
Action Reducts

Seunghyun Im1 , Zbigniew Ras 2,3, Li-Shiang Tsay 4

1 Computer Science Department, University of Pittsburgh at Johnstown,

Johnstown, PA 15904, USA

sim@pitt.edu
2 Computer Science Department, University of North Carolina, Charlotte, NC 28223, USA

3 Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland

ras@uncc.edu
4 ECIT Department, NC A&T State University, Greensboro, NC, 27411, USA

ltsay@ncat.edu

Abstract. An action is defined as controlling or changing some of attribute values in

an information system to achieve desired result. An action reduct is a minimal set of

attribute values distinguishing a favorable object from other objects. We use action

reducts to formulate necessary actions. The action suggested by an action reduct

induces changes of decision attribute values by changing the condition attribute

values to the distinct patterns in action reducts.

Keywords: Reduct, Action Reduct, Prime Implicant, Rough Set.

1 Introduction

Suppose that the customers of a bank can be classified into several groups according to

their satisfaction levels, such as satisfied, neutral, or unsatisfied. One thing the bank can

do to improve the business is finding a way to make the customers more satisfied, so that

they continue to do the business with the bank. The algorithm described in this paper tries

to solve such problem using existing data. Assume that a bank maintains a database for

customer information in a table. The table has a number of columns describing the

characteristics of the customers, such as personal information, account data, survey result

etc. We divide the customers into two groups based on the satisfaction level (decision

value). The first group is comprised of satisfied customers who will most likely keep their

account active for an extended period of time. The second group is comprised of neutral

or unsatisfied customers. We find a set of distinct values or unique patterns from the first

group that does not exist in the second group. The unique characteristics of the satisfied

customers can be used by the bank to improve the customer satisfaction for the people in

the second group. Clearly, some of attribute values describing the customers can be

controlled or changed, which is defined as an action. In this paper, we propose the concept

of action reduct to formulate necessary actions. An action reduct has following properties;

(1) It is obtained from objects having favorable decision values. (2) It is a distinct set of

values not found in the other group, the group not having favorable decision values. (3) It

is the minimal set of differences between separate groups of objects. The minimal set has

the advantages when formulating actions because smaller changes are easier to undertake.

The rest of this paper is organized as follows. Chapter 2 describes the algorithm.

Related works are presented in Chapter 3. Implementation and experimental results are

shown in Chapter 4. Chapter 5 concludes the paper.

Table 1. Information System S. The decision attribute is D. The condition attributes are B, C, and

E. There are eight objects referred as x1 ~ x8

 B C E D

x1 b2 c1 e1 d2

x2 b1 c3 e2 d2

x3 b1 c1 d2

x4 b1 c3 e1 d2

x5 b1 c1 e1 d1

x6 b1 c1 e1 d1

x7

x8

b2

b1

c2

e2

e2

d1

d1

2 Algorithm

2.1 Notations

We will use the following notations throughout the paper.

By an information system [2] we mean a triple S=(X,A,V), where

X = {x1,x2,...xi} is a finite set of objects,

A = {a1,a2,...aj} is a finite set of attributes, defined as partial functions from X into V,

V = {v1,v2,...,vk} is a finite set of attribute values.

We also assume that V = {Va : a A}, where Va is a domain of attribute a.

For instance, in the information system S presented by Table 1, x1 refers to the first row

and B(x1) = b2. There are four attributes, A = {B, C, E, D}. We classify the attributes into

two types: condition and decision. The condition attributes are B, C, and E, and the

decision attribute is D. We assume that the set of condition attributes is further partitioned

into stable attributes, AS, and flexible attributes, AF. An attribute is called stable if the

values assigned to objects do not change over time. Otherwise, the attribute is flexible.

Birth date is an example of a stable attribute. Interest rate is a flexible attribute.

AF = {B,C}

AS = {E}

D = decision attribute

The values in D are divided into two sets.

d = { vi  VD; vi is a desired decision value}

d = VD - d

For simplicity of presentation, we use an example having only one element d2 in d and

d1 in d (d = {d2}, d = {d1}). However, the algorithm described in the next section

directly carries over to the general case where |d|  2 and |d|  2.

The objects are partitioned into 2 groups based on the decision values.

X = {xi  X; D(xi)  d}; i.e., objects that the decision values are in d

X = {xj  X; D(xj)  d}; i.e., objects that the decision values are in d

In Table 1, X = {x1, x2, x3, x4} and X = {x5, x6, x7, x8}.

