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The third International Workshop on New Frontiers in Mining Complex Patterns
(NFMCP 2014) was held in Nancy in conjunction with the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD 2014) on September 19, 2014.

This workshop starts from awareness that modern automatic systems are
able to collect huge volumes of data, often with a complex structure (e.g. multi-
table data, XML data, web data, time series and sequences, graphs and trees).
This fact poses new challenges for current information systems with respect to
storing, managing and mining these sets of complex data.

The workshop follows the successful two previous editions (NFMCP 2012
and NFMCP 2013), which were held in conjunction with ECML-PKDD 2012
and ECML-PKDD 2013 respectively, as well as several editions of the interna-
tional workshop on Mining Complex Data (MCD 2006@QIEEE ICDM 2006, MCD
2007@QECML/PKDD 2007, MCD 2008@QIEEE ICDM 2008).

Our purpose in this workshop was to bring together researchers and practi-
tioners of data mining who are interested in the advances and latest developments
in the area of extracting patterns from complex data sources like blogs, event
or log data, medical data, spatio-temporal data, social networks, mobility data,
sensor data and streams, and so on.

We received nineteen submissions in several research fields ranging from
stream data mining to sequence mining, graph mining, bio-medic, process and
music mining. We were able to accept seventeen papers, based on a rigorous
reviewing process. Each submission was evaluated by three independent refer-
ees. Additionally, the scientific program also featured an invited talk by Thomas
Gértner (University of Bonn and Fraunhofer IAIS) on “Sampling and Presenting
Patterns from Structured Data”.

We would like to thank all the authors who submitted papers, the invited
speaker and all the workshop participants and speakers. We are also grateful to
the members of the program committee and external referees for their excellent
work in reviewing submitted and revised contributions with expertise and pa-
tience. We would like to acknowledge the support of the European Commission
through the project MAESTRA - Learning from Massive, Incompletely anno-
tated, and Structured Data (Grant number ICT-2013-612944). A special thank
is due to both the ECML PKDD Workshop Chairs and to the members of ECML
PKDD organizers who made the event possible.
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Sampling and Presenting Patterns from
Structured Data

Thomas Gartner

University of Bonn and Fraunhofer-Institut fiir Intelligente Analyse und
Informationssysteme
Schloss Birlinghoven, 53757 Sankt Augustin, Germany

Abstract. In this talk I will describe some approaches for efficient pat-
tern generation as well as presentation. In particular, I will show pattern
sampling algorithms that can easily be extended to structured data and
an interactive embedding technique that allows users to intuitively in-
vestigate pattern collections.



Location Prediction of Mobile Phone Users
using Apriori-based Sequence Mining with
Multiple Support Thresholds

Ilkcan Keles, Mert Ozer, 1. Hakki Toroslu, Pinar Karagoz, and Salih Ergut*

Computer Engineering Department
Middle East Technical University, Ankara, Turkey
{ilkcan,mert.ozer, toroslu, karagoz}@ceng.metu.edu.tr

Abstract. Due to the increasing use of mobile phones and their increas-
ing capabilities, huge amount of usage and location data can be collected.
Location prediction is an important task for mobile phone operators and
smart city administrations to provide better services and recommenda-
tions. In this work, we propose a sequence mining based approach for
location prediction of mobile phone users. More specifically, we present a
modified Apriori-based sequence mining algorithm for the next location
prediction, which involves use of multiple support thresholds for differ-
ent levels of pattern generation. The proposed algorithm involves a new
support definition, as well. We have analyzed the behaviour of the al-
gorithm under the change of threshold through experimental evaluation
and the experiments indicate improvement in comparison to conventional
Apriori-based algorithm.

Keywords: Sequential Pattern Mining, Location Prediction, Mobile Phone
Users

1 Introduction

Intensive amounts of basic usage data including base station, call records and
GPS records are stored by large-scale mobile phone operators. This data gives
companies ability to build their user’s daily movement models and helps them to
predict the current location of their users. Location prediction systems usually
make use of sequential pattern mining methods. One common method usually
follows two steps; extract frequent sequence patterns and predict accordingly.
These methods mostly use Apriori-based algorithms for the phase of extracting
sequence patterns.

Rather than using whole patterns contained in the CDR data implicitly, we
need to devise a control mechanism over the elimination of sequence patterns. It
is a well known fact that when minimum support gets lower, number of patterns
extracted increases, thereby size of prediction sets for the next location of a
person gets larger and accuracy of predictions eventually increases. However,

* AVEA, Istanbul, Turkey



the larger number of patterns causes larger space cost. Conventional technique
to prevent space cost explosion is to increase minimum support value. Yet this
time, it decreases the number of frequent patterns and the size of the prediction
sets dramatically, and this causes to miss some interesting patterns in data. To
prevent possible space explosion and not to miss valuable information in data,
we propose a modified version of Apriori-based sequence mining algorithm, that
works with level-based multiple minimum support values instead of a global one.
To the best of our knowledge, this is the first work which uses different minimum
support values at different levels of pruning phases of the conventional algorithm.

Normally, the number of levels for Apriori-based sequence mining algorithms
is not pre-configured. However, in our case, we consider a predefined number of
previous steps to predict the next one. Therefore, we can set the number of levels
in Apriori search tree. Moreover, we slightly change the definition of minimum
support, which will be defined in the following sections, in our context. We have
experimentally compared the performance of the proposed method involving
multiple support thresholds in comparison to that of conventional Apriori-based
algorithm that uses only a single minimum support value. The experiments in-
dicate that the proposed approach is more effective to decrease the prediction
count and memory requirement.

The rest of this paper is organized as follows. Section 2 introduces previous
work on location prediction. Section 3 presents the details of the proposed so-
lution. Section 4 gives the information about evaluation metrics and Section 5
presents experimental results of our prediction method. Section 6 concludes our
work and points out possible further studies.

2 Previous Work

In recent years, a variety of modification of the minimum support concept in
Apriori-based algorithms have been proposed ([2], [3], [4],[5], [6]) for both asso-
ciation rule mining and location prediction problems. In [2], Han and Fu propose
a new approach over the conventional Apriori Algorithm that works with associ-
ation rules at multiple concept levels rather than single concept level. In [3], Liu
et al., propose a novel technique to the rare item problem. They define a modified
concept of minimum support which is a minimum item support having different
thresholds for different items. In [5], Toroslu and Kantarcioglu introduce a new
support parameter named as repetition support to discover cyclically repeated
patterns. The new parameter helps them to discover more useful patterns by
reducing the number of patterns searched. In [6], Ying et al. propose a location
prediction system using both conventional support concept and a score value
that is related with semantic trajectory pattern in the candidate elimination
phase.

In addition to the Apriori-based modifications mentioned above, in [8], Yavas
et al. presented an AprioriAll based sequential pattern mining algorithm to find
the frequent sequences and to predict the next location of the user. They added



a new parameter which is named as maximum number of predictions and it is
used to limit the size of the prediction set.

Most of the multiple minimum support concept is based on the rare itemset
problem. To the best of our knowledge, this is the first work which uses different
minimum support values at the different levels of pruning phases of conventional
algorithm. In our previous work on location prediction with sequence mining
[7], we broadened the conventional pattern matching nature of sequence mining
techniques with some relaxation parameters. In this work, we use some of these
parameters introduced in [7].

3 Proposed Technique

3.1 Preliminaries

In this work, we utilized the CDR data of one of the largest mobile phone
operators of Turkey. The data corresponds to an area of roughly 25000 km? with
a population around 5 million. Almost 70% of this population is concentrated
in a large urban area of approximately 1/3 of the whole region. The rest of the
region contains some mid-sized and small towns and large rural area with very
low population. The CDR data contains roughly 1 million users’ log records for
a period of 1 month. For each user, there are 30 records per day on average.
The whole area contains more than 13000 base stations. The records in CDR
data contain anonymized phone numbers (of caller and callee or SMS sender and
receiver), the base station id of the caller (sender), the time of the operation.

Unnecessary attributes in CDR data, such as city code, phone number etc.,
are filtered out and date and time information are merged into a single attribute
which is used to sort data in temporal order. After sorting, we created sequences
of fixed-length corresponding to user’s daily movement behavior.

A sequence is an ordered list of locations which is expressed as s < i, ..,j >,
where i is the starting location and j is the last location in the sequence. A
sequence of length k is called k-sequence.

In Apriori-based sequence mining, the search space can be represented as a
hash tree. A path in the tree is a sequence of nodes such that each node is the
prefix of the path until the root and, for each node, its predecessor is the node’s
parent. p<a..b> expresses a path starting with node a and ending with node b.

We say that a path p is equal to a sequence s, denoted by p = s, if the length
of path p and sequence of s are equal and there is one to one correspondence
between the locations of s and the nodes of p.

We say that a sequence s < s1, S2, ..., S, > is contained in another sequence
s < sy,8h, ..., s, > if there exists integers i1 < iz < ... < iy, such that s; =
85,82 = 8}, .8 = 5, .

A sequence s is a subsequence of s’ if s is contained in s’ and it is denoted
by s C s’



3.2 Apriori-based Sequence Mining Algorithm with Multiple
Support Thresholds (ASMAMS)

To build a model which aims to predict the next location of the user, we devel-
oped a recursive hash tree based algorithm namely Apriori-based Sequence Min-
ing Algorithm with Multiple Support Thresholds (ASMAMS). This algorithm
constructs level based models i.e. hash trees whose nodes contain corresponding
base station id and frequency count of the sequence corresponding to the path
up to this node.

The main novelty of the algorithm in comparison to the conventional al-
gorithm is the level based support mechanism with a new level-based support
definition. In contrast to previous approaches that aim to extract all frequent
sequences, in this work, we focus on predicting the next item in a sequence.
Therefore, we defined a level-based support in order to keep track of the re-
lations between levels. Conventionally, support of a given sequence pattern is
defined as the ratio of the number of the sequences containing the pattern to the
number of all sequences in the dataset. In ASMAMS, support of an n-sequence
is defined as the ratio of the count of a given sequence s to the count of the
parent sequence with length (n-1).

support(s) = # of occurrences of the sequence s with length n 1)
PP " # of occurrences of prefiz of sequence s with length (n — 1)’

The following parameters will be used by ASMAMS:

— levelCount: The height of the hash tree.

— currentLevel: Current level throughout the construction of the hash tree.

— supportList: List of minimum support parameters for each level.

— sequences: A set of fixed-length location id sequences.

— tree: Hash tree where each node stores the location id and the count of
sequence represented by a path from root to this node.

— tolerance: Length tolerance of rule extraction phase.

ASMAMS algorithm has three phases which are model construction, rule
extraction and prediction. As given in Algorithm 1, model construction phase is
divided into two sub-phases: tree construction and pruning.

In the tree construction phase, the data is read sequentially, and new level
nodes are added to the corresponding tree nodes. For instance, assume that
we are constructing the fourth level of the tree and we have <1,2,3,4> as the
sequence. If <1,2,3> corresponds to a path in the input tree, 4 is added as a leaf
node as the prefix of this path with count 1. If we encounter the same sequence,
the algorithm only increments the count of this node. If the current tree does not
contain <1,2,3>, then it is not added to the tree. The construction algorithm is
given in Algorithm 2.

In the pruning phase, constructed model and the corresponding minimum
support value are taken as parameters. In this phase, initially we calculate leaf
nodes’ support values. If it is below the minimum support value, it is removed
from tree, otherwise no action is taken.



