
The ‘Art’ of Programming: Exploring Student Conceptions
of Programming through the Use of Drawing Methodology

Adon Christian Michael Moskal
Otago Polytechnic

Dunedin
New Zealand

adon.moskal@op.ac.nz

Joy Gasson
Otago Polytechnic

Dunedin
New Zealand

joy.gasson@op.ac.nz

Dale Parsons
Otago Polytechnic

Dunedin
New Zealand

dale.parsons@op.ac.nz

ABSTRACT
In this exploratory study, we analysed 396 drawings by first-year
programming students in response to the question “what does
programming mean to you”. We were surprised by the level of
care that students gave to their drawings, and we were
confronted by the degree of emotion contained within the
drawings. To date, few studies have focused specifically on
programming students’ emotional reactions to their learning
experiences. Here, we analysed our student drawings as ‘group
data’, taking note of recurring artefacts, actors, activities,
aspirations and affect across the entire dataset. The observed
patterns noted in the drawings raised questions around how
students conceptualise programming, both as a subject and
potential future profession. As contributions to the field, we: (1)
discuss the potential of drawing as a research methodology for
computer science; (2) present our findings and observations; and
(3) suggest how this type of data could be used to better inform
teaching practice in novice programming courses.

CCS CONCEPTS
• Social and professional topics~Computer science
education • Social and professional topics~CS1

KEYWORDS
Programming education; drawing methodology; student affect

ACM Reference format:

A. C. M. Moskal, J. Gasson, and D. Parsons. 2017. The ‘art’ of
programming: exploring student conceptions of programming through
the use of drawing methodology. In Proceedings of ICER '17, Tacoma, WA,
USA, August 2017, 9 pages.
DOI: 10 http://dx.doi.org/10.1145/3105726.3106170

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICER '17, August 18-20, 2017, Tacoma, WA, USA
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4968-0/17/08…$15.00
http://dx.doi.org/10.1145/3105726.3106170

1 INTRODUCTION
In 1974, accepting his Turing Award for contributions to the
field of computing, Donald Knuth delivered a lecture questioning
the classification of programming as an art or a science.
“Programming,” he said, “can give us both intellectual and
emotional satisfaction, because it is a real achievement to master
complexity and to establish a system of consistent rules.” [1:670]
We believe it is exactly this juxtaposition of science and art,
logic and emotion, that comes to bear when novices learn
programming.

In this exploratory study, we used a novel approach to
investigate the learning experiences of first-year programming
students—drawing methodology. We begin with an overview of
the challenges of teaching novice programmers, explain our
rationale for using drawing as our research methodology, and
finally discuss our findings and wider implications. The aims of
this paper are twofold: (1) to explore generally the potential of
using drawing data in computer education research; and (2) to
specifically use drawing methodology to investigate the
programming experiences of our first-year students, to see if we
can gain insights for improving our teaching practices.

2 TEACHING NOVICE PROGRAMMERS
The challenges inherent in teaching novices programming are
well-documented [2, 3]. Students find it hard to grasp
fundamental concepts, and get frustrated when programs do not
work as planned or at all. As educators, we are constantly
seeking new ways to improve our teaching methods, curriculum
design, and ultimately the learning experiences of our students.
Any investigation into the teaching and learning of
programming should consider the interplay between three
entities: (1) the course content, (2) the teacher, and (3) the
student, each of which can impact on the success of the novice to
grasp introductory programming concepts [4].

First, thinking of the content of introductory programming
courses, it is difficult for many students to learn the abstract
concepts of programming (such as conditionals and loops),
wrestle with the syntactic constraints of different languages, and
constantly apply their emerging knowledge to new and
unfamiliar problems, making rote learning a challenging task [5].
As well as the difficulties in learning explicit coding skills,
introductory programming courses can also address peripheral
subjects, such as logic thinking and problem-solving, ‘soft skill’

Session 2: Student Perception, Conception, Reaction ICER’17, August 18–20, 2017, Tacoma, WA, USA

39

development (such as communication and teamwork, typically in
the form of pair programming exercises), mathematics, and
business/client considerations.

Second, there is considerable variation in how teachers teach
introductory programming. For example, Pears, et al. [6] present
a comprehensive review of the factors that can vary from
teaching context to teaching context, including choice of
teaching strategy, programming language, or support tools (such
as an Integrated Development Environment, or IDE).

