
1-4244-0910-1/07/$20.00 c2007 IEEE.

iC2mpi: A Platform for Parallel Execution of Graph-Structured Iterative
Computations

Harnish Botadra, Qiong Cheng, Sushil K. Prasad

Georgia State University
Atlanta, Georgia, U.S.A.

{hbotadra1, qcheng1}@student.gsu.edu,
sprasad@cs.gsu.edu

Eric Aubanel and Virendra Bhavsar
University of New Brunswick

Fredericton, New Brunswick, Canada
{aubanel, bhavsar}@unb.ca

Abstract

Parallelization of sequential programs is often daunting
because of the substantial development cost involved.
Various solutions have been proposed to address this
concern, including directive-based approaches and
parallelization platforms. These solutions have not always
been successful, partly because many try to address all
types of applications. We propose a platform for
parallelization of a class of applications that have similar
computational structure, namely graph-structured
iterative applications. iC2mpi is a unique proof-of-concept
prototype platform that provides relatively easy
parallelization of existing sequential programs and
facilitates experimentation with static partitioning and
dynamic load balancing schemes. We demonstrate with
various generic application graph topologies that our
platform can produce good performance with very little
effort. The iC2mpi platform has a good potential for
further performance improvements and for extensions to
related classes of application domains. Because of the
relative ease of implementation, this platform can also
serve as a model for developing other domain-specific
platforms.

Keywords: Parallelizing platform, Graph-based iterative
computations, Message Passing Interface (MPI), Modular
Architecture, Third-party Plug-ins for Partitioning.

1. Introduction

Many application domains, wherein distributed
computation has been successfully employed, fall into the
class of iterative computations – this class can be
characterized by underlying mesh or graph structured
application programs and iterative local computations over
nodes, dependent only on the neighboring nodes.
Examples of such application domains include many time-
stepped simulations, such as battlefield management [5],
weather forecasting [10], or fluid dynamics [8], and mesh-
structured computations, such as difference equations [16],
finite element methods [17], and cellular automata [2].
Despite sharing essentially similar program structures,
there is no generic framework to help the programmers of

these applications to easily transition from their sequential
implementations to distributed machines or to grid
platforms (see Section 5 for relevant literature). Our
iC2mpi platform addresses this and related issues.

Current Limitations: Typically, scientists and
engineers have proven sequential C/C++ codes and
converting these to distributed versions in MPI entails
challenges of explicit parallel programming, debugging,
and revalidating. Most applications programmers,
therefore, are limited to automatic loop-based
parallelization, or to inserting compiler directives (as in
OpenMP [14] and HPF [22]). If distributed versions are
manually developed (usually employing MPI), quite often
these programs hardcode a specific pattern of domain
decomposition to statically partition the application
program graph/mesh among the processors of a target
machine topology, aiming to best balance computational
load and minimize communication. Therefore, the
resultant MPI code that programmers develop typically
requires code changes to study various static partitioning
techniques, as these are not developed in a framework-like
fashion to easily enable such performance studies. When
load can be unpredictable, for example in a battlefield
simulation where combat zones form dynamically, they
also need to employ dynamic load balancing, which
requires even more versatile design of the distributed
programs, further challenging an application programmer.

On the other hand, the algorithm designers of graph
partitioning packages, such as Metis [11], Jostle [21], and
PaGrid [20, 6], are also limited as they can only estimate
the efficiency of their techniques analytically. There is
currently no general-purpose test-bed available that allows
them to easily plug-in their algorithms, and execute and
verify the performances on various program graphs and
processor architectures.

Goals for the Platform: This paper describes our
project to develop a suitable platform with the following
goals.
1. Design an MPI-based platform with an open

architecture for the class of iterative graph-structured
application programs, possibly with dynamically
varying computational loads, into which application
programmers can plug-in the code and the data
structures for their computational nodes, the graphs

for their application programs and for the processor
network, and the third-party algorithms for
partitioning and load balancing.

