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Abstract 

Parallelization of sequential programs is often daunting 
because of the substantial development cost involved. 
Various solutions have been proposed to address this 
concern, including directive-based approaches and 
parallelization platforms. These solutions have not always 
been successful, partly because many try to address all 
types of applications. We propose a platform for 
parallelization of a class of applications that have similar 
computational structure, namely graph-structured 
iterative applications. iC2mpi is a unique proof-of-concept 
prototype platform that provides relatively easy 
parallelization of existing sequential programs and 
facilitates experimentation with static partitioning and 
dynamic load balancing schemes. We demonstrate with 
various generic application graph topologies that our 
platform can produce good performance with very little 
effort. The iC2mpi platform has a good potential for 
further performance improvements and for extensions to 
related classes of application domains. Because of the 
relative ease of implementation, this platform can also 
serve as a model for developing other domain-specific 
platforms. 
 
Keywords: Parallelizing platform, Graph-based iterative 
computations, Message Passing Interface (MPI), Modular 
Architecture, Third-party Plug-ins for Partitioning.  
 

1. Introduction 

Many application domains, wherein distributed 
computation has been successfully employed, fall into the 
class of iterative computations – this class can be 
characterized by underlying mesh or graph structured 
application programs and iterative local computations over 
nodes, dependent only on the neighboring nodes.  
Examples of such application domains include many time-
stepped simulations, such as battlefield management [5], 
weather forecasting [10], or fluid dynamics [8], and mesh-
structured computations, such as difference equations [16], 
finite element methods [17], and cellular automata [2].   
Despite sharing essentially similar program structures, 
there is no generic framework to help the programmers of 

these applications to easily transition from their sequential 
implementations to distributed machines or to grid 
platforms (see Section 5 for relevant literature).  Our 
iC2mpi platform addresses this and related issues. 

Current Limitations:  Typically, scientists and 
engineers have proven sequential C/C++ codes and 
converting these to distributed versions in MPI entails 
challenges of explicit parallel programming, debugging, 
and revalidating.  Most applications programmers, 
therefore, are limited to automatic loop-based 
parallelization, or to inserting compiler directives (as in 
OpenMP [14] and HPF [22]).  If distributed versions are 
manually developed (usually employing MPI), quite often 
these programs hardcode a specific pattern of domain 
decomposition to statically partition the application 
program graph/mesh among the processors of a target 
machine topology, aiming to best balance computational 
load and minimize communication. Therefore, the 
resultant MPI code that programmers develop typically 
requires code changes to study various static partitioning 
techniques, as these are not developed in a framework-like 
fashion to easily enable such performance studies.  When 
load can be unpredictable, for example in a battlefield 
simulation where combat zones form dynamically, they 
also need to employ dynamic load balancing, which 
requires even more versatile design of the distributed 
programs, further challenging an application programmer. 

On the other hand, the algorithm designers of graph 
partitioning packages, such as Metis [11], Jostle [21], and 
PaGrid [20, 6], are also limited as they can only estimate 
the efficiency of their techniques analytically.  There is 
currently no general-purpose test-bed available that allows 
them to easily plug-in their algorithms, and execute and 
verify the performances on various program graphs and 
processor architectures. 

Goals for the Platform:  This paper describes our 
project to develop a suitable platform with the following 
goals. 
1. Design an MPI-based platform with an open 

architecture for the class of iterative graph-structured 
application programs, possibly with dynamically 
varying computational loads, into which application 
programmers can plug-in the code and the data 
structures for their computational nodes, the graphs 



 

for their application programs and for the processor 
network, and the third-party algorithms for 
partitioning and load balancing. 

2. Enable application programmers to  
a. easily execute their sequential code for iterative 

computations on distributed architectures without 
any code change in their node computations or in 
the basic node data structures, and without any 
MPI coding, and  

b. to compare the performance of different static 
graph partitioners, and the impact of various 
dynamic load balancing and repartitioning 
techniques, without any additional coding. 

3. Enable designers of algorithms for graph partitioning 
and for dynamic load balancing to validate the 
efficiency of their techniques by actual execution over 
a variety of graph-structured iterative computations 
and load characteristics on different parallel and 
distributed architectures and heterogeneous grids 
instead of typical analytical estimation. 

