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Abstract. An action is defined as controlling or changing some of attribute values in 

an information system to achieve desired result. An action reduct is a minimal set of 

attribute values distinguishing a favorable object from other objects. We use action 

reducts to formulate necessary actions. The action suggested by an action reduct 

induces changes of decision attribute values by changing the condition attribute 

values to the distinct patterns in action reducts.  
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1   Introduction 

Suppose that the customers of a bank can be classified into several groups according to 

their satisfaction levels, such as satisfied, neutral, or unsatisfied. One thing the bank can 

do to improve the business is finding a way to make the customers more satisfied, so that 

they continue to do the business with the bank. The algorithm described in this paper tries 

to solve such problem using existing data. Assume that a bank maintains a database for 

customer information in a table. The table has a number of columns describing the 

characteristics of the customers, such as personal information, account data, survey result 

etc. We divide the customers into two groups based on the satisfaction level (decision 

value). The first group is comprised of satisfied customers who will most likely keep their 

account active for an extended period of time. The second group is comprised of neutral 

or unsatisfied customers. We find a set of distinct values or unique patterns from the first 

group that does not exist in the second group. The unique characteristics of the satisfied 

customers can be used by the bank to improve the customer satisfaction for the people in 

the second group. Clearly, some of attribute values describing the customers can be 



controlled or changed, which is defined as an action. In this paper, we propose the concept 

of action reduct to formulate necessary actions. An action reduct has following properties; 

(1) It is obtained from objects having favorable decision values. (2) It is a distinct set of 

values not found in the other group, the group not having favorable decision values. (3) It 

is the minimal set of differences between separate groups of objects. The minimal set has 

the advantages when formulating actions because smaller changes are easier to undertake.  

 

The rest of this paper is organized as follows. Chapter 2 describes the algorithm. 

Related works are presented in Chapter 3. Implementation and experimental results are 

shown in Chapter 4. Chapter 5 concludes the paper. 

Table 1.  Information System S. The decision attribute is D. The condition attributes are B, C, and 

E. There are eight objects referred as x1 ~ x8  

 B C E D 

x1 b2 c1 e1 d2 

x2 b1 c3 e2 d2 

x3 b1 c1  d2 

x4 b1 c3 e1 d2 

x5 b1 c1 e1 d1 

x6 b1 c1 e1 d1 

x7 

x8 

b2 

b1 

 

c2 

e2 

e2 

d1 

d1 

 

2   Algorithm 

2.1 Notations 

We will use the following notations throughout the paper.  

 

By an information system [2] we mean a triple S=(X,A,V), where 

 

X = {x1,x2,...xi} is a finite set of objects, 

A = {a1,a2,...aj} is a finite set of attributes, defined as partial functions from X into V, 

V = {v1,v2,...,vk} is a finite set of attribute values. 

 



We also assume that V = {Va : a A}, where Va is a domain of attribute a. 

 

For instance, in the information system S presented by Table 1, x1 refers to the first row 

and B(x1) = b2. There are four attributes, A = {B, C, E, D}. We classify the attributes into 

two types: condition and decision. The condition attributes are B, C, and E, and the 

decision attribute is D. We assume that the set of condition attributes is further partitioned 

into stable attributes, AS, and flexible attributes, AF. An attribute is called stable if the 

values assigned to objects do not change over time. Otherwise, the attribute is flexible. 

Birth date is an example of a stable attribute. Interest rate is a flexible attribute.  

 

AF = {B,C} 

AS = {E} 

D = decision attribute 

 

The values in D are divided into two sets. 

 

d = { vi  VD; vi is a desired decision value} 

d = VD - d 

 

For simplicity of presentation, we use an example having only one element d2 in d and 

d1 in d (d = {d2}, d = {d1}). However, the algorithm described in the next section 

directly carries over to the general case where |d|  2 and |d|  2.  

 

The objects are partitioned into 2 groups based on the decision values.  

 

X = {xi  X; D(xi)  d}; i.e., objects that the decision values are in d 

X = {xj  X; D(xj)  d}; i.e., objects that the decision values are in d 

 

In Table 1, X = {x1, x2, x3, x4} and X = {x5, x6, x7, x8}.  

2.2 Algorithm Description 

We want to provide the user a list of attribute values that can be used to make changes 

on some of the objects to steer the unfavorable decision value to a more favorable value. 

We use the reduct [2][9] to create that list.  