2.2 Algorithm Description

We want to provide the user a list of attribute values that can be used to make changes

on some of the objects to steer the unfavorable decision value to a more favorable value.

We use the reduct [2][9] to create that list.

By a reduct relative to an object x we mean a minimal set of attribute values

distinguishing x from all other objects in the information system. For example, {b2, e2} is

a reduct relative to x7 since {b2, e2} can differentiate x7 from other objects in S (see Table

1).

Now, we will extend the concept of “reduct relative to an object” to “-reduct”. We

partitioned the objects in S into two groups by their decision values. Objects in X have d2

that is the favorable decision value. Our goal is to identify which sets of condition

attribute values describing objects in X make them different from the objects in X.

Although there are several different ways to find distinct condition attribute values (e.g.

association rules), reducts have clear advantages; it does not require the user to specify the

rule extraction criteria, such as support and confidence values, while generating the

minimal set of distinct sets. Thereby, the algorithm is much easier to use, and creates a

consistent result across different users.

Table 5 shows -reducts for S. Those are the smallest sets of condition attribute values

that are different from the condition attribute values representing objects in X. We

obtained the first two -reducts relative to x1. These are the prime implicants [1] (see the

next section for details) of the differences between x1 and {x5, x6, x7, x8}. Subsequent -

reducts are extracted using objects x2, x3, and x4.

We need a method to measure the usability of the -reducts. Two factors, frequency

and hit ratio, determine the usability. (1) Frequency : More than one object can have the

same -reduct. The frequency of an -reduct in X is denoted by f. (2) Hit Ratio : The hit

ratio, represented as h, is the ratio between the number of applicable objects and the total

number of objects in X. An applicable object is the object that the attribute values are

different from those in -reduct, and they are not stable values. The -reducts may not be

used to make changes for some of the attribute values of x  X for two reasons. Some

objects in X do not differ in terms of their attribute values. Therefore, changes cannot be

made. Second, we cannot modify stable attribute values. It does not make sense to suggest

a change of un-modifiable values. We define the following function to measure the

usability. The weight of an -reduct k is,

wk = (fk  hk) / ((f  h)),

where fk and hk are the frequency and hit ratio for k, and (f  h) is the sum of the

weights of all -reducts. It provides a way to prioritize the -reduct using a normalized

value.

Table 2. X. The objects classified as d2. We assume that d2 is the favorable decision.

 B C E D

x1 b2 c1 e1 d2

x2 b1 c3 e2 d2

x3 b1 c1 d2

x4 b1 c3 e1 d2

Table 3. X. The objects classified as d1

 B C E D

x5 b1 c1 e1 d1

x6 b1 c1 e1 d1

x7

x8

b2

b1

c2

e2

e2

d1

d1

2.3 Example

Step 1. Finding -reducts

Using the partitions in Tables 2 and 3, we find distinct attribute values of x  X against

x  X. The following matrix shows the discernable attribute values for {x1, x2, x3, x4}

against {x5, x6, x7, x8}

Table 4. Discernable attribute values for {x1, x2, x3, x4} against {x5, x6, x7, x8}

 x1 x2 x3 x4

x5 b2 c3 + e2  c3

x6 b2 c3 + e2  c3

x7 c1 + e1 b1 + c3 b1 + c1 b1 + c3 + e1

x8 b2 + c1 + e1 c3 c1 c3 + e1

For example, b2 in x1 is different from x5. We need b2 to discern x1 from x5. Either c1 or

(or is denoted as + sign) e1 can be used to distinguish x1 from x7. In order to find the

minimal set of values that distinguishes x1 from all objects in X= {x5, x6, x7, x8} we

multiply all discernable values: (b2)  (b2)  (c1 + e1)  (b2 + c1 + e1). That is, (b2) and (c1

or e1) and (b2 or c1 or e1) should be different to make x1 distinct from all other objects. The

process is known as finding a prime implicant by converting the conjunction normal form

(CNF) to disjunction normal form (DNF)[2][9]. The -reduct r(x1) relative to x1 is

computed using the conversion and the absorption laws:

r(x1) = (b2)  (b2)  (c1 + e1)  (b2 + c1 + e1)

 = (b2)  (b2)  (c1 + e1)

 = (b2  c1) + (b2  e1)