Algorithm 1 ASMAMS Model Construction Phase

Input: sequences,levelCount,supportList,currentLevel + 1
Output: tree

1: function BUILDMODEL(sequences, levelCount, currentLevel, supportList, tree)
2 constructTree(sequences, tree, currentLevel)

3 pruneTree(tree, currentLevel, supportList[currentLevel])

4: if currentLevel # levelCount then

5 buildM odel (level Count, current Level + 1, supportList, tree)

§ end if
7: end function

Algorithm 2 ASMAMS Tree Construction Phase

Input: sequences, tree, currentLevel
Output: tree

1: function CONSTRUCTTREE(sequences, tree, currentLevel)

2 for all s<li..lcurrentLevel> € sequences do

3 if dp<root..leaf> € tree s.t p=s then

4: leaf.count = leaf.count + 1

5: else

6: if Ip<root.leaf> € tree s.t p = s<li.lcurrentLevei—1> then

7 insert(tree,leaf, leurrentLevel) //add leurrentLever as a child of leaf
8: lcurrentLevel~Count =1
9: end if

10: end if

11: end for

12: end function

Rule Extraction In the rule extraction phase, the algorithm extracts rules
from the hash tree built in model construction phase with respect to a tolerance
parameter. If tolerance parameter is set to 0, the algorithm extract rules, whose
left-hand side contains (levelCount — 1)-sequence and right-hand side contains
the output level location, from the levelCount-sequence s as follows:

[517 52, .oy SlevelCount—1 —7 SlevelCount] .

If tolerance is greater than 0, the algorithm extract rules until the left-hand
sides of the rules have the length of levelCount — (tolerance 4+ 1) as shown in
Algorithm 3.

Prediction In the prediction phase, we use set of rules constructed by rule
extraction phase to predict user’s next location. The prediction algorithm takes
a sequence as input and returns a list of predicted locations.

The algorithm firstly checks whether rules with length of levelCount is con-
tained in the given sequence. In that case, the right-hand side of the rules con-
stitute the prediction set. If the rules of length levelCount are not contained in
the given sequence, then it checks whether the rules of length levelCount — 1
are contained in the given sequence. This continues until the rules are contained
in the sequence or until the tolerance parameter is reached but no output is



Algorithm 3 ASMAMS Rule Extraction Phase

Input: tree, levelCount tolerance
Output: ruleSet

1: function RULEEXTRACTION(tree, levelCount, tolerance)

2 for all s<s1, 82, ..., SieveiCount> € tree s.t. length(s) = depth(tree) do

3 for t = 0 to tolerance do

4 subSequencesSet < t-deleted subsequences of s<s1, ..., SievelCount—1>
5 for all subsequence s’ € subSequencesSet do

6: ruleSet < ruleSet U {s’ — Sieveicount} //Add new rule to ruleSet
7 end for

8 end for

9 end for

0:

10: end function

produced. The detailed algorithm of prediction phase can be found in Algorithm
4.

Algorithm 4 Prediction Algorithm

Input: sequence, ruleSet, levelCount, tolerance
Output: predictionSet

1: function PREDICT(sequence, ruleSet, levelCount, tolerance)
2 for ¢ = 0 to tolerance do

3 for all rule € rules of length levelCount —t do

4 if lhs(rule) C sequence then

5: predictionSet + predictionSet U {rhs(rule)}
6: end if

7 end for

8: if predictionSet # () then

9: break

10: end if

11: end for

12: return predictionSet

13: end function

Running Example In this example, we set level count to 5 and minimum
support list to [0.16, 0.5, 0.5, 0.66, 0] and we use the sample sequences shown in
the Table 1.

In the first level, the data is traversed sequentially and the first location ids
in the sequences are added to the hash tree together with their counts. Then in
the pruning phase, their support values are calculated and nodes 2 and 3 are
pruned since their support fall below the given minimum support 0.16. In the
second level, 2-sequences are added to the hash tree with their counts. After
support values are found, the nodes <5,6>, <5,8> and <5,11> are pruned since
their support values are 0.33 and falls below the given minimum support 0.5.
The resulting hash trees can be seen in Figure 1.



Table 1: Example Sequences

id sequence - id sequence

1 <1, 2, 3,4, 5> 7 <4, 7, 11, 12, 15>
2 <1, 2,3, 4, 6> 8 <4, 7,11, 10, 9>
3 <1, 2,3, 4, 5> 9 <5, 6, 11, 10, 9>
4 <2,3,4,7, 8> 10 <5, 8,9, 10, 11>
5 <3,4,7,9, 10> 11 <5, 11, 10, 9, 4>
6 <4, 7, 11, 12, 13> 12 <1, 2,3, 4, 5>

8 A

X X
PRUNED (2]4]) (713]) (s]1] (&]1) ([1
X X X
PRUNED

Fig. 1: Hash tree at the end of the first level (left), Hash tree at the end of the
second level (right)

In the third level, 3-sequences are added to the hash tree. None of the nodes
are pruned in this level, since the support values are all 1. In the fourth level,
after 4-sequences are added to the hash tree, the node <4,7,11,10> is pruned as
it does not have the required support. In the final level (which is the last level
of the hash tree), 5-sequences are added to the hash tree. Since the minimum
support value for this level is 0, there is no pruning. The resulting hash tree can
be seen in Figure 2.

Fig.2: Hash tree at the end of the final level

Using the hash tree constructed by model construction phase which is shown
in Figure 2, the rules are extracted according to the tolerance parameter. If



the tolerance parameter is 0, the following rules are extracted: [1,2,3,4 — 5],
[1,2,3,4 — 6], [4,7,11,12 — 13], [4,7,11,12 — 15].

In this case, for a sequence of <1,2,3,4>, the algorithm gives the output
of 5 and 6. However, for a sequence of <1,2,8,3>, the algorithm does not
generate any output. If the tolerance parameter is 1, the following extra rules
are extracted:[1,2,3 — 5], [1,2,4 — 5], [1,3,4 — 5], [2,3,4 — 5], [1,2,3 —
6], [1,2,4 — 6], [1,3,4 — 6], [2,3,4 — 6], [4,7,11 — 13], [4,7,12 — 13],
[4,11,12 — 13}, [7,11,12 — 13], [4,7,11 — 15], [4,7,12 — 15], [4,11,12 — 15],
[7,11,12 — 15].

By using the tolerance parameter, for a sequence of <1, 2, 8, 3>, the algorithm
generates the output of 5 and 6, since the left side of the rule [1,2,3 — 5] and
[1,2,3 — 6] are contained in the given sequence.

4 Evaluation

For the experimental evaluation, CDR, data obtained from one of the largest
mobile phone operators in Turkey has been used. A quick analysis shows that
around 76% of the users next location is their current location. We take this
value as the baseline for our experiments. For evaluation, we extract sequences
from raw CDR data set and try to predict the last element of the sequence
using the previous ones. After trying several lengths, we have determined that
5-sequences (i.e., using a given 4-sequence, try to predict the next element of
the sequence) produces the highest accuracy values. Therefore, we have used 5-
sequences extracted from data set, both for training and testing, by using k-fold
cross validation in order to assess the quality of predictions made. As training
phase, we run ASMAMS on fixed length sequences to build the sequence tree.
At the testing phase, for each test set sequence Algorithm 4 introduced in the
section 3.5 has been applied and the result of the prediction is compared against
the actual last element of the test set sequence. These results are used in the
calculations of the evaluation metrics which are introduced below.

Accuracy metric is used for evaluating the number of correctly predicted test
set sequences. It simply can be defined as the ratio of true predicted test se-
quences to the total number of test sequences. However, for some test cases,
there may be no relevant path in the tree for test sequence which means either
no such training sequence is come up or it is removed from the tree in one of the
pruning phases. The first accuracy metric, g-accuracy (general accuracy), is the
ratio of number of correctly predicted test sequences to the number of all test
sequences. The second one, p-accuracy (predictions’ accuracy), is the ratio of the
number of correctly predicted test sequences to the number of all test sequences
able to be predicted. In the first form of accuracy calculation, the accuracy result
superficially drops for cases that no prediction is able to be performed. These
accuracy measures have been described in more detail in our earlier work [7].



Memory Requirement metric measures the relative peak RAM requirement
during the algorithm’s execution. All memory requirement values are projected
to the range [0-100], where 100 represents the maximum memory utilization.

Prediction Count metric is used to evaluate average size of the prediction set
in correctly predicted test sequences.

Score is introduced since there are 4 different parameters that we want to op-
timize. It is used for evaluating general performance of our model by combining
above metrics into a single one. This metric is only used to determine the pa-
rameters for the optimal model. It is defined as a weighted sum of g-accuracy,
p-accuracy, memory requirement(mem req) and prediction count(pred_count) in
Equation 2.

Score = w1 * g-accuracy + wa * p-accuracy + ws * (100-mem_req) + wa * (100-pred_count). (2)

Considering the importance of the parameters the weights are set as follows;
wl = 0.6, w2 = 0.1, w3 = 0.1 and w4 = 0.2.

5 Experimental Results

For the experiments, we have used 5-sequences (i.e. level count in Algorithm 2
is set to 5), after trying longer and shorter sequences. While shorter sequences,
such as 4-sequences or 3-sequences, were superficially increasing prediction count,
longer sequences, such as 6-sequences, were decreasing g-accuracy sharply, even
though p-accuracy was increasing, since the number of predictable sequences
was quickly decreasing. Therefore, 5-sequences seemed as the best for the data
in hand, and shorter or longer sequences’ results were not useful.

After determining the sequence length and level count for experiments, we
first narrow down our search space by setting our support values to a set {1075,
107*, 1073, 1072, 10~ '} for each level. We have used the score parameter intro-
duced above to determine this best support list as [1075,1073, 1073, 1073, 1072].
Then we have tried all possible non-decreasing combinations as list of support
parameters. For every level, we fixed other levels’ support values to the support
values of the best model and we present results of changing this level’s minimum
support value according to evaluation metrics. Same percentage value refers to
the ratio of being in the same location as previous location and is included in
the figure to show the improvement provided by ASMAMS.

In a set of experiments, we have analyzed the effect of the minimum support
parameter for all levels. In order to do that, for each level, the experiments are
performed with the support values explained above and other levels’ support
parameters are set to the optimal values. In addition, the tolerance parameter
is fixed to O for first set of the experiments.

As it can be seen from the Figure 3, for all levels, g-accuracy drops as the
minimum support increases. However, this drop is much sharper in the first level.

10



(a) (b)
Fig. 3: Change of g-Accuracy & p-Accuracy

Although, p-accuracy also shows the same trend in the first level, it shows slight
increase in intermediate levels, and then, there is also a small drop in the final
level. Figure 3 also shows the percentages of locations which are exactly the
same as the previous ones for all the experiments as well. Our p-accuracy results
show that, the correct prediction (of p-accuracy) can be increased even above
95% with our model.

100£.04 0001 001 01 100£.05 1,00E04 0001 001

(a) (b)
Fig. 4: Change of Prediction Count & Memory Requirement

Similar trends can be observed for the prediction count parameter. Sharp
drops occur in the first level as the minimum support value increases. However,
for intermediate levels these drops are almost negligible. Again, in the final level,
prediction count decreases much faster also. Figure 4 shows that the prediction
count values are at acceptable levels.

The amount of the drop in the memory requirement as the minimum support
value increases slows down with the increase of the levels. In the final level, there
is almost no drop in the memory requirement. Especially in the first level, since
most sequences are pruned with high minimum support requirement, the memory
requirement drops very quickly.

In addition to above mentioned experiments, we have also applied standard
AprioriAll algorithm [1]. The main drawback of AprioriAll algorithm is the size
of the prediction set. In order to obtain high accuracy results (g-accuracy) as
in our model, the minimum support value must be chosen as a very small value
(even zero), so that we can keep as much sequences as possible. However, this
results in high prediction count as well as increasing the memory requirement.
The accuracy obtained when no minimum support value is given is the upper

11



bound that can be achieved with sequence matching approach. However, for that
setting the memory requirement is also the maximum, since the hash-tree keeps
all sequences without any pruning. As expected, this maximum accuracy can be
obtained only with a very high prediction count, which is more than 133. Since
this is unacceptably high, we tested AprioriAll with a non-zero, but very small
minimum support value. This resulted slight decrease in accuracy, while dropping
the prediction count and the memory requirement significantly with pruning of
large portion of hash-tree. Even though the memory requirement has dropped
a lot to a very good level, the decreased value of prediction count still stayed
unacceptably high value, which is almost 40. Further increases in minimum sup-
port values had dropped the accuracy levels to around and below baseline levels.
Therefore, they are not acceptable either. However, with ASMAMS we have
achieved almost the same accuracy levels of the best and optimal AprioriAll
accuracy values with a very low prediction count value, which is 4.43, with a
memory requirement less than the half of the optimal (and maximal) results of
AprioriAll setting. In addition to this, we have applied ASMAMS with a tol-
erance value 1 and we achieved a general accuracy of 88.68 with nearly same
prediction count. We have also applied ASMAMS with a tolerance value 2, how-
ever, since no prediction ratio is really low, it did not produce any improvement
for our dataset. These results are summarized in Table 2.