Third, the personal qualities of the student can dramatically
affect their performance in an introductory programming course.
Many studies have explored students’ personal attributes to
determine predictors of student success in introductory
programming courses [7]. As well as being cognitively
challenging, introductory programming has also been shown to
carry a high emotional load; for example, Kinnunen and Simon
[8] explore the effect that student experiences of programming
(positive and negative) can have on their self-efficacy. Gasson,
Parsons, Wood and Haden [9] have also shown a clear link
between student affect and performance in first-year
programming papers.

Student conceptions and misconceptions of programming can
also contribute to their overall success [10], and it can often be
difficult for computer science educators to comprehend where
these conceptions come from [11]. Student conceptions of
computer science have been examined from a number of
perspectives: for example, Liang, Su and Tsai [12] present an
assessment of Taiwanese college students’ conception of and
approaches to learning computer science; Stamouli and Huggard
[13] explore undergraduate computing students’ perceptions of
program ‘correctness’; Krpan, Mladenović and Rosić [14] look at
the relationship between novice programmers’ perceptions and
success in introductory programming courses; and Eckerdal,
Thuné and Berglund [15] report on first year computing
students’ understandings of what it means to ‘learn to program’.

3 DRAWING AS A RESEARCH
METHODOLOGY

“If I could say it in words, there would be no reason to paint.”
— Edward Hopper

Answering Fincher, Tenenberg and Robins’ [16] call that
computer science education needs to augment its traditional
research methods, we utilised drawing as our research approach
to investigate novice programmers’ conceptions of
programming. Similar visualisation techniques have been
employed in computer science education research, for instance
Hübscher-Younger and Narayanan’s [17] novel approach to
teaching algorithms; however, we could not find any studies in
computer education specifically employing drawing as their
research approach.

Drawing as a research method(ology) has been used
extensively in the social sciences, particularly in the areas of
psychology, and then particularly with children [18, 19].
Primarily, the benefits include being able to express one’s self
without having to rely on words—e.g. for children with an

underdeveloped vocabulary, or for comparisons between
international contexts—or to represent things which are difficult
to convey in words (for instance, motion). For our purposes,
while our students are not children, as novices they are likely to
have a similarly underdeveloped disciplinary and academic
vocabulary [20, 21]. And, as Guillemin [22:275] notes, “Drawings
… are about how people see the world in both its simplicities and
its complexities. Drawings are intricately bound up with power
relations, social experiences, and technological interactions”.

Within primary and secondary school education, drawing has
been utilised as a research methodology to explore students’
conceptions of various subjects. For example, Selwyn, Boraschi
and Özkula [23] asked primary school students to express their
conceptions of information and communications technologies in
schools through drawings. More recently, drawing has also been
used to explore secondary student conceptions of ‘learning’ [24,
25]. In both examples, the authors espouse the benefits of using
drawings to allow their participants to express themselves in
new and different ways than traditional text-based approaches
(such as interviews or questionnaires).

Drawing as a research methodology has also been used in
higher education. For example, Sim [26] used ‘participatory
drawing’ for research into PhD students’ conceptions of their
doctoral research process—students were invited to depict their
research process in diagrammatic form, with the diagrams being
used later as stimulus for further discussion. Similar to the
primary and secondary school examples above, the use of
drawing (in this case, coupled with participant discussions)
“offered the opportunity for participants to convey deeper and
more varied internal representations or meanings.” Köse [27]
also used drawing with students at a Turkish university to
uncover their misconceptions about science.

4 METHOD
This study took place at Otago Polytechnic, in Dunedin, New
Zealand, within the Bachelor of Information Technology (BIT)
degree. We analysed 396 first-year student drawings in response
to the question “Draw, sketch, illustrate, paint, depict or
otherwise portray what programming means to you.” 206
drawings were from Programming 1, and 190 drawings were
from Programming 2 (henceforth, P1 and P2 respectively). P1
focuses on programming fundamentals (e.g. variable
manipulation, and flow of control) and patterns, while P2
introduces students to Object Oriented (OO) concepts, such as
classes, objects, inheritance and polymorphism. The drawings
were produced at the end of the final exam for each class, the
last question on the exam paper inviting the students to draw
their representations of programming. The drawing data
represents 6 years’ worth of data, collected since 2010.