A missing attribute value of an object in X does not qualify to discern the object from

the objects in X because it is undefined. A missing value in X, however, is regarded as a

different value if a value is present in x  X. When a discernible value does not exist, we

do not include it in the calculation of the prime implicant. We acquired the following -

reducts:

r(x1) = (b2  c1) + (b2  e1)

r(x2) = (c3)

r(x3) = NIL

r(x4) = (c3)

Step 2. Measuring the usability of -reduct

Table 5 shows the -reducts for information System S. The frequency of -reduct {b2,

c1} is 1 because it appears in X once. The hit ratio is 4/4 = 1, meaning that we can use the

reduct for all objects in X. The weight is 0.25, which is acquired by dividing its weight, f

 h = 1, by the sum of all weights, (f  h) = (1  1) + (1  0.5) + (2 1) + (1  0.5) = 4.

The values in the stable attribute E cannot be modified. Therefore, the hit ratio for -

reduct {b2, e1} is 2/4 = 0.5 because the stable value, e2, in x7 and x8 cannot be converted to

e1.

Table 5. -reduct for Information Sytem S. * indicate a stable attribute value.

-reduct Weight (w) Frequency (f) Hit Ratio (h)

{b2 , c1} 2/7 (0.29%) 1 1

{b2 , e1
*} 1/7 (0.14%) 1 0.5

{c3} 4/7 (0.57%) 2 1

Using the -reduct {c3} that has the highest weight, we can make a recommendation;

change the value of C in X to c3 in order to induce the decision value in X to d2.

3 Implementation and Experiment

We implemented the algorithm in Python 2.6 on a MacBook computer running OS X,

and tested it using a sample data set (lenses) obtained from [8]. The data set contains

information for fitting contact lenses. Table 6 shows the attributes names, descriptions,

and the partitions. The decision attribute, lenses, has three classes. We set the second class

(soft lenses) as the favorable decision value. The data set has 4 condition attributes. We

assumed that the age of the patient is a stable attribute, and prescription, astigmatic and

tear production rate are flexible attributes. The favorable decision value and the attribute

partition are defined only for this experiment. Their actual definitions might be different.

All attributes are categorical in the dataset.

Table 6. Dataset used for the experiment.

Attribute Values Type

(1) age of the patient * young, pre-presbyopic, presbyopic Stable

(2) spectacle prescription myope, hypermetrope Flexible

(3) astigmatic no, yes Flexible

(4) tear production rate reduced, normal Flexible

(5) lenses the patient fitted with hard contact lenses

 the patient fitted with soft contact lenses = d

 the patient not be fitted with contact lenses.

Decision

Table 7 shows the -reducts generated during experiment. We interpret them as action

reducts. For instance, the second -reduct can be read as, change the values in attribute 2,

3, and 4 to the suggested values (hypermetrope, no, normal) in order to change the

decision to 'soft lenses'. Because there is no stable attribute value in the -reduct and the

same pattern has not been found in X, its hit ratio is 1.

Table 7. -reduct for d = soft lenses. * indicate the attribute value is stable. The number in the () is

the attribute number in Table 6.

-reduct. Weight (w) Frequency (f) Hit Ratio (h)

young(1)*, no(3), normal(4) 0.14 2 0.31

hypermetrope(2), no(3), normal(4) 0.72 3 1

pre-presbyopic(1)*, no(3), normal(4) 0.14 2 0.31

4 Related Work and Contribution

The procedure for formulating an action from existing database has been discussed in

many literatures. A definition of an action as a form of a rule was given in [4]. The

method of action rules discovery from certain pairs of association rules was proposed in

[3]. A concept similar to action rules known as interventions was introduced in [5]. The

action rules introduced in [3] has been investigated further. In [12], authors present a new

agglomerative strategy for constructing action rules from single classification rules.