Table 2: The results for ASMAMS and AprioriAll methods

Mem. | Pred. | No Output

G-Accuracy | P-Accuracy Req. | Count Ratio Description
ASMAMS Min. Sup. List:
88.68 89.44 44 4.42 0.8% [le-5.1e-3.1e-3.1e-3.1e-2]

Tolerance:1

ASMAMS Min. Sup. List:

85.04 93.08 44 4.43 8.6% [le-5.1e-3.1e-3.1e-3.1e-2]
Tolerance:0

51.47 88.66 0.01 1.29 51.47% ApprioriAll Min. Sup: le-5

86.32 94.15 9.76 | 39.42 8.32% ApprioriAll Min. Sup: 1le-8

89.82 95.38 100 |133.48 5.84% ApprioriAll Min. Sup: 0

6 Conclusion

In this work, we present an Apriori-based sequence mining algorithm for next
location prediction of mobile phone users. The basic novelty of the proposed
algorithm is a new, level-based support definition and the use of multiple sup-
port thresholds, each for different levels of pattern generation that corresponds
to generation of sequence patterns of different lengths. The evaluation of the
method is conducted on CDR data of one of the largest mobile phone operators
in Turkey. The experiments compare the performance of the proposed method in
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terms of accuracy, prediction count and space requirement under varying thresh-
olds for each level. Actually, these experiments serve for determination of the
best minimum support list for each level to obtain the highest accuracies, as well.
We have also compared the performance with conventional method involving a
single support threshold. We have observed that our method ASMAMS produces
almost the optimal accuracy results with very small prediction sets, whereas the
same accuracy can be obtained by AprioriAll with very low support thresholds
and much larger prediction sets. Considering that there are more than 13000
different locations, the prediction sets’ sizes, such as 4, obtained by ASMAMS
with almost optimal accuracy can be considered as quite useful result for the
mobile phone operator.

As the future work, we aim to extend this study by adding a region based
hierarchy to this model in order to increase prediction accuracy.

Acknowledgements. This research was supported by Ministry of Science, In-
dustry and Technology of Turkey with project number 01256.STZ.2012-1 and
title ”Predicting Mobile Phone Users’ Movement Profiles”.
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Temporal Constraints Improve Inexact
Subgraph Matching in Undirected Networks

Ursula Redmond* and Padraig Cunningham
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Abstract. Subgraph matching is the process of identifying embeddings
of a query graph in a network graph. Applications range from locating
suspicious patterns in financial transaction networks to finding patterns
of disease spread in epidemic networks. Sometimes the match must be in-
exact, since the data may be incomplete due to noise, or a user may seek
a range of graph structures similar to a query. However, inexact subgraph
matching increases the number of potential matches and computational
expense. If we require the matches to be temporally constrained, process-
ing time can be reduced. An embedding is temporally constrained if ad-
jacent interactions occur close in time, simple paths are time-respecting,
and cycles are mostly time-respecting. To validate our approach, we ap-
ply our algorithm to undirected face-to-face contact networks collected
from the SocioPatterns project. Our experimental results demonstrate
that our algorithm identifies query embeddings notably faster when tem-
poral information is incorporated.

1 Introduction

Many large network data sets are composed of sets of interactions that represent
some process or functionality within the network [10]. If a specific query graph —
made up of a combination of interactions — is of interest, then subgraph match-
ing may be employed to identify embeddings of the query graph in the network.
The structure of the query graph sought depends on the type of network be-
ing searched. In a financial transaction network, a query graph might represent
a pattern observed in fraud. In an epidemic network, a query with a cascade
structure might represent disease spreading. Dense structures in a communica-
tion network might represent communities. In a face-to-face contact network,
a query graph might represent a group of people facing each other, and later
perhaps mingling with other people standing close by.

However, network data which is gathered experimentally may be incomplete.
In a face-to-face contact network, devices which record contact may miss some
interactions, or record interactions erroneously. Also, a user seeking a particular
structure may want to examine a range of similar structures. Inexact subgraph

* This work was supported by Science Foundation Ireland [08/SRC/I1407,
SFI/12/RC/2289).
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matching is a more appropriate approach for this problem. This method seeks
embeddings of the query graph in the network which allow for some differences in
the structure. A side-effect of this more general approach to subgraph matching
is that the number of potential matches increases, which may be a problem in
large networks.

Increasingly, temporal information is available with network data sets, which
encodes the time at which interactions took place. In this work, we use temporal
information to constrain the inexact subgraph matching process. The traditional
approach of time-slicing first uses a sliding window to isolate data that occur
between a start and end time, then examines the resultant data as if it were
static. Time-slicing risks arbitrarily cutting potential contagions in a network,
whose originating and terminating individuals may not be present in a time-
slice, as an artifact of the time window choice. To avoid this problem, we enforce
temporal constraints on a subgraph at the level of its interactions. In this way,
if a contagion exists in the network, the entire structure can be found if the
pair-wise interactions making it up obey the temporal constraints.

We require that embeddings of a query graph in a network are temporally
constrained. For an embedding to be temporally constrained, three criteria must
be met. Firstly, adjacent interactions in the network must occur close in time,
where this closeness is specified by a time-delay threshold. Secondly, all cycles in
the embedding must be composed of interactions that follow each other in time
(one reversal of the sequence is inevitable, and allowed). Thirdly, interactions
on all simple paths (which are not part of cycles) must follow each other in
time. These restrictions reduce the number of embeddings, speeds up the search
process, and ensures that returned embeddings are meaningful in a temporal
context.

t
to t to t3 o 2
tl t4
7 «Q %] t - t4 t
(a) (b) (c)

Fig.1: Three examples of query graph embeddings in an undirected network.
All adjacent interactions occur close enough in time, if we set the time-delay
threshold to 6 time units. The interactions in all paths follow each other in time,
except for cycles, for example in Fig. 1a, tg < t; < to, but to > tg.

A set of query graph embeddings are shown in Fig. 1. Time-stamps are
shown on the interactions, to demonstrate the temporal constraints. If noise were
present in the network, then some of the interactions in the embeddings might be
missing, or extra interactions might be present. In that case, an inexact matching
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algorithm would be required, to locate the interactions among individuals who
had been in contact in a way similar to that sought.

We apply our inexact matching algorithm to two undirected face-to-face con-
tact networks which were collected during the SocioPatterns project [6]. Our
approach is demonstrated to be faster when using temporal information than in
the static case, for a range of query graphs and measures of inexactness. Since
the interactions present within the temporally constrained embeddings occur
close in time, the subgraphs found are a good approximation for contact as it
occurred over specific time periods. So, although the number of embeddings re-
turned is smaller, the meaning of those embeddings is easier to interpret. As
the matches are allowed to vary more from the query structure, our temporal
approach performs orders of magnitude faster than if the networks searched were
static.

2 Related Work

This work draws upon the areas of temporal network analysis and inexact graph
and subgraph matching. We extend inexact subgraph matching to account for
temporal information in networks.

2.1 Inexact Graph and Subgraph Matching

Inexact graph matching is a generalization of conventional graph isomorphism.
The problem is also know as approximate graph matching [18], or error-tolerant
graph matching. The process of inexact graph matching is usually thought of as
a transformation from one graph into another, via a sequence of edits. Each edit
operation has a cost, which depends on the differences seen so far, between the
two matched graphs. These edits include the insertion, deletion and relabeling of
the nodes and edges, which are required to transform one graph into the other.

Given a visual representation of a system, such as in scene analysis, switch-
ing theory or chemical structure analysis, a graph representing relations is often
useful. The graph patterns may be deformed, so inexact graph matching comes
into play. Tsai and Fu [16] guide the search for matches using an ordered-search
algorithm. This finds embeddings that most closely match the query graph first.
Another application of inexact graph matching is to match chemical compounds,
in which the labeling needed to identify certain molecules is unknown. An algo-
rithm was proposed by Hofer et. al. which accounts for wildcard labeling in the
match [4]. Thus, when the label on a molecule is not known, it can assume a
label which makes sense based on chemical expert knowledge.

Inexact subgraph matching generalizes inexact graph matching. Instead of
checking that two entire graphs match inexactly, an embedded subgraph (or set
of subgraphs) in the larger graph is sought that inexactly matches some query
graph. Such an error-correcting subgraph isomorphism algorithm was proposed
by Tsai and Fu [17]. The G-Ray algorithm of Tong et. al. [15] aims to find
subgraphs that match a query pattern closely, by allowing indirect paths between
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attributed graph entities. The results are returned in order of their “goodness”,
as defined by the authors. Tian and Patel developed TALE [14], a tool which uses
an index structure to speed up the approximate matching of subgraph queries
in a database of graphs. This technique identifies nodes that are important in
the match, based on their position in the graph structure, then extends those
matches.

2.2 Temporal Network Analysis

Many techniques for static graph analysis must be revised for graphs which
contain temporal information. A comprehensive review is provided by Holme et
al. [5]. Kempe et al. [7] define a time-respecting path as a sequence of contacts
that occur at non-decreasing times.

Reachability graphs show which nodes are reachable from a single root node
[11]. In a reachability graph, there must be a time-respecting path between nodes
i and j for a directed edge to exist between them. Bearman et al. [2] analyze
the reachability graph within a dating network of high-school students. A time-
respecting subgraph [13] is a generalization of a reachability graph, similar to
how a subgraph generalizes a tree structure.

The lifespan of a piece of information may be specified by a time window [19].
This measures the time between two consecutive communications. The claim is
that the closer in time the contacts take place, the more likely they are to be
about the same topic. In the same way, the relay time of an interaction describes
the time taken for a newly infected node to spread the infection further via
subsequent interactions [8]. When matching temporally constrained subgraphs,
we require that consecutive interactions occur within a specified time. A cascade
models the spread of information through a network, for example the adoption
of new ideas or products [9]. The importance of time-constrained cascades is
emphasized for understanding contagion [1].

3 Methods

We introduce some graph theoretic notation. A graph is an abstraction of a
network. A graph G = (V, E) is composed of a set of vertices (nodes) V and a
set E of pairs of nodes called edges. The graph H = (W, F') is a subgraph of
G if W is a subset of V and F is a subset of F, such that the nodes of each
edge in F are in W. The number of edges incident to a node v is called the
degree of v. The neighbors of v are nodes which are connected to v via an edge.
A pair of edges is adjacent if they share a node. Given that time is encoded as
an explicit part of our network representation, instead of referring to an “edge”
between two nodes, we use the term “interaction” to specify a triplet, composed
of two nodes and their time of contact. We define an undirected temporal graph
as follows:

Definition 1. An undirected temporal graph G consists of a set V of nodes
and a set E of pairs of nodes representing interactions. An interaction e; € E
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is represented by a tuple e; = ({u;,v;},t;), in which u; and v; comprise an
unordered set of nodes, and t; is the initiation time of the interaction.

3.1 Inexact Subgraph Matching

A key feature of our algorithm is that node labels are not required. In large
contact networks, labels are not necessarily useful as an aid for finding interesting
interaction patterns, since the people in the network are not known apriori. This
differs from networks of chemical compounds or protein interactions, in which
the identification of the entities may be very important. The challenge with
excluding node labels for inexact subgraph matching is that there are no obvious
starting nodes for the matching process, and the labels cannot be used to guide
the search.

We extend an implementation of the VF2 algorithm [3] from the NetworkX
Python library [12]. G1 represents the large graph in which a query graph G2 is
sought. The matching process is described by a state space representation. Given
an intermediate state s, the mapping is extended by first computing candidate
node pairs (one node each from G1 and G2), then testing their syntactic and
semantic feasibility as matching nodes.