Our method for analysing the drawings was largely informed
by Selwyn, Boraschi and Özkula [23], who used drawing as a
research methodology to investigate primary students’
conceptions of ICT in schools. Following their lead, we analysed
our drawings as group data, looking for patterns across the
entire dataset, rather than trying to unpack what individual
drawings might be saying about specific students. We analysed

Session 2: Student Perception, Conception, Reaction ICER’17, August 18–20, 2017, Tacoma, WA, USA

40

the drawings and applied codes where the content or items were
‘meaningful’ to the concept of ‘programming’; drawings could
have multiple codes, but individual codes were only attributed
once to each drawing. Student responses that were purely text-
based with no pictorial component were excluded from the
analysis.

The entire dataset of drawings was analysed and coded
collaboratively by the three researchers. Researchers B and C are
lecturers in the first year of the BIT degree, and have each taught
on the degree programme for over 20 years; researcher A is a
lecturer in the second and third year of the degree, and has been
with the department for less than a year. As such, researchers B
and C offered ‘inside’ or emic perspectives on the drawings,
while researcher A offered an ‘outside’ or etic perspective.

We chose to collaborate on the coding process to capitalise
on these different perspectives [28], discussing the codes,
negotiating meanings, and socially constructing our
interpretations. As Nielsen [29:2] argues:

Collaboration in qualitative data analysis runs the risk of being reduced

to comparing their individual analyses and thus eliminating the
opportunities in collaborative analysis. Collaborative analysis performed
by a (small) group of researchers may well create the advantage to the
researchers informing, influencing, and justifying through a dialogue

with each other on how they can arrive at a joint analysis. Differences in
perceiving the data can then be viewed as an opportunity for learning

rather than merely a source of reduced reliability.

We used the four themes determined by Selwyn, Boraschi and
Özkula [23] to guide our coding:

1. artefacts: programming objects or ‘concepts’ represented in

the drawings;
2. actors: people represented in the drawings;
3. activities: what the people appear to be doing/their actions

in relation to programming;
4. and aspirations: the aims/goals that the drawings seemed to

be suggesting (with regard to programming).

Through our coding process, we also came up with a fifth
category, affect, or the emotions about programming that the
drawings appeared to be conveying. Each theme was further
divided into subthemes as necessary. The findings of our coding
process are described in the next section.

5 FINDINGS
We will now outline the primary findings of the coding process,
according to theme. Example student drawings from each
category are shown below, and further examples can be viewed
at http://bit.ly/2u1ZB3D.

5.1 Artefacts
Out of the 396 drawings analysed, 47% (n=185) contained
programming artefacts, such as depictions of computers or
snippets of pseudocode. Personal computer components were
the most frequently depicted, such as monitors (24%, n=96),

peripherals (e.g. mice and keyboards; 20%, n=81), and CPU units
(9%, n=35); laptop or tablet devices were depicted least
frequently (3%, n=13). Other programming artefacts such as
snippets of code (7%, n=29), blocks of logical pseudocode (6%,
n=25), and logic/flow diagrams (3%, n=13) also featured
throughout the dataset. Examples of drawings containing
programming artefacts are shown in Figure 1.

5.2 Actors
Students most frequently depicted no actors in their drawings
(52%, n=207), followed by one actor only being shown (44%,
n=173). Drawings showing more than one actor were far less
frequent (4%, n=16). Figure 2 shows an example of each of these
categorisations—no actor depicted, one actor depicted, and more
than one actor depicted.

5.3 Activities
Only two activities pertaining to ‘programming’ were identified
in the student drawings: 10% (n=41) contained depictions of
actors programming or writing code (as discerned by
representations of ‘hands on keyboard’), and 3% (n=11) showed
some representation of problem solving (e.g., puzzles being
solved). Figure 3 shows examples of these activities.

5.4 Aspirations
Some of the drawings (19%, n=77) depicted future-thinking
imagery, such as goals, hopes or ambitions, or motivations for
learning programming. Ambitions or motivations included:
wanting to ‘create something’ (8%, n=32); money or fame (7%,
n=26); job or career (3%, n=13); being able to contribute to the
world or future society (3%, n=10); and a degree or grades/marks
(2%, n=7). Examples of aspirations are shown in Figure 4.

5.5 Affect
As well as objects and actors, the majority of student drawings
were also interpreted as having an emotional or affective
component (67%, n=265). This was typically exhibited through
symbols such as smiling or frowning faces, or through scenarios
such as harm or misfortune befalling an actor; we did not code
images where no clear emotions were indicated, or where the
emotional ‘reading’ of the image was disputed by the three
coders. Some drawings were coded with multiple emotions,
particularly ones divided into different sections (i.e. in a ‘comic
strip’ style), or where textual hints had been added, thus clearly
explaining the different emotional states represented.