4. Enable carrying out of refinements and performance 
tuning for efficient computation and communication 
on the platform itself to impact the entire class of 
relevant iterative computations.  

5. Demonstrate that a domain-specific platform can be 
readily built, using existing components, and that this 
provides an attractive alternative to other approaches, 
from more general platforms to hand-coded MPI. 

 
iC2mpi Solution:  Our resultant platform, namely 

iC2mpi (for enabling transition from an iterative 
computation in C to an MPI-enabled execution), is our 
first prototype demonstrating a proof of concept.  Its initial 
goal has been to architect a generic platform, fulfilling 
Goals 1, 2, and 3.   Although efficiency enhancements of 
the platform have not been taken up yet (Goal 4), we do 
obtain reasonably good speedups over a variety of 
example codes (speedups of 12-14 on 16 processors).   
One important conclusion of this work is the relative ease 
with which this platform was built, a result of its being 
restricted to iterative graph-based applications, and the use 
of tools and ideas from the literature. This suggests that 
this approach be more widely used (Goal 5).  

Section 2 describes the overall architecture of iC2mpi, 
and Section 3 gives the details of its internal algorithms 
and data structures.  Section 4 shows the results of various 
experiments with different iterative applications on the 
iC2mpi platform.  We employ Metis and PaGrid as 
examples of third-party plug-ins to study various static 
partitioning schemes.  We have also developed our own 
simple repartitioning heuristic plug-in to experiment with 
dynamic task migrations.   We also demonstrate that the 
overhead of the platform is acceptably low and scales 
well. Section 5 briefly reviews related work and compares 

them with the current approach, and Section 6 concludes 
by discussing ongoing and future work in extending the 
iC2mpi platform and improving its performance. 

2. Overview of Architecture and Design 
Issues 

Platform Architecture: Due to the goals 1-3, the 
architecture had to be a layered architecture with the 
application program interfacing only with the two third 
party components, namely, the graph partitioner and the 
load balancer, in addition to the platform itself, and not 
with the underlying MPI communication infrastructure.  
Figure 1 shows our layered architecture view of the 
platform.  The   application program provides the 
application graph, node data structures and the node 
computation function as user plug-ins to the platform.  The 
platform uses a static graph partitioner for the initial 
partitioning.  A dynamic load balancer is incorporated in 
the platform for load balancing of dynamic domain 
applications.  The platform itself uses an MPI approach for 
parallelization, one of the most widely used methods to 
achieve parallelism on today’s clusters and multiprocessor 
supercomputers [19].   The need to flexibly incorporate 
any third party partitioner also dictated a standard format 
for plug-ins. We employed Chaco format [11] for the 
application program graph as input to the partitioners 
employed, namely Metis and PaGrid. Figure 2 shows the 
detailed platform architecture, and explicitly indicates user 
plug-in points (application program graph, node data 
structures, and node computation function) and the 
interaction of the platform components with the data 
structures they use.  Solid templates are the platform 
components. 
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Figure 1: Layered Architecture View of the iC2mpi 

Platform 
Data Structures:   Selection of data structures is 

central to the efficient solving of irregular concurrent 
problems on distributed memory architectures [15].  Two 
issues dictated the choice of data structures: flexibility and 
fast access.  The processors themselves would need to 
maintain an arbitrary and variable number of program 
nodes and their connectivity with their neighboring nodes 
– this precluded array based structures.  However, the 
processor would need fast access to a node for computing 



 

over them or to communicate shadow nodes to 
neighboring processors.  A hash table providing quick link 
to a node based on its global id was a natural choice [15].   
In addition to the data of the nodes owned by the 
processor (some are internal nodes and others are 
peripheral nodes, the ones which have at least one 
neighboring node on another processor), it also needs to 
maintain shadow node information locally (the non-local 
nodes which are neighboring to its peripheral nodes).  The 
data structures set up at each processor, thus, are (i) a list 
of data nodes for maintaining the physical node data 
allocated to the processor, (ii) two lists of pointers, one to 
the internal nodes and other to the peripheral nodes, and 
(iii) a hash table containing pointers to data nodes.  Note 
that the data node list not only includes data for the nodes 
owned by the processor but also the shadow node data.   
By keeping the peripheral nodes separate, communication 
buffers to neighboring processors can be setup while 
computing over these nodes.  A modulo hash function 
suffices on the node global ID to obtain the location for 
node data.  The buckets (sorted linked lists) maintain 
pointers to the node data in the data node list. 