2. Enable application programmers to
a. easily execute their sequential code for iterative

computations on distributed architectures without
any code change in their node computations or in
the basic node data structures, and without any
MPI coding, and

b. to compare the performance of different static
graph partitioners, and the impact of various
dynamic load balancing and repartitioning
techniques, without any additional coding.

3. Enable designers of algorithms for graph partitioning
and for dynamic load balancing to validate the
efficiency of their techniques by actual execution over
a variety of graph-structured iterative computations
and load characteristics on different parallel and
distributed architectures and heterogeneous grids
instead of typical analytical estimation.

4. Enable carrying out of refinements and performance
tuning for efficient computation and communication
on the platform itself to impact the entire class of
relevant iterative computations.

5. Demonstrate that a domain-specific platform can be
readily built, using existing components, and that this
provides an attractive alternative to other approaches,
from more general platforms to hand-coded MPI.

iC2mpi Solution: Our resultant platform, namely

iC2mpi (for enabling transition from an iterative
computation in C to an MPI-enabled execution), is our
first prototype demonstrating a proof of concept. Its initial
goal has been to architect a generic platform, fulfilling
Goals 1, 2, and 3. Although efficiency enhancements of
the platform have not been taken up yet (Goal 4), we do
obtain reasonably good speedups over a variety of
example codes (speedups of 12-14 on 16 processors).
One important conclusion of this work is the relative ease
with which this platform was built, a result of its being
restricted to iterative graph-based applications, and the use
of tools and ideas from the literature. This suggests that
this approach be more widely used (Goal 5).

Section 2 describes the overall architecture of iC2mpi,
and Section 3 gives the details of its internal algorithms
and data structures. Section 4 shows the results of various
experiments with different iterative applications on the
iC2mpi platform. We employ Metis and PaGrid as
examples of third-party plug-ins to study various static
partitioning schemes. We have also developed our own
simple repartitioning heuristic plug-in to experiment with
dynamic task migrations. We also demonstrate that the
overhead of the platform is acceptably low and scales
well. Section 5 briefly reviews related work and compares

them with the current approach, and Section 6 concludes
by discussing ongoing and future work in extending the
iC2mpi platform and improving its performance.

2. Overview of Architecture and Design
Issues

Platform Architecture: Due to the goals 1-3, the
architecture had to be a layered architecture with the
application program interfacing only with the two third
party components, namely, the graph partitioner and the
load balancer, in addition to the platform itself, and not
with the underlying MPI communication infrastructure.
Figure 1 shows our layered architecture view of the
platform. The application program provides the
application graph, node data structures and the node
computation function as user plug-ins to the platform. The
platform uses a static graph partitioner for the initial
partitioning. A dynamic load balancer is incorporated in
the platform for load balancing of dynamic domain
applications. The platform itself uses an MPI approach for
parallelization, one of the most widely used methods to
achieve parallelism on today’s clusters and multiprocessor
supercomputers [19]. The need to flexibly incorporate
any third party partitioner also dictated a standard format
for plug-ins. We employed Chaco format [11] for the
application program graph as input to the partitioners
employed, namely Metis and PaGrid. Figure 2 shows the
detailed platform architecture, and explicitly indicates user
plug-in points (application program graph, node data
structures, and node computation function) and the
interaction of the platform components with the data
structures they use. Solid templates are the platform
components.

