyisoprenoid biosynthesis
proline biosynthesis I
quinate degradation
serine biosynthesis
superpathway of gluconate degradation
tyrosine biosynthesis I
UDP galactose biosynthesis
alanine biosynthesis
biotin biosynthesis
fatty acid oxidation pathway
fructoselysine and psicoselysine degradation

Table 2. The list of all 20 pathways in B. subtilis that
have statistically significant homomorphic images simulta-
neously in all 3 other species E. coli, T. thermophilus and S.
cerevisiae. The lower part contains 4 more different path-
ways with statistically significant images in all 4 species.

Pathway name
triple: B. subtilis, E. coli, and T. thermophilus
4 aminobutyrate degradation I
de novo biosynthesis of pyrimidine deoxyribonucleotides
de novo biosynthesis of pyrimidine ribonucleotides
enterobacterial common antigen biosynthesis
phospholipid biosynthesis I
PRPP biosynthesis II
salvage pathways of pyrimidine deoxyribonucleotides
ubiquinone biosynthesis
flavin biosynthesis
glycogen biosynthesis I (from ADP D Glucose)
L idonate degradation
lipoate biosynthesis and incorporation I
menaquinone biosynthesis
NAD biosynthesis I (from aspartate)
triple: B. subtilis, E. coli, and S. cerevisiae
oxidative branch of the pentose phosphate pathway
S adenosylmethionine biosynthesis
triple: B. subtilis, T. thermophilus, and S. cerevisiae
tyrosine biosynthesis I
fatty acid elongation unsaturated I

Table 3. The list of 14 pathways conserved across B. sub-
tilis, E. coli, and T. thermophilus; 2 more pathways con-
served across B. subtilis, E. coli, and S. cerevisiae; 2 more
pathways conserved across B. subtilis, T. thermophilus, and
S. cerevisiae.



B. subtilis that have statistically significant homomorphic
images simultaneously in all species. The lower part of Ta-
ble 2 contains 4 more pathways with different names in E.
coli, T. thermophilus and S. cerevisiae, which have simulta-
neous statistically significant images in all species.

Besides 24 pathways conserved across all 4 species we
have also found 18 pathways only common for triples of
these species. Table 3 gives the pathway names for each
possible triple of species (the triple E. coli, T. thermophilus
and S. cerevisiae does not have extra conserved pathways).
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Figure 3. Mapping of glutamate degradation VII path-
ways from B. subtilis to T. thermophilus (p < 0.01). The
node with upper part and lower part represents a vertex-to-
vertex mapping. The upper part represents the query en-
zyme and the lower part represents the text enzyme. The
shaded node reflects enzyme homology.
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Figure 4. Mapping of interconversion of arginine, or-
nithine and proline pathway from T. thermophilus to B. sub-
tilis (p < 0.01). The node with upper part and lower part
represents a vertex-to-vertex mapping. The upper part rep-
resents the query enzyme and the lower part represents the
text enzyme. The shaded node reflects enzyme homology.

Resolving Ambiguity. Currently multiple pathways con-
tain unresolved enzymes. Completely unresolved enzymes
have EC notation 0.0.0.0/-.-.-.- and partially unresolved en-

zymes have less ”-”’s, e.g., EC notation 1.2.4.-. We can
use our mapping tool to suggest possible resolution of these
ambiguities as follows.

Let us consider two examples of homomorphism –
the mapping of glutamate degradation VII pathway in B.
subtilis to glutamate degradation VII pathway in T. ther-
mophilus (shown in Figure 3), and the mapping of inter-
conversion of arginine, ornithine and proline pathway in T.
thermophilus to interconversion of arginine, ornithine and
proline pathway in B. subtilis (shown in Figure 4). When
some enzymes in pathway are labeled with the end of ”.-”, it
denotes their exact reactions are not explicit. The mapping
results indicate that a potential similar enzyme with similar
functions of the unclear enzyme can be found in some other
species.
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Figure 5. Mapping of formaldehyde oxidation V path-
way in B. subtilis to formy1THF biosynthesis pathway in
E. coli (p < 0.01). The node with upper part and lower part
represents a vertex-to-vertex mapping. The upper part rep-
resents the query enzyme and the lower part represents the
text enzyme. The node with dashed box represents a gap.

Holes in Pathways. Pathway holes happen when a genome
appears to lack the enzymes needed to catalyze reactions
in a pathway [6]. We can use our mapping tool to identify
potential pathway holes as shown in the following example
(see Figure 5).

There is a statistically significant mapping from
formaldehyde oxidation V (tetrahydrofolate pathway) in
B. subtilis to formyITHF biosynthesis in E. coli. The
correspondence between enzymes shows a gap – enzyme
3.5.1.10 is missing. We found that the enzyme 3.5.1.10
exists in B. subtilis according to Enzyme and Swiss-prot
databases.

Phylogenetic Validation. One can measure similarity be-
tween species based on the number of conserved pathways.
The largest amount of conserved pathways is found between
B. subtilis and T. thermophilus – two species-to-species
mappings have in total 183 statistically significant pairs of
pathways. The next closest two species are E. coli and
B. subtilis which have 126 statistically significant pairs of



pathways. This agrees with fact that B. subtilis, T. ther-
mophilus, and E. coli are prokaryote and S. cerevisiae is a
eucaryote.

8 Conclusions

In this paper we have introduced a new method of map-
ping metabolic pathways based on homomorphism. The
proposed mapping approach allows to map different en-
zymes of the pattern pathway into a single enzyme of a text
network. We have also define a novel scoring scheme for
computing similarity between enzymes based on their EC
notation.

We have formulated the graph-theoretical problem cor-
responding to finding optimal homomorphism from the
pattern network to a text network. We give an effi-
cient dynamic-programming method for exactly solving
this problem when the pattern is multisource tree an the text
is an arbitrary network.

We have applied our mapping tool pairwise mapping of
all pathways for four organisms (E. coli, S. cerevisiae, B.
subtilis and T. thermophilus species) representing main dif-
ferent lineages and found a reasonably large set of statisti-
cally significant pathway similarities.

We report 24 pathways that are conserved across all 4
species as well 18 more pathways that are conserved across
at least three of these species. We show that our mapping
tool can be used for identification of potential pathway holes
as well resolving enzyme notation ambiguities in existing
pathway descriptions.
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