By a reduct relative to an object x we mean a minimal set of attribute values 

distinguishing x from all other objects in the information system. For example, {b2, e2} is 

a reduct relative to x7 since {b2, e2} can differentiate x7 from other objects in S (see Table 

1). 

 



Now, we will extend the concept of “reduct relative to an object” to “-reduct”. We 

partitioned the objects in S into two groups by their decision values. Objects in X have d2 

that is the favorable decision value. Our goal is to identify which sets of condition 

attribute values describing objects in X make them different from the objects in X. 

Although there are several different ways to find distinct condition attribute values (e.g. 

association rules), reducts have clear advantages; it does not require the user to specify the 

rule extraction criteria, such as support and confidence values, while generating the 

minimal set of distinct sets. Thereby, the algorithm is much easier to use, and creates a 

consistent result across different users.  

 

Table 5 shows -reducts for S. Those are the smallest sets of condition attribute values 

that are different from the condition attribute values representing objects in X. We 

obtained the first two -reducts relative to x1. These are the prime implicants [1] (see the 

next section for details) of the differences between x1 and {x5, x6, x7, x8}. Subsequent -

reducts are extracted using objects x2, x3, and x4.  

 

We need a method to measure the usability of the -reducts. Two factors, frequency 

and hit ratio, determine the usability. (1) Frequency : More than one object can have the 

same -reduct. The frequency of an -reduct in X is denoted by f. (2) Hit Ratio : The hit 

ratio, represented as h, is the ratio between the number of applicable objects and the total 

number of objects in X. An applicable object is the object that the attribute values are 

different from those in -reduct, and they are not stable values. The -reducts may not be 

used to make changes for some of the attribute values of x  X for two reasons. Some 

objects in X do not differ in terms of their attribute values. Therefore, changes cannot be 

made. Second, we cannot modify stable attribute values. It does not make sense to suggest 

a change of un-modifiable values. We define the following function to measure the 

usability. The weight of an -reduct k is, 

 

wk = ( fk  hk ) / ( ( f  h)),  

 

where fk and hk are the frequency and hit ratio for k, and ( f  h) is the sum of the 

weights of all -reducts. It provides a way to prioritize the -reduct using a normalized 

value. 



Table 2.  X. The objects classified as d2. We assume that d2 is the favorable decision. 

 B C E D 

x1 b2 c1 e1 d2 

x2 b1 c3 e2 d2 

x3 b1 c1  d2 

x4 b1 c3 e1 d2 

 

Table 3.  X. The objects classified as d1 

 B C E D 

x5 b1 c1 e1 d1 

x6 b1 c1 e1 d1 

x7 

x8 

b2 

b1 

 

c2 

e2 

e2 

d1 

d1 

 

 

2.3 Example 

 

Step 1. Finding -reducts 

 

Using the partitions in Tables 2 and 3, we find distinct attribute values of x  X against 

x  X. The following matrix shows the discernable attribute values for {x1, x2, x3, x4} 

against {x5, x6, x7, x8} 

Table 4.  Discernable attribute values for {x1, x2, x3, x4} against {x5, x6, x7, x8} 

 x1 x2 x3 x4 

x5 b2 c3 + e2  c3 

x6 b2 c3 + e2  c3 

x7 c1 + e1 b1 + c3 b1 + c1 b1 + c3 + e1 

x8 b2 + c1 + e1 c3 c1 c3 + e1 

 

For example, b2 in x1 is different from x5. We need b2 to discern x1 from x5. Either c1 or 

(or is denoted as + sign) e1 can be used to distinguish x1 from x7. In order to find the 

minimal set of values that distinguishes x1 from all objects in X= {x5, x6, x7, x8} we 

multiply all discernable values: (b2)  (b2)  (c1 + e1)  ( b2 + c1 + e1). That is, (b2) and (c1 



or e1) and (b2 or c1 or e1) should be different to make x1 distinct from all other objects. The 

process is known as finding a prime implicant by converting the conjunction normal form 

(CNF) to disjunction normal form (DNF)[2][9]. The -reduct r(x1) relative to x1 is 

computed using the conversion and the absorption laws:  

 

r(x1) = (b2)  (b2)  (c1 + e1)  (b2 + c1 + e1)  

        = (b2)  (b2)  (c1 + e1) 

        = (b2  c1) + (b2  e1) 
 

A missing attribute value of an object in X does not qualify to discern the object from 

the objects in X because it is undefined. A missing value in X, however, is regarded as a 

different value if a value is present in x  X. When a discernible value does not exist, we 

do not include it in the calculation of the prime implicant. We acquired the following -

reducts: 

