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Abstract. An automatic content extraction from multimedia files based
both on manual and automatic indexing is extensively explored. How-
ever, in the domain of musical data, an automatic content description of
musical sounds has not been broadly investigated yet and still needs an
intensive research. In this paper, spectro-temporal sound representation
is used for the purpose of automatic musical instrument recognition. As-
suming that musical instruments can be learned in terms of a group of
features and also based on them either automatic or manual indexing
of an audio file is done, Frame Segment Trees (FS-trees) can be used to
identify segments of an audio marked by the same indexes. Telescopic
vector trees (TV-trees) are known from their applications in text process-
ing and recently in data clustering algorithms. In this paper, we use them
jointly with FS-trees to construct a new Query Answering System (QAS)
for audio data. Audio segments are returned by QAS as answers to user
queries. Heuristic strategy to build adaptable TV-trees is proposed.

1 Introduction

Indexing and searching multimedia data is a non-trivial task, which requires
signal analysis and processing. Standardization of content labeling of multime-
dia data is addressed by Moving Picture Experts Group in MPEG-7 standard,
named Multimedia Content Description Interface [11]. This standard provides
numerous descriptors for labeling audio and visual data. However, algorithms
for searching through the labeled data are behind the scope of MPEG-7, since
their standardization is not required, thus leaving space for further develop-
ment. Therefore, research on efficient searching through audio data represented
by descriptors is still desirable. Additionally, the use of new descriptors may be
necessary for more efficient searching or more detailed labeling of multimedia
data. This is why we decided to explore a new data structure based on TV-trees
jointly with FS-trees for representation of multi-dimensional audio data, in order
to allow efficient searching of specific audio segments (fulfilling not only index
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type properties, but also some similarity criteria). We focus our attention on
musical instrument sounds.

2 Descriptors of Musical Audio Data

In the research published so far, various methods for musical data parameteriza-
tion have been used. The parameters (descriptors) can be based on time domain
features, spectrum, or/and other analyses. Time-domain parameters of musical
instrument sounds may describe the duration of particular phases of the sound
(the attack, quasi-steady state and ending transient) or properties of sound wave,
like number of zero-crossings in time unit etc. [14]. Also, features of sound en-
velope can be used as descriptors [21].

Descriptive features of sound can also be extracted from spectral analysis.
These features may describe contents of the selected groups of harmonics in
spectrum, like even/odd harmonics, or lower/middle/higher harmonics [14], [19].
Also fundamental frequency and its variance (vibrato) are used as descriptors
[16], [24]. Other parameters describe statistical properties of spectrum, like aver-
age amplitude and frequency deviations, average spectrum, standard deviation,
auto- and cross-correlation functions [1], [5]. Such properties of spectrum as
higher order moments, such as skewness and kurtosis, as well as brightness and
spectral irregularity, are also used for musical sound parameterization [8], [23].

Sound descriptors can be also derived from other analyzes. Results published
so far are based on constant-Q coefficients [4], [12], auditory model [16], cepstral
and mel-cepstrum coefficients and derivatives [2], [4], [7], multidimensional scal-
ing analysis trajectories [12], wavelets [13], [23], Bark scale bands [7] and other
[9], [25]. A set of descriptors for audio content description is also provided in
MPEG-7 standard [11]; these descriptors are aimed to aid musical instrument
timbre description, audio signature, sound description etc. Apart from higher-
level descriptors, the audio framework in MPEG-7 includes 17 temporal and
spectral low-level descriptors, divided into the following groups [15]:

– basic: instantaneous waveform and power values,
– basic spectral: log-frequency power spectrum envelopes,

spectral centroid, spectrum spread, and spectrum flatness,
– signal parameters: fundamental frequency and

harmonicity of signal,
– timbral temporal: log attack time and temporal centroid,
– timbral spectral: spectral centroid, harmonic spectral centroid,

and harmonic spectral deviation, harmonic spectral spread,
harmonic spectral variation,

– spectral basis representations: spectrum basis and
spectrum projection.

