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Abstract. Decision table describing n objects in terms of k classification attributes
and one decision attribute can be seen as a collection of n points in k-dimensional
space. Each point is classified either as positive or negative. The goal of this paper
is to present an efficient strategy for constructing possibly the smallest number of
hyperplanes so each area surrounded by them contains a group of points, mostly
of the same type (either positive or negative). A threshold value given by user,
uniquely defines what we mean by mostly. The strategy presented in [3] shows how
to construct a possibly smallest number of pairs of hyperplanes, surrounding any
dense cluster of objects, which intersection is a line orthogonal to and intersecting
with one of the axes. In this paper that constraint is softened and these hyper-
planes are built more independently. The main procedure starts with partitioning
all negative objects into dense clusters. The same step is repeated for all positive
objects also dividing them into dense clusters. To learn a negative rule, we take
all objects in one of this negative clusters jointly with all positive objects. The
algorithm, presented in this paper, constructs a minimal number of hyperplanes
needed to build classification part of a rule describing this negative cluster. The
same procedure is repeated for all the remaining negative clusters. Rules describing
positive clusters are constructed the same way. Taking the Wisconsin Breast Can-
cer Database with 699 instances, as an example, we show that the overall support
and confidence of rules, extracted from that database, using our strategy is much
higher than the confidence and support of rules obtained using methods based on
hyperplanes parallel to axes (See5, Rosetta).

1 Introduction

Some, more sophisticated, data representations may lead us to much better
results than the results we get by taking representations seen normally as
standard. Clearly, such data representations are often not easy to find. With-
out no doubts this fact is true in knowledge discovery area where from a
sample decision table we need to learn the decision attribute in terms of the
remaining attributes, called classification attributes. The problem is, what
attributes should be used for data representation and next for knowledge
discovery to get rules of possibly highest confidence and highest support.
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In this paper, we assume that the decision attribute is binary and objects
represented as points in k-dimensional space (k is the number of classifica-
tion attributes) belong to either positive or negative class. The outcome of
learning process depends on the distribution of positive and negative objects
in the example space. When we look for an optimal partition of objects into
positive and negative regions, most of the learning strategies allow us to build
hyperplanes which are only parallel to axes. Clearly, by taking hyper-planes
not only parallel to axis we are increasing our chance to construct rules (both
certain and threshold-based) of possibly much higher support. In [3], [2] it
was shown how to construct new attributes for each object in the decision
table. For each object, these attributes are angles between axes and lines
crossing that object and each of the axes. Extracted rules based on these
new attributes have usually higher confidence and support than rules built
from original attributes.

In this paper, we use a similar method to represent points in the example
space. However, we do not build a new table representation for the objects
stored in the decision table. Initially, a number of hyperplanes is constructed
for each pair of axes, each dividing the objects space into two parts. The first
part contains only negative objects and their number should be as large as
possible. The expression describing the other part is treated as one of the
atomic relations for our rules discovery algorithm ADReD which has some
similarity with LERS (see [4]). ADReD requires from the user to provide a
threshold value for a minimum acceptable confidence of rules.

We start with some basic definitions needed in this paper.

2 Decision Systems

This section starts with the definition of an information system and a decision
system. Next, the notion of a rule, its support and confidence is recalled.

Definition 1:
By an information system (see [6]) we mean a triple S = (X, A, V ) where:

• X is a nonempty, finite set of objects,
• A is a nonempty, finite set of attributes,
• V =

⋃{Va : a ∈ A} is a set of values of attributes from A.
• a : X −→ Va is a function for every a ∈ A.

Information systems can be seen as generalizations of decision systems.
In any decision system together with the set of attributes a partition of that
set into conditions and decisions is given. For simplicity reason, we consider
decision systems with only one decision. Therefore, the definition of a decision
system is formed as follows.

Definition 2:
By a decision system we mean any information system S = (X, A ∪ {d}, V ),
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where d 6∈ A is a distinguished attribute called the decision. Attributes in A
are called classification attributes.