Syntactic feasibility is based on topology. We define the cost of a match to be
the number of edits required to transform the query graph G2 into the embedded
subgraph of G'1 in question. This cost is computed dynamically. In accumulating
the cost of a match, the edits we allow relate to interactions. From a state s, we
calculate the cost of adding the next candidate node pair (G1_node, G2_node),
and add that to the current cost. If the accumulated cost exceeds a threshold,
#, the match is discarded.

The difference in the number of self-loops incident to G1_node and G2_node
adds to the cost of the match. There may also be effects on neighbors of the new
nodes. For G1, we check each neighbor of G1_node which is also in the partial
mapping of s. If the neighbors of G1_node found in G1 do not have counterparts
in G2 in the partial mapping, we increment the cost by one. If the number of
interactions between each of these neighbors and G1_node in G1 differs from
the number of interactions between their counterparts and G2_node in G2, we
increment the cost by the difference. The same check is performed from the
perspective of G2.

We do not allow edits related to nodes. If we allow extra or fewer nodes from
G1 to participate in a given match, there will be many more potential matches,
since the search is not limited through the use of node labels. If required, the user
can add or remove nodes from the query before the search is performed. This
is an easier task for the user than specifying every combination of interactions
that are of interest, which is the problem solved by our algorithm.

3.2 Temporal Constraints

Instead of node labels, we constrain the search space using temporal information.
We insist that the embedded subgraphs returned are connected and temporally
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constrained. There are three types of temporal constraint that we require. These
relate to adjacent interactions, paths and cycles.

Definition 2. Lete; and e; be interactions in an undirected temporal graph. The
interactions are temporally constrained if they are adjacent and |t; —t;| < d, for
some threshold d.

Definition 3. A time-respecting path between two nodes v and w in an undi-
rected temporal graph is a finite alternating sequence v = vg, e1,v1l, €2, ...,€,, vy =
w of non-repeating nodes and interactions such that the ordered sequence of in-
teraction times is either monotonically increasing or decreasing.

Definition 4. A temporally constrained cycle is a path between a node and itself,
with no repeating nodes or interactions, such that the path is time-respecting but
for one inversion.

To see why we allow exactly one inversion, consider the following scenario, in
which we view a face-to-face contact network as a proxy for communication. At
time tg, individuals ¢ and j communicate with each other. At time ¢, individual
j communicates with individual k. There is potential for a piece of information
to have been transferred from i to k. Now suppose that k& communicates with 4
at time t9, dispensing that same piece of information. We can say that a flow of
information occurred from 4 to j to k and back to i, even though the adjacent
interaction sequence at times ts, to is not time-respecting.

Definition 5. A connected temporally constrained subgraph S = (V',E’) of a
temporal graph G = (V, E) is a subgraph such that

— every adjacent interaction pair is temporally constrained

— all cycles are temporally constrained

— all simple paths are time-respecting, unless they are connected to a cycle;
then the path subset formed from the non-cycle portion of the path and only
one adjacent interaction from the cycle must be time-respecting.

The first condition in Definition 5 is illustrated in Fig. 2. The adjacent in-
teractions share the central node. If, for example, the time delay threshold d
was set to four time units, then the interactions all occur within time d of each
other. The second condition is shown in Fig. 3. Every cycle must be temporally
constrained. The third condition, as shown in Fig. 4, requires that a simple path
is time-respecting. In the situation where a simple path intersects with a cycle,
as in Fig. 5, one interaction from the cycle must be time-respecting with respect
to the non-cycle portion of the path. This ensures that some method of informa-
tion flow is possible within the subgraph as a whole. In the illustrated example,
information communicated via the path may influence information spread within
the cycle, since the temporal sequence 1, t2 between the path and cycle is time-
respecting.

Within the VF2 algorithm, there is an option to test for semantic feasi-
bility during the matching process. In our setting, we use the dates on which
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Fig. 2: In a temporally constrained subgraph, all adjacent interactions must occur
within time d of each other. Thus, if ty < t; <ty < t3, then t3 — tg < d must be
true.

Fig.3: A temporally constrained cycle, composed of a time-respecting path,
which starts and ends on the same node. The interactions incident to this node
constitute the only permissible inversion of the time-respecting sequence. In this
cycle, to <ty <ty <tz, but tg > to.

to ti t2

o—0—0—0

Fig.4: A time-respecting path, in which no nodes or interactions are repeated,
and the sequence of interactions occurs in a monotonically increasing order. Here,
to < t1 < ta.

t©

t

Fig.5: A time-respecting path which is connected to a cycle. The non-cycle
portion of the path includes the interactions at ¢y and ¢;. The cycle includes
interactions at to, t3 and t4. There are two interactions from the cycle which
are adjacent to the non-cycle path. If we take the interaction at ts, then the
sequence 1o, t1, to is time-respecting.
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the interactions occur to test that the subgraph embedded in G1 is temporally
constrained. Since we aim to find subgraphs in a network that are temporally
constrained and have the topology of G2, we assume that G2 is temporally
constrained by construction and thus do not need to check this at runtime.

Since our algorithm uses a recursive backtracking approach, we explain the
semantic feasibility tests with regard to the new candidate node - G1_node -
in the embedding, at some given level of recursion. The first test checks that
all interactions adjacent to G1_node occur within time d of each other, as in
Fig. 2. To do this, we use a list neighbors containing the neighboring nodes of
G1_node in G1 which are part of the current mapping. The list dates contains
the dates, in increasing order, on which contacts between G1_node and the nodes
in neighbors were made. If the difference between the latest and earliest date
does not exceed d, we proceed to the next test.

To check that all cycles in the embedding are temporally constrained, we
first extract all cycles from the embedding. For each cycle, we construct a new
list dates, which stores the date between each interaction in the cycle. We step
through each date, testing if the sequence is monotonically increasing. We count
the inversions in the sequence. We then step through the dates again, this time
testing if the sequence is monotonically decreasing, and counting inversions. If
the number of inversions in one of the two orderings does not exceed one, we
proceed to the next test.

The final test involves simple paths. We start by computing all simple paths
between G1_node and every other node in the embedding. For each path, we
check the length of the portion of the path which is not part of any cycle in
the embedding. If no cycle intersects the path, we test that the path is time-
respecting. If it is, then G1_node is feasible for the match. Otherwise, if the
length of the non-cycle path is two or more, but continues into a cycle, then
we need to do more testing. Thus, we identify the two interactions in the cycle
which are adjacent to the path. If, with one of these interactions, the non-cycle
path remains time-respecting, then G1_node is feasible for the match.

When a candidate node is included in a potential embedding of G2 in G1,
the three conditions in Definition 5 must be fulfilled. If any of the tests fail, the
candidate node is discarded, and the recursive backtracking approach continues.

4 Results

The results in this section were generated by experiments performed on a Linux
server with a 2 GHz processor, limited to 5GB of physical memory.

4.1 Network Data
The SocioPatterns project was set up to study patterns in social dynamics [6].

The SocioPatterns sensing platform gathers face-to-face proximity data from
participants who wear wireless sensors. The data forms a contact network, in
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which a node represents a person and an interaction represents face-to-face con-
tact. The number of interactions between two people represents the number of
times they came into contact. The data is a useful proxy for communication.

One such experiment was performed at the ACM Conference on Hypertext
and Hypermedia 2009 in Turin, Italy. The Hypertext 2009 network contains 113
nodes and 9 865 interactions. Another experiment was performed at the Science
Gallery in Dublin during the INFECTIOUS: STAY AWAY exhibition in 2009.
The Infectious network contains 410 nodes and 17298 interactions. The d-value
we chose for the Hypertext 2009 and Infectious data sets was 10 minutes, to
reflect the contact dynamics.

KKK

a) Query. ) One more ) Two more (d) One less (e) Two less
1nteract10n 1nteract10ns 1nteract10n interactions.

Fig.6: A sample query graph and its topological variations. (6a) The original
query graph. (6b, 6¢) Embeddings which match inexactly, with one or two more
interactions than the query graph. (6d, 6e) Embeddings with one or two fewer
interactions than specified by the query graph.

We selected 42 small connected graphs to act as query graphs in the matching
process (see an example and some variations in Fig. 6). Half of these have five
nodes, and the other half have six. The diameter of the query graphs ranges from
one to four. The diameter of a graph is the longest of all shortest paths between
any two nodes in the graph.

4.2 Inexact Matches

We ran three experiments on each data set. These allowed a cost threshold
of zero, one and two. The threshold restricts the number of interactions in the
embedding that are allowed to vary from the query graph. When 6 is zero, the
match is exact. When 6 is one, an interaction may be missing from the embedding
or an extra interaction my be present. When 6 is two, either two interactions
are missing or two extra interactions are in the embedding. Examples of some
permissible variations to a query graph are shown in Fig. 6.

Although we allow the structure of embedded subgraphs to vary to a certain
extent, we do not allow the temporal constraint to be violated. Thus, the exam-
ples shown in Fig. 6 must be temporally constrained, for any instance of their
embedding. This ensures that the embedded structures will be interpretable in
a temporal context. The temporal constraints can be relaxed by increasing the
time scale over which interactions take place, by changing the d-value.
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Fig. 7. The time taken for all embeddings of each query graph to be found in
the data sets, with a cost thresholds of § = {0, 1,2}. Each plot compares the
time taken for the process with and without the use of temporal information.
The x-axis lists the query graphs sought, in decreasing order from the one that
took longest to find without temporal pruning. The biggest peaks for the tem-
poral pruning approach occur for query graphs with cycles, which have many
embeddings in the network, leading to a slower matching process.
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4.3 Processing Time

To show that temporal information can speed up the matching process, we
recorded the time taken for embeddings of our set of query graphs to be found in
the Hypertext 2009 and Infectious data sets. The results are plotted in Fig. 7. In
all cases, independent of the error threshold, the query graphs are found faster
when temporal information is used. In many cases, the difference is notable .

It appears that temporal pruning always allows the search to terminate faster.
To see why, consider the following scenario. From a state s in a partial match, the
next candidate node pair (a node from G1 and one from G2) is evaluated. If the
pair is to be included in the match, the topology of the subgraphs they induce
(in G1 and G2 respectively) must match. If the match is correct, the search
will continue. However, if temporal information is used, then the embedding in
G'1 must be temporally constrained. This facilitates an earlier discarding of the
match. The result is that fewer embeddings are returned, with each embedding
being temporally constrained.

Given that the number of interactions present in the Infectious network is
approximately twice that of those present in the Hypertext 2009 network, (17298
versus 9865 respectively), it is interesting to see that the temporal pruning
approach is still almost always faster than the static approach.

In the case where no temporal pruning is used, there is a pronounced differ-
ence in the time taken for embeddings of query graphs to be identified. This is
due to the fact that queries with longer diameters — composed of longer paths —
take longest to find without temporal pruning. Those which are found quickest
have short diameters, for example cliques and near-cliques. This may be ex-
tremely useful in real-world scenarios, when paths of contacts occurring close in
time are present.

5 Conclusion

When errors are present in network data, or when a user wants to find a range of
subgraphs similar to the one they consider important, inexact subgraph matching
comes into play. The solution to this problem is more computationally expensive
than exact matching. Traditionally, labels on the network nodes are used to
constrain the search. However, in many temporal networks, such node labels are
not available. Thus, we have introduced temporal inexact subgraph matching,
using temporal information to prune the search space. The returned embeddings
have the property of being temporally constrained, such that interactions in the
network take place within a given time window of each other.

When applied to two undirected contact networks, our approach outper-
formed the corresponding static inexact subgraph matching algorithm in terms
of processing time. From among the query graphs we sought, the greatest bene-
fit of the temporal method occurred when the diameter of the query graph was
longer. This may be useful when seeking longer paths in networks, for exam-
ple to find disease spreading in epidemic networks, or information diffusion in
communication networks.
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Abstract. Detecting and adapting to concept drift makes learning data
stream classifiers a difficult task. It becomes even more complex when
the distribution of classes in the stream becomes imbalanced. Currently,
proper assessment of classifiers for such data is still a challenge, as exist-
ing evaluation measures either do not take into account class imbalance
or are unable to indicate class ratio changes in time. In this paper, we
advocate the use of the area under the ROC curve (AUC) in imbalanced
data stream settings and propose an incremental algorithm that uses
a sorted tree structure with a sliding window to compute AUC using
constant time and memory. Additionally, we experimentally verify that
this algorithm is capable of correctly evaluating classifiers on imbalanced
streams and can be used as a basis for detecting sudden changes in class
definitions and imbalance ratio.