 
Figure 2: Modular Architecture of iC2mpi Platform 
Overheads: A generic platform needs to contend with 

overheads which most MPI programs can do away with or 
optimize.  One key issue is how to invoke a generic 
function to compute over an application node from the 
platform?   For complete flexibility, for each node, 
currently we pass a linked list of that node as the header 
node followed by its neighbors to the user supplied node 
computation function.  Of course, arrays/vectors are 
alternatives for cases when partitions remain static 
throughout or change only periodically.   Another 
overhead, within each iteration, is the need to explicitly 
prepare a communication buffer containing the shadow 
node data for each neighboring processor.  Again, these 

buffers can be initialized once and updated directly in 
place, if no dynamic load balancing is needed.  In the 
latter case, such initialization can occur after each task 
migration.  We retain the basic approach incurring this 
overhead for maximum flexibility, with an eye toward 
extending the platform to adaptive meshes.   As evidenced 
in Section 4, these overheads are tolerated to a good 
extent. 

3. Algorithmic and Implementation Issues 

There are three major phases involved in the platform 
execution: initialization, computation & communication, 
and load balancing & task migration.  

Initialization Phase: During this phase, all the 
processors initialize data structures in their local memories 
to maintain graph connectivity of the iterative problem, 
node information and node data.  The initial input graph 
and the initial node-to-processor mapping yielded by 
graph partitioner is stored into appropriate data structures, 
for easy access and retrieval.  Besides these, hash tables 
are also set up in the local memory of each processor.   

Computation & Communication Phase: During this 
phase, the processor performs computations for each of its 
nodes using data of the neighboring nodes.  For each node 
it owns, it forms a list comprising of the current node’s 
data as the head followed by the data of the neighbors to 
be passed to the application node computation function. 
The platform maintains a pointer to the application node 
function supplied by the user. This allows for a clean and 
robust decoupling between the iC2mpi platform and the 
application program code.  Internal nodes are updated 
followed by the peripheral nodes.  As the peripheral node 
data is updated, this updated data is packed into 
communication buffers even as the next peripheral node is 
ready to be updated.   

For physical communication of these buffers, the 
structure type used to set up the buffers is committed to an 
MPI data type (using MPI_Type_commit), since it is not a 
standard MPI data type but a derived data type.  All the 
processors send these buffers at one go.  MPI_Isend(), a 
non-blocking call, is used for sending these buffers to 
appropriate processors.  MPI_Recv() receives these 
buffers which are then used to update the locally 
maintained shadow node information.   

A version of iC2mpi employs MPI_Irecv() to overlap 
the computations with communications, by processing the 
peripheral nodes first and dispatching the shadow nodes to 
neighboring processors, and while the communication 
takes place, proceeds with the processing of the internal 
nodes.   These and other performance enhancements are 
currently underway – the results reported in Section 4 
employs the basic prototype of iC2mpi platform.  



 

Load Balancing & Task Migration Phase:  Dynamic 
applications require periodic load balancing, since the 
computational workload of individual nodes may change 
throughout the course of computation.  Repartitioning 
should not only balance the workload among the 
processors but also keep the edge-cut to a minimum, so as 
to minimize the inter-processor communication [3].  We 
now briefly describe a centralized heuristic algorithm used 
in the platform in order to attain dynamic load balancing.  
A third party plug-in is possible here. 

1) A weighted processor network graph is set up.  The 
execution time of the processors for a specific number of 
iterations represents the weight on the nodes and the 
weight of the edge connecting two processors is the 
amount of communication between the two estimated by 
the length of the communication buffers. 

2) A designated processor examines the processor 
graph so as to measure the relative workload on the 
processors spread across the computational domain. The 
processor doing 25% more work (obtained from the node 
weights) than all its neighbors is considered to be the 
‘busy’ processor.  The one among its neighbors doing the 
least amount of work is labeled as an ‘idle’ one.  The 
central processor obtains all such ‘busy-idle’ pairs from 
the processor graph. 

