
1

The Rule Induction System LERS—A Version
for Personal Computers

Michal R. Chmielewski*, Jerzy W. Grzymala-Busse*, Neil W. Peterson*, Soe Than*

Abstract. This paper describes the system LERS (Learning from Examples based on

Rough Sets), a version for personal computers, which induces a set of rules from a

decision table and classifies new examples using the set of rules induced previously by the

system. The system may quantize numeric values of attributes and may handle two kinds

of uncertainty: missing values of attributes and inconsistent examples. LERS handles

inconsistencies using rough set theory.

1. Introduction

This paper presents the system LERS (Learning from Examples based on Rough

Sets) which may induce a set of rules from examples given in the form of a decision table

and may classify new examples using the set of rules induced previously by LERS (or

another set of rules) [1–8]. The decision table represents input data, gathered from any

domain, e.g., medicine, finance, military, etc. In the decision table examples are described

by values of attributes (e.g., tests) and characterized by a value of a decision, assigned by

an expert. All examples with the same value of the decision belong to the same concept.

The decision table is similar—in format—to a data base. The system LERS looks for

regularities in the decision table. The output of LERS are rules, a knowledge about

original data. These rules are more general than information contained in the original

decision table, since—in general—more new examples may be correctly classified by rules

than may be matched with examples from the original decision table.

The system LERS belongs to the class of machine learning systems from examples.

LERS, like other such systems, is finding a minimal description of a concept, described by

* Department of Computer Science, University of Kansas, Lawrence, KS 66049, U. S. A.

2

positive examples, excluding from the description of the concept the remaining, negative

examples. Thus rules induced by LERS may be described as a minimal discriminant

description of the concept [9].

LERS is able to handle uncertainty in the input decision table. There are two kinds

of uncertainty in decision tables: missing values of attributes or inconsistent examples.

Missing attribute values are caused by lack of information or don't care values. The latter

case happens when we do not care what the attribute value is. Two examples are

inconsistent when they are characterized by the values of all attributes, but they belong to

two different concepts, i.e., the values assigned by the expert are different. A decision

table with at least one pair of inconsistent examples is called inconsistent.

LERS handles inconsistencies using rough set theory. Similar systems are:

REDUCT [13, 14], RoughDAS and RoughClass [12]. The main advantage of rough set

theory, introduced by Z. Pawlak in 1982 [10, 11], is that it does not need any preliminary

or additional information about data (like probability in probability theory, grade of

membership in fuzzy set theory, etc.). In rough set theory approach inconsistencies are not

removed from consideration. Instead, lower and upper approximations of the concept are

computed. On the basis of these approximations, LERS computes two corresponding sets

of rules: certain and possible.

2. Rough Sets

Let U be a nonempty set, called the universe, and let R be an equivalence relation

on U, called an indiscernibility relation. An ordered pair A = (U, R) is called an

approximation space [10]. For any element x of U, the equivalence class of R containing x

will be denoted [x]R. Equivalence classes of R are called elementary sets in A. We assume

that the empty set is also elementary.

Any finite union of elementary sets in A is called a definable set in A.

3

Let X be a subset of U. We wish to define X in terms of definable sets in A.

Thus, we need two more concepts.

A lower approximation of X in A, denoted by _RX, is the set

{x ∈ U | [x]R ⊆ X }.

An upper approximation of X in A, denoted by
_
RX, is the set

{x ∈ U | [x]R ∩ X ≠ Ø }.

The lower approximation of X in A is the greatest definable set in A, contained

in X. The upper approximation of X in A is the least definable set in A containing X.

Time complexity of algorithms for computing lower and upper approximations of any set X

is O(n2), where n is the cardinality of set U of examples. A rough set in A is the family of

all subsets of U having the same lower and the same upper approximations in A.

Let x be in U. We say that x is certainly in X if and only if x ∈ _RX , and that x is

possibly in X if and only if x ∈
_
RX. Our terminology originates from the fact that we want

to decide if x is in X on the basis of a definable set in A rather than on the basis of X. This

means that we deal with _RX and
_
RX instead of X. Since _RX ⊆ X ⊆

_
RX, if x is in _RX, it

is certainly in X. On the other hand, if x is in
_
RX, it is possibly in X.

3. Decision Tables

The input to a LERS program is a decision table. The decision table provides

information about the real world phenomena. Properties of examples (or entities) are

perceived through an assignment of values of attributes. However, information about

examples, given by that assignment, may not be sufficient to characterize examples without

ambiguity. Thus, some examples are characterized by the same attribute values, or they are

recognizable up to an indiscernibility relation determined by the set of all attributes.

However, examples are independently classified by an expert by values of a decision. The

decision table may contain inconsistent examples, i.e. examples, characterized by the same

values of attributes yet the corresponding values of a decision are different.

4

For example, the decision table may describe a hospital, the examples are patients, the

attributes are tests, and the decisions are diseases. Each patient is characterized by test results and

is classified by the physicians (experts) as being on some level of disease severity.

If the decision table describes an industrial process, the examples may represent samples of

process taken at some specific moments in time, attributes are the parameters of the process, while

decisions are actions taken by the operators (experts).

Formally, a decision table S is a quadruple (U, Q, V, ρ), where U is a nonempty finite set,

and its elements are called examples of S, Q = C ∪ D is a set, C is a nonempty finite set, its

elements are called attributes of S, and D is also a nonempty finite set, and its elements are called

decisions of S, D ∩ C = Ø, V =∪
q∈ Q

Vq is a nonempty finite set, and its elements are called values

of attributes, where Vq is the set of values of attribute q, called the domain of q, and ρ is a function

of U × Q onto V, called a description function of S, such that ρ(x, q) ∈ Vq for all x ∈ U and q ∈ Q

[11].