Definition 3:
By a set of positive terms for S we mean a least set T such that:

• 0,1 ∈ T ,
• w ∈ T for any w ∈ V ,
• if t1, t2 ∈ T then (t1 + t2), (t1 ∗ t2) ∈ T .

Definition 4:
Term t = t1∗t2∗...∗tn is called simple if t is positive and (∀j ∈ {1, 2, ..., n})[tj ∈
V ].

Definition 5:
Standard interpretation M of terms in S is defined as follows:

• M(0) = ∅, M(1) = X,
• M(w) = {x ∈ X : w ∈ a(x)} for any w ∈ Va,
• if t1, t2 are terms, then:

M(t1 + t2) = M(t1) ∪M(t2),
M(t1 ∗ t2) = M(t1) ∩M(t2).

X a b d

x1 60 60 −
x2 80 60 +

x3 100 60 +

x4 130 60 −
x5 60 50 +

x6 130 50 +

x7 80 40 −
x8 100 40 +

x9 130 40 −
x10 100 30 −

Table 1. Decision System S

Definition 6:
By a rule in a decision system S we mean any expression of the form t −→ d1,
where t is a simple term for S and d1 ∈ Dom(d).
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Definition 7:
Support of a rule t −→ d1 (denoted as sup(t −→ d1)) in S is defined as
sup(t ∗ d1) which means the number of objects in S having property t ∗ d1.

Definition 8:
Confidence of a rule t −→ d1 (denoted as conf(t −→ d1)) in S is defined as
sup(t ∗ d1)/sup(t).

In this paper we assume that all classification attributes in S are nu-
merical. For simplicity reason, only two attributes a and b are taken into
consideration in the example below.
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Fig. 1. Hyperplanes surrounding positive points

Example 1:
Assume that S = (X,A, V ) is an information system (see Table 1), where:
X = {x1, x2, ..., x10}, A = {a, b}∪{d}, and domains of attributes are defined
as: dom(a)=[0,200], dom(b)=[0,200], dom(d)=+,-.

The above decision system (also used, as an example, in paper [3]) can be
represented as a collection of 10 points in 2-dimensional space. These points
are partitioned into two classes (positive and negative) representing 2 values
of the attribute d. Their graphical representation is given in Fig. 1. Also, you
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can notice that four lines are sufficient to surround all positive objects in S
keeping all negative objects outside.

Applying, for instance, system LERS to S (see [4]), the following certain
rules are extracted from S:
[(b, 50) → (d, +)], [(a, 100) ∗ (b, 60) → (d, +)], [(a, 100) ∗ (b, 40) → (d, +)],
[(a, 100) ∗ (b, 60) → (d, +)]
and
[(b, 30) → (d,−)], [(a, 60) ∗ (b, 60) → (d,−)], [(a, 80) ∗ (b, 40) → (d,−)],
[(a, 130) ∗ (b, 40) → (d,−)], [(a, 130) ∗ (b, 60) → (d,−)].

These rules have very small support which is due both to the distribution
of 10 points in S and LERS quantization strategy which does not support
construction of rectangles not parallel to axes a and b. Slezak and Wroblewski
proposed to construct rules using new attributes which are linear combina-
tions of existing ones (see [8]). This approach was continued by Bazan in
[1]. Said and Dardzinska in [7] proposed a strategy for classification and au-
tomatic identification of Arabic characters. Their strategy is based on the
construction of new attributes with values being angles between lines con-
necting some distinguished points in Arabic characters. Similar idea was used
by Dardzinska in [2] and Dardzinska and Ras in [3] to find a new representa-
tion for objects in a decision system. The strategy presented in this paper has
some similarity with the method proposed in [3] as far as the representation
of data but they differ entirely in their approaches to rules extraction from
S.