3) As a final step, we just need to decide upon the task 
that should be migrated from the ‘busy’ processor to the 
‘idle’ processor.  The task which keeps the edge-cut to a 
minimum becomes the candidate for ‘task migration.’  For 
example, in Figure 3, out of the two nodes A and B which 
could be migrated from processor 0 to processor 1, we 
choose the migration of node B.  Migrating node A would 
cause three edges to cross the boundary of processor 0, 
which would increase the overall edge cut by 2, and so we 
choose B in this case.   

 

Task Migration: A single task migration involves the 
‘busy’ processor which sends the task, an ‘idle’ processor 
which receives the task, and a set of processors which hold 
shadows for the migrating node.  Changes are made to the 
data structures of the sending and receiving 
processors, as well as the processors that hold neighbors of 
the migrating node. In iC2mpi platform, many such 

migrations occur in parallel across the computational 
domain.  Our distributed algorithm for migration module 
ensures that all such simultaneous migrations can be 
accomplished without any conflict.  For dynamic 
applications, the data redistribution cost for load balancing 
can be comparable to the actual time for computation [18].  
Therefore, it is only apt to leverage the maximum out of 
the overhead incurred by the load balancing routine to 
gather the load statistics across the computational domain. 

4. Experimental Results 

The experimental results were conducted on a Silicon 
Graphics Origin-2000 computer with 24 CPUs.  It has 
CRAY link interconnects with hypercube NUMA 
architecture. Two generic applications with hexagonal grid 
and random graph topologies are parallelized using the 
iC2mpi platform.  In each case, the application node 
function and data structure was prepared and plugged into 
the iC2mpi platform with relative ease. A dummy ‘for 
loop’ is used to inject an appropriate fine (3 ms) or coarse 
(30 ms) grain size on the nodes.  Most data corresponds to 
average over five different fine grained graphs using Metis 
static graph partitioner, unless specified otherwise.   
4.1. Hexagonal Grids   

We first tested the performance of the platform on 
hexagonal grids, which is typical for such simulations as 
battlefield management [5].  Each node computes the 
average of the data maintained by all its six neighbors.  
Figure 4 shows the speedup plots for 20 iterations on 32, 
96 and 160-node fine grained hexagonal grids.  For 
smaller graphs, the increase in speedup reduces as we 
increase the number of processors, due to the increase in 
the communication overhead with the number of 
processors.  But, for larger graphs, we obtain considerable 
speedup with increasing number of processors. For 
instance, for the 160-node hexagonal grid using 16 
processors we obtain a speedup of 12.8 (self-relative).  For 
large graphs, the communication overhead remains more 
or less the same with the increase in the number of 
processors, while the computation workload gets divided 
among the processors resulting in large speedups.  We 
further explore the overheads later in the section. 

Next, we compare the performance of the platform 
with the dynamic load balancing utility.  We create inertial 
and incremental imbalance which is hard to capture for 
static partition:  For the first 33% of the iterations, the first 
50% nodes use coarse grain size and the rest of the nodes 
use fine grain size.  Similarly, for the next 33% of the 
iterations, nodes ranging for 25% to 75% use coarse grain 
size while the rest use fine grain size.  Finally for the final 
33% of the iterations, nodes ranging from 50% to 100% 
use coarse grain size and rest of the nodes use fine grain 
size.  Speedups are measured for 25 iterations and load 

Figure 3: Choosing B over A for task migration, 
keeping edge-cut to a minimum 
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balancing routine is invoked every 10 time steps.  Figure 5 
shows the comparison plots for the static and dynamic 
load balancing utilities of the platform.  Dynamic 
partitioning slightly outperforms the static partitioning as 
we increase the number of processors.  We expect this 
performance difference to widen further for systems where 
load changes are more dynamic and excessive. 
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Figure 4: Speedup for Hexagonal Grids             
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Figure 5: Static vs. Dynamic Partitioning on 128-node 
Hexagonal Grids   
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Figure 6: Metis vs PaGrid for Coarse Grained 160-node 
Hexagonal Grids 
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Figure 7: Metis vs. PaGrid on Fine & Coarse Grained 64-
node Random Graphs 