Positive emotions (such as ‘happy/generally positive’,
‘enjoyable/fun’ or ‘success/achievement’) were found in 38%
(n=149) of student drawings. However, there was a noticeable
difference between the P1 and P2 datasets—46% (n=95) of P1
drawings showed positive affect, compared with only 28% (n=54)
of P2 drawings. We theorise possible explanations of this
discrepancy in the Discussion section.

Session 2: Student Perception, Conception, Reaction ICER’17, August 18–20, 2017, Tacoma, WA, USA

41

Figure 1. Examples of student drawings depicting

programming artefacts. Drawing #57 shows a monitor
with peripherals (mouse and keyboard); #107 shows a

block of pseudocode; and #111 shows a logic/flow diagram.

Figure 2. Examples of student drawings depicting different
actor configurations. Drawing #30 shows no actor present;
#173 shows one actor present; and #210 shows more than

one actor present.

Figure 3. Examples of student drawings showing activities

related to programming. Drawings #70 and #258 depict
programming as an activity (hands on keyboard); #127

shows a drawing interpreted as ‘problem solving’.

Figure 4. Examples of student drawings showing

programming aspirations. Drawing #51 depicts being
motivated by ‘money or fame’; #164 shows being

motivated by the ability to ‘create something’.

Figure 5. Examples of student drawings showing

affect/emotion. Drawing #369 is coded as ‘despair’; #35 is
coded as ‘happy/generally positive’; and #95 is coded as

‘mixed emotion’.

Session 2: Student Perception, Conception, Reaction ICER’17, August 18–20, 2017, Tacoma, WA, USA

42

Negative emotions (such as ‘frustration’, ‘confusion’,
‘anger/rage’ or ‘despair’) were found in 28% (n=109) of student
drawings. Again, there was a difference between P1 and P2 data,
although not as severe as the positive emotion data—23% (n=48)
of P1 drawings showed negative affect, compared with 32%
(n=61) of P2 drawings.

A comparatively small proportion of drawings (15%, n=60)
were coded as ‘mixed emotions’—these drawings tended to show
conflicting emotions within a single image (i.e. positive and
negative emotions in one symbol, such as a halved face with
both a smile and frown). Drawings that exhibited some sort of
progression over time (either linear or cyclic) between positive
and negative emotions were also marked as ‘mixed’. Examples of
drawings showing affect/emotion are exhibited in Figure 5.

6 DISCUSSION
“Good art is not what it looks like, but what it does to us.”

— Roy Adzak

Asking students to describe what programming means to them
provides some insight into how students visualise both the act of
programming and their role in relation to programming. The use
of drawing methodology certainly elicited emotional responses
from many students. While it is difficult to draw any definitive
conclusions from our interpretations of the student drawings,
the data do provide some insights into the student ‘way of
thinking’, and raise some interesting questions for further
discussion. In this section, we present observations that we
found particularly interesting or surprising, and reflect on how
these insights relate to our teaching practice.

Overall, the student drawings depicted programming from a
very narrow perspective. Notably, programming as an activity
was almost always depicted in conjunction with classroom
imagery or references to working on specific in-class
assignments; drawings of programming outside of the confines
of the classroom were rare. While it may not be surprising that
novice programmers’ conceptions of programming are primarily
tied to their classroom experiences, it does raise questions about
student professional identity formation—that is, developing from
‘programming students’ to ‘programmers’. Specifically, when do
novice programmers develop a sense of professional identity,
and how can introductory programming courses better
encourage this development?

A number of studies identify the central role of higher
education institutions to foster and facilitate students’ emerging
professional identities (for a comprehensive review of the
literature, see [30]). Reid, Dahlgren, Petocz and Dahlgren
[31:738-739] note the key role that strong professional identity
formation plays in student learning, stating “professional
expectations and values influence the ways that students engage
with their learning” and “students find relevance for learning
through the obvious applicability of their knowledge”.

One specific example from the drawings that suggests
student professional identity might not be developing in these
introductory courses was a distinct lack of multiple actors across
all drawings (Figure 6).

Figure 6. The distribution of drawings with no actors
present, one actor present and more than one actor

present between P1 and P2.

Collaboration and teamwork are core components of successful
software development teams [32]; fostering these attributes as
part of a novice programmer’s emerging professional identity is
an important goal for higher education institutions.
Collaborative strategies such as ‘pair programming’ are widely
acknowledged as effective for introductory computing courses
[33] In our specific context, researchers B and C both explicitly
teach pair programming as a core component of P1 and P2, and
have found it to be a particularly beneficial practice for their
first-year programmers [34].