 

r(x1) = (b2  c1) + (b2  e1)  

r(x2) = (c3)  

r(x3) = NIL  

r(x4) = (c3)  

 

Step 2. Measuring the usability of -reduct 

 

Table 5 shows the -reducts for information System S.  The frequency of -reduct {b2, 

c1} is 1 because it appears in X once. The hit ratio is 4/4 = 1, meaning that we can use the 

reduct for all objects in X. The weight is 0.25, which is acquired by dividing its weight, f 

 h = 1, by the sum of all weights, ( f  h) = (1  1) + (1  0.5) + (2 1) + (1  0.5)  = 4.  

The values in the stable attribute E cannot be modified. Therefore, the hit ratio for -

reduct {b2, e1} is 2/4 = 0.5 because the stable value, e2, in x7 and x8 cannot be converted to 

e1.  

Table 5. -reduct for Information Sytem S. * indicate a stable attribute value. 

-reduct Weight (w) Frequency (f) Hit Ratio (h) 

{b2 , c1} 2/7  (0.29%) 1 1 

{b2 , e1
*} 1/7  (0.14%) 1 0.5 

{c3} 4/7  (0.57%) 2 1 

 

Using the -reduct {c3} that has the highest weight, we can make a recommendation; 

change the value of C in X  to c3 in order to induce the decision value in X  to d2. 



3   Implementation and Experiment 

We implemented the algorithm in Python 2.6 on a MacBook computer running OS X, 

and tested it using a sample data set (lenses) obtained from [8]. The data set contains 

information for fitting contact lenses. Table 6 shows the attributes names, descriptions, 

and the partitions. The decision attribute, lenses, has three classes. We set the second class 

(soft lenses) as the favorable decision value. The data set has 4 condition attributes. We 

assumed that the age of the patient is a stable attribute, and prescription, astigmatic and 

tear production rate are flexible attributes. The favorable decision value and the attribute 

partition are defined only for this experiment. Their actual definitions might be different. 

All attributes are categorical in the dataset. 

 

Table 6. Dataset used for the experiment. 

Attribute Values Type 

(1) age of the patient *  young, pre-presbyopic, presbyopic Stable 

(2) spectacle prescription  myope, hypermetrope Flexible 

(3) astigmatic   no, yes Flexible 

(4) tear production rate  reduced, normal Flexible 

(5) lenses   the patient fitted with hard contact lenses 

 the patient fitted with soft contact lenses = d 

 the patient not be fitted with contact lenses. 

Decision 

   

Table 7 shows the -reducts generated during experiment. We interpret them as action 

reducts. For instance, the second -reduct can be read as, change the values in attribute 2, 

3, and 4 to the suggested values (hypermetrope, no, normal) in order to change the 

decision to 'soft lenses'. Because there is no stable attribute value in the -reduct and the 

same pattern has not been found in X, its hit ratio is 1.  

Table 7. -reduct for d = soft lenses. * indicate the attribute value is stable. The number in the () is 

the attribute number in Table 6. 

-reduct.  Weight (w) Frequency (f) Hit Ratio (h) 

young(1)*, no(3), normal(4) 0.14 2 0.31 

hypermetrope(2), no(3), normal(4) 0.72 3 1 

pre-presbyopic(1)*, no(3), normal(4) 0.14 2 0.31 

 



4  Related Work and Contribution 

The procedure for formulating an action from existing database has been discussed in 

many literatures. A definition of an action as a form of a rule was given in [4]. The 

method of action rules discovery from certain pairs of association rules was proposed in 

[3]. A concept similar to action rules known as interventions was introduced in [5]. The 

action rules introduced in [3] has been investigated further. In [12], authors present a new 

agglomerative strategy for constructing action rules from single classification rules. 

Algorithm ARAS, proposed in [13], is also an agglomerative type strategy generating 

action rules. The method generates sets of terms (built from values of attributes) around 

classification rules and constructs action rules directly from them. In [10], authors 

proposed a method that extracts action rules directly from attribute values from an 

incomplete information system without using pre-existing conditional rules. In these 

earlier works, action rules are constructed from classification rules. This means that they 

use pre-existing classification rules or generate rules using a rule discovery algorithm, 

such as LERS [6], then, construct action rules either from certain pairs of the rules or from 

a single classification rule. The methods in [10], [13], [14] and [7] do not formulate 

actions directly from existing classification rules. However, the extraction of classification 

rules during the formulation of an action rule is inevitable because actions are built as the 

effect of possible changes in different rules. Action rules constructed from classification 

rules provide a complete list of actions to be taken. However, we want to develop a 

method that provides a simple set of attribute values to be modified without using a 

typical action rule form (e.g. [condition1condition2]=>[decision1decision2] ) for 

decision makers who want to have simple recommendations. The recommendations made 

by -reduct is typically quite simple, i.e. change a couple of values to have a better 

outcome. In addition, it does not require from the user to define two sets of support and 

confidence values; one set for classification rules, and other for action rules.  