Keywords: AUC, data stream, class imbalance, concept drift

1 Introduction

Many modern information system, e.g. concerning sensor networks, recommen-
der systems, or traffic monitoring, record and process huge amounts of data.
However, the massive size and complexity of the collected datasets make the
discovery of patterns hidden in the data a difficult task. Such limitations are par-
ticularly visible when mining data in the form of transient data streams. Stream
processing imposes hard requirements concerning limited amount of memory
and small processing time, as well as the need of reacting to concept drifts,
i.e., changes in distributions and definitions of target classes over time. For su-
pervised classification, these requirements mean that newly proposed classifiers
should not only accurately predict class labels of incoming examples, but also
adapt to concept drifts while satisfying computational restrictions.
Classification becomes even more difficult if the data complexities also include
class imbalance. It is an obstacle even for learning from static data, as classifiers
are biased toward the majority classes and tend to misclassify minority class
examples. However, it has been also shown that class imbalance ratio is usually
not the only factor that impedes learning. Experimental studies [1,2] suggest
that when additional data complexities occur together with class imbalance, the
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deterioration of classification performance is amplified and affects mostly the
minority class. In this paper, we focus our attention on the complexity resulting
from the combination of class imbalance, stream processing, and concept-drift.

Although for static imbalanced data several specialized learning techniques
have recently been introduced [3,4], similar research in the context of data
streams is limited to a few papers [5-8]. However, these studies show that evolv-
ing and imbalanced data streams are particularly demanding learning scenarios,
and the problem of effectively evaluating a classifier is vitally important for such
data.

Currently, the performance of data stream classifiers is commonly measured
with predictive accuracy (or respective error), which is usually calculated in a
cumulative way over all incoming examples or at selected points in time when
examples are processed in blocks. However, when values of these measures are
averaged over an entire stream, they loose information about the classifier’s reac-
tions to drifts. Even recent proposals including a prequential way of calculating
accuracy [9] or using the Kappa statistic [10,11] are not sufficient as they are
unable to depict changes in class distribution, which could appear in different
moments of evolving data streams. Moreover, when the ratio of positive to neg-
ative instances changes in a test set, a classifier chosen using these metrics may
no longer perform sufficiently good, or even acceptably [12].

For static imbalanced problems, a popular alternative to accuracy is the area
under the ROC (Receiver Operator Characteristic) curve (AUC). An important
property of AUC is that it is invariant to changes in class distribution. Moreover,
for scoring classifiers it has a very useful statistical interpretation as the expec-
tation that a randomly drawn positive example receives a higher score than a
random negative example. Thus, it measures the ranking ability of classifiers,
which is especially desirable if one wants to dynamically change the classification
threshold in response to changing class or cost distributions [12]. Finally, several
authors have shown that AUC is more preferable for model evaluation than total
accuracy [13].

However, in order to calculate AUC, one needs to sort a given dataset and
iterate through each example. Because the sorted order of examples defines the
resulting value, adding an example to the dataset forces the procedure to be
repeated. Therefore, AUC cannot be directly computed on data streams, as
this would require O(n) time and memory at each time point, where n is the
current length of the data stream (if previously sorted scores are preserved, one
only needs to insert a new score and linearly scan through the examples to
calculate AUC). Up till now, the use of AUC for data streams has been limited
to estimations on periodical holdout sets [8,6] or entire streams [5, 7], making it
either potentially biased or computationally infeasible.

In this paper, we propose a new approach for calculating AUC incrementally
with limited time and memory requirements. The proposed algorithm incorpo-
rates a sorted tree structure with a sliding window as a forgetting mechanism,
making it both computationally feasible and appropriate for concept-drifting
streams. According to our best knowledge, such an approach has not been con-
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sidered in the literature. Furthermore, we argue that, compared to standard
accuracy, the analysis of changes of prequential AUC over time could provide
more information about the performance of classifiers with respect to different
types of drifts, in particular for streams with evolving class imbalance ratio.
To verify this hypothesis, we carry out experiments with several synthetic and
real datasets representing scenarios involving different types of drift, including
sudden changes in the class imbalance ratio.

The remainder of the paper is organized as follows. Section 2 presents related
work. In Section 3, we introduce an algorithm for calculating prequential AUC
and investigate its properties, while Section 4 shows how prequential AUC can
be used for concept drift detection. In Section 5, we present experimental results
on real and synthetic datasets, which demonstrate the properties of the proposed
algorithms. Finally, in Section 6 we draw conclusions and discuss future research.

2 Evaluating Data Stream Classifiers

In data stream mining, predictive abilities of a classifier are evaluated by using
a holdout test set, chunks of examples, or incrementally after each example [14].
More recently, Gama et al. [9] proposed prequential accuracy with forgetting
as a means of evaluating data stream classifiers and enhancing drift detection
methods. They have shown that computing accuracy only over the most recent
examples, instead of the entire stream, is more appropriate for continuous as-
sessment and drift detection in evolving data streams. Nevertheless, prequential
accuracy inherits the weaknesses of traditional accuracy, that is, variance with
respect to class distribution and promoting majority class predictions.

For imbalanced data streams, Bifet and Frank [10] proposed the use of the
Kappa statistic with a sliding window. Furthermore, this metric has been re-
cently extended to take into account temporal dependence [11]. However, the
Kappa statistic requires a baseline classifier, which is dependent of the current
class imbalance ratio. Furthermore, in contrast to accuracy, the Kappa statistic
is a relative measure without a probabilistic interpretation, meaning that its
value alone does not directly state whether a classifier will predict accurately
enough in a given setting, only that it performs better than general baselines.

The AUC measure has also been used for imbalanced data streams, however,
in a limited way. Some researchers chose to calculate AUC using entire streams [5,
7], while others used periodical holdout sets [8,6]. Nevertheless, it was noticed
that periodical holdout sets may not fully capture the temporal dimension of
the data, whereas evaluation using entire streams is neither feasible for large
datasets nor suitable for drift detection. It is also worth mentioning that an
algorithm for computing AUC incrementally has also been proposed [15], yet
one which calculates AUC from all available examples and is not applicable to
evolving data streams. Although the cited works show that AUC is recognized
as a measure which should be used to evaluate classifiers for imbalanced data
streams, up till now it has been computed the same way as for static data. In
the following sections, we propose a simple and efficient algorithm for calculating
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AUC incrementally with forgetting, and investigate its properties with respect
to classifier evaluation and drift detection in evolving data streams.

3 Prequential AUC

Our main interest in this paper is to evaluate data stream classifiers for evolving
imbalanced data streams. For this purpose, we advocate the use of the area un-
der the receiver operator characteristic curve (AUC). Therefore, we will consider
scoring classifiers, i.e., classifiers that for each predicted class label additionally
return a numeric value (score) indicating the extent to which an instance is
predicted to be positive or negative. Furthermore, we will limit our analysis to
binary classification. It is worth mentioning, that most classifiers can produce
scores, and those that only predict class labels can be converted to scoring clas-
sifiers [12].

We propose to compute AUC incrementally using a forgetting mechanism
that employs a sorted window of classification scores of the most recent examples.
It is worth noting that, since the calculation of AUC requires sorting examples
with respect to their classification scores, it cannot be computed on an entire
stream or using fading factors without using additional memory. To efficiently
maintain a sorted set of scores, we propose to use a red-black tree [16], which
is capable of adding and removing elements in logarithmic time without any
additional memory. Furthermore, a window of scores is required to identify the
age of each score. With these two structures, for each incoming example a new
score is inserted into the window (line 16) as well as the tree (line 11) and, if
the window of examples has been exceeded, the oldest score is removed (lines
5 and 16). After the window has been updated, AUC is calculated by summing
the number of positive examples occurring before each negative example (lines
20-24) and normalizing that value by all possible pairs pn (line 25), where p is
the number of positives and n is the number of negatives in the window. This
method of calculating AUC is equivalent to summing the area of trapezoids for
each pair of sequential points in the ROC curve [12], but is more suitable for
our purposes as it requires very little computation given a sorted collection of
scores. Algorithm 1 lists the pseudo-code for calculating prequential AUC.

Let us now analyze the complexity of the proposed approach. For a window of
size d, the time complexity of adding and removing a score to the red-black tree is
O(2logd). Additionally, the computation of AUC requires iterating through all
the scores in the tree, which is an O(d) operation. In summary, the computation
of prequential AUC has a complexity of O(d + 2logd) per example and since
d is a user-defined constant this resolves to a complexity of O(1). It is worth
noticing that if AUC only needs to be sampled every k examples (a common
scenario while plotting metrics in time) lines from 19 to 25 can be executed only
once per k examples. In terms of space complexity, the algorithm requires O(2d)
memory for the red-black tree and window, which also resolves to O(1).

In contrast to error-rate performance metrics, such as accuracy [9, 14] or the
Kappa statistic [10,11], the proposed measure is invariant of the class distribu-
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Algorithm 1 Prequential AUC

Input: S: stream of examples, d: window size
Output: 0: prequential AUC after each example
1: W<+ 0;n<« 0;p<+ 0; idr + 0
2: for all scored examples x* € S do
// Remove oldest score from the window
if idx > d then
scoreT'ree.remove(W[idz mod d));
if isPositive(W[idz mod d]) then
p+<p—1
else
9: n+<n—1;
10: // Add new score to the window
11:  scoreTree.add(x");
12:  if isPositive(x') then

13: pp+1;
14:  else
15: n<+<n+1;

16:  Wlidz mod d] + x*;
17:  didx + idx + 1;

18: // Calculate AUC
19:  AUC + 0; ¢+ 0;

20:  for all consecutive scored examples s € scoreTree do
21: if isPositive(s) then

22: c+—c+1;

23: else

24: AUC + AUC +¢;

250 6« AUC

tion. Furthermore, unlike accuracy it does not promote majority class predic-
tions. Additionally, in contrast to the Kappa statistic, AUC is a non-relative,
[0,1] normalized metric with a direct statistical interpretation. As opposed to
previous applications of AUC to data streams [5-8], the proposed algorithm
can be executed after each example using constant time and memory. Finally,
compared to the method presented in [15], the proposed algorithm provides a for-
getting mechanism and uses a sorting structure, making it suitable for evolving
data streams and allowing for efficient sampling.

4 Drift Detection Using AUC

Prequential AUC assesses the ranking abilities of a classifier and is invariant of
the class distribution. These properties differentiate it from common evaluation
metrics for data stream classifiers and could be applied in an additional context.
In particular, for streams with high class imbalance ratios simple metrics, such as
accuracy, will suggest good performance (as they are biased toward recognizing
the majority class) and may poorly exhibit concept drifts. Therefore, we propose
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to investigate AUC not only as an evaluation measure, but also as basis for
drift detection in imbalanced streams, where it should better indicate changes
concerning the minority class.

For this purpose, we propose to modify the Page-Hinkley (PH) test [9], how-
ever, generally other drift detection methods could also have been adapted. The
PH test considers a variable m!, which measures the accumulated difference be-
tween the observed values e (originally error estimates) and their mean till the
current moment, decreased by a user-defined magnitude of allowed changes 9:
mt = 3", (¢! — & — §). After each observation ¢, the test checks whether the
difference between the current m! and the smallest value up to this moment
min(m?,i = 1,...,t) is greater than a given threshold \. If the difference ex-
ceeds A, a drift is signaled. In this paper, we propose to use the area over the
ROC curve (1 — AUC) as the observed value. Hence, according to the statistical
interpretation of AUC, instead of error estimates, we monitor the estimate of the
probability that a randomly chosen positive is ranked after a randomly chosen
negative. This way, the PH test will trigger whenever a classifier begins to make
severe ranking errors regardless of the class imbalance ratio.