3 Construction of Hyperplanes

Before we present the steps of our new hyperplane-based rule discovery strat-
egy, let us go back to Figure 1 and the same to the 2-dimensional represen-
tation of objects in S. Our goal is to surround its all positive objects by
minimal number of lines each originating from one of the two axes (intersect-
ing with it) corresponding to attributes a and b. For instance, lines (line1,
line2, line3 and, line4) originate from axis corresponding to attribute a. It
can be easily checked that minimum four lines are needed in our example to
separate all positive points from the points marked negative in S. In prac-
tice, some threshold value which gives the maximal percentage of negative
points allowed in a positive cluster is given. Clearly the same threshold value
is usually used for the maximal percentage of positive points allowed in a
negative cluster. Also, in this paper both thresholds values will be the same.
For instance, if the threshold value is set up as 1/5, then one of the lines
line1, line2 or line4 is not needed to describe the cluster.

What do we mean by an optimal line1 intersecting with axis corresponding
to attribute a and how such a line can be constructed? Our goal is to max-
imize the number of negative points in the subspace described by line1 > 0
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while keeping all positive points in the subspace described by line1 ≤ 0. If
a successful candidate for line1 is found, it is called optimal. We denote its
intersection point with the axis a by a(n1) and the corresponding angle by
ω(b, a(n1)) (see Figure 2). Similarly, in search for line2 intersecting with axis
corresponding to attribute a, our goal is to maximize the number of nega-
tive points in the subspace described by line2 < 0 while keeping all positive
points in the subspace line2 ≥ 0. When a successful candidate for line2 is
found it is called again optimal. We denote its intersection point with the
axis a by a(m1) and the corresponding angle by ω(b, a(m1)). Clearly, we may
have a number of optimal candidates constructed for line1 and line2. Some
of them can be semantically equivalent (see the definition below).
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Fig. 2. Construction of a hyperplane

Definition 9:
Let S = (X, A ∪ {d}, V ) be a decision system where card(A) = k. Assum-
ing that h1 = 0, h2 = 0 are equations representing two hyperplanes in k-
dimensional space, we say that these hyperplanes are semantically equivalent
in S if the set of objects in S satisfying the relation h1 ≥ 0 is equal to the
set of objects satisfying the relation h2 ≥ 0. We also say that a set of hyper-
planes is orthogonal in S, if it does not contain two hyperplanes which are
semantically equivalent in S.

It can be easily checked that the set {line1 , line2 , line3 , line4} is orthog-
onal in S . There are many semantically equivalent maximal orthogonal sets
of hyperplanes in S. Clearly, finding one of them is sufficient for our purpose.
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Let us use variable z1 to denote axis representing attribute a and variable
z2 to denote axis representing attribute b. Assuming that the angle between
line1 and axis z1 is ω(z2, z1(n1)) where z1(n1) is the intersection point be-
tween these two lines, line1 has the equation: [z1−z1(n1)]·sin[ω(z2, z1(n1))]+
z2 · cos[ω(z2, z1(n1))] = 0. Clearly, if we properly change the position of the
point z1(n1) on axis z1, we get equations of the remaining 3 lines (line2, line3,
and line4).

We are ready to present the strategy of constructing hyperplanes in k-
dimensional space. Assume that S = (X, A ∪ {d}, V ) is a decision system,
where A = {a1, a2, ..., ak} and Vd = {+,−}. We use variable zi to denote
axis representing attribute ai, for any i ∈ {1, 2, ..., k}. Now, for any pair
zi, zj of axes, an orthogonal set H(i, j) of hyperplanes is constructed. The
corresponding strategy is outlined below.

Assume first that zj(n1) is a point on axis zj . For any object um =
(um1, um2, ..., umi, ..., umj , ..., umk) ∈ X, two points

p1(um) = (um1, um2, ..., 0, ...umj , ..., umk) and
p2(um, n1) = (um1, um2, ..., 0, ..., zj(n1), ..., umk)

are constructed (see Figure 2). Let L(um, p2(um, n1)) be the line connect-
ing object um with point p2(um, n1) and L(p1(um), p2(um, n1)) be the line
connecting point p1(um) with the point p2(um, n1). By ω(um, zi, zj(n1)) we
denote the angle between these two lines. This angle is computed for all
objects um ∈ X.

Now, we calculate two threshold values:

• max(n1) = max{ω(um, zi, zj(n1)) : um ∈ X ∧ d(um) = +}
• min(n1) = min{ω(um, zi, zj(n1)) : um ∈ X ∧ d(um) = +}.