The lack of multiple actors in the student drawings, however,
suggests that despite continuous exposure to pair programming,
social aspects of programming may not be regarded as
particularly important by novice programmers. Observations by
all three researchers of students in their second year support the
idea that pair or social programming is not yet embedded in
everyday student practice at this novice stage. As students
progress through the later stages of the degree programme (i.e.
third year), these collaborative traits tend to be better developed,
and this is likely due to the students’ involvement in larger-scale,
group software engineering projects.

A possible explanation is that pair programming in first
year—while demonstrating academic benefit and being viewed
positively by students—is being perceived by novices as a
teaching and learning strategy, not as a professional skill or part
of everyday programming practice. As students experience more
‘real-life’ programming situations in later years, and begin to
develop their identities as ‘programmers’ rather than ‘students’,
these collaborative practices transition from the academic realm
to the professional realm.

Tied to this notion of professional identity formation,
relatively few drawings depicted programming as a part of the
students’ future (i.e. career). When ‘future-thinking’ imagery
was seen, drawings tended to show unrealistic conceptions of
programming careers, such as programmers surrounded by big
bags of money. Jenkins [35:56] found that a ‘lucrative career’
was a powerful motivator for programming students to
undertake computing degrees, but that they may also

Session 2: Student Perception, Conception, Reaction ICER’17, August 18–20, 2017, Tacoma, WA, USA

43

“[approach] programming from an ill-informed position”
regarding the actual skills necessary to get programming jobs.

This misinformed/unrealistic career conception is to be
expected in novice programmers—as Leventhal and Chilson [36]
found, prolonged exposure to computer science can influence
student career expectations, and, particularly, decrease the
priority of extrinsic job features, such as monetary
compensation. However, the question remains as to how we as
computer science educators can better help students visualise
themselves in programming careers, and develop healthy
expectations of what those careers are likely to be.

The other principal observation we made about the student
drawings was the high level of affect present—two-thirds of all
student drawings showed clear emotional reaction to
programming. As discussed previously, learning to program can
be an emotional experience, and this can impact on student
performance [8, 9].

There are a number of questions here around how much
emotional load is healthy for students to experience in
introductory programming, and how can we, as educators, tap
into that emotional data to make decisions about our courses?

We highlight an example from the student data related to
these questions. There was a noticeable difference between the
proportion of positive and negative emotions depicted in the P1
and P2 drawings—overall, the P1 drawings exhibited more
positive affect imagery and less negative affect imagery (Figure
7).

Figure 7. The distribution of drawings showing positive,

negative and mixed emotions between P1 and P2.

However, this data is at odds with other measures of student
experience in these classes, such as the results of student
satisfaction surveys. For instance, the results of the 2016 student
satisfaction surveys show the same levels of positive feedback
between P1 to P2 (80% and 81% overall satisfaction respectively).
Our drawing data, though, would suggest that the student
experience of these classes is more nuanced than the relatively
blunt satisfaction metric indicates.

Recent research into student ‘happiness’ supports this
conjecture—Dean and Gibbs [37:16] found that indicators of
student ‘happiness’ and student ‘satisfaction’ tend to be
different. They found that ‘satisfied’ students “seemed to be

more concerned with external loci, that is, on how things done
to and for them were delivered, rather than in their engagement
with the process.”

Researchers B and C theorise that this perceived decrease in
positive affect as students move from P1 to P2 is likely due to the
conceptual shift required between the two subjects; specifically,
from:

 programming fundamentals to abstract OO concepts;
 console-based development to using an IDE and GUI

(Graphical User Interface); and
 discrete tasks aimed at skill development, to more open-

ended applications of skills.

For example, the difficulties in getting novice programmers to
grasp OO concepts is a well-documented challenge for CS
educators [38, 39]; anecdotally, researchers B and C share this
view that students find programming in P2 more confusing than
P1.

However, a level of challenge (i.e. confusion of frustration)
can be beneficial to the learning process. This concept is widely
espoused in educational literature: Wass and Golding [40]
suggest pitching teaching at the extreme limits of a student’s
zone of proximal development (ZPD, or tasks too hard to do
independently, but achievable with assistance); Bjork and Bjork
[41] talk about ‘desirable difficulties’ or challenges that can help
trigger cognitive process and enhance learning; and D’Mello and
Graesser [42] argue that the ‘cognitive disequilibrium’
experienced during difficult tasks leads to deeper learning.