Application Program

iC2mpi Platform

Static Graph
Partitioner

Dynamic
Load

Balancer
MPI

Figure 1: Layered Architecture View of the iC2mpi

Platform
Data Structures: Selection of data structures is

central to the efficient solving of irregular concurrent
problems on distributed memory architectures [15]. Two
issues dictated the choice of data structures: flexibility and
fast access. The processors themselves would need to
maintain an arbitrary and variable number of program
nodes and their connectivity with their neighboring nodes
– this precluded array based structures. However, the
processor would need fast access to a node for computing

over them or to communicate shadow nodes to
neighboring processors. A hash table providing quick link
to a node based on its global id was a natural choice [15].
In addition to the data of the nodes owned by the
processor (some are internal nodes and others are
peripheral nodes, the ones which have at least one
neighboring node on another processor), it also needs to
maintain shadow node information locally (the non-local
nodes which are neighboring to its peripheral nodes). The
data structures set up at each processor, thus, are (i) a list
of data nodes for maintaining the physical node data
allocated to the processor, (ii) two lists of pointers, one to
the internal nodes and other to the peripheral nodes, and
(iii) a hash table containing pointers to data nodes. Note
that the data node list not only includes data for the nodes
owned by the processor but also the shadow node data.
By keeping the peripheral nodes separate, communication
buffers to neighboring processors can be setup while
computing over these nodes. A modulo hash function
suffices on the node global ID to obtain the location for
node data. The buckets (sorted linked lists) maintain
pointers to the node data in the data node list.

Figure 2: Modular Architecture of iC2mpi Platform
Overheads: A generic platform needs to contend with

overheads which most MPI programs can do away with or
optimize. One key issue is how to invoke a generic
function to compute over an application node from the
platform? For complete flexibility, for each node,
currently we pass a linked list of that node as the header
node followed by its neighbors to the user supplied node
computation function. Of course, arrays/vectors are
alternatives for cases when partitions remain static
throughout or change only periodically. Another
overhead, within each iteration, is the need to explicitly
prepare a communication buffer containing the shadow
node data for each neighboring processor. Again, these

buffers can be initialized once and updated directly in
place, if no dynamic load balancing is needed. In the
latter case, such initialization can occur after each task
migration. We retain the basic approach incurring this
overhead for maximum flexibility, with an eye toward
extending the platform to adaptive meshes. As evidenced
in Section 4, these overheads are tolerated to a good
extent.

3. Algorithmic and Implementation Issues

There are three major phases involved in the platform
execution: initialization, computation & communication,
and load balancing & task migration.

Initialization Phase: During this phase, all the
processors initialize data structures in their local memories
to maintain graph connectivity of the iterative problem,
node information and node data. The initial input graph
and the initial node-to-processor mapping yielded by
graph partitioner is stored into appropriate data structures,
for easy access and retrieval. Besides these, hash tables
are also set up in the local memory of each processor.

Computation & Communication Phase: During this
phase, the processor performs computations for each of its
nodes using data of the neighboring nodes. For each node
it owns, it forms a list comprising of the current node’s
data as the head followed by the data of the neighbors to
be passed to the application node computation function.
The platform maintains a pointer to the application node
function supplied by the user. This allows for a clean and
robust decoupling between the iC2mpi platform and the
application program code. Internal nodes are updated
followed by the peripheral nodes. As the peripheral node
data is updated, this updated data is packed into
communication buffers even as the next peripheral node is
ready to be updated.

For physical communication of these buffers, the
structure type used to set up the buffers is committed to an
MPI data type (using MPI_Type_commit), since it is not a
standard MPI data type but a derived data type. All the
processors send these buffers at one go. MPI_Isend(), a
non-blocking call, is used for sending these buffers to
appropriate processors. MPI_Recv() receives these
buffers which are then used to update the locally
maintained shadow node information.

A version of iC2mpi employs MPI_Irecv() to overlap
the computations with communications, by processing the
peripheral nodes first and dispatching the shadow nodes to
neighboring processors, and while the communication
takes place, proceeds with the processing of the internal
nodes. These and other performance enhancements are
currently underway – the results reported in Section 4
employs the basic prototype of iC2mpi platform.

Load Balancing & Task Migration Phase: Dynamic
applications require periodic load balancing, since the
computational workload of individual nodes may change
throughout the course of computation. Repartitioning
should not only balance the workload among the
processors but also keep the edge-cut to a minimum, so as
to minimize the inter-processor communication [3]. We
now briefly describe a centralized heuristic algorithm used
in the platform in order to attain dynamic load balancing.
A third party plug-in is possible here.