The platform allows users to choose the appropriate 
static partitioner which provides optimum performance for 
the iterative application on hand.  In Figure 6, we compare 
the performance of Metis and PaGrid.  This figure shows 
the speedup plots for 20 iterations for 160-node coarse-
grained hexagonal grid using Metis and PaGrid as the 
static graph partitioners. The processor network graph 
used for PaGrid (hypercube) used the grid format specified 
in [20, 6].  Of particular interest is the “Rref” parameter 
for PaGrid, defined as the ratio of communication time to 
the computation time per node in the application graph.  
For the graph topologies discussed here, we used Rref = 
0.45.  For Metis, we set the parameter fmt = 0, indicating 
uniform weighted program graph; Metis does not use 
processor network graph [11]. From the plot, we can see 
that Metis provides better speed-ups as compared to 
PaGrid as expected for large regular hexagonal graphs – 
the latter is known to perform better for heterogeneous 
networks. This is demonstrated for the random graph with 
64 nodes, wherein PaGrid does better than Metis, as 
shown in Figure 7.    
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Figure 8: Speedup for Random Graphs with Static 
Partition (Metis) 



 

4.2. Random Graphs 
We experimented with random graphs on the iC2mpi 

platform to ascertain that the platform copes with 
communication irregularity gracefully.  Figure 8 shows the 
speedup plots for 20 iterations for 32 and 96 and 160-node 
fine grained random.  Even with the random nature of the 
graphs, we obtain good speedups for larger graphs as we 
increase the number of processors.  Figure 9 shows the 
performance comparison of the random graphs with 
dynamic load balancing.  Speedups are calculated for 25 
iterations, and load balancing routine is invoked every 10 
time steps for the dynamic load balancing approach.  
Dynamic partitioning captures the random nature of the 
graph and the load imbalance across the computational 
domain to balance the work load among the processors 
periodically resulting in better speedups while the static 
partitioning falls short. 
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Figure 9: Performance of Dynamic Partitioning on 128-
node Random Graphs  
                  
4.3. Measurement of Overheads 

We measured the current overheads of the iC2mpi 
platform’s various phases.    We plot the overheads for 
fine-grained 64-node hexagonal grids (with dynamic load 
balancing) and for 256-node random graphs (without 
dynamic load balancing) for 35 iterations each in Figure 
11 and 12, respectively.   Here the phases and overheads 
are defined as follow: (i) Initialization: Includes setting up 
the data structures for graph connectivity, node-to-
processor mapping, internal and peripheral node lists, data 
node lists and hash tables; (ii) Computation Overhead:  
Setting up the list of the current node and its neighbors to 
be passed on to the application node function for node 
computation, and updating of the data node lists after 
computation;   (iii) Compute:  Actual node computation; 
(iv) Communication Overhead: Packing buffers for 
communication, unpacking the received buffers and 
updating the data node lists; (v) Communicate:  
Communication of the shadow node information to 
appropriate processors and receiving the required 

information from neighbors; and (vi) Load Balancing & 
Task Migration:  Gathering information about load 
imbalance across the computational domain and balancing 
the work load among the processors.  A key observation 
from the bar graphs is that both the communication 
overhead and the actual communication between the 
processors, more or less remains the same as we increase 
the number of processors.  Thus, the platform does a good 
job of keeping the communication overhead in check and 
prevents it from limiting the scalability.  Meanwhile the 
time for computation reduces with the increase in the 
number of processors due to the division of work load 
among the processors. This is the key to large speedups 
obtained as we increase the number of processors with 
increasing size of the graphs as evidenced from Figure 12. 
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Fig. 11: Overheads for 64-node Hexagonal Grids with 
dynamic load 
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Fig. 12: Overheads for 256-node fine grained Random 
Graphs 

5. Related Work   

Existing alternatives to time-consuming manual 
parallelization with MPI for application programmers 
range from the use of compiler directives to assist the 