However, as with many theories of learning, transforming
these concepts into practical advice for teachers is less
straightforward. For example, Wass and Golding [40]
acknowledge that determining the actual boundaries of a
student’s ZPD is difficult; similarly, D’Mello and Graesser [42]
caution that too much disequilibrium can have the opposite
effect, causing students to give up or become disengaged, and
tasks should be tailored to individual learners.

We suggest that drawing methodology might offer a useful
approach for teachers to tease out student affective states, and
hence infer the level of challenge currently experienced by
students. When viewed as group data, our drawings give an
overall ‘emotional snapshot’ of the course—we would expect to
see a balance of positive and negative emotions across the entire
cohort of students. Too much positive emotion could indicate the
course is not challenging enough (and thus not conducive to
deep learning), while too much negative emotion could indicate
the course is too challenging (and thus lead to student
disengagement).

Obviously, this type of exploratory and interpretive data is
problematic: the analysis process is time-consuming; the process
is heavily dependent on context, and therefore not easily
transferrable to other teaching scenarios; and it is difficult to
draw definitive conclusions from the data. However, all three
researchers found the student drawing data offered a far richer
picture of student in-class experiences than other traditional
measures, and this in turn sparked extensive discussions and

Session 2: Student Perception, Conception, Reaction ICER’17, August 18–20, 2017, Tacoma, WA, USA

44

reflection around the content and delivery of our introductory
programming courses. This sort of deeply personal data gave us
a window into our students’ experiences, and helped us
remember that our students are more than pass-rates and
enrolment dollars—they are complex and emotional people.

7 FUTURE RESEARCH
Throughout our research, we noted several potential directions
for future research.

First, we are curious to know whether repeating this exercise
with second and third-year students would reveal any different
patterns than the first-year cohorts. Specifically, we are
interested in seeing whether more indicators of student
professional identity formation are present in drawings from
students further along in the degree.

Second, similar to above, we would be interested in getting
graduates and industry professionals to complete the drawing
activity to see if this cohort produces any significantly different
drawings. Comparing student drawings to an industry
‘exemplar’ set of drawings could reveal further insights into
student experiences.

Third, in this study we did not explicitly correlate student
drawings with performance; this was for two main reasons: (1)
as reported, we were more interested in looking at patterns
across the data as a group; and (2) a preliminary look at a
sampling of the drawings did not show any obvious correlations
to student performance (i.e., the drawings were attached to their
final exam papers, and there did not seem to be any obvious
patterns relating to the exam marks). However, a more thorough
exploration of the five themes (artefacts, actors, activities,
aspirations and affect) in conjunction with student performance
measures should be carried out in future.

Fourth, to augment our methodology, we could repeat the
activity with students and incorporate a discussion element to
assist with our analysis. This might involve sitting down with
students and letting them explain their drawings in a semi-
structured interview fashion, or providing students with our
analyses and comparing and contrasting our interpretations with
those from a student perspective.

Fifth, we acknowledge that the timing of the exercise—that is,
at the end of a final exam—may be confounding the data,
particularly around our interpretations of student emotions. We
came up with two possible issues that warrant further
investigation to substantiate: (1) the drawings may be a cathartic
outlet for students following a stressful event (e.g. the exam),
and emotions such as frustration, rage, relief, or joy may pertain
specifically to the exam, rather than the overall course itself; and
(2) particularly positive emotions about the course could simply
be placatory toward the lecturer about to mark the exam paper.
This brings up questions around the possible teacher-student
power relations embedded in the drawings [22].

Finally, there are several demographic comparisons that we
could focus on with future studies: for example, traditionally
computer science has a challenge with attracting and retaining
female students, and it could be worthwhile seeing if male and
female student drawings produce different conceptions of

programming (of course, with so few female students, getting
enough drawings to constitute a viable dataset could be a
challenge). Other demographics that would be of interest to our
context would be whether we see differences with Māori and
Pacific Island students, or between school-leavers and adult
students.

8 CONCLUSIONS
As with any good art, our student drawings have provoked
questions and reflection. As a window into the student
experience of learning programming, the student drawings
reveal a rich dataset of conceptions, perspectives, aspirations and
emotions. The observed patterns noted in the drawings raised
questions particularly around the formation of students’
professional programming identities, and the role of affect in
learning to program. As educators, we are constantly looking for
new ways to improve our teaching practice and the learning
experiences of our students. In this study, drawing methodology
proved to be a useful means of tapping into the affective states of
our first-year students and gaining insight into their learning
experiences.