1) A weighted processor network graph is set up. The
execution time of the processors for a specific number of
iterations represents the weight on the nodes and the
weight of the edge connecting two processors is the
amount of communication between the two estimated by
the length of the communication buffers.

2) A designated processor examines the processor
graph so as to measure the relative workload on the
processors spread across the computational domain. The
processor doing 25% more work (obtained from the node
weights) than all its neighbors is considered to be the
‘busy’ processor. The one among its neighbors doing the
least amount of work is labeled as an ‘idle’ one. The
central processor obtains all such ‘busy-idle’ pairs from
the processor graph.

3) As a final step, we just need to decide upon the task
that should be migrated from the ‘busy’ processor to the
‘idle’ processor. The task which keeps the edge-cut to a
minimum becomes the candidate for ‘task migration.’ For
example, in Figure 3, out of the two nodes A and B which
could be migrated from processor 0 to processor 1, we
choose the migration of node B. Migrating node A would
cause three edges to cross the boundary of processor 0,
which would increase the overall edge cut by 2, and so we
choose B in this case.

Task Migration: A single task migration involves the
‘busy’ processor which sends the task, an ‘idle’ processor
which receives the task, and a set of processors which hold
shadows for the migrating node. Changes are made to the
data structures of the sending and receiving
processors, as well as the processors that hold neighbors of
the migrating node. In iC2mpi platform, many such

migrations occur in parallel across the computational
domain. Our distributed algorithm for migration module
ensures that all such simultaneous migrations can be
accomplished without any conflict. For dynamic
applications, the data redistribution cost for load balancing
can be comparable to the actual time for computation [18].
Therefore, it is only apt to leverage the maximum out of
the overhead incurred by the load balancing routine to
gather the load statistics across the computational domain.

4. Experimental Results

The experimental results were conducted on a Silicon
Graphics Origin-2000 computer with 24 CPUs. It has
CRAY link interconnects with hypercube NUMA
architecture. Two generic applications with hexagonal grid
and random graph topologies are parallelized using the
iC2mpi platform. In each case, the application node
function and data structure was prepared and plugged into
the iC2mpi platform with relative ease. A dummy ‘for
loop’ is used to inject an appropriate fine (3 ms) or coarse
(30 ms) grain size on the nodes. Most data corresponds to
average over five different fine grained graphs using Metis
static graph partitioner, unless specified otherwise.
4.1. Hexagonal Grids

We first tested the performance of the platform on
hexagonal grids, which is typical for such simulations as
battlefield management [5]. Each node computes the
average of the data maintained by all its six neighbors.
Figure 4 shows the speedup plots for 20 iterations on 32,
96 and 160-node fine grained hexagonal grids. For
smaller graphs, the increase in speedup reduces as we
increase the number of processors, due to the increase in
the communication overhead with the number of
processors. But, for larger graphs, we obtain considerable
speedup with increasing number of processors. For
instance, for the 160-node hexagonal grid using 16
processors we obtain a speedup of 12.8 (self-relative). For
large graphs, the communication overhead remains more
or less the same with the increase in the number of
processors, while the computation workload gets divided
among the processors resulting in large speedups. We
further explore the overheads later in the section.

Next, we compare the performance of the platform
with the dynamic load balancing utility. We create inertial
and incremental imbalance which is hard to capture for
static partition: For the first 33% of the iterations, the first
50% nodes use coarse grain size and the rest of the nodes
use fine grain size. Similarly, for the next 33% of the
iterations, nodes ranging for 25% to 75% use coarse grain
size while the rest use fine grain size. Finally for the final
33% of the iterations, nodes ranging from 50% to 100%
use coarse grain size and rest of the nodes use fine grain
size. Speedups are measured for 25 iterations and load

Figure 3: Choosing B over A for task migration,
keeping edge-cut to a minimum

B

A C
0

1

balancing routine is invoked every 10 time steps. Figure 5
shows the comparison plots for the static and dynamic
load balancing utilities of the platform. Dynamic
partitioning slightly outperforms the static partitioning as
we increase the number of processors. We expect this
performance difference to widen further for systems where
load changes are more dynamic and excessive.

