

Problem 1 (max 10). Suppose we know that:

- If *Paolo is thin*, then *Carlo is not blonde* or *Roberta is not tall*
- If *Roberta is tall* then *Sandra is lovely*
- If *Sandra is lovely* and *Carlo is blonde* then *Paolo is thin*
- *Carlo is blonde*

Can we deduce that *Roberta is not tall*?

Solution:

A – Paolo is thin. C – Carlo is blonde. R – Roberta is tall.

S – Sandra is lovely.

We need to check if

$KB = \{ A \rightarrow (\neg C \vee \neg R), R \rightarrow S, (S \wedge C) \rightarrow A, C \} \vdash \neg R$

Converting to set of clauses (5 points) & use resolution. (5 points)

(1) $\neg A \vee \neg C \vee \neg R$; (2) $\neg R \vee S$; (3) $\neg S \vee \neg C \vee A$; (4) C ; (5) R ;

Resolution:

(6) = (1)+(4)+(5) $\neg A$; (7) = (2)+(5) S ; (8) = (3)+(4)+(6) $\neg S$; (7)+(8) NIL

Problem 2 (max 10). In what order the algorithm using distance function $f(n)$ will visit nodes in the graph G assuming that A is the starting node and G is the final node in the graph. We assume that $f(n) = g(n) + h(n)$, where $g(n)$ is the shortest distance from node A to node n ($n \in \{B, C, D, E, F, G\}$) and function h is defined by the table below. Function $h(x)$ is a heuristic estimation of the distance from node x to the final node.

Graph G

$h(A)$	$h(B)$	$h(C)$	$h(D)$	$h(E)$	$h(F)$	$h(G)$
7	5	6	4	6	2	0

Check if $f(n)$ is **admissible** (never overestimates the actual cost to get from node n to the goal) [2 points out of 10] and **monotonic** [2 points out of 10]

Solution:

(A \rightarrow C, $2+h(C)=8$), (A \rightarrow C \rightarrow E, 11), (A \rightarrow C \rightarrow D, 10)

(A \rightarrow B, 8)

Monotonic: $h(A) = 7 \leq d(A,C)+h(C)=2+6 = 8$

Admissible: $h(A)= 7 \leq d(A,G)=9$

(A \rightarrow C, $2+h(C)=8$), (A \rightarrow C \rightarrow E, 11), (A \rightarrow C \rightarrow D, 10)

(A \rightarrow B, 8), (A \rightarrow B \rightarrow D, 9)

Monotonic: $h(A) = 7 \leq d(A,B)+d(B) = 3 + 5 = 8$

(A \rightarrow C, $2+h(C)=8$), (A \rightarrow C \rightarrow E, 11), (A \rightarrow C \rightarrow D, 10)

(A \rightarrow B, 8), (A \rightarrow B \rightarrow D, 9), (A \rightarrow B \rightarrow D \rightarrow E, 12), (A \rightarrow B \rightarrow D \rightarrow F, 9)

Monotonic: $h(B)=5 \leq d(B,D) + h(D) = 2 + 4 = 6$

Admissible: $h(B) = 5 \leq d(B,G)=6$

(A \rightarrow C, $2+h(C)=8$), (A \rightarrow C \rightarrow E, 11), (A \rightarrow C \rightarrow D, 10)

(A \rightarrow B, 8), (A \rightarrow B \rightarrow D, 9), (A \rightarrow B \rightarrow D \rightarrow E, 12), (A \rightarrow B \rightarrow D \rightarrow F, 9), (A \rightarrow B \rightarrow D \rightarrow F \rightarrow G, 9)

Monotonic: $h(D) = 4 \leq d(D,F) + h(F) = 2 + 2 = 4$

Admissible: $h(D) = 4 \leq d(D,G) = 4$

(A \rightarrow C, $2+h(C)=8$), (A \rightarrow C \rightarrow E, 11), (A \rightarrow C \rightarrow D, 10)

(A \rightarrow B, 8), (A \rightarrow B \rightarrow D, 9), (A \rightarrow B \rightarrow D \rightarrow E, 12), (A \rightarrow B \rightarrow D \rightarrow F, 9), (A \rightarrow B \rightarrow D \rightarrow F \rightarrow G, 9)

Monotonic: $h(F) = 2 \leq d(F,G) + h(G) = 2 + 0$

Problem 3 (max 12).

Let's assume that:

- 1) Anyone whom Mary loves is a football star.
- 2) Any student who does not pass does not play.
- 3) John is a student.
- 4) Any student who does not study does not pass.
- 5) Anyone who does not play is not a football star.

Use resolution to prove that: If John does not study, then Mary does not love John.

To what class (Breadth-First, Set-of-Support, Unit-Preference, Linear-Input Form, Ancestry-Filtered Form) does your strategy belong? List all.