Let P be a nonempty subset of Q, and let x, y be members of U. Examples x and y are

indiscernible by P in S, denoted by x P y, if and only if for each q in P, ρ(x, q) = ρ(y, q).

Obviously, P is an equivalence relation on U. Thus P defines a partition on U; such a

partition is a set of all equivalence classes of P . This partition is called a classification of U

generated by P in S, or briefly a classification generated by P.

For a nonempty subset P of Q, an ordered pair (U, P) is an approximation space A.

For the sake of convenience, for any X ⊆ U, the lower approximation of X in A and the upper

approximation of X in A will be called P-lower approximation of X in S and P-upper

approximation of X in S, and will be denoted by _PX and
_
PX, respectively. A definable set X in A

will be also called P-definable in S. Thus, X is P-definable in S if and only if _PX =
_
PX .

Example. A decision table is presented in Table 1.

Table 1

The classification, generated by the set C of attributes, called Temperature and Headache, is

equal to

5

{{x1}, {x2, x3}, {x4}, {x5, x6}, {x7}, {x8, x9}}.

The set D of decisions consists of one member, called Influenza. As follows from the

table, an expert introduced two inconsistencies. First, he assigned different values of attributes to

patients x2 and x3, in spite of the fact that both patients, x2 and x3, are characterized by the same

values of attributes Temperature and Headache. Another inconsistency is associated with patients

x5 and x6.

Let us assume that X is equal to the following concept {x | ρ(x, d) = no}, i.e., that X =

{x1, x2, x4, x5}. Thus X represents all patients in U, classified by an expert in the same way, as

being not sick with influenza. Then

_CX ={x1} ∪ {x4} = {x1, x4},

and
_
CX = {x1} ∪ {x2, x3} ∪ {x4} ∪ {x5, x6} = {x1, x2, x3, x4, x5, x6}.

For set X from the example, sets _CX and
_
CX are illustrated by Figure 1.

Figure 1

The set X determines the following rough set

{{x1, x2, x4, x5}, {x1, x2, x4, x6}, {x1, x3, x4, x5}, {x1, x3, x4, x6}}.

4. Certain and Possible Rules

Let us represent the decision of the expert from the example, corresponding to concept X,

by rules. We may represent set X by rules if and only if X is C-definable. If set X is not C-

definable we can not represent it by a single set of rules. Instead, we may represent sets _CX and
_
CX by the rules. A rule derived from set _CX of positive examples and set U – _CX of negative

examples is certain, a rule derived from set
_
CX of positive examples and set U –

_
CX of negative

examples is possible.

In the example, X is not C-definable in S. The certain rules are

(Temperature, normal) ∧ (Headache, no) → (Influenza, no),

(Temperature, medium) ∧ (Headache, no) → (Influenza, no),

6

the possible rules are

(Temperature, normal) → (Influenza, no),

(Temperature, medium) → (Influenza, no).

A quality of lower approximation of X by P in S, denoted by γP(X), is equal to

|_PX|
|U| ,

where for a set Z, |Z| denote the cardinality of Z. Thus, the quality of lower approximation

of X by P in S is the ratio of the number of all certainly classified examples by attributes

from P as being in X to the number of all examples of the system. It is a kind of relative

frequency. Note that γP(X) is a belief function according to Dempster-Shafer theory. In

our example,

γP(X) =
|{x1, x4}|

|U| =
2
9 = 0.222222.

A quality of upper approximation of X by P in S, denoted by γP(X)
_

, is equal to

|
_
PX|
|U| .

The quality of upper approximation of X by P in S is the ratio of the number of all

possibly classified examples by attributes from P as being in X to the number of all

examples of the system. Therefore, it is again a kind of relative frequency. The quality of

upper approximation of X by P in S is a plausibility function from the Dempster-Shafer

theory viewpoint. In our example,

γP(X)
_

 =
|{x1 , x2 , x3 , x4 , x5 , x6} |

|U| =
6
9 = 0.666667.

A rough measure of the rule describing concept X is equal to
|X ∩ Y|

|Y| ,

where X is the concept and Y is the set of all examples described by the rule. The rough

measure of the rule describing concept X is the ratio of the number of all examples from the

concept X correctly described by the rule to the number of all examples described by the

rule. Thus, it is a kind of relative frequency, that may be interpreted as a conditional

7

probability P(X| Y). Obviously, the rough measure of a certain rule is equal to 1. The

higher rough measure for a possible rule the more reliable rule is. In our example, for the

concept X = {x1, x2, x4, x5} and for possible rule

(Temperature, normal) → (Influenza, no),

set Y = {x1, x2, x3}, and rough measure is equal to

|{x1, x2 , x4 , x5} ∩ {x1, x2 , x3} |
|{x1, x2, x3} | =

|{x1, x2} |
|{x1, x2, x3} | =

2
3 = 0.666667,

for possible rule

(Temperature, medium) → (Influenza, no),

set Y = {x4, x5, x6}, and rough measure is equal to

|{x1, x2 , x4 , x5} ∩ {x4, x5 , x6} |
|{x4, x5, x6} | =

|{x4, x5} |
|{x4, x5, x6} | =

2
3 = 0.666667.

5. Learning algorithms of LERS

The system LERS for personal computers, described here, has the following three

options of rule induction.

A basic algorithm, invoked by selecting Induce Rules from the menu Induce Rule

Set. The algorithm, selected this way, is also called LEM2. The algorithm works on the

level of attribute-value pairs, hence it is local. A local covering for each of the concepts is

computed, ignoring any priorities. The principle, used in LEM2, is quoted below.