These features can be used to describe a segment with a summary value or with
a series of sampled values that apply to the entire segment, with exception of
the timbral temporal group, applied to segments as a whole only.
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Sound description schemes presented above focus on digital and compact
sound representation for classification purposes. Assuming feature vector is given,
our aim is to propose a new searching method through audio data based on tree-
like structures.

In our research, we are dealing with recordings containing singular sounds
of musical instruments. We apply descriptors which have been already used in
experiments and which gave good results, i.e. up to 70% of correct classification,
which is comparable with results of similar worldwide research [9], [21]. These
descriptors characterize temporal and spectral features of short sound frames
and sound as a whole. Temporal group includes the following descriptors [21]:

– Length: Signal length,
– Attack, Steady and Decay: Relative length of the attack, i.e. the onset por-

tion of sound (till reaching 75% of maximal amplitude), quasi-steady state
(after the end of attack, till the final fall under 75% of maximal amplitude)
and decay time (the rest of the signal), respectively,

– Maximum: Moment of reaching maximal amplitude,
– Env1, . . . , Env7: Envelope parameters: average values of envelope of sound

amplitude in consequent 7 intervals of equal width,
– EnvFill: Area of envelope,
– Cluster: Number of cluster (obtained through clusterization of envelope vec-

tors for the whole data set into 6 clusters) closest to the analyzed sound, with
respect to Euclidean metric.

Spectral descriptors include [23]:

– Frequency: Fundamental frequency,
– Br and Ir: Brightness Br and irregularity Ir of spectrum, defined as
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∑N

n=1 n An∑N
n=1 An

Ir = log

(
20

N−1∑

k=2

∣∣∣∣∣log
Ak

3
√

Ak−1AkAk+1

∣∣∣∣∣

)
(1)

where An - amplitude of nth harmonic, N - number of available harmonics,
– Ev and Odd: Contents of even Ev and odd Od harmonics in spectrum:
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where M = bN/2c and L = bN/2 + 1c,
– Tristimulus1, 2, 3: Tristimulus [19] parameters given by:

Tr1 =
A2

1∑N
n=1 A2

n

Tr2 =

∑
n=2,3,4 A2

n∑N
n=1 A2

n

Tr3 =
∑N

n=5 A2
n∑N

n=1 A2
n

(3)



4 Alicja A. Wieczorkowska et al.

All these parameters were calculated for the whole sounds of musical in-
struments of definite pitch. Additionally, spectral parameters and maximal am-
plitude were calculated for consequent short frames, covering this sound. The
length of analyzing frame was equal four times the sound period. Most common
length of analyzing frame is about 20–30 ms [2], [4], [5], [7], whereas in our case
it is 2–125 ms. Shorter frames allow observation of fast changes, especially for
pizzicato sounds and during transients; longer frames are taken in case of the
lowest sounds. Calculation of sound descriptors using sliding window allows ob-
servation of changes of parameters values in time. The obtained attribute values
produce time series, which are next analyzed to discover patterns characterizing
sound evolution in time, specific for some groups of sounds [21]. This way, new
descriptors of musical sounds are generated.

Observations of parameters using sliding window is also a step towards ex-
periments with ordinary, unstructured recordings, which require segmentation
through discovering changes in sound characteristics.

3 Classification of Data

The descriptors presented in the previous section were applied to recordings
of consequent singular sounds of musical instruments of definite pitch, taken
from MUMS stereo recordings [18]. These CD’s are widely used in musical in-
strument sound research [7], [8], [12], [16], [24], so they can be considered as a
standard. The parameterized 667 sounds represent 11 instruments, played using
various articulation techniques. The data objects are grouped into the following
19 classes, with respect to both instrument and articulation [24]: violin vibrato,
violin pizzicato, viola vibrato, viola pizzicato, cello vibrato, cello pizzicato, dou-
ble bass vibrato, double bass vibrato, double bass pizzicato, flute, oboe, b-flat
clarinet, trumpet, trumpet muted, trombone, trombone muted, French horn,
French horn muted, and tuba. These objects are stored in a decision table. For-
mally, the decision table is defined as A = (U,A ∪ {d}), where each attribute
a ∈ A ∪ {d} is identified with a function a : U → Va from the universe of ob-
jects U into the set Va of all possible values of a. Values vd ∈ Vd correspond to
mutually disjoint decision classes of objects. In our case, each element u ∈ U cor-
responds to a sound sample, elements a ∈ A are numeric features corresponding
to sound descriptors and the decision attribute d /∈ A labels particular object
(sound) with integer code representing the instrument.

