

ITCS 6150 Intelligence Systems

Lecture 10
Logical Agents
Chapter 7

Logical Agents

What are we talking about, "logical?"

- Aren't search-based chess programs logical
 - Yes, but knowledge is used in a very specific way
 - Win the game
 - Not useful for extracting strategies or understanding other aspects of chess
- We want to develop more general-purpose knowledge systems that support a variety of logical analyses

Partially observable environments

 combine available information (percepts) with general knowledge to select actions

Natural Language

 Language is too complex and ambiguous. Problem-solving agents are impeded by high branching factor.

Flexibility

 Knowledge can be reused for novel tasks. New knowledge can be added to improve future performance.

Components of knowledge-based agent

Knowledge Base

- Store information
 - knowledge representation language
- Add information (Tell)
- Retrieve information (Ask)
- Perform inference
 - derive new sentences (knowledge) from existing sentences

Knowledge Representation

Must be syntactically and semantically correct Syntax

- the formal specification of how information is stored
 - -a + 2 = c (typical mathematical syntax)
 - a2y += (not legal syntax)

Semantics

- the meaning of the information
 - -a+2=c (c must be 2 more than a)

Logical Reasoning

Entailment

- one sentence follows logically from another
 - a->b
 - the sentence a entails the sentence b
- a->b if and only if
 - in every model in which a is true, b is also true

Sound

- only entailed sentences are inferred
- always true

Complete

inference algorithm can derive any sentence that is entailed

Propositional (Boolean) Logic

Syntax of allowable sentences

- atomic sentences
 - indivisible syntactic elements (can not be divided)
 - Use uppercase letters as representation
 - True and False are predefined proposition symbols

Complex sentences

Formed from symbols using connectives

- ~ (not): the negation
- ^ (and): the conjunction
- V (or): the disjunction
- => (implies): the implication
- (if and only if): the biconditional

Backus-Naur Form (BNF)

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
 AtomicSentence \rightarrow True \mid False \mid Symbol
             Symbol \rightarrow \mathbf{P} \mid \mathbf{Q} \mid \mathbf{R} \mid \dots
ComplexSentence \rightarrow \neg Sentence
                               (Sentence \land Sentence)
                               (Sentence \lor Sentence)
                              (Sentence \Rightarrow Sentence)
                               (Sentence \Leftrightarrow Sentence)
```


Propositional (Boolean) Logic

Semantics

- given a particular model (situation), what are the rules that determine the truth of a sentence?
- use a truth table to compute the value of any sentence with respect to a model by recursive evaluation
- model valuation assigning values {T,F} to every atomic statement

Truth table

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false false true true	$false \ true \ false \ true$	$egin{array}{c} true \ false \ false \end{array}$	$egin{aligned} false \ false \ true \end{aligned}$	false true true true	true true false true	$egin{array}{c} true \ false \ true \end{array}$

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for example, the value of $P \vee Q$ when P is true and Q is false, first look on the left for the row where P is true and Q is false (the third row). Then look in that row under the $P \vee Q$ column to see the result: true. Another way to look at this is to think of each row as a model, and the entries under each column for that row as saying whether the corresponding sentence is true in that model.

Concepts related to entailment

logical equivalence

a and b are logically equivalent if they are true in the same set of models...
 a⇔ b

validity (or tautology)

- a sentence that is valid in all models
 - PV~P
 - deduction theorem: a entails b if and only if a implies b

satisfiability

- a sentence that is true in some model
- a entails b ⇔ (a ^ ~b) is unsatisfiable.

ID	В	С	D	Е	F
t1	b1	c1	d1	e1	f1
t2	b1	c1	d2	e2	f2
t3	b1	c2	d3	e3	f3
t4	b2	с3	d1	e4	f4
t5	Ъ2	c1	d2	e5	f1
tб	b1	с3	d3	e1	f1
t7	b1	c2	d1	e2	f2
t8	b1	c2	d2	e3	f2
t9	b1	c2	d3	e4	f3
t10	b2	с3	d1	e5	f3
t11	b2	с3	d2	e5	f4
t12	Ъ2	c4	d1	e5	f4

Attributes = $\{B, C, D, E, F\}$

```
Dom(B) = {b1, b2}

Dom(C) = {c1, c2, c3, c4}

Dom(D) = {d1, d2, d3}

Dom(E) = {e1, e2, e3, e4, e5}

Dom(F) = {f1, f2, f3, f4}
```

Query Language

- 1) Syntax
- 2) Semantics