Let d denote a decision and let w denote its value. A concept is a set [(d, w)] of all

examples that have value w for decision d. In other words, [(d, w)] is a {d}-elementary

set of U. Similarly, the block of an attribute-value pair t = (q, v), denoted [t], is the set of

all examples that for attribute q have value v.

Let B be a nonempty lower or upper approximation of a concept represented by a

decision-value pair (d, w). Set B depends on a set T of attribute-value pairs if and only if

Ø ≠ [T] = ∩
t∈ T

 [t] ⊆ Β.

8

Set T is a minimal complex of B if and only if B depends on T and no proper subset

T' of T exists such that B depends on T'. Let T be a nonempty collection of nonempty

sets of attribute-value pairs. Then T is a local covering of B if and only if the following

conditions are satisfied:

(1) each member T of T is a minimal complex of B,

(2) ∪
T∈ T

 [T] = B, and

(3) T is minimal, i.e., T has the smallest possible number of members.

In LEM2 an attribute-value pair is selected first on the basis of its relevance with a

goal (goal initially is a concept, later on, it is a concept without examples already described

by rules). If a tie occurs, then an attribute-value pair is selected on the basis of the

maximum of conditional probability of a block of the attribute-value pair given the goal.

The option Induce Rules Using Priorities on Rule Level of the menu Induce Rule

Set invokes LEM2 algorithm with an extra feature: the first criterion to select an attribute-

value pair becomes the highest attribute priority, then maximum of relevance, and then

maximum of conditional probability.

The option Induce Rules Using Priorities on Concept Level of the menu Induce

Rule Set represents global algorithm (working on entire attributes), called LEM1. First,

new partitions on the set U, called substitutional partitions are computed, each with exactly

two blocks; the first block is either lower or upper approximation of the concept, the

second block is the complement of the first block. On the basis of the substitutional

partition, a global covering is computed. Let C denote the set of all attributes and let d

denote a lower or upper substitutional decision. Let P be a subset of C. The family of all

P-elementary sets will be denoted P*. We say that {d} depends on P if and only if P* ≤

{d}*. A global covering of {d} is a subset P of C such that {d} depends on P and P is

minimal in C. Thus, coverings of {d} are computed by comparing partitions P* with

{d}*. Then linear dropping conditions, based on a single scanning all conditions of a rule

is applied. The set of rules computed this way is—in general—of lower quality than the set

9

of rules computed by LEM2, however, the user has more control over what attributes will

be used in rules.

Quantize all numeric attributes

The method of quantization used here attempts to divide original interval of a

numeric attribute into subintervals with equal number of values in each subinterval. In

quantizing all attributes, the required level of consistency is provided by the consecutive

search for attributes to be additionally divided using an entropy criterion.

6. System Description

This system consists of two major subsystems: a learning subsystem that will

produce a set of rules from a decision table, and a processing subsystem that will take the

resulting set of rules (or any set of rules) and use them to classify new examples. The

system is menu based and a mouse can be used for most operations, making the package

very user friendly. This section highlights some of the general features of the system, and

then provides a detailed tour of the entire system.

Menu Operation

This system is entirely menu driven, and a mouse can be used to select any item

from a menu. At any time in the menu structure, pressing the Esc key will cause the

system to return to the previous menu. An Exit option is also provided for each menu, and

this option is equivalent to pressing Esc. Repeatedly pressing Esc will take the user from

anywhere in the menu structure back to the main system menu. A second useful feature is

the presence of hot-keys. In each menu item, one letter will be highlighted. Pressing this

letter on the keyboard will cause that menu option to be selected immediately, allowing fast

and easy menu operation.

10

On-line Help

To get on-line help from anywhere in the system, press the F1 key and a help

screen will appear to explain what part of the system the user is in and what options are

currently available. To remove the help screen press the Esc key. Descriptive messages

are also displayed at the bottom of the screen for each menu item, giving a more detailed

explanation of what each option does.

6.1 System Operation

The system can be entered by typing LERS from the DOS prompt, or it can be

initiated from within a Windows environment. The system assumes a color monitor by

default. To specify a monochrome monitor, use the command line option -m (LERS -m).

Upon entering the system, the following menu will be displayed, see Figure 2.

Figure 2

About

This option displays a short summary of system information, such as version

number and last release date.

6.2 Learn New Rule Set

This option is the learning part of the system. Selecting this option from the main

menu will place the user into the learning subsystem, and the following menu will appear

on the screen, see Figure 3.

Figure 3.

Read Decision Table

The first step in producing rules is to load a decision table into the system. This is

done by selecting the first option from the main learn menu. A box will appear on the

screen containing a list of all files in the current directory with the extension TAB. A file

may be selected using the mouse or arrow keys, and the user can move around in the

directory structure if the desired file is in another directory. Once a file has been selected,

11

the system will attempt to load the file from the disk. If the file is not in the proper format,

an error message will be displayed, and after pressing the Esc key the user will be placed

back at the main learn menu. Until a decision file has been loaded into the system, the only

other option that can be selected from this menu is Exit.

Decision Table Format

Decision tables must be in the proper format in order for the LERS system to

process them correctly. An example decision table is shown below along with a

description of each of the important sections, see Table 2.