The data placed in decision table can be used for generalization, i.e. pre-
diction of decision class based on information provided by some attributes of
new objects. This is achieved through construction of classifiers, such as deci-
sion trees, rule-based classifiers, k-nearest neighbor classifiers, neural nets, etc.
The issue of musical instrument sound recognition has been brought up in sev-
eral research studies, applying various methods [10], [21]. The most common one
is k-nearest neighbor algorithm, applied in [7], [8], [12], [16]. Brown in her re-
search [4] applied clustering and Bayes decision rules, using k-means algorithm
to calculate clusters, and forming Gaussian probability density functions from
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the mean and variance of each of the clusters. Martin and Kim (1998) used max-
imum a posteriori classifiers, based on Gaussian models obtained through Fisher
multiple-discriminant analysis. Gaussian classifier was also used by Eronen and
Klapuri (2000). Other applied methods include binary trees, used in [23], hidden
Markov models, reported in [2], and rough set approach [24].

4 Audio Content Representation using FS-trees and
Adaptable TV-trees

Rules describing different sounds in terms of features from A can be extracted
from the table A = (U,A ∪ {d}). When applied to a new audio signal they can
be considered as a tool for its automatic indexing. For audio files containing
only sounds of singular instruments this tool has been already successful [23]
due to the high confidence of rules describing singular sounds. Now, assuming
that indexing of audio files both automatic and manual is done, FS-trees [22]
can be used for a compact content description representation of audio data and
also for efficient processing of audio queries based on this indexing. But, users
may want to submit additional queries which are audio signals represented as
frames. Query Answering System (QAS), based not only on FS-trees but also
on trees similar to binary Telescopic Vector trees (TV-trees) [22], [25] is used by
us to search for frames similar to a frame representing user’s query.

Now, we outline the strategy for construction our TV-trees. Each audio signal
is divided into frames of length four times the fundamental period of the sound.
Each frame is represented as a vector consisting of K acoustic descriptors. So,
any collection of audio signals can be seen as a set of K-dimensional vectors.
We represent this set as (K×N)-matrix where N is the number of frames in all
audio signals in the database. If needed, we reduce K to a smaller number using
Singular Value Decomposition method [22]. The notion of a distance between
two vectors, used by us, is a standard one. These vectors are seen as points in
K-dimensional space. They are partitioned into disjoint clusters in a such way
that points similar with respect to maximal number of coordinates are kept in
each cluster. These coordinates are called active dimensions. To define a as an
active dimension in a cluster, we require that the span of values of a in that
cluster has to be below some threshold value. For example, if {1, . . . , 100} is the
domain of an attribute and its corresponding threshold value is 1/20, then this
attribute is active in a cluster of N vectors if the distance between values of this
attribute for any 2 vectors in that cluster is not greater than 5. Assume now
that our goal is to represent the set of N points as a TV-tree of order 2, which
means that only 2 clusters per node can be constructed. So, we divide the set
of N points into 2 clusters maximizing the total number of active dimensions
in both clusters. For each cluster we repeat the same procedure, again maxi-
mizing the total number of active dimensions in the corresponding sub-clusters.
For instance, if {[5, 3, 20, 1, 5], [0, 0, 18, 41, 4], [0, 0, 19, 39, 5], [11, 10, 2, 0, 5]} is the
initial cluster, then the following 2 sub-clusters are generated: {[0, 0, 18, 41, 4],
[0, 0, 19, 39, 5]}, {[5, 3, 20, 1, 5], [11, 10, 2, 0, 5]}. The initial cluster has only the
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last dimension active. After split, the first sub-cluster has 5 dimensions active
and second one has the last 2 dimensions active. We continue this procedure till
all sub-clusters are relatively dense (all points are close to each other with re-
spect to all dimensions). For instance, in the example above, the first sub-cluster
is dense. The underlying structure for this method is a binary tree with nodes
storing information about the center (c) of a corresponding cluster, the smallest
radius (r) of a sphere containing this cluster, and its list of active dimensions
[25].