Algorithm ARAS, proposed in [13], is also an agglomerative type strategy generating

action rules. The method generates sets of terms (built from values of attributes) around

classification rules and constructs action rules directly from them. In [10], authors

proposed a method that extracts action rules directly from attribute values from an

incomplete information system without using pre-existing conditional rules. In these

earlier works, action rules are constructed from classification rules. This means that they

use pre-existing classification rules or generate rules using a rule discovery algorithm,

such as LERS [6], then, construct action rules either from certain pairs of the rules or from

a single classification rule. The methods in [10], [13], [14] and [7] do not formulate

actions directly from existing classification rules. However, the extraction of classification

rules during the formulation of an action rule is inevitable because actions are built as the

effect of possible changes in different rules. Action rules constructed from classification

rules provide a complete list of actions to be taken. However, we want to develop a

method that provides a simple set of attribute values to be modified without using a

typical action rule form (e.g. [condition1condition2]=>[decision1decision2]) for

decision makers who want to have simple recommendations. The recommendations made

by -reduct is typically quite simple, i.e. change a couple of values to have a better

outcome. In addition, it does not require from the user to define two sets of support and

confidence values; one set for classification rules, and other for action rules.

5 Summary

This paper discussed an algorithm for finding –reducts (also called action reducts) from

an information system, and presented an experimental result. An action reduct is a

minimal set of attribute values distinguishing a favorable object from other objects, and

are used to formulate necessary actions. The action suggested by an action reduct aims to

induce the change of the decision attribute value by changing the condition attribute

values to the unique pattern in the action reduct. The algorithm is developed as part of on-

going research project seeking solution to the problem of reducing college freshman

dropouts. We plan to run the algorithm using real world data in the near future.

Acknowledgments. This research has been partially supported by the President's

Mentorship Fund at the University of Pittsburgh Johnstown.

References

1. Gimpel, J. F.: A Reduction Technique for Prime Implicant Tables. In: The Fifth Annual

Symposium on Switching Circuit Theory and Logical Design, pp. 183--191. IEEE, Washington

(1964)

2. Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht. (1991)

3. Ras, Z.W., Wieczorkowska, A.: Action-Rules: How to Increase Profit of a Company. In: Editor:

Zighed, D., Komorowski, J., Zytkow, J. (eds.) Principles of Data Mining and Knowledge

Discovery, PADD 2000. LNCS, vol. 1920, pp. 587--592. Springer, Heidelberg (2000)

4. Geffner, H., Wainer, J.: Modeling Action, Knowledge and Control. In: ECAI, pp. 532--536. John

Wiley & Sons (1998)

5. Greco, S., Matarazzo, B., Pappalardo, N., Slowinski, R.: Measuring Expected Effects of

Interventions based on Decision Rules. Journal of Experimental and Theoretical Artificial

Intelligence., Vol. 17, No. 1-2, 103--118 (2005)

6. Grzymala-Busse, J.: A New Version of the Rule Induction System LERS, Fundamenta

Informaticae, Vol. 31, No. 1, 27--39 (1997)

7. He, Z., Xu, X., Deng, S., Ma, R.: Mining Action Rules from Scratch, Expert Systems with

Applications, Vol. 29, No. 3, 691--699 (2005)

8. Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases,

http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of California, Irvine, Dept. of

Information and Computer Sciences (1998)

9. Skowron, A.: Rough Sets and Boolean Reasoning. In: Pedrycz, W. (eds.) Granular Computing :

An Emerging Paradigm, pp. 95--124. Springer, Heidelberg (2001)

10. Im, S., Ras Z.W., Wasyluk, H.: Action Rule Discovery from Incomplete Data. Knowledge and

Information Systems. Vol. 25, No. 1, 21--33 (2010)

11. Qiao, Y., Zhong, K., Wangand, H., Li, X.: Developing Event-Condition-Action Rules in Real-

time Active Database. In: ACM Symposium on Applied Computing 2007, pp. 511--516. ACM,

New York (2007)

12. Ras, Z.W., Dardzinska, A.: Action Rules Discovery, a New Simplified Strategy. In: F. Esposito

et al. (eds.), Foundations of Intelligent Systems, ISMIS 2006. LNAI, Vol. 4203, pp. 445--453,

Springer, Heidelberg (2006)

13. Ras, Z.W., Tzacheva, A., Tsay, L., Gurdal, O.: Mining for Interesting Action Rules. In:

IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 187--193,

IEEE, Washington (2005)

14. Ras, Z.W., Dardzinska, A.: Action Rules Discovery based on Tree Classifiers and Meta-Actions.

In: J. Rauch et al. (eds.), Foundations of Intelligent Systems, ISMIS 2009. LNAI, Vol. 5722, pp.

66--75, Springer, Heidelberg (2009)

http://www.cs.uncc.edu/~ras/Papers/Ras-Aga-ISMIS09.pdf