Table 2

The first section begins with the special character '<'. This section is a symbolic

representation of the attributes and decisions in the table along with their associated

priorities. In the table above, the A1 stands for an attribute with priority 1. If an attribute

is judged by an expert to be more important than another it should be given a higher

priority. The D in the symbolic representation above stands for decision. Thus, each line

of the decision will contain four attribute values (all of which have priority 1) and one

decision. The first section ends with the matching character '>'. NOTE : This section does

not necessarily have to take only one line. The special characters '<' and '>' denote the

begin and end of the section. Also note that there MUST be a space separating the '<' from

the first item in the list, and a space separating the last item in the list from the closing '>'.

The second section gives a listing of the attribute and decision names to be used.

As with the first section special characters denote the beginning and ending of this section.

In this case the special characters are '[' and ']', and a blank space must appear immediately

after the '[' and immediately before the ']'. No blanks are allowed in attribute or decision

names.

The third section of the table is the actual data. Although in the table shown above

each example takes up one line, this does not have to be the case. Attribute and decision

values are separated by one or more spaces and again must not contain spaces. Note that

12

the first two lines of this table are conflicting. They each have the same values for the four

attributes, but each has a different decision. Also note the question mark that appears in the

fifth line of this section. This symbol indicates that the value for this attribute is unknown.

NOTES :

1. Comments - Comments may be included in the decision table. Any line which begins

with the character ! will be treated as a comment and not processed by LERS. In the

example table above the first three lines are comments.

2. Ignoring Attributes - To ignore an attribute (or decision) during processing of a table,

place an X in the appropriate column in the symbolic representation of the table (the first

section of the table). For example if the first section of a table was < A1 A3 X A2 D >,

then the third column in each example would be ignored in the rule inducing process.

6.3 Edit Decision Table

Choosing this option from the Learn New Rule Set menu will take the user to the

Edit Decision Table menu shown below, see Figure 4.

Figure 4.

Make Table Consistent

This option can only be selected when the current table is inconsistent. When

selected, the system will gather together all groups of examples with conflicting decisions.

For each such group, the user can select from a menu to keep any one of the examples, or

to keep none of them. After this operation has been completed, the table will be consistent

and this option cannot be selected again until a new inconsistent table has been loaded into

the system.

Replace Examples Containing Unknown Values

13

This option attempts to solve the problem of unknown values in the decision table.

For example, consider one example containing a value of unknown for one of its attributes.

This method would replace that single example with a set of new examples each containing

a new value for that attribute. As many new examples are created as there are possible

values for the missing attribute in the decision table. The following example illustrates this

process.

The sample decision table listed above contains an example with an unknown value

for the fourth attribute:

yellow 11 soft ? positive

Since the possible values for the fourth attribute in the example table are plastic,

wood, and metal, this example will be replaced by the three examples listed below.

yellow 11 soft plastic positive
yellow 11 soft wood positive
yellow 11 soft metal positive

The default unknown values for the LERS system are '?', '*', and '-'. However,

the user can tell the system to recognize any symbol as an unknown. The following query

is the first action taken when this option is selected.

> Unknown values are: '?', '*', '-'
> Enter additional unknown value (RETURN for none) :

> ***
> Unknown values found in attribute <Material>
> # of examples with unknown values: 1
> # of possible values: 3
> Current # of examples: 6
> Replacing unknown values will add 2 more examples
> Replace unknown values in attribute <Material>? (y or n) y
> Total # of examples: 8

The new decision table is presented in Table 3.

14

Table 3

Note that the last three examples were produced from the one example in the

original table with the unknown value for the attribute size. Caution is suggested when

attempting to use this method for large data sets with many unknown values present, as the

size of the table may increase exponentially. This method works best with a fairly small

number of unknowns present in a table.

Remove Unknown Examples

The system contains a second option for dealing with unknown values. This

method simply removes all examples that contain any unknown values from the table.

After selecting this option, the system will ask if any other symbols should be treated as

unknowns other than the default values ('?', '*','-'). This is done in the same manner as

with the previous option. Starting from the same initial table as in the previous example,

this option would result in the following:

> 1 example(s) with unknown values were removed from the table.

> Total # of examples: 5

The user would then be back at the Edit Decision Table menu. Notice that this

option decreases the size of the original table if unknown values are present, while

replacing unknowns increases the size.

15

Quantize Attribute Values

Quantization is the process of placing numerical values into groups or clusters,

members or which will all have the same value in the quantized decision table.

Quantization reduces the number of distinct values for any particular attribute and is often

essential in order to produce viable rules. For example, if a decision table has an attribute

called employees and each of the 100 examples has a different value for this attribute, it

would make sense to quantize this attribute into perhaps three classes: small, medium, and

large. If quantization was not done in this case, the resulting rules would most likely be far

too specific to be of much value. The following menu appears upon entering the

quantization sub-system, see Figure 5.

Figure 5.

Show ALL Attribute Information

This option gives a detailed description of each attribute. A sample for a single

attribute is shown below.

> Attribute name: Size
> INTEGER values
> # of total values: 8
> # of distinct values: 5
> # of examples in table: 8

The second line of this display describes the type of the attribute. The system will

only quantize attributes of type CONTINUOUS or INTEGER.

Quantize ALL Numeric Attributes

This option will result in the quantization of every numeric attribute present in the

table. The user is first prompted for a desired level of consistency to maintain. This level

must be less than or equal to the level of consistency in the original table. When

completed, the system will display the quantization scheme produced for each attribute in

the following format. In the example table, quantization will result in the following:

16

> Quantization Scheme For:
> <Size>
> 2 new values

 > Discrete Value Name # of Examples in Intervals
> (Based on Interval) (Frequency)
3 . . 8 . 5 3
8 . 5 . . 1 4 5

In this example, the attribute <Size> (which originally had integer values) now has

one of two discrete values. The symbols used in the new table to denote these discrete

values will be the actual symbols that appear above (3..8.5 and 8.5..14). If a value in the

original table falls exactly on a breakpoint, then it will be placed in the latter interval. For

example, if the value 8.5 appeared in the original table, it would be placed into the interval

8.5..14 in the new table, not in the first interval. Also note that if a value falls on the upper

bound of the last interval, it will be placed into this last interval. The second column

denotes the number of examples in the original table that fall into each new category.