Our heuristic procedure to construct a binary TV-tree (part of QAS) for a
collection of audio signals is similar to the one used in Rosetta or See5 system for
discretizing numerical attributes [20], [17]. For m-element domain of an attribute,
m − 1 splitting points are considered (alternatively, the splitting points can be
placed between consecutive dense groups of values of an attribute). Saying more
precisely, if v1, v2 are neighboring values of the attribute a, then an audio signal
with value of a less than or equal to [v1 + v2]/2 is placed in the left subtree
and all other audio signals are placed in the right subtree. When this is done,
the total number of active dimensions in both left and right subtree is checked.
We repeat this step for each attribute and for its all splitting points mentioned
above. A split which gives the maximal number of active dimensions, for both
left and right sub-tree, is the winning split and it is used to build two children
of the current node. The above procedure is recursively repeated at two children
nodes just created.

Now, let us assume that QAS is based both on a TV-tree and an FS-tree
and user submitting an audio query to QAS is looking for audio files satisfying
certain properties corresponding to indexes used in FS-trees. User’s audio query
contains also a sub-query represented in QAS as a vector similar to vectors stored
in a TV-tree. For this type of queries, FS-tree is searched first for audio files
satisfying desired properties (index-based search). Next, the TV-tree is searched
to identify which files retrieved from FS-tree also satisfy the additional sub-
query. Our initial results with respect to precision and recall from testing QAS
are very encouraging.

5 Construction of Adaptable TV-trees

Let us assume that audio data are stored in a relational table, where attributes
are either features computed from the raw data given by users or indexes pro-
vided by experts. By an adaptable TV-tree, we mean a TV-tree built from a
relational table, where each splitting attribute is chosen not only on the basis
of how to maximize the total number of active features in children nodes it gen-
erates, but also on the basis which attributes are used most frequently in user
queries. Such attributes are called popular. The idea here is to make popular
attributes active as soon as we can so they are used by QAS in searching its
TV-tree at the very beginning of a query answering process.

Assume that a1, a2, a3,...,aK is an ordered set (with respect popularity)
of all acoustic descriptors in the relational table (the most popular descriptors
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are listed first). Let ki is a frequency of occurrence of a descriptor ai in vectors
representing audio queries submitted to QAS. In order to build an adaptable TV-
tree we consider a function from {a1, a2, a3, ..., aK} into {1, 2, 3, ...,K}, defined
as f(ai) = (K − i + 1). To evaluate a relational table from the point of view of
a descriptor ai, we multiply 1/f(ai) by the number of cuts needed in Dom(ai)
to make ai active. Let’s denote the resulting number by h(ai). Descriptor with a
cut making h(ai) the smallest is chosen as the new node of adaptable TV-tree.
This tree is called adaptable since the construction of its nodes is driven by a
function h(ai), which may change in time as new queries are submitted to QAS.
For simplicity reason only one of the easiest versions of the function f(ai) was
presented here, but more complex definitions of f(ai) have been tested as well.

6 Conclusion

Automatic indexing of multimedia databases is of great importance, and ISO/IEC
decided to provide MPEG-7 standard for multimedia content description. How-
ever, this standard does not comprise the extraction of descriptors (nor search
algorithms). Therefore, there is a need to elaborate extraction of sound descrip-
tors that would be attached to sound files.

This paper reviews some audio descriptors based on various kinds of sound
analysis. We use them, for instance, to learn definitions of musical instruments
(to construct a new audio descriptor). This new audio descriptor is only an
example of a descriptor useful for an automatic indexing of musical files. Finally,
we use all our audio descriptors to construct QAS based on FS-tree and adaptable
TV-tree to allow efficient access to audio data. The initial results related to
precision and recall of our QAS are good.

The main goal of this paper is to find a new data representation suitable for
handling audio queries based not only on indexes, but also containing semantic
type of information, which cannot be expressed in index-type languages.
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