These thresholds are used to compute two sets:

• U(max(n1)) = {um ∈ X : ω(um, zi, zj(n1)) > max(n1)}
• U(min(n1)) = {um ∈ X : ω(um, zi, zj(n1)) < min(n1)}.

So, U(max(n1)) is the set of all negative objects in X which satisfy the
relation [zj − zj(n1)] · sin[max(n1)] + zi · cos[max(n1)] > 0.

Similarly, U(min(n1)) is the set of all negative objects in X which satisfy the
relation [zj − zj(n1)] · sin[min(n1)] + zi · cos[min(n1)] < 0.

The set H(i, j) is a maximal orthogonal subset of the set
{[zj − zj(n1)] · sin[max(n1)] + zi · cos[max(n1)] = 0 : n1 ∈ N} ∪
{[zj − zj(n1)] · sin[min(n1)] + zi · cos[min(n1)] = 0 : n1 ∈ N},
where N are integers. Assuming that the testing points zj(n1) for the axis zj

are given, there is an efficient strategy for computing the set H(i, j).

Now, we take the maximal orthogonal subset H of the set
⋃{H(i, j) : 1 ≤

i ≤ k ∧ 1 ≤ j ≤ k}. In the next step of our procedure, each hyperplane
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[zj − zj(n1)] · sin[max(n1)] + zi · cos[max(n1)] = 0 in H is replaced by the
relation [zj − zj(n1)] · sin[max(n1)] + zi · cos[max(n1)] ≤ 0
and each hyperplane
[zj − zj(n1)] · sin[min(n1)] + zi · cos[min(n1)] = 0 in H is replaced by the
relation [zj − zj(n1)] · sin[min(n1)] + zi · cos[min(n1)] ≥ 0.

The resulting set of relations is denoted by HR and it is treated as the set of
atomic expressions for the LERS-type procedure generating rules describing
values of attribute d in terms of attributes from A in the decision system S.

Now, assuming that
h = [[zj − zj(n1)] · sin[max(n1)] + zi · cos[max(n1)] ≤ 0], its supporting set
Sup(h) is equal to X − U(max(n1)).

Assuming that
h = [[zj − zj(n1)] · sin[min(n1)] + zi · cos[min(n1)] ≥ 0], its supporting set
Sup(h) is equal to X − U(min(n1)).

Finally, by λ(Sup(h)) we mean [card({x ∈ Sup(h) : d(x) = −}]/[card(Sup(h))].

Algorithm ADReD(S,HR(S), λ),
Input
Decision system S = (X,A ∪ {d}, V ), where Vd = {+,−},
Set of relations HR(S) for S constructed above
Minimal confidence threshold value λ.
Output
Set of Rules RL
begin
RL := ∅; k := card(A); H(1) := HR(S);
for all h ∈ HR(S) do mark(h) := F ;
for all j ≤ k do H(j) = ∅;
begin
for all h ∈ HR(S) do

if λ(Sup(h)) ≤ λ then
begin
mark(h) := T ;
H(1) := H(1)− {h};
RL := RL ∪ {h −→ +}
end

j := 1;
while j ≤ k − 1 do

for all pairs (h1, h2) ∈ (H(j),H(1)) do
if λ[Sup(h1) ∩ Sup(h2)] ≤ λ then RL := RL ∪ {[h1 ? h2] −→ +}

else if Sup(h1) 6= Sup(h1 ? h2)
then H(j + 1) := H(j + 1) ∪ {h1 ? h2}

j := j + 1
end
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There are two basic options for constructing HR(S). This orthogonal set of
hyperplanes can be defined either as the collection of all sets in {U(max(n1)) :
n1 ∈ N}∪{U(min(n1) : n1 ∈ N} or as the collection of only maximal sets in
{U(max(n1)) : n1 ∈ N}∪ {U(min(n1) : n1 ∈ N} under set-theoretical inclu-
sion. In the second case, the time complexity of the algorithm ADReD may
significantly decrease but the generated rules no longer have to be optimal.