Select SOME Numeric Attributes and Quantify Them

It may be the case that a user does not wish to quantify every numeric attribute in a

particular table. This option presents a list of attributes to the user, and the user can pick

from this list the attributes that are to be quantified. The system will then perform

quantification on only the selected attributes, giving a quantification scheme for each

affected attribute in the same format as in the previous option.

Check Table For Consistency

This option is included here because the process of quantification can affect the

consistency of a decision table. This option will either display a message that the table is

consistent, or it will display the number of conflicting examples in the current table along

with the percentage of the table that is consistent.

17

Save Table to a File

This option allows the user to save the edited decision table to a file. The system

recognizes files with a TAB extension as decision table files, so decision table files should

be named accordingly when this option is selected.

6.4 Induce Rule Set

This option is used to produce a set of rules from the current decision table. When

it is selected, the following menu will appear:

Induce Rules

This option will produce a set of rules using the LEM2 Single Covering Local

method. All attributes are considered equally. When this option is selected, a display

similar to the following will appear, see Figure 6.

Figure 6

> Inducing rules using LEM2SCL ignoring attribute priorities
> Learning Concept: (Attitude,positive)
> Belief: 0.3750
> [2, 0] 2 rules learned
> Minimizing complex list
> { 2, 0} 2 rules learned
> Plausibility: 0.7500
> [1, 0] 1 rules learned
> Minimizing complex list
> { 1, 0} 1 rules learned
> Learning Concept: (Attitude,negative)
> Belief: 0.2500
> [1, 0] 1 rules learned
> Minimizing complex list
> { 1, 0} 1 rules learned
> Plausibility: 0.6250
> [2, 0] 2 rules learned
> Minimizing complex list
> { 2, 0} 2 rules learned

> Elapsed Time: 00:00:00.03

18

You will notice that the numbers in the brackets will change as rules are

produced. The number on the left is the number of rules produced, the number on the right

is the number of examples yet to be covered. So when the algorithm is finished the number

on the left will be the total number of rules, and the number on the right should be 0.

Induce Rules Using Priorities on Rule Level

This method also computes a set of rules using the LEM2 Single Covering Local

method, but attribute priorities are considered. The format of output to the screen is exactly

the same as in the previous option. The sample data below was produced from the same

decision table as was used in the previous method.

> Inducing rules using LEM2SCL using attribute priorities
> Learning Concept: (Attitude,positive)
> Belief: 0.3750
> [2, 0] 2 rules learned
> Minimizing complex list
> { 2, 0} 2 rules learned
> Plausibility: 0.7500
> [2, 0] 2 rules learned
> Minimizing complex list
> { 1, 0} 1 rules learned
> Learning Concept: (Attitude,negative)
> Belief: 0.2500
> [1, 0] 1 rules learned
> Minimizing complex list
> { 1, 0} 1 rules learned
> Plausibility: 0.6250
> [2, 0] 2 rules learned
> Minimizing complex list
> { 2, 0} 2 rules learned

> Elapsed Time: 00:00:00.02

Changing the priorities may or may not result in a different set of rules. It may be

the case that the system finds a particular attribute to be useless in computing rules,

regardless of the priority it is given.

19

Induce Rules Using Priorities on Concept Level

This option generates a set of rules using the LEM1 Single Covering Global

method. The screen display for this method is different from the previous two methods.

An example is shown below.

> Inducing rules using LEM1SCG using attribute priorities
> Learning Concept: (Attitude,positive)
> Belief: 0.3750
> Computing a covering 2 OK
> Inducing CERTAIN rules 2 rules learned
> Plausibility: 0.7500
> Computing a covering 1 OK
> Inducing POSSIBLE rules 1 rules learned
> Learning Concept: (Attitude,negative)
> Belief: 0.2500
> Computing a covering 1 OK
> Inducing CERTAIN rules 1 rules learned
> Plausibility: 0.6250
> Computing a covering 2 OK
> Inducing POSSIBLE rules 2 rules learned

> Elapsed Time: 00:00:00.02

The method computes a single covering for each concept, and the size of the

covering is displayed after the message 'Computing a covering' and before 'OK'. Attribute

priorities are considered in the process of computing coverings. The system will try to use

attributes with higher priorities first when computing coverings, but as in the previous

method, the system may determine an attribute to be useless regardless of its priority.

Priorities influence a decision only when two attributes are 'tied', i.e. when either of two

different attributes would work equally well in a covering, but only one is necessary. In

this case, the system will pick the one with the highest priority.

View Attribute Priorities

This option allows the user to view the priority of each attribute in the current

decision table. When selected, a display similar to the following will appear.

20

> Attribute Name Priority

Size 3
Color 1
Feel 1
Material 1

Change Attribute Priorities

This option allows the user to change priorities of individual attributes. When

selected, the system will display each attribute and its current priority. The user then has

the choice of changing the priority by entering a new number, or by simply pressing the

Enter key the user can go on to the next attribute without recording a change.