The aim of using prequential AUC as an evaluation measure is to provide ac-
curate classifier assessment and drift detection for evolving imbalanced streams.
In the following section, we examine the characteristics of the proposed metric
in scenarios involving different types of drifts and imbalance ratios.

5 Experiments

We performed two groups of experiments, one showcasing the properties of pre-
quential AUC as an evaluation metric, and another assessing its effectiveness
as a basis for drift detection. In the first group, we tested five different classi-
fiers [14, 17]: Naive Bayes (NB), Very Fast Decision Tree with Naive Bayes leaves
(VFDT), Dynamic Weighted Majority (DWM), Online Bagging with an ADWIN
drift detector (Bag), and Ounline Accuracy Updated Ensemble (OAUE). Naive
Bayes and VFDT were chosen as incremental algorithms without any forgetting
mechanism, Online Bagging was chosen as an algorithm with a drift detector,
while OAUE and DWM were selected as representatives of ensemble learners.
For the second group of experiments, we only utilized VFDT with Naive Bayes
leaves, similarly as was done in [9].

All the algorithms and evaluation methods were implemented in Java as part
of the MOA framework [18]. The experiments were conducted on a machine
equipped with a dual-core Intel i7-2640M CPU, 2.8Ghz processor and 16 GB
of RAM. For all the ensemble methods (Bag, DWM, OAUE) we used 10 Very
Fast Decision Trees as base learners, each with a grace period n,;, = 100, split
confidence 6 = 0.01, and tie-threshold 7 = 0.05 [14].
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5.1 Datasets

For the first group of experiments, with prequential AUC as an evaluation met-
ric, we used 2 real and 10 synthetic datasets'. The real datasets were Airlines
(Air) and PAKDD’09 (PAKDD), representing a balanced and imbalanced dataset
respectively. To create synthetic datasets we used three popular data stream gen-
erators from MOA: SEA (SEA), Hyperplane (Hyp), and Random RBF (RBF) [18].
More precisely, SEA was a dataset without drift, SEA, were datasets with a 1:x
class ratio and three sudden drifts, and SEAgc contained three class ratio changes
(1:1 — 1:100 — 1:10 — 1:1). Furthermore, RBF contained two very short changes
(blips), whereas Hyp, were datasets with a 1:x class ratio and a slow incremental
drift throughout the entire stream.

For assessing prequential AUC as a measure for monitoring drift, we created
7 synthetic datasets using the SEA (SEA), RBF (RBF), Random Tree (RT), and
Agrawal (Agr) generators [18]. Each dataset tested for a single reaction (or lack
of one): SEAN,prife contained no changes, and should not trigger any drift de-
tector; RT involved a sudden change after 30 k examples; Agri, Agrig, Agrigo
also contained a sudden change after 30 k examples, but had a 1:1, 1:10, 1:100
class ratio, respectively; SEARq4t included a sudden 1:1 — 1:100 ratio change
after 10 k examples; RBF g;;ps contained two blips, which should not trigger the
detector. The main characteristics of all the datasets are given in Table 1.

Table 1. Characteristic of datasets.

Dataset #Inst #Attrs Class ratio Noise #Drifts  Drift type
SEA 100 k 3 1:1 10% 3 none
SEA, 1M 3 1:x 10% 3 sudden
Hypa 500 k 5 1:x 5% 1 incremental
RBF 1M 20 1:1 0% 2 blips
SEARC 1M 3 1:1/1:100/1:10  10% 4 virtual
Air 539 k 7 1:1 - - unknown
PAKDD 50 k 30 1:4 - - unknown
SEAnoprist 20 k 3 1:1 10% 1 none
Agr, 40 k 9 1:x 1% 1 sudden
RT 40 k 10 1:1 0% 1 sudden
SEARatio 40 k 3 1:1/1:100 10% 1 virtual
RBF Biips 40 k 20 1:1 0% 2 blips
5.2 Results

All of the analyzed algorithms were tested in terms of accuracy and prequential
AUC. In the first group of experiments, the results were obtained using the

1 Source code, test scripts, generator parameters, and links to datasets available at:
http://www.cs.put.poznan.pl/dbrzezinski/software.php
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test-then-train procedure [14], with a sliding window of 1000 examples. Table 2
presents a comparison of average classification accuracy and prequential AUC.

Table 2. Average prequential accuracy (Acc.) and AUC (AUC).

NB VFDT Bag DWM OAUE

Acc. AUC Acc. AUC Acec. AUC Acc. AUC Acc. AUC
SEAND 086 090 089 0.89 089 090 0.89 0.90 0.89 0.90
SEA, 0.84 088 085 087 089 0.8 0.89 0.8 0.89 0.88
SEA1o 0.84 0.74 087 073 089 074 089 0.74 089 0.74
SEA100 0.89 054 089 054 090 054 090 054 090 0.54
Hyp: 0.78 0.85 0.81 0.87 0.88 093 088 0.92 0.88 0.93
Hypio 0.88 0.8 089 0.74 091 081 091 076 091 0.82
Hypioo 094 057 093 053 094 056 094 052 094 0.55
RBF 0.74 083 096 098 099 1.00 098 1.00 0.99 1.00
SEARC 0.86 0.77 0.89 0.77 090 0.77 0.89 0.77 090 0.77
Air 0.65 0.66 0.64 065 0.64 065 065 0.65 0.67 0.68
PAKKD 0.56 0.64 0.73 057 080 0.63 080 050 0.80 0.62

By comparing average values of the analyzed evaluation metrics, we can see
that for datasets with a balanced class ratio (SEA, SEA;, Hypi, RBF, Air) both
measures have similar values. As we expected, for datasets with class imbalance
(SEA10, SEA100, Hypio, Hypi0o, PAKKD, SEAgc) accuracy does not demonstrate
the difficulties the classifiers have with recognizing minority class examples. The
differences between accuracy and AUC are even more visible on graphical plots
depicting algorithm performance in time. Figures 1-5 present selected perfor-
mance plots, which best characterize the differences between both metrics.
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Fig. 1. Prequential accuracy (left) and AUC (right) on a data stream with sudden

drifts and a balanced class ratio.
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Fig. 2. Prequential accuracy (left) and AUC (right) on a data stream with sudden
drifts and 1:100 class imbalance ratio.
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Fig. 5. Prequential accuracy (left) and AUC (right) for data with class ratio changes.

Comparing Figures 1 and 2, we can notice how the class imbalance ratio
affects both prequential accuracy and AUC. The accuracy plot visibly flattens
when class imbalance rises, but absolute values almost do not change. AUC on
the other hand flattens but its value drastically changes, showing more clearly
the classifiers’ inability to recognize the minority class.

A similar situation is visible on Figures 3 and 4, where the classifiers were
subject to an ongoing slow incremental drift. When classes are balanced, the
plots are almost identical, both in terms of shape and absolute values. However,
when the class ratio is equal 1:100, the accuracy plot flattens and its average
value rises, while the AUC plot still clearly shows that classifiers are unstable
and additionally its average value signals poor performance.

Finally, Figure 5 depicts classifier performance for a data stream with class
ratio changes, which are sometimes called virtual drift. Apart from NB, all the
tested classifiers kept the same accuracy after each drift making the changes
invisible on the performance plot. However, on the AUC plot, ratio changes are
clearly visible providing valuable information about the ongoing processes in the
stream. In fact, the absolute values of AUC hint the severity of class imbalance in
a given moment in time. This situation illustrates the advantages of prequential
AUC as a measure for indicating class ratio changes.

The second group of experiments involved using the PH test to detect drifts
based on changes in prequential accuracy and AUC. To compare both metrics,
we used window sizes (1000-5000) and test parameters A = 100, § = 0.1, as
proposed in [9]. Table 3 presents the number of missed versus false detection
counts, with average delay time for correct detections. The results refer to total
counts and means over 10 runs of streams generated with different seeds.

Concerning datasets with balanced classes, both evaluation metrics provide
similar drift detection rates and delays. However, for datasets with high class im-
balance the PH test notes more missed detections for accuracy. This is probably
due to the plot “flattening” caused by promoting majority class predictions. On
the other hand, detectors which use AUC have less missed detections for highly
imbalanced streams, but still suffer from a relatively high number of false alarms.
This suggests that detectors using AUC should probably be parametrized dif-
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Table 3. Number of missed and false detections (in the format missed:false) obtained
using the PH test with accuracy (Acc) and AUC (AUC). Average delays of correct
detections are given in parenthesis, where (-) means that the detector was not trig-
gered or datasets did not contain any change. Subscripts in column names indicate the
number of examples used for estimating errors.

Accik Acco Accsy Accyr Accsi
SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agri 0:2 (1040)  0:1 (1859)  0:0 (2843) 1.0 (4033)  5:0 (4603)
Agrio 0:9 (1202)  0:3 (1228)  0:2 (1679)  0:2 (2190)  0:2 (2817)
Agrioo 212 (1610)  2:17 (2913)  2:10 (3136)  3:12 (3903)  3:10 (4612)
RT 6:0 (1843)  T7:0 (2621)  8:0(2933) 80 (3754)  8:0 (4695)
SEARatio  10:0 () 10:0 (-) 10:0 () 10:0 () 10:0 ()
RBFBlips  0:2 (-) 0:1 (-) 0:0 (-) 0:0 (-) 0:0 (-)

AUC, AUCy AUC3 AUCyk AUCs
SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agry 2:2 (1042)  3:1 (1760)  4:1 (2726)  4:0 (3773)  T7:0 (4640)
Agrio 0:5 (868) 0:5 (1539)  0:1 (1506)  0:1 (1778)  1:1 (2197)
Agrioo  0:19 (1548)  0:18 (2461)  1:9 (2664)  1:11 (3563)  2:9 (4835)
RT 3.0 (1815) 50 (2407)  6:0 (3105)  6:0 (4121)  T7:0 (4725)
SEAmario 0:0 (1339)  0:0 (2249)  0:0 (3152)  0:0 (4057)  0:0 (4959)
RBFBiips  0:3 (-) 0:1 (-) 0:0 (-) 0:0 (-) 0:0 (-)

ferently than those using accuracy. However, the most visible differences are for
streams with class ratio changes. The PH test misses all virtual drifts when using
accuracy as the base metric, but detects all the drifts when prequential AUC is
used. This shows, that in imbalanced evolving environments the use of AUC as
an evaluation measure could be of more value than standard accuracy.

6 Conclusions

In case of static data, AUC is a useful metric for evaluating classifiers both on
balanced and imbalanced classes. However, up till now it has not been sufficiently
popular in data stream mining, due to its costly calculation. In this paper, we
introduced an efficient method for calculating AUC incrementally with forgetting
on evolving data streams. The proposed algorithm, called prequential AUC,
proved to be useful for visualizing classifier performance over time and as a
basis for drift detection. In particular, experiments involving real and synthetic
datasets have shown that prequential AUC is capable of correctly identifying
poor classifier performance on imbalanced streams and detecting virtual drifts,
i.e., changes in class ratio over time.

As our ongoing research, we are analyzing the possibility of using variations
of AUC, such as scored AUC [12], to detect drifts more rapidly. Furthermore, we
plan to analyze ROC curves plotted over time as a means of in-depth assessment
of classifier performance on evolving data streams.
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Abstract. Imbalanced data, where the number of instances of one class is much
higher than the others, are frequent in many domains such as fraud detection,
telecommunications management, oil spill detection and text classification.
Traditional classifiers do not perform well when considering data that are sus-
ceptible to both within-class and between-class imbalances. In this paper, we
propose the ClustFirstClass algorithm that employs cluster analysis to aid clas-
sifiers when aiming to build accurate models against such imbalanced data sets.
In order to work with balanced classes, all minority instances are used together
with the same number of majority instances. To further reduce the impact of
within-class imbalance, majority instances are clustered into different groups
and at least one instance is selected from each cluster. Experimental results
demonstrate that our proposed ClustFirstClass algorithm yields promising re-
sults compared to the state-of-the art classification approaches, when evaluated
against a number of highly imbalanced datasets.