0

2

4

6

8

1 0

1 2

1 4

1 2 4 8 1 6

P rocessor

S
p
e
e
d
-U
p

3 2 -no de H e xa go na l G rid

96 -no de H e xa go na l G rid

12 8-n od e H ex ag on al G rid

Figure 4: Speedup for Hexagonal Grids

0

2

4

6

8

10

12

14

1 2 4 8 16

Processor

Sp
ee

d-
up

Static Partition
Dynamic Load Balancing Utility

Figure 5: Static vs. Dynamic Partitioning on 128-node
Hexagonal Grids

0

2

4

6

8

10

12

1 2 4 8 16

Processor

S
pe

ed
-u

p

Coarse Grained - Metis
Coarse Grained - PaGrid

Figure 6: Metis vs PaGrid for Coarse Grained 160-node
Hexagonal Grids

Metis v PaGrid Speed-up Plots for Fine and Coarse Grain
(Random Graph)

0
2

4

6

8
10

12

14

1 2 4 8 16

Processor

Sp
ee

d-
up

Fine Grain (0.3 milli-sec
grain size) - Metis

Coarse Grain (3 milli-sec
grain size) - Metis
Fine Grain (0.3 milli-sec
grain size) - PaGrid
Coarse Grain (3 milli-sec
grain size) - PaGrid

Figure 7: Metis vs. PaGrid on Fine & Coarse Grained 64-
node Random Graphs

The platform allows users to choose the appropriate
static partitioner which provides optimum performance for
the iterative application on hand. In Figure 6, we compare
the performance of Metis and PaGrid. This figure shows
the speedup plots for 20 iterations for 160-node coarse-
grained hexagonal grid using Metis and PaGrid as the
static graph partitioners. The processor network graph
used for PaGrid (hypercube) used the grid format specified
in [20, 6]. Of particular interest is the “Rref” parameter
for PaGrid, defined as the ratio of communication time to
the computation time per node in the application graph.
For the graph topologies discussed here, we used Rref =
0.45. For Metis, we set the parameter fmt = 0, indicating
uniform weighted program graph; Metis does not use
processor network graph [11]. From the plot, we can see
that Metis provides better speed-ups as compared to
PaGrid as expected for large regular hexagonal graphs –
the latter is known to perform better for heterogeneous
networks. This is demonstrated for the random graph with
64 nodes, wherein PaGrid does better than Metis, as
shown in Figure 7.

0

2

4

6

8

10

12

1 2 4 8 16

P rocessor

S
p
e
e
d
-U
p

3 2 -node 96-node 160-node

Figure 8: Speedup for Random Graphs with Static
Partition (Metis)

4.2. Random Graphs
We experimented with random graphs on the iC2mpi

platform to ascertain that the platform copes with
communication irregularity gracefully. Figure 8 shows the
speedup plots for 20 iterations for 32 and 96 and 160-node
fine grained random. Even with the random nature of the
graphs, we obtain good speedups for larger graphs as we
increase the number of processors. Figure 9 shows the
performance comparison of the random graphs with
dynamic load balancing. Speedups are calculated for 25
iterations, and load balancing routine is invoked every 10
time steps for the dynamic load balancing approach.
Dynamic partitioning captures the random nature of the
graph and the load imbalance across the computational
domain to balance the work load among the processors
periodically resulting in better speedups while the static
partitioning falls short.