View Rules

After a set of rules has been generated this option can be selected. The user will be

prompted for the number of rules to be displayed per screen, and the rules will be

displayed. The output will be in the following format:

> Certain rules - 3 total

> (Material,wood) -> (Attitude,positive)
> (Material,metal) & (Size,8.5..14) -> (Attitude,positive)
> (Color,red) -> (Attitude,negative)

> Possible rules - 3 total

> (Color,yellow) -> (Attitude,positive)
> (Material,plastic) -> (Attitude,negative)
> (Material,metal) & (Size,3..8.5) -> (Attitude,negative)

These rules were produced from an inconsistent table, so a set of certain rules and a

set of possible rules was produced. From a consistent table, only certain rules will be

produced.

21

Save Rules

Once a set of satisfactory rules has been produced, this option allows the user to

save them to a file. The system recognizes files with an RUL extension as rule files, so it

is advisable to adhere to this convention when selecting a file name.

Show System Information

This option gives detailed information about the current state of the system. An

example is shown below.

> Number of examples<T>: 8
> Unique examples <U>: 7
> Ratio <U>/<T>: 0 .8750
> Number of attributes: 4
> Source file: EX.TAB
> Level of consistency: 62.50%
> Author of rules: LEM2 C Version (Single Cover Local)
> # of CERTAIN rules: 3
> # of POSSIBLE rules: 3
> Elapsed Time: 00:00:00.02
> Total Rules <C>: 3
> Total Conditions <C>: 4
> Conditions/Rule <C>: 1 .3333
> Shortest Rule <C>: 1
> Longest Rule <C>: 2
> Total Rules <P>: 3
> Total Conditions <P>: 4
> Conditions/Rule <P>: 1 .3333
> Shortest Rule <P>: 1
> Longest Rules <P>: 2

Exiting the Learning Sub-system

The user can return to the main system menu either by repeatedly pressing the Esc

key, or by selecting the Exit option on each sub-menu. NOTE: Upon leaving the learning

sub-system, the current decision table and rule set will be lost. Any information that is to

be retained must be saved to a file before exiting the learning sub-system.

22

6.5 Process New Data

This is the part of the system that attempts to classify new examples using a set of

rules produced by the learning subsystem (or any set of rules). Selecting this option results

in the following menu appearing on the screen, see Figure 7.

Figure 7.

System Status Box

The status box gives you information about the current system, and the rule base

being used to make decisions. When the program is initially loaded, there will be no

Knowledge Base in the system.

Loading a Knowledge Base

The first step in using this sub-system is to load in a knowledge base of rules.

Until this is done, no other menu options will be available except for the option to Exit back

to the main menu. Selecting this option causes a selection box to appear on the screen,

filled with a listing of eligible rule files (RUL extensions). A file can be selected by using

the arrow keys or mouse.

Rule File Format

The rules produced by the learning sub-system are saved in an ASCII file. A set of

rules produced from the example table is shown below.

23

[RuleAuthor]

LEM1 C Version (Single Cover Global & LERS)

[CertainRuleStatistics]

Total-Rules 3
Total-Conditions 4
Conditions-per-Rule-(Average) 1 .3333
Shortest-Rule 1
Longest-Rule 2

[PossibleRuleStatistics]

Total-Rules 3
Total-Conditions 4
Conditions-per-Rule-(Average) 1 .3333
Shortest-Rule 1
Longest-Rule 2

[CertainRuleSet]

2 0.375000 0.375000 1.000000
(Material,wood) -> (Attitude,positive)
3 0.375000 0.375000 1.000000
(Material,metal) & (Size,8.5..14) -> (Attitude,positive)
2 0.250000 0.250000 1.000000
(Color,red) -> (Attitude,negative)

[PossibleRuleSet]

2 0.375000 0.750000 0.833333
(Color,yellow) -> (Attitude,positive)
2 0.250000 0.625000 0.500000
(Material,plastic) -> (Attitude,negative)
3 0.250000 0.625000 1.000000
(Material,metal) & (Size,3..8.5) -> (Attitude,negative)

The first part of the rule file contains some statistics about the rules. These statistics

are followed by the set of certain rules headed by the token [CertainRuleSet], and the set of

possible rules headed by the token [PossibleRuleSet]. Each rule is preceded by a line

containing 4 values. In order, these values represent the following:

24

• Number of variable-value pairs in the rule: describes how many attribute-value

pairs and a decision-value pair make up the rule that will follow. It is an integer value.

• Belief of the concept: describes the belief of the concept as deduced from the

decision table. It is a real number (decimal fraction) in the range 0.0 to 1.0.

• Plausibility of the concept: describes the plausibility of the concept as deduced

from the decision table. It is a real number (decimal fraction) in the range 0.0 to 1.0.

• Rough measure of the rule: describes the rough measure of the rule as derived

from the decision table. It is also a real number (decimal fraction) in the range 0.0 to 1.0.

NOTE: These four values are optional. They are produced by the learning sub-

system, but the processing sub-system will accept rules in a bare format without these

values.

Within a set of the rules, these symbols are used:

'(' and ')': Parenthesis are used to denote an attribute-value pair, and the

context of such a pair determines whether it is a condition or a

decision. A comma is used to separate the value from the attribute

name inside the parenthesis.

'-->': This symbol separates the conditions of the rule from the decision,

which always stands alone to the right of this symbol.

'&': This symbol is used to separate the conditions of a rule.

In general then, a rule consists of one or more conditions (attribute-value pairs)

each separated by the symbol '&', followed by the symbol '-->', and then the decision

which is also in the form of an attribute-value pair. The system is somewhat flexible in

accepting rules in a slightly different format, but generally it is a good idea to adhere as

closely to this format as possible.