Keywords: Imbalanced data, Undersampling, Ensemble Learning, Cluster
analysis

1 Introduction

Learning from data in order to predict class labels has been widely studied in machine
learning and data mining domains. Traditional classification algorithms assume bal-
anced class distributions. However, in many applications the number of instances of
one class is significantly less than in the other classes. For example, in credit card
fraud detection, direct marketing, detecting oil spills from satellite images and net-
work intrusion detection the target class has fewer representatives compared to other
classes. Due to the increase of these applications in recent years, learning in the pres-
ence of imbalanced data has become an important research topic.

It has been shown that when classes are well separated, regardless of the imbal-
anced ratio, instances can be correctly classified using standard learning algorithms
[1]. However, having class imbalance in complex datasets results in the misclassifica-
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tion of data, especially of the minority class instances. Such data complexity covers
issues such as overlapping classes, within-class imbalance, outliers and noise.

Within-class imbalance occurs when a class is scattered into smaller sub-parts rep-
resenting separate subconcepts [2]. Subconcepts with limited representatives are
called “small disjuncts” [2]. Classification algorithms are often not able to learn small
disjuncts. This problem is more severe in the case of undersampling techniques. This
is due to the fact that the probability of randomly selecting an instance from small
disjuncts within the majority class is very low. These regions may thus remain un-
learned. The main contribution of this paper is to address this issue by employing
clustering techniques.

In this paper, a novel binary-class classification algorithm is suggested to handle
data imbalance, mainly within-class and between-class imbalance. Our Clust-
FirstClass technique employs clustering techniques and ensemble learning methods to
address these issues. In order to obtain balanced classes, all minority instances are
used together with the same number of majority instances, as obtained after applying
a clustering algorithm. That is, to reduce the impact of within-class imbalance majori-
ty instances are clustered into different groups and at least one instance is selected
from each cluster. In our ClustFirstClass method, several classifiers are trained with
the above procedure and combined to produce the final prediction results. By deploy-
ing several classifiers rather than a single classifier, information loss due to neglecting
part of majority instances is reduced.

The rest of this paper is organized as follows. The next section presents related
works for classification of imbalanced data. We detail our ClustFirstClass method in
Section 3. Section 4 describes the setup and results of implementing and comparing of
our algorithm with other state-of-the-art methods. Finally, Section 5 concludes the

paper.

2 Related Work

Imbalanced class distribution may be handled by two main approaches. Firstly, there
are sampling techniques that attempt to handle imbalance at data level by resampling
original data to provide balanced classes. The second category of algorithms modifies
existing classification methods at algorithmic level to be appropriate for imbalanced
setting [3]. Most of the previous works in the literature have been concentrated on
finding a solution at the data level.

Sampling techniques can improve classification performance in most imbalanced
applications [4]. These approaches are broadly categorized as undersampling and
oversampling techniques. The main idea behind undersampling techniques is to re-
duce the number of majority class instances. Oversampling methods, on the other
hand, attempt to increase the number of minority examples to have balanced datasets.
Both simple under- and oversampling approaches suffer from their own drawbacks.
The main drawback of undersampling techniques is information loss due to neglecting
part of majority instances. A major drawback of oversampling methods is the risk of
overfitting, as a consequence of repeating minority examples many times.
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In recent years, using ensemble approaches for imbalanced data classification has
drawn lots of interest in the literature. Since ensemble algorithms are naturally de-
signed to improve accuracy, applying them solely on imbalanced data does not solve
the problem. However, their combination with other techniques such as under- and
oversampling methods has shown promising results [16]. In [13] by integrating bag-
ging with undersampling techniques better results are obtained. In [5], an ensemble
algorithm, namely EasyEnsemble, has been introduced to reduce information loss.
EasyEnsemble obtains different subsets by independently sampling from majority
instances and combines each subset with all the minority instances to train base classi-
fiers of the ensemble learner. In another work that extends bagging ensembles [20],
the authors propose the use of so-called roughly balanced (RB) bagging ensembles,
where the number of instances from the classes is averaged over all the subsets. A
drawback of these bagging approaches is that they choose instances randomly, i.e.
without considering the distribution of the data within each class while in [12] it has
shown that one of the key factor in the success of ensemble method is majority in-
stance selection strategy.

Cluster-based sampling techniques have been used to improve the classification of
imbalanced data. Specifically, they have introduced “an added element of flexibility”
that has not been offered by most of previous algorithms [4]. Jo et al. have suggested
a cluster-based oversampling method to address both within-class and between-class
imbalance [2]. In this algorithm, the K-means clustering algorithm is independently
applied on minority and majority instances. Subsequently, each cluster is oversampled
such that all clusters of the same class have an equal number of instances and all clas-
ses have the same size. The drawback of this algorithm, like most of oversampling
algorithms, is the potential of overfitting the training data. In this paper, we also at-
tempt to handle within and between class imbalances by employing clustering tech-
niques. However, in our work we use undersampling techniques instead of over-
sampling, in order to avoid this drawback. In [6], a set of undersampling methods
based on clustering (SBC) is suggested. In their approach, all the training data are
clustered in different groups and based on the ratio of majority to minority samples in
each cluster, a number of majority instances are selected from each cluster. Finally,
all minority instances are combined with selected majority examples to train a classi-
fier. Our approach is completely different as we only cluster majority instances and
the same number of majority instances is selected from all clusters.

3 Proposed Algorithm

In this section, a new cluster-based under-sampling approach, called ClustFirstClass,
is presented for binary classification. However, it can be easily extended to multiclass
scenarios. This method is capable of handling between-class imbalance by having the
same number of instances from minority and majority classes and within-class imbal-
ance by focusing on all clusters within a class equally.

To have more intuition why clustering is effective for classification of imbalanced
data, consider the given distribution of Figure 1. In this figure, circles represent ma-

40



jority class instances and squares are instances of minority class. Each of these classes
contains several subconcepts. In order to have balanced classes, it follows that eight
majority instances should be selected and combined with minority representatives to
train a classifier. If these instances are randomly chosen, the probability of selecting
an instance from region 1 and 2 will be low. Thus, the classifier will have difficulty
classifying instances in these regions correctly. In general, the drawback of randomly
selecting small number of majority class instances is that small disjuncts with less
representative data may remain unlearned. By clustering majority instances in differ-
ent groups and then selecting at least one instance from each cluster, this problem can
be resolved.
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Fig. 1. A dataset with between and within class imbalance

3.1  Under-sampling based on clustering and K-nearest neighbor

In this group of methods, a single classifier is trained using all minority instances and
equal number of majority instances. In order to have a representative from all subcon-
cepts of the majority class, these instances are clustered into disjoint groups and one
instance is selected from each cluster. However, rather than blindly selecting an in-
stance, we attempt to choose more informative representative from each cluster. Prin-
cipally, the difference between methods of this group is how these samples are select-
ed from each cluster.

One of the most common representatives of a cluster is the cluster centroid. In our
first suggested algorithm, clusters’ centroids are combined with minority instances to
train a classifier. For the rest of our methods, we follow the same procedures as pre-
sented in [7] to choose one instance from each cluster based on K-nearest neighbor
(KNN) classifier. These three methods are widely used and have shown to produce
good results in many domains [7]. Firstly, NearMissl selects the majority example
from each cluster that has the minimum average distance to the three closest minority
instances, as compared to the other examples in its cluster. In the same way, in Near-
Miss2, the example with minimum distance to its three farthest minority instances is
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chosen. The third alternative involves choosing the instance from each cluster that has
the “most distance” to its three minority nearest neighbors.

3.2  Under-sampling based on clustering and ensemble learning

The main drawback of most undersampling methods, including those methods sug-
gested earlier in this paper, is the information loss caused by considering a small set
of majority instances and subsequently neglecting other majority class instances that
may contain useful information for classification. Ensemble methods can solve this
problem by using more instances of the majority class in different base learners [4]. In
our proposed ensemble method, several classifiers are trained and combined to gener-
ate the final results. Each classifier is trained by selecting at least one sample from
each cluster. Recall that the advantage of using cluster-based sampling instead of
blind sampling is that all subconcepts are represented in training data. Therefore, none
of them remains “unlearned”.

The proposed ensemble algorithm is developed by training several base classifiers
that are combined using a weighted majority voting combination rule, where the
weight of each classifier is proportional to inverse of its error on the whole training
set. Each learner is trained using Dmin, whole minority instances, and EFmaj, selected
majority instances, where Emaj contains |Dmin|/k randomly selected instances from
each cluster. By assigning a value between 1 and |Dmin| to k, a balanced learner is
obtained, while ensuring that instances from all subconcepts of majority class partici-
pate in training a classifier. The following pseudo-code describes our proposed algo-
rithm in more details.

ClusFirstClass Algorithm
Input: D={(x%;, yi)}, i=1,.., N
Divide D into D,;, and Dy,;
Cluster D,y into k partition P; i=1,..,k
For each classifier C; j=1,..,m
For each cluster P;
E..;+= Randomly selected |Dmin//k instances of P;
End For
Tr = E, + D
Train C; using Tr
e;= Error rate of C; on D
W;= log (1/ ey)
End For
Output: Cfjpa (x) = argmax, X2, W, [Ci(x) == ¢

min

min

4 Experiments and Results

In this section, first, common evaluation metrics for imbalanced data are introduced
and then datasets and experimental setting that are used in this paper are presented.
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Finally, our proposed algorithms are evaluated and compared with several state-of-
the-art methods.

4.1 Evaluation Criteria

For imbalanced datasets, it is not sufficient to evaluate the performance of the classi-
fier by only considering the overall accuracy [4]. In this paper, following other re-
searchers, we use the F-measure and G-mean measures to evaluate the performance of
different algorithms. Both F-measure and G-mean are functions of confusion matrix, a
popular representation of the classifier performance. The F-measure considers both
precision and recall at the same time while G-mean combines sensitivity and specific-
ity as an evaluation metric.

4.2  Datasets and Experimental Settings

In this section, first artificial and real datasets for our experiments are introduced and
subsequently more details about our experimental settings are described. Our pro-
posed algorithm is particularly effective in presence of within and between class im-
balances. To evaluate efficiency of our proposed method, it is applied on two sets of
artificial datasets with varying degree of between class imbalances and different num-
ber of subconcepts. Furthermore, it is tested on real datasets from UCI repository [9].

Table 1. Description of uni-dimensional artificial datasets

Imbalance | Dataset 0-0.25 0.25-50 0.50-0.75 0.75-1
ratio Size + - + -
) 80 4 68 4 4
19 400 20 340 20 20
1600 80 1280 80 80
80 10 50 10 10
1:3 400 50 250 50 50
1600 200 1000 200 200
Imbalance | Dataset 0- 0.125- | 0.25- | 0.375- | 0.50- | 0.675- | 0.75- | 0.875-
ratio Size 0.125 0.25 0.375 0.50 0.675 0.75 0.875 1
+ - + - + - + -
80 2 23 2 23 2 3 2 23
1:9 400 10 13 10 119 10 119 10 119
1600 40 466 40 466 40 466 40 42
80 5 18 5 6 5 18 5 18
1:3 400 25 27 25 91 25 91 25 91
1600 100 366 100 366 100 366 100 102

To create artificial datasets with varying degree of imbalance ratio and the number of
subconcepts, we follow the same procedure as [1] with one difference that majority
class as well as minority class has small disjuncts. In our artificial datasets, majority
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class instances have at least one small disjuncts. As in [1], three parameters are con-
sidered to create different datasets: dataset size, number of subconcepts and the im-
balance ratio. Two sets of artificial datasets one uni-dimensional and the other multi-
dimensional are generated.

Table 1 describes the number and label of data in each subconcept in uni-
dimensional space. Data are distributed uniformly in intervals. For datasets with eight
subconcepts, one of the intervals of majority data (negative label) is selected random-
ly as small disjunct with less representative data. Multi-dimensional datasets have five
dimensions and we have the same clusters as [1]. The definition of subconcepts and
dataset sizes is the same as described datasets in table 1.