0

2

4

6

8

10

12

1 2 4 8 16

Processor

S
pe

ed
-U

p

Static Partition

Dynamic Load Balancing Utility

Figure 9: Performance of Dynamic Partitioning on 128-
node Random Graphs

4.3. Measurement of Overheads

We measured the current overheads of the iC2mpi
platform’s various phases. We plot the overheads for
fine-grained 64-node hexagonal grids (with dynamic load
balancing) and for 256-node random graphs (without
dynamic load balancing) for 35 iterations each in Figure
11 and 12, respectively. Here the phases and overheads
are defined as follow: (i) Initialization: Includes setting up
the data structures for graph connectivity, node-to-
processor mapping, internal and peripheral node lists, data
node lists and hash tables; (ii) Computation Overhead:
Setting up the list of the current node and its neighbors to
be passed on to the application node function for node
computation, and updating of the data node lists after
computation; (iii) Compute: Actual node computation;
(iv) Communication Overhead: Packing buffers for
communication, unpacking the received buffers and
updating the data node lists; (v) Communicate:
Communication of the shadow node information to
appropriate processors and receiving the required

information from neighbors; and (vi) Load Balancing &
Task Migration: Gathering information about load
imbalance across the computational domain and balancing
the work load among the processors. A key observation
from the bar graphs is that both the communication
overhead and the actual communication between the
processors, more or less remains the same as we increase
the number of processors. Thus, the platform does a good
job of keeping the communication overhead in check and
prevents it from limiting the scalability. Meanwhile the
time for computation reduces with the increase in the
number of processors due to the division of work load
among the processors. This is the key to large speedups
obtained as we increase the number of processors with
increasing size of the graphs as evidenced from Figure 12.

D ifferent P hases & O verheads

0

0.01

0.02

0.03

0.04

0.05

2 4 8 16

P rocessor

T
im

e
 i
n
 S

e
c
o
n
d
s

Initialization

C om putation

O verhead
C om pute

C om m unication

O verhead
C om m unicate

Load B alancing &

Task M igration

Fig. 11: Overheads for 64-node Hexagonal Grids with
dynamic load

Different Phases and Overheads

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

Process

Ti
m

e
in

 S
ec

on
ds

Initialization

Computation Overhead

Computation

Communication Overhead

Communication

Fig. 12: Overheads for 256-node fine grained Random
Graphs

5. Related Work

Existing alternatives to time-consuming manual
parallelization with MPI for application programmers
range from the use of compiler directives to assist the

compiler in parallelizing sections of a sequential program
to the use of parallel utility libraries and high-level
frameworks. The first approach has mainly been
implemented in High Performance Fortran [22] for
multicomputers and OpenMP [14] for multiprocessors.
The former has had limited success for applications with
unstructured communication patterns, where the
parallelization effort is comparable to using MPI [19],
although additional directives have been proposed to
address this issue [15]. Even if this limitation is addressed
by future HPF implementations, a high-level framework
such as iC2mpi can be an attractive alternative as the
former still requires significant code modification and
exposes data distribution to the user, while the latter hides
the technicalities associated with parallelism. OpenMP is
mainly limited to expensive multiprocessor platforms, can
produce non-deterministic programs that are hard to
debug, and requires significant work (comparable to MPI)
to achieve highly scalable programs [9].

The use of parallel libraries can significantly reduce
the time required to parallelize an application. Zoltan [4] is
the library that comes closest to this work. Zoltan is a
library of data management services for parallel,
unstructured and dynamic applications. Zoltan basically
simplifies load balancing, data movement, unstructured
communication and memory usage difficulties that arise in
dynamic applications such as adaptive finite-element
methods. Zoltan provides utilities to assist in the
development of a parallel application, while our platform
does not require the user to do any parallel programming.
Zoltan provides utilities like distributed data directories
for locating off-processor data and a communication
library to incorporate changing communication patterns
for dynamic applications. In our platform, these utilities
are built-in, so the user need not worry about them.