25

Information pertaining to the format of rules has been included here because it is

possible and often desirable for a user to add to the set of rules produced by the learning

system. Rules may be simply added by hand in a bare format (no values for conditions in

the rule, belief, etc.) or they may be obtained from some other source. This system can

work with any set of rules in the above format, even if none of the rules were produced by

the learning system. This adds a great deal of flexibility to the system, as sets of rules from

different sources may be easily merged together.

As the file is read...

While a rule file is being read, a status message will appear at the bottom of the

screen. Changes will also appear in the Status Box as the certain and possible rules are

read into the system. The name of the file being loaded as the Knowledge Base will

appear, along with the number of rules read and the amount of free memory.

Along with the each rule file that is read, an accompanying explanation file is loaded

if it exists. An explanation file will have the same name as a rule file with an EXP

extension. These explanations are used in the system to provide more detailed information

about decisions that are made. The absence of an explanation file will not affect the actual

decision making process in any way, and for that reason such a file is optional.

Closing a Knowledge Base

To close a Knowledge Base choose the Close option. You will be asked confirm

your choice and then the Knowledge Base will be removed, enabling you to load a new

Knowledge Base or exit back to the main system menu.

Specifying Facts

Once a Knowledge Base is loaded, the user may enter facts about an example for

which a decision is desired. To do this, choose the Specify Facts option from the main

menu. A Facts Screen listing the attributes which are present in the Knowledge Base will

appear, along with spaces that will hold a value for each attribute. To select a value for a

26

particular attribute, move the selection bar to that attribute using either the left mouse button

or the arrow keys. Pressing F2 or the right mouse button at this point will cause a list of all

possible values for this attribute to appear, from which the user can select the desired value

by pointing the mouse and pressing the left button, or by moving to that value with the

arrow keys and pressing the return key.

Note that there may be more attributes than can fit on one screen. To move between

screens of attributes, simply press the PgDn and PgUp keys.

When the values for all desired facts have been specified (all attributes that are not

adjusted will be given a value of Don't-Know by default), the Ctrl key and the Enter key

should be pressed at the same time to confirm the data return to the processing menu.

NOTE : Pressing the Esc key while specifying facts will also return the system to the

processing menu but will NOT save any of the facts that might have been specified.

Instead it will return the values of all attributes to Don't-Know.

Begin Reasoning

Once the values for all possible facts have been specified, the system can attempt to

deduce a decision. After selecting this option, a status bar will appear on the screen. This

bar will show the progress of the system as it tries to match the facts that were entered with

the rules in the knowledge base. The number of matches found will be tallied as the search

progresses, and this total will be displayed at the bottom of the screen beneath the status

bar. Once the matching process has been completed, the system will display one of three

things:

(1) A window containing a listing of the rules that were matched, and the decision

part of each rule. This will appear when enough information is present for the system to

reach a conclusion, and when all rules that were matched contained the same conclusion.

For each match, the decision reached will be shown, along with whether that match was

full or partial. (More information on partial matches is included below under the Reasoning

Options section). To view more information about a match, highlight it with the arrow

27

keys and press the Return key. A description screen will appear containing the decision

reached, the belief, plausibility and rough measure of the decision, and the attribute-values

which led to the decision. To return to the list of matches press any key. To return to the

main menu from the match list press the Esc key.

(2) A message explaining that possible conflicting decisions were reached. This

occurs when the conclusions from two or more rules that were matched contained

conflicting decisions. In this case the system will display a warning along with the

decision it considers to be the most believable. Pressing the Esc key at this point will send

the user to a screen containing a list of all matches and decisions. From this point, the

system can be used in exactly the same manner as described in (1).

(3) A message explaining that no reasoning was possible with the given facts and

the current knowledge base.

Process Facts File

This option allow the user to perform reasoning on a file containing examples,

rather than simply processing one example which must be entered by hand. After selecting

this option from the main menu, a list of facts files found on the current drive will be

displayed. The system looks only for files with an FF (facts file) extension, and these files

must be in a specific format in order to be processed by the system. Use the arrow keys or

the mouse to select the facts file.

At this point, there will be a short pause while the system performs some

initialization. Then processing will begin. The bottom half of the screen contains a box

with a status bar showing the progress of the reasoning process for the current example.

This box is essentially the same as the box that appears when Begin Reasoning is chosen,

with a few differences. In a facts file, up to 4 lines of text description can be included for

each example for the purpose of describing or identifying that example. These lines are

optional in the file, but if they are present the system will display the first 2 of them to the

screen for each individual example. Some additional pieces of information are given for

28

each example as it is being processed: Total Facts, Facts Recognized, and Facts Not

Recognized. Total facts represents the total number of facts found in the facts file for a

particular example. Facts recognized is the number of facts that are recognized by the

current knowledge base, i.e. this is the number of facts that match some single condition in

some rule contained in the knowledge base. A large number of facts recognized does not

guarantee that a match will be found, since a rule may have multiple conditions and a

recognized fact is guaranteed to match only one condition in some rule. However, if facts

recognized is 0 for a particular example, then it will be impossible for the system to reach a

conclusion for that example.

In the top half of the screen is a box containing a second status bar. This status bar

shows the progression through the entire facts file. Listed are the total number of examples

in the file, the example that is currently being processed, and the number remaining. The

decisions made by processing a facts file will be sent to a file by the same name as the facts

file but with the extension RES (results). This file name is displayed in the upper box.

Processing a facts file can require a substantial amount of time, depending on the

size of the knowledge base and number of examples in the facts file. Thus, the user can

interrupt the process at any time by simply pressing and holding the Control key, and then

pressing Q. This results in a small menu appearing in the middle of the screen with 3

choices. "Oops, never mind" will simply tell the system to continue processing the file.