4 Test Results

Algorithm ADReD was tested on the Wisconsin Breast Cancer Decision Ta-
ble available at [ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast-
cancer-wisconsin/] which contains 699 objects described by 10 classification
attributes and one decision attribute of two values: Benign (458 objects), Ma-
lignant (241 objects). We tested ADReD taking initially the collection of all
sets in {U(max(n1)) : n1 ∈ N} ∪ {U(min(n1) : n1 ∈ N} as HR(S) denoted
in this section by All −HR(S) and next the collection of only maximal sets
in {U(max(n1)) : n1 ∈ N} ∪ {U(min(n1) : n1 ∈ N} as HR(S) denoted in
this section by Max−HR(S).

The list of all 11 attributes and their domains, used in the Wisconsin
Breast Cancer Decision Table, is given below:

Attr Number Attr Name Domain

1 Sample Code Number Id Number

2 Clump Thickness 1− 10

3 Uniformity of Cell Size 1− 10

4 Uniformity of Cell Shape 1− 10

5 Marginal Adhesion 1− 10

6 Single Epithelial Cell Size 1− 10

7 Bare Nuclei 1− 10

8 Bland Chromatin 1− 10

9 Normal Nucleoli 1− 10

10 Mitoses 1− 10

11 Class {benign, malignant}
Table 2. List of Attributes

We used SAS Enterprise Miner to partition the data into two clusters given
below:
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Benign cluster (485 objects): (450 benign and 35 malignant).
Malignant cluster (214 objects): (206 malignant and 8 benign).

The malignant cluster only has 8 benign objects in it, so there is not much
room for improvement. Hence, we have chosen the benign cluster as the test
cluster. The current confidence is 450/485 = 0.9125. By applying ADReD
program, we can exclude more malignant samples from benign cluster. The
next two tables show test results obtained from ADReD.

Threshold λ 0.04 0.03 0.02 0.01

Number of rules generated 1175 319 126 1

Best rule confidence 0.9825 0.9890 0.9912 0.9912

Searching time in seconds 9.5 8 6 5

Table 3. ADReD based on All −HR(S)

Threshold λ 0.04 0.03 0.02 0.01

Number of rules generated 808 279 116 1

Best rule confidence 0.9825 0.9890 0.9912 0.9912

Searching time in seconds 6.6 6.5 5 4.7

Table 4. ADReD based on Max−HR(S)

Clearly the strategy based on Max−HR(S) is faster, although it cannot
generate as many rules as the strategy based on All−HR(S). For this dataset
both strategies can find the best rule which is able to exclude 31 out of 35
malignant objects in the benign cluster.

Now, we show a sample rule generated by ADReD. Coordinates (at-
tributes) are denoted here by x0, x1, x2, x3, x4, x5, x6, x7, x8, x9:

Rule No. 1
Confidence = 0.9911894273127754,
Classification Error Rate = 0.00881057268722467,
Number of negative objects excluded = 31,
Excluded negative objects index: [200, 168, 30, 214, 40, 72, 31, 16, 35,
213, 49, 59, 296, 73, 169, 70, 29, 157, 42, 100, 178, 11, 18, 145, 39, 44, 165,
38, 121, 37, 320]

[(x5+14) ∗ sin(48)+x0∗ cos(48) ≤ 0]∧ [(x7+20) ∗ sin(122)+x6 ∗ cos(122) ≥
0]∧[(x5+20)∗sin(38)+x7∗cos(38) ≤ 0]∧[(x4+20)∗sin(177)+x5∗cos(177) ≤
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0]∧ [(x3+12)∗ sin(59)+x2∗ cos(59) ≤ 0]∧ [(x8+2)∗ sin(42)+x0∗ cos(42) ≤
0] ∧ [(x6 + 14) ∗ sin(63) + x0 ∗ cos(63) ≤ 0] → [Class = 2] (benign)

Finally, we have compared our system ADReD with See5. On the tested
database the classification error rate for ADReD is 0.88%, whereas the error
rate for See5 is 2.1%.
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