Paramesh is a Fortran 90 toolkit for parallel adaptive
mesh refinement applications [12]. It provides a package
of subroutines that ease the parallelization of sequential
mesh-based application, and also ease the adoption of
adaptive mesh refinement. It is restricted to regular
Cartesian meshes, however, whereas our platform applies
to arbitrary unstructured meshes.

High-level frameworks hide the complexities
associated with parallel programming, allowing for much
more rapid development. KeLP [1] is a framework that
assists in the implementation of parallel applications
involving block decompositions of structured data. It is
intended for applications that adapt to data-dependent or
hardware dependent conditions at run time. Our
framework does not share KeLP’s restriction to structured
data and is designed for iterative applications employing
unstructured data. CO2P3S is a parallel programming
system that combines three abstraction techniques,
namely, object-oriented programming, design patterns,

and frameworks, using a layered programming model
which supports fast development of parallel programs and
fine tuning of the resulting programs for performance.
CO2P3S uses design patterns to ease the effort required to
write parallel programs [13]. While CO2P3S emphasizes
easy parallelization of a range of applications based on
user selection of pattern templates and fine-tuning of the
parallel programs for performance, there are no dynamic
load balancing capabilities incorporated in the mesh
framework. While CO2P3S does well to separate the
application-independent framework structure from
application-dependent code, it does not ensure that the
mesh framework employed by it is a black box from the
point of view of the user, whereas in our iC2mpi platform,
the user needs to model the iterative application as per the
platform specification without worrying about its
architecture.

6. Conclusions and Future Work

We have presented a unique proof-of-concept
prototype platform for parallelization of iterative graph-
structured applications. It provides a relatively easy
transition from sequential programs to their distributed
executions, and facilitates experimentation with static
partitioning and dynamic load balancing schemes. We
demonstrated with two generic iterative applications with
underlying hexagonal and random graph structures that
our platform can produce good performance with very
little effort. The iC2mpi platform has good potential for
further improvements as indicated and extensions. It also
can serve as a model for other domain-specific platforms.
Future work will include applying our platform to real
applications, to assess the balance between the
performance impact of optimizations produced by the
compiler or manually and the reduction in development
time resulting from the use of the platform. The
performance of the iC2mpi platform can still be improved,
and future work will address this by reducing its
overheads, and extending it to adaptive mesh-based
applications. We will also explore extending it to
applications that use the BSP model [7], as this model
essentially divides the computation from communication
phases as iC2mpi does. Finally, we will employ the
platform to perform comprehensive evaluation of static
and dynamic partitioners.

Acknowledgements: We thank Yan Chen for helping run
some of the experiments to collect data and draw plots.
VB and EA acknowledge support from NSERC Canada.

References

[1] S. Baden, The KeLP Programming System,
http://www-cse.ucsd.edu/groups/hpcl/scg/kelp.html

[2] R. Cappuccio , G. Cattaneo , G. Erbacci , U. Jocher, A
parallel implementation of a cellular automata based
model for coffee percolation, Parallel Computing, v.27
n.5, p.685-717, April 2001

[3] Jose G. Castanos and John E. Savage, “The Dynamic
Adaptation of Parallel Mesh-Based Computation”,
Technical Report: CS-96-31, 1996.

[4] Karen Devine, Erik Boman, Robert Heaphy, Bruce
Hendrickson and Courtenay Vaughan, “Zoltan Data
Management Services for Parallel Dynamic Applications”,
Computing in Science & Engineering, Vol. 4, No. 2,
March/April 2002, pp. 90-97.

[5] Narsingh Deo, Muralidhar Medidi and Sushil K
Prasad, “Load balancing in parallel battlefield
management simulation on local- and shared-memory
architectures”, J. Computer Systems: Science &
Engineering, Special Issue on ‘Simulation in parallel and
Distributed Computing Environments’, Guest Editor: A.
Zomaya, Vol. 13, No. 1, pp. 55-65, 1998.