ACKNOWLEDGMENTS
Thanks to all the students that took the time to produce a
drawing.

REFERENCES
[1] D. Knuth. 1974. Computer programming as an art. Communications of the

ACM, v.17 n.12, pp.667-673, Dec 1974.
[2] E. Lahtinen, K. Ala-Mutka, and H-M. Järvinen. 2005. A study of the

difficulties of novice programmers. Acm Sigcse Bulletin, vol. 37, no. 3,
pp.14-18. ACM, 2005.

[3] A. Robins, J. Rountree, and N. Rountree. 2003. Learning and teaching
programming: a review. Computer Science Education. 13, 2, pp.137-172.

[4] A. Berglund, and R. Lister. 2010. Introductory programming and the
didactic triangle. In Proceedings of the Twelfth Australasian Conference on
Computing Education-Volume 103 (pp. 35-44). Australian Computer
Society, Inc.

[5] M. Butler, and M. Morgan. 2007. Learning challenges faced by novice
programming students studying high level and low feedback concepts.
In Proceedings of the 24th ascilite Conference (pp. 2-5).

[6] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen, M.
Devlin, and J. Paterson. 2007. A survey of literature on the teaching of
introductory programming. ACM SIGCSE Bulletin, 39(4), pp.204-223.

[7] S. Fincher, A. Robins, B. Baker, I. Box, Q. Cutts, M. de Raadt, P. Haden, J.
Hamer, M. Hamilton, R. Lister, and M. Petre. 2006. Predictors of success
in a first programming course. In Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52 (pp. 189-196). Australian
Computer Society, Inc., Jan 2006.

[8] P. Kinnunen, and B. Simon. 2012. My program is ok–am I? Computing
freshmen's experiences of doing programming assignments. Computer
Science Education, 22(1), pp.1-28.

[9] J. Gasson, D. Parsons, K. Wood, and P. Haden. In review. Student affect in
CS1: Insights from an easy data collection tool. Koli Calling, November
16–19, 2017, Koli, Finland.

[10] C. Edmondson. 2008. Teaching tales: some student perceptions of
computing education. ACM SIGCSE Bulletin, 40(4), pp.103-106.

[11] L.C. Kaczmarczyk, E.R. Petrick, J.P. East, and G.L. Herman. 2010.
Identifying student misconceptions of programming. In Proceedings of the
41st ACM technical symposium on Computer science education (pp. 107-
111). ACM. Mar 2010.

[12] J.C. Liang, Y.C. Su, and C.C. Tsai. 2015. The assessment of Taiwanese
college students’ conceptions of and approaches to learning computer

Session 2: Student Perception, Conception, Reaction ICER’17, August 18–20, 2017, Tacoma, WA, USA

45

science and their relationships. The Asia-Pacific Education
Researcher, 24(4), pp.557-567.

[13] I. Stamouli, and M. Huggard. 2006. Object oriented programming and
program correctness: the students' perspective. In Proceedings of the
second international workshop on Computing education research (pp. 109-
118). ACM. Sep 2006.

[14] D. Krpan, M. Rosić, and S. Mladenović. 2014. Teaching basic
programming skills to undergraduate students. In Contemporary issues in
economy and technology. Jan 2014.

[15] A. Eckerdal, M. Thuné, and A. Berglund. 2005. What does it take to learn
'programming thinking'?. In Proceedings of the first international workshop
on Computing education research (pp. 135-142). ACM. Oct 2005.

[16]

[17]

S. Fincher, J. Tenenberg, and A. Robins. 2011. Research design: necessary
bricolage. In Proceedings of the seventh international workshop on
Computing education research (pp. 27-32). ACM. Aug 2011.
T. Hübscher-Younger, and N.H. Narayanan. 2003. Dancing hamsters and
marble statues: characterizing student visualizations of algorithms. In
Proceedings of the 2003 ACM symposium on Software visualization (pp. 95-
104). ACM. Jun 2003.

[18] C. Golomb. 2003. The child's creation of a pictorial world. Psychology
Press.

[19]

[20]

[21]

R.P. Jolley. 2010. Children and pictures: Drawing and understanding. John
Wiley & Sons.
M.R. Lea, and B.V. Street. 1998. Student writing in higher education: an
academic literacies approach. Studies in higher education 23(2), pp. 157-
172.
K. Hyland. 2008. As can be seen: lexical bundles and disciplinary
variation. English for specific purposes, 27(1), pp. 4-21.