5   Summary 

This paper discussed an algorithm for finding –reducts (also called action reducts) from 

an information system, and presented an experimental result. An action reduct is a 

minimal set of attribute values distinguishing a favorable object from other objects, and 

are used to formulate necessary actions. The action suggested by an action reduct aims to 

induce the change of the decision attribute value by changing the condition attribute 

values to the unique pattern in the action reduct. The algorithm is developed as part of on-

going research project seeking solution to the problem of reducing college freshman 

dropouts. We plan to run the algorithm using real world data in the near future.   

 



Acknowledgments. This research has been partially supported by the President's 

Mentorship Fund at the University of Pittsburgh Johnstown. 

 

References 

 
1. Gimpel, J. F.: A Reduction Technique for Prime Implicant Tables. In: The Fifth Annual 

Symposium on Switching Circuit Theory and Logical Design, pp. 183--191. IEEE, Washington 

(1964) 

 

2. Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht. (1991) 

 

3. Ras, Z.W., Wieczorkowska, A.: Action-Rules: How to Increase Profit of a Company. In: Editor: 

Zighed, D., Komorowski, J., Zytkow, J. (eds.) Principles of Data Mining and Knowledge 

Discovery, PADD 2000. LNCS, vol. 1920, pp. 587--592. Springer, Heidelberg (2000) 

 

4. Geffner, H., Wainer, J.: Modeling Action, Knowledge and Control. In: ECAI, pp. 532--536. John 

Wiley & Sons (1998)  

 

5. Greco, S., Matarazzo, B., Pappalardo, N., Slowinski, R.: Measuring Expected Effects of 

Interventions based on Decision Rules. Journal of Experimental and Theoretical Artificial 

Intelligence., Vol. 17, No. 1-2, 103--118 (2005) 

 

6. Grzymala-Busse, J.: A New Version of the Rule Induction System LERS, Fundamenta 

Informaticae, Vol. 31, No. 1, 27--39 (1997) 

 

7. He, Z., Xu, X., Deng, S., Ma, R.: Mining Action Rules from Scratch, Expert Systems with 

Applications, Vol. 29, No. 3, 691--699 (2005)  

 

8. Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases, 

http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of California, Irvine, Dept. of 

Information and Computer Sciences (1998) 

 

9. Skowron, A.: Rough Sets and Boolean Reasoning. In: Pedrycz, W. (eds.) Granular Computing : 

An Emerging Paradigm, pp. 95--124. Springer, Heidelberg (2001)  

 

10. Im, S., Ras Z.W., Wasyluk, H.: Action Rule Discovery from Incomplete Data. Knowledge and 

Information Systems. Vol. 25, No. 1, 21--33 (2010) 

 

11. Qiao, Y., Zhong, K., Wangand, H., Li, X.: Developing Event-Condition-Action Rules in Real-

time Active Database. In: ACM Symposium on Applied Computing 2007, pp. 511--516. ACM, 

New York (2007) 

 

12. Ras, Z.W., Dardzinska, A.: Action Rules Discovery, a New Simplified Strategy. In: F. Esposito 

et al. (eds.), Foundations of Intelligent Systems, ISMIS 2006. LNAI, Vol. 4203, pp. 445--453, 

Springer, Heidelberg (2006) 

  



13. Ras, Z.W., Tzacheva, A., Tsay, L., Gurdal, O.: Mining for Interesting Action Rules. In: 

IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 187--193, 

IEEE, Washington (2005) 

 

14. Ras, Z.W., Dardzinska, A.: Action Rules Discovery based on Tree Classifiers and Meta-Actions. 

In: J. Rauch et al. (eds.), Foundations of Intelligent Systems, ISMIS 2009. LNAI, Vol. 5722, pp. 

66--75, Springer, Heidelberg (2009) 

 

 

 

 

 

http://www.cs.uncc.edu/~ras/Papers/Ras-Aga-ISMIS09.pdf

