- 1. For the function Bel: $2^X \to [0,1]$ find the basic probability assignment m: $2^X \to [0,1]$ and the plausibility function Pl: $2^X \to [0,1]$ where $X = \{0,1,2,3\}$ and Bel($\{0\}$) = Bel($\{1\}$)=0, Bel($\{2\}$) = Bel($\{3\}$) = Bel($\{0,2\}$) = Bel($\{0,3\}$) = Bel($\{1,2\}$) = Bel($\{1,3\}$) = $\frac{1}{4}$, Bel($\{0,1\}$) = Bel($\{2,3\}$) = Bel($\{0,2,3\}$) = Bel($\{1,2,3\}$) = $\frac{1}{2}$, Bel($\{0,1,2\}$) = Bel($\{0,1,3\}$) = $\frac{3}{4}$.
- 2. For the function Bel: $2^X \rightarrow [0,1]$ find the basic probability assignment m: $2^X \rightarrow [0,1]$ and the plausibility function Pl: $2^X \rightarrow [0,1]$ where $X=\{1,2,3\}$ and Bel($\{1\}$) = Bel($\{2\}$)=0, Bel($\{3\}$) = Bel($\{1,3\}$) = 1/2, Bel($\{1,2\}$) = 1/4, Bel($\{2,3\}$) = 3^4 .
- 3. $X=\{x1,x2,x3,x4,x5\}$, and two basic probability assignments, m and n are given below:

	{x4,x5}	{x1,x3}	{x1,x2}	{x2,x4}	{x1,x2,x3}
m	3/8	3/8	1/4	0	0
n	0	0	1/4	1/4	1/2

Assuming independence of both pieces of evidence, find their orthogonal sum $m \oplus n$.

4. $X=\{a,b,c\}$, and two basic probability assignments, m and n are given below:

	{a}	{b}	{c}	{a,b}	{a,c}	{b,c}	{a,b,c}
m	0.3	0	0.2	0.3	0	0.1	0.1
n	0	0	0.2	0.2	0.3	0.2	0.1

Assuming independence of both pieces of evidence, find their orthogonal sum $m \oplus n$.

5. Assume that S=(X,A,V) is an information system given below:

	A	В
x1	1	2
x2	1	1
х3		1
x4	2	
x5		2

Propose two different interpretations of attributes A, B by belief functions and by plausibility function.