"Skip this example" will terminate reasoning for the current example, and reasoning will

begin again for the following example. "Abort Processing" will cause the facts file

processing to terminate. The results of the processing up to the termination point can be

found in the same output file that is created by normal processing.

29

Reasoning Options

Using Reasoning Options allows the user to adjust some ways in which the

reasoning process is executed. When this option is selected a menu containing four entries

will appear.

The Stop Match Limit option puts a limit on the number of rules that can be matched

for a particular example. The system will stop searching for new matches when this limit is

reached.

The Partial Match Factor allows the system to find rules in the Knowledge Base

which do not fully match the information that has been entered, but which are close. By

pressing the F2 key when Partial Match Factor is highlighted the user can tell the system to

search for rules that match all information Less 1, 2, or 3 attribute-value pairs. For

example, if "Less One Pair" is selected, the system will be able to match a rule with four

conditions, even if only three of those conditions are satisfied from the facts that were

entered, and so on. This can dramatically increase the number of matches found, although

it should be remembered that these matches are not complete.

The Concept Search option allows the system to search for all concepts or just for a

particular concept. Pressing the F2 key when Concept Search is highlighted will open a

menu box listing the value "All Concepts", followed by a list of all concepts currently

found in the knowledge base. Selecting All Concepts at this point and pressing the Enter

key tells the system to match every possible rule in the search process. Selecting one of the

specific concepts listed will tell the system to match only rules that support that concept.

This gives the user a means to narrow the search field.

The Rough Measure Limits option gives the user a second way to narrow the search

field. Rough measure ranges from 0.0 to 1.0 for all rules, and these are the default settings

for the minimum and maximum values. To change these values, move to the desired field

and enter a decimal number between 0.0 and 1.0. A decimal point must be typed in the

second place from the left in each field. Adjusting these values allows the user to specify a

30

rough measure range that all rules must satisfy before they can be matched. For example,

if rough measure is set to 0.5000 to 1.0000, then only rules that have a rough measure

value within this range will be matched.

To confirm any changes made under Reasoning Options and return to the

processing menu, press the Ctrl and Enter keys at the same time. Pressing the Esc key at

any time will return the user to the processing menu without saving any changes that were

made.

Exiting the Processing Sub-system

This sub-system can also be exited either by pressing the Esc key or choosing Exit

from the main processing menu. NOTE: Upon leaving this sub-system, the current rule

file will be removed from the system and thus will have to be reloaded if the user enters the

processing sub-system again. All reasoning options will also be reset.

Exiting the Main System

To exit the main system, the Exit System option should be chosen from the main

system menu. The Esc key will not work in this case, and confirmation is required by the

system.

References

[1] A. Budihardjo, J. W. Grzymala-Busse, and L. Woolery: Program LERS_LB 2.5
as a tool for knowledge acquisition in nursing. Proc. of the 4th Int. Conf. on
Industrial & Engineering Applications of Artificial Intelligence & Expert Systems,
1991, 735–740.

[2] J. S. Dean and J. W. Grzymala-Busse: An overview of the learning from examples
module LEM1. Report TR-88-2, Department of Computer Science, University of
Kansas, 1988.

[3] J. W. Grzymala-Busse: Knowledge acquisition under uncertainty—A rough set
approach. J. Intelligent & Robotic Systems 1, 1988, 3–16.

[4] J. W. Grzymala-Busse: An overview of the LERS1 learning system. Proc. of the
2nd Int. Conf. on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, 1989, 838–844.

31

[5] J. W. Grzymala-Busse: On the unknown attribute values in learning from
examples. Proc. of the ISMIS'91, 6th Int. Symp. on Methodologies for Intelligent
Systems, 368–377.

[6] J. W. Grzymala-Busse: Managing Uncertainty in Expert Systems. Kluwer
Academic Publishers, 1991.

[7] J. W. Grzymala-Busse: LERS—A system for learning from examples based on
rough sets. In R. Slowinski, ed. Intelligent Decision Support. Handbook of
Appications and Advances of the Rough Sets Theory, Kluwer Academic
Publishers, 1992, 3–18.

[8] J. W. Grzymala-Busse and D. J. Sikora: LERS1—A system for learning from
examples based on rough sets. Report TR-88-5, Department of Computer Science,
University of Kansas, 1988.

[9] R. S. Michalski: A theory and methodology of inductive learning. In R. S.
Michalski, J. G. Carbonell, T. M. Mitchell, eds. Machine Learning, Morgan
Kaufmann 1983, 83–134.

[10] Z. Pawlak: Rough sets. Int. J. Computer and Information Sci., 11, 1982, 341–
356.

[11] Z. Pawlak: Rough Classification. Int. J. Man-Machine Studies 20, 1984, 469–
483.

[12] R. Slowinski and J. Stefanowski: 'RoughDAS' and 'RoughClass' software
implementations of the rough sets approach. In R. Slowinski, ed. Intelligent
Decision Support. Handbook of Appications and Advances of the Rough Sets
Theory, Kluwer Academic Publishers, 1992, 445–456.

[13] W. Ziarko: Acquisition of control algorithms from operation data. In
R. Slowinski, ed. Intelligent Decision Support. Handbook of Appications and
Advances of the Rough Sets Theory, Kluwer Academic Publishers, 1992, 61–75.

[14] W. Ziarko and J. D. Katzberg: Control algorithm acquisition, analysis, and
reduction. In S. T. Tzafestas, ed. Knowledge-Based System Diagnosis,
Supervision and Control, Plenum Press, 1989, 167–178.