[6] S. Huang, E. Aubanel, and V.C. Bhavsar, "PaGrid: A
Mesh Partitioner for Computational Grids", Journal of
Grid Computing, Vol. 4 No. 1, pp. 71 - 88, 2006.

[7] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu,
Mark W. Goudreau, Kevin Lang, Satish B. Rao, Torsten
Suel, Thanasis Tsantilas, and Rob Bisseling. BSPlib: The
BSP Programming Library. Parallel Computing, 1998, pp.
1947-80.

[8] R. Henderson, D. Meiron, M. Parashar, R, Samtaney,
"Parallel Computing in Computational Fluid Dynamics".
In J. Dongarra et al., editors, "Sourcebook of Parallel
Computing", Chapter 5, Morgan Kaufmann, 2003.

[9] G. Krawezik AND F. Cappello,” Performance
comparison of MPI and OpenMP on shared memory
multiprocessors”, Concurrency Computat.: Pract. Exper.
2006; 18:29–61

[10] Kauranne, T., 1990: An introduction to parallel
processing in meteorology. The Dawn of Massively
Parallel Processing in Meteorology, G. R. Hoffman and
D. K. Maretis, Eds., Springer-Verlag, 3–20.

[11] George Karypis and Vipin Kumar, “Multilevel k-way
Partitioning Scheme for Irregular Graphs”, J. Parallel &
Distributed Computing, 48(1): 96-129, 1998.

[12] Peter MacNeice, KevinM.Olsonb, Clark Mobarry,
Rosalinda de Fainchtein, Charles Packer, “PARAMESH:
A parallel adaptive mesh refinement community toolkit”,
Computer Physics Communications 126 (2000) 330–354

[13] Steve MacDonald, Duane Szafron, Jonathan
Schaeffer and Steven Bromling, “Generating Parallel
Program Frameworks from Parallel Design Patterns”, in
proceedings of 6th International Euro-Par Conference
(Euro-Par 2000), Munich, Germany, August 2000, Lecture
Notes in Computer Science 1900, Springer-Verlag, pages
95-104.

[14] www.openmp.org

[15] Ravi Ponnusamy, Joel Saltz, Alok Choudhary, Yuan-
Shin Hwang and Geoffrey Fox, “Runtime Support &
Compilation Methods for User-Specified Irregular Data
Distributions”, IEEE Transactions on Parallel and
Distributed Systems, 1995.

[16] Michael J. Quinn, Parallel Programming in C with
MPI and OpenMP, McGraw-Hill, 2004.

[17] I.M. Smith and D.V. Griffiths : Programming the
finite element method, (John Wiley & Sons, 2004, 4th
edn.)

[18] Kirk Schloegel, George Karypis and Vipin Kumar,
“A Unified Algorithm for Load-balancing Adaptive
Scientific Simulations”, Supercomputing, 2000.

[19] Dale Shires and Ram Mohan, “An Evaluation of HPF
& MPI Approaches and Performance in Unstructured
Finite Element Simulations”, Journal of Mathematical
Modeling and Algorithms 1:153-167, 2002.

[20] R. Wanschoor and E. Aubanel, “Partitioning and
Mapping of Mesh-Based Applications onto Computational
Grids”, 5th IEEE/ACM International Workshop on Grid
Computing (Grid 2004), Nov. 8, 2004, Pittsburgh, PA,
USA, IEEE Computer Society, pp. 156-162.

[21] C. Walshaw and M. Cross, "Multilevel Mesh
Partitioning for Heterogeneous Communication
Networks", Future Generation Computer
Systems,17(5):601-623, 2001

[22] H. P. Zima, “High Performance Fortran - History,
Status and Future”, Proceedings of the 4th international
Symposium on High Performance Computing (May 15 -
17, 2002), Lecture Notes In Computer Science, vol. 2327.
Springer-Verlag, London, 490, 2002.