[22] M. Guillemin. 2004. Understanding illness: Using drawings as a research
method. Qualitative health research, 14(2), pp.272-289.

[23] N. Selwyn, S. Boraschi, and S.M. Özkula. 2009. Drawing digital pictures:
An investigation of primary pupils’ representations of ICT and
schools. British Educational Research Journal, 35(6), pp.909-928.

[24] W.M. Hsieh, and C.C. Tsai. 2016. Learning illustrated: An exploratory
cross-sectional drawing analysis of students' conceptions of learning. The
Journal of Educational Research, pp.1-12.

[25] W.M. Hsieh, and C.C. Tsai. 2017. Exploring students’ conceptions of
science learning via drawing: a cross-sectional analysis. International
Journal of Science Education, pp.1-25.

[26] K.N. Sim. 2016. An investigation into the way PhD students utilise ICT to
support their doctoral research process (Doctoral dissertation, University of
Otago).

[27] S. Köse. 2008. Diagnosing student misconceptions: Using drawings as a
research method. World Applied Sciences Journal, 3(2), pp.283-293.

[28] F. Cornish, A. Gillespie, and T. Zittoun. 2013. Collaborative analysis of
qualitative data. Sage Publications Limited.

[29] P.A. Nielsen. 2016. Towards a Design Theory for Collaborative
Qualitative Data Analysis. Practice-based Design and Innovation of Digital
Artifacts.

[30] F. Trede, R. Macklin, and D. Bridges. 2012. Professional identity
development: a review of the higher education literature. Studies in
Higher Education, 37(3), pp.365-384.

[31] A. Reid, L.O. Dahlgren, P. Petocz, and M.A. Dahlgren. 2008. Identity and
engagement for professional formation. Studies in Higher Education, 33(6),
pp.729-742.

[32] Y. Lindsjørn, D.I. Sjøberg, T. Dingsøyr, G.R. Bergersen, and T. Dybå. 2016.
Teamwork quality and project success in software development: A
survey of agile development teams. Journal of Systems and Software, 122,
pp.274-286.

[33] C. McDowell, L. Werner, H. Bullock, and J. Fernald. 2002. The effects of
pair-programming on performance in an introductory programming
course. ACM SIGCSE Bulletin, 34(1), pp.38-42.

[34] K. Wood, D. Parsons, J. Gasson, and P. Haden. 2013. It's never too early:
pair programming in CS1. In Proceedings of the Fifteenth Australasian
Computing Education Conference-Volume 136 (pp. 13-21). Australian
Computer Society, Inc. Jan 2013.

[35] T. Jenkins. 2001. The motivation of students of programming. In ACM
SIGCSE Bulletin (Vol. 33, No. 3, pp. 53-56). ACM. Jun 2001.

[36] L.M. Leventhal, and D.W. Chilson. 1989. Beyond Just a Job: Expectations
of Computer Science Students. Computer Science Education, 1(2), pp.129-
143.

[37] A. Dean, and P. Gibbs. 2015. Student satisfaction or happiness? A
preliminary rethink of what is important in the student
experience. Quality Assurance in Education, 23(1), pp.5-19.

[38] M. Kölling. 1999. The problem of teaching object-oriented
programming. Journal of Object Oriented Programming, 11(8), pp.8-15.

[39] K. Sanders, J. Boustedt, A. Eckerdal, R. McCartney, J.E. Moström, L.
Thomas, and C. Zander. 2008. Student understanding of object-oriented
programming as expressed in concept maps. ACM SIGCSE Bulletin, 40(1),
pp.332-336.

[40] R. Wass, and C. Golding. 2014. Sharpening a tool for teaching: the zone of
proximal development. Teaching in Higher Education, 19(6), pp.671-684.

[41] E.L. Bjork, and R.A. Bjork. 2011. Making things hard on yourself, but in a
good way: Creating desirable difficulties to enhance learning. Psychology
and the real world: Essays illustrating fundamental contributions to society,
pp.56-64.

[42] S. D’Mello, and A. Graesser. 2012. Dynamics of affective states during
complex learning. Learning and Instruction, 22(2), pp.145-157.

Session 2: Student Perception, Conception, Reaction ICER’17, August 18–20, 2017, Tacoma, WA, USA

46