 

compiler in parallelizing sections of a sequential program 
to the use of parallel utility libraries and high-level 
frameworks. The first approach has mainly been 
implemented in High Performance Fortran [22] for 
multicomputers and OpenMP [14] for multiprocessors. 
The former has had limited success for applications with 
unstructured communication patterns, where the 
parallelization effort is comparable to using MPI [19], 
although additional directives have been proposed to 
address this issue [15]. Even if this limitation is addressed 
by future HPF implementations, a high-level framework 
such as iC2mpi can be an attractive alternative as the 
former still requires significant code modification and 
exposes data distribution to the user, while the latter hides 
the technicalities associated with parallelism. OpenMP is 
mainly limited to expensive multiprocessor platforms, can 
produce non-deterministic programs that are hard to 
debug, and requires significant work (comparable to MPI) 
to achieve highly scalable programs [9].  

The use of parallel libraries can significantly reduce 
the time required to parallelize an application. Zoltan [4] is 
the library that comes closest to this work. Zoltan is a 
library of data management services for parallel, 
unstructured and dynamic applications.  Zoltan basically 
simplifies load balancing, data movement, unstructured 
communication and memory usage difficulties that arise in 
dynamic applications such as adaptive finite-element 
methods.  Zoltan provides utilities to assist in the 
development of a parallel application, while our platform 
does not require the user to do any parallel programming.  
Zoltan provides utilities like distributed data directories 
for locating off-processor data and a communication 
library to incorporate changing communication patterns 
for dynamic applications.  In our platform, these utilities 
are built-in, so the user need not worry about them.   

Paramesh is a Fortran 90 toolkit for parallel adaptive 
mesh refinement applications [12]. It provides a package 
of subroutines that ease the parallelization of sequential 
mesh-based application, and also ease the adoption of 
adaptive mesh refinement. It is restricted to regular 
Cartesian meshes, however, whereas our platform applies 
to arbitrary unstructured meshes. 

High-level frameworks hide the complexities 
associated with parallel programming, allowing for much 
more rapid development. KeLP [1] is a framework that 
assists in the implementation of parallel applications 
involving block decompositions of structured data. It is 
intended for applications that adapt to data-dependent or 
hardware dependent conditions at run time. Our 
framework does not share KeLP’s restriction to structured 
data and is designed for iterative applications employing 
unstructured data. CO2P3S is a parallel programming 
system that combines three abstraction techniques, 
namely, object-oriented programming, design patterns, 

and frameworks, using a layered programming model 
which supports fast development of parallel programs and 
fine tuning of the resulting programs for performance.  
CO2P3S uses design patterns to ease the effort required to 
write parallel programs [13].  While CO2P3S emphasizes 
easy parallelization of a range of applications based on 
user selection of pattern templates and fine-tuning of the 
parallel programs for performance, there are no dynamic 
load balancing capabilities incorporated in the mesh 
framework.  While CO2P3S does well to separate the 
application-independent framework structure from 
application-dependent code, it does not ensure that the 
mesh framework employed by it is a black box from the 
point of view of the user, whereas in our iC2mpi platform, 
the user needs to model the iterative application as per the 
platform specification without worrying about its 
architecture. 

6. Conclusions and Future Work 

We have presented a unique proof-of-concept 
prototype platform for parallelization of iterative graph-
structured applications. It provides a relatively easy 
transition from sequential programs to their distributed 
executions, and facilitates experimentation with static 
partitioning and dynamic load balancing schemes. We 
demonstrated with two generic iterative applications with 
underlying hexagonal and random graph structures that 
our platform can produce good performance with very 
little effort. The iC2mpi platform has good potential for 
further improvements as indicated and extensions. It also 
can serve as a model for other domain-specific platforms. 
Future work will include applying our platform to real 
applications, to assess the balance between the 
performance impact of optimizations produced by the 
compiler or manually and the reduction in development 
time resulting from the use of the platform. The 
performance of the iC2mpi platform can still be improved, 
and future work will address this by reducing its 
overheads, and extending it to adaptive mesh-based 
applications. We will also explore extending it to 
applications that use the BSP model [7], as this model 
essentially divides the computation from communication 
phases as iC2mpi does. Finally, we will employ the 
platform to perform comprehensive evaluation of static 
and dynamic partitioners. 
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