Use the following alphabet:

Constants: M – Mary, J- John,

Predicates: $S(x)$ – x is a student, $ML(x)$ – Mary loves x

$F(x)$ – x is a football star, $St(x)$ – x does not study,

$Play(x)$ – x does not play, $Pass(x)$ – x does not pass.

KB: Knowledge Base

$ML(x) \rightarrow F(x)$. $(S(x) \wedge Pass(x)) \rightarrow Play(x)$.

$S(John)$. $(S(x) \wedge St(x)) \rightarrow Pass(x)$. $Play(x) \rightarrow \neg F(x)$.

Prove that:

$St(John) \rightarrow \neg ML(John)$.

Converting KB to the Set of Clauses + Negation of the Goal (max 4 points)

$\neg ML(x) \vee F(x)$. $\neg S(x) \vee \neg Pass(x) \vee Play(x)$.

$S(John)$. $\neg S(x) \vee \neg St(x) \vee Pass(x)$. $\neg Play(x) \vee \neg F(x)$. $St(John)$. $ML(John)$

Resolution.(max 5 points)

Resolution belongs to the following classes: linear-input, unit-preference, & set-of-support.(max 3 points)

Problem 4 (max 8). Assuming that the procedure graph for surgery P1 is represented by the figure below, find the score associated with a surgery P3 (the average number of readmissions to hospital after surgery P3).

Remark: Out of 300 patients having surgery P1, 20 are fine, 100 returned to the hospital for surgery P2, 150 for surgery P5, and 30 for surgery P3.

Solution:

$$\text{Score}(P9) = 8/8 \cdot 0 = 0$$

$$\text{Score}(P7) = 6/12[1 + \text{Score}(P9)] + 6/12 \cdot 0 = \frac{1}{2}$$

$$\text{Score}(P10) = 3/3 \cdot 0 = 0$$

$$\text{Score}(P8) = 3/6 \cdot 0 + 3/6[1 + \text{Score}(P10)] = 1/2$$

$$\begin{aligned} \text{Score}(P5) &= 5/20 \cdot 0 + 10/20[1 + \text{Score}(P7)] + 5/20[1 + \text{Score}(P8)] = \\ &= \frac{1}{2}[1 + \frac{1}{2}] + \frac{1}{4}[1 + \frac{1}{2}] = \frac{1}{2} \cdot \frac{3}{2} + \frac{1}{4} \cdot \frac{3}{2} = \frac{3}{4} \cdot \frac{3}{2} = \frac{9}{8} \end{aligned}$$

$$\text{Score}(P6) = 1 \cdot [1 + \text{Score}(P8)] = 3/2$$

$$\begin{aligned} \text{Score}(P3) &= 1/3 \cdot 0 + 1/3[1 + \text{Score}(P6)] + 1/3[1 + \text{Score}(P5)] = \\ &= 1/3[1 + 3/2] + 1/3[1 + 9/8] = 1/3 \cdot 5/2 + 1/3 \cdot 17/8 = 1/3[20/8 + 17/8] = (1/3) \cdot (37/8) \\ &= 37/24. \end{aligned}$$

$$\begin{aligned} \text{Score}(P4) &= 2/4[1 + \text{Score}(P9)] + 2/4[1 + \text{Score}(P7)] = \frac{1}{2} \cdot [1 + 0] + \frac{1}{2} \cdot [1 + \frac{1}{2}] = \\ &= \frac{1}{2} + \frac{1}{2} \cdot \frac{3}{2} = 2/4 + 3/4 = 5/4 \end{aligned}$$

$$\begin{aligned} \text{Score}(P2) &= 2/10 \cdot 0 + 4/10[1 + \text{Score}(P4)] + 4/10[1 + \text{Score}(P5)] = \\ &= 4/10[1 + 5/4] + 4/10[1 + \frac{1}{2}] = 2/5 \cdot 9/4 + 2/5[1 + 9/8] = 18/20 + 2/5 \cdot 17/8 = \\ &= 18/20 + 17/20 = 35/20 = 7/4 \end{aligned}$$

Score(P1) =

$$\begin{aligned}2/30*0 + 1/3*[1 + \text{Score}(P2)] + 1/2*[1 + \text{Score } P(5)] + 1/10*[1 + \text{Score } (P3)] &= \\1/3*[1 + 7/4] + 1/2*[1 + 9/8] + 1/10*[1 + 37/24] &= 1/3*11/4 + 1/2*17/8 + 1/10*61/24 = \\11/12 + 17/16 + 61/240\end{aligned}$$

(If calculation mistakes, drop 1 point. If the strategy is correct but the solution is not finished, drop 2 points. If strategy is wrong, drop 5 points)