In [8], a benchmark of highly imbalanced datasets from UCI repository is collected
and prepared for binary classification task. We selected 8 datasets with wide range of
imbalance ratios (from 9 to 130), sizes (from 300 to over 4000 examples) and attrib-
utes (purely nominal, purely continuous and mixed) from this benchmark. Table 2
shows the summary of these datasets. Here, all the nominal features have been con-
verted to binary values with multiple dimensions. Following [8], datasets that had
more than two classes have been modified by selecting one target class as positive,
and considering the rest of the classes as being negative. Continuous features have
been normalized to avoid the effect of different scales for different attributes especial-
ly for our distance measurements.

Table 2. The Summary of Datasets. In Features, N and C represent Nominal and Continuous
respectively.

Dataset Size Features Target Imbalance
ratio

Ecoli 336 7C imU 1:9
Spectrometer 531 93C LRS >=44 1:11
Balance 625 4N Balance 1:12
Libras Move 360 90C Positive 1:14
Arrhythmia 452 73N, 206C Class=06 1:17
Car Eval. 1728 6N Very good 1:25
Yeast 1484 8C ME2 1:28
Abalone 4177 1N, 7C Ring=19 1:130

All algorithms are implemented in the MATLAB framework. In all experiments, 5-
fold stratified cross validation is applied. 5-fold cross validation is chosen due to lim-
ited number of minority instances in most datasets. The whole process of cross valida-
tion is repeated ten times and the final outputs are the means of these ten runs.

Decision trees have been commonly used in several imbalanced problems as a base
classifier [5], [11], [12]. In this paper, the CART algorithm [10] is chosen as base
learning method for our experiments.

We applied the K-means clustering algorithm to partition majority instances. How-
ever, instead of using the Euclidean distance to find similarity of instances, the L1-
norm is used. The advantage of using the L1-norm over the Euclidean distance is that
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it is less sensitive to outliers in the data. Also, the probability of having a singleton
partition for outliers is less than Euclidean distance [14]. Further, it has been shown
that using the L1- norm is more suitable when learning in a setting which is suscepti-
ble to class imbalance, especially where the number of features is higher that the
number of minority class examples [18].

4.3  Results and Analyses

In the first experiment, we evaluate the performance of our proposed single classifi-
ers. Table 3 demonstrates the results of applying these methods on our real datasets
and comparing them in terms of F-measure and G-mean. The results show that Near-
Missl has better performance compared to other classifiers and the classifier that uses
the centroids as cluster representative has significantly lower F-measure and G-
means. It can be concluded that cluster centroids are not informative for our classifi-
cation task. In summary, as we expected, single undersampling learner suffers from
information loss. In the rest of the experiments, we use an ensemble-learning method
instead of using a single CART classifier.

In the next experiment, to evaluate our proposed ensemble classifier ClusFirstClass
in different scenarios with different degree of within and between class imbalances, it
is applied on artificial datasets. We consider a bagging ensemble learner that chooses
randomly a subset of majority instances to be combined with all minority instances, as
the baseline and compare the performance of this algorithm with our proposed meth-
od. The only difference between baseline method and ClusFirstClass is that it chooses
majority instances randomly. It has the same number of base learners and combina-
tion rule.

Table 3. F-measure and G-mean of proposed single classifiers

F-Measure G-Mean
Dataset Near Near Most- Centroid Near Near Most- Centroid
Missl | Miss2 | Distant Missl | Miss2 | Distant
Ecoli 0.5915 0.5671 0.5392 0.5740 0.8433 | 0.8261 0.8357 0.8527
Spectrometer 0.4874 0.5180 0.4746 0.4709 0.8488 | 0.8445 0.8488 0.8488
Balance 0.1448 0.1417 0.1802 0.1415 0.5050 | 0.4600 | 0.5551 0.0581
Libras Move 0.3945 0.3433 0.3154 0.3789 0.8147 | 0.7865 0.7708 0.7991
Arrhythmia 0.3594 0.3074 0.3342 0.3646 0.7855 | 0.7411 0.7623 0.7737
Car Eval. 0.8313 0.8057 0.2778 0.2394 0.9730 | 0.9857 | 0.8907 0.8513
Yeast 0.2398 0.1999 0.1928 0.1138 0.7827 | 0.7657 | 0.7872 0.5412
Abalone 0.0301 0.0328 0.0275 0.0174 0.6496 | 0.6820 | 0.6599 0.2873
Average 0.3849 0.3645 0.2927 0.2876 0.7753 | 0.7614 | 0.7638 0.6265

Figure 2 and 3 illustrates the results of applying our proposed method on previous-
ly described uni-dimensional and multi-dimensional artificial datasets respectively. In
all 12 scenarios ClusFirstClass is compared to baseline method in terms of F-measure.
For all datasets, our proposed method has considerably better performance compared
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to baseline. In most cases, as the imbalance ratio and the number of subconcepts in-
crease the difference between our proposed classifier and baseline algorithm becomes
more significant.

In the first experiment with proposed single classifiers, we have clustered majority
instances into k groups using the k-means algorithm, where k=|Dmin|. In experiments
on artificial datasets, obviously the number of clusters is equal to the number of sub-
concepts within the majority class. For the next experiments, in order to compute the
natural number of clusters, different number of k from 1 to |[Dmin| is tested to find the
one with the best average Silhouette plot [17].
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a) In the case of having four subconcepts
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b) In the case of having eight subconcepts

Fig. 2. Results of applying our proposed method on previously described uni-dimensional
artificial datasets in terms of F-measure

Table 4 shows the results of comparing our proposed undersampling ensemble algo-
rithm based on clustering with another undersampling ensemble method, EasyEnsem-
ble [5] and two cluster-based algorithms, Cluster-based oversampling [2] and SBC
[6]. Our algorithm outperforms other undersampling ensemble methods on almost all
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datasets in terms of F-Measure and G-Mean. Compared to the cluster-based over-
sampling, although that method achieves better F-measure on two (out of 9) datasets,
the averaged F-measure and G-Mean of our algorithm is better than that of Cluster-
based oversampling. Clust-First-Class outperforms SBC on all datasets.
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Fig. 3. Results of applying our proposed method on previously described multi-dimensional
artificial datasets in terms of F-measure

5 Conclusion and Future Work

In this paper, we introduce a new cluster-based classification framework for learning
from imbalanced data. In our proposed framework, first majority instances are clus-
tered into k groups and then at least one instance from each cluster is selected to com-
bine with all minority instances, prior to training. This approach is capable of han-
dling between-class imbalance by selecting approximately the same number of in-
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stances from minority and majority classes. Further, we address within-class imbal-
ance by focusing on all clusters equally. Finally, to reduce information loss due to
choosing small number of majority instances in highly imbalanced datasets, we em-
ploy an ensemble learning approach to train several base learners with different sub-
sets of majority instances. An advantage of our ClustFirstClass method is that we
guide the selection of majority instances used during training, as based on the clusters
obtained by the k-means algorithm

To evaluate the efficiency of our proposed method, it is applied on two sets of arti-
ficial datasets with varying degree of between class imbalances and different number
of subconcepts. For all datasets, our proposed method has considerably better perfor-
mance compared to the baseline method. In most cases, as the imbalance ratio and the
number of subconcepts increase, the difference between our proposed classifier and
baseline algorithm becomes more significant. Experimental results on real datasets
demonstrate that our proposed ensemble learner has better performance than our pro-
posed single classifiers. It also shows that our suggested ensemble method yields
promising results compared to other state-of-the-art methods in terms of G-means and
F-measure.

Several directions of future research are open. Our experimental results indicate
that using the K-means algorithm yield encouraging results. However, we are inter-
ested in exploring other cluster analysis algorithms, since the K-means algorithm may
not be ideal when considering highly imbalanced datasets [19], or when considering
extending our work to the multi-class problems. Thus, we plan to investigate the use
of more sophisticated clustering algorithms to partition the majority instances. Anoth-
er direction would be to consider other ensemble-based techniques. In particular,
ECOC [15] may be a favorable choice as it targets performance improvement in a
binary classification setting. We also plan to extend our experiments with more da-
tasets and compare it with more ensemble algorithms such as RB bagging [20] and
also testing other base learning algorithms such as SVM and KNN.

Table 4. F-measure and G-mean of proposed ensemble classifier, ClustFirstClass, compared to
EasyEnsemble, Cluster-oversampling and SBC methods

F-Measure G-Mean
Clust Clust Clust Clust
Dataset . Easy . Easy
First Over SBC First Over SBC
Ensemble Ensemble

Class Sample Class Sample
Ecoli 0.5961 0.5612 0.5088 0.5140 [ 0.8689 0.8658 0.6899 0.8489
Spectrometer | 0.5944 0.6924 0.6740 0.4485 [ 0.8878 0.9064 0.8053 0.8186
Balance 0.1524 0.0793 0.0290 0.1508 [ 0.5223 0.3452 0.0967 0.4971

Libras Move 0.5912 0.4806 0.6652 0.4258 | 0.8451 0.8407 0.8006 0.7372

Arrhythmia 0.7475 0.6360 0.5757 0.5996 | 0.9489 0.8802 0.7548 0.9219

Car Eval. 0.8331 0.3613 0.9566 0.6892 | 0.9918 0.9237 0.9812 0.9792
Yeast 0.2720 0.2613 0.2798 0.2065 | 0.8054 0.8044 0.5095 0.8016
Abalone 0.0449 0.0381 0.0618 0.0315 | 0.7446 0.7309 0.1903 0.6794
Average 0.4790 0.3888 0.4689 0.3832 | 0.8267 0.7872 0.6035 0.7855
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Abstract. The availability of automatic support may determine the
successful accomplishment of many real-world procedures. However, the
underlying process models are too complex for writing and setting up
them manually, and even standard machine learning approaches may be
unable to infer them. Additionally, suitable conditions may that deter-
mine whether some tasks are to be carried out or not. These conditions
may be in turn very complex, involving sequential relationships that take
into account the past history of the process.

This paper presents a First-Order Logic approach to learn complex pro-
cess models extended with conditions. It combines two powerful Induc-
tive Logic Programming systems. The overall system was applied to
learning the daily routines of the user of a smart environment, for pre-
dicting his needs and comparing the actual situation with the expected
one. Promising results have been obtained, that proved its efficiency and
effectiveness, and with a domain-specific dataset.

1 Introduction

Many real-world procedures are nowadays so complex that automatic supervi-
sion and support may be determinant for their successful accomplishment. This
requires providing the automatic systems with suitable process models. How-
ever, these models are too complex for writing and setting up them manually,
and even standard machine learning approaches may be unable to infer them.
The expressive power of these models can be enhanced by allowing them to set
suitable conditions that determine whether some tasks are to be carried out or
not. These conditions may be in turn very complex, involving sequential rela-
tionships that take into account the past history of the process.

This paper presents an approach to learn complex process models extended
with complex conditions on their components. It works in First-Order Logic
(FOL), that allows to express in a single formalism both the models and the
associated conditions. FOL allows automatic reasoning and learning with struc-
tured representations that are able to represent and handle relationships among
the involved entities and their properties. These capabilities go beyond tradi-
tional representations, where any description must consist of a fixed number of
values, such as feature vectors. Our approach is based on the combination of
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two powerful learning systems: WoMan [10, 6], that is in charge of learning the
process model, and InTheLEx [5], that is in charge of learning the conditions.
Compared to [6], here we present for the first time in detail the interaction be-
tween WoMan and InTheLEx, especially as regards the learning and exploitation
of conditions involving (possibly multidimensional) sequential information.

Let us introduce some preliminary notions and terminology. A process is a
sequence of events associated to actions performed by agents [3]. A workflow is
a (formal) specification of how a set of tasks can be composed to result in valid
processes, often modeled as directed graphs where nodes are associated to states
or tasks, and edges represent the potential flow of control among activities. It
may involve sequential, parallel, conditional, or iterative executions [18]. Each
task may have pre- and post-conditions, which determine whether they will be
executed or not [1]. An activity is the actual execution of a task. A case is a par-
ticular execution of actions in a specific order compliant to a given workflow [12].
Process Mining [19]) aims at inferring workflow models from examples of cases.
Inductive Logic Programming (ILP) [17] is the branch of Machine Learning based
on FOL as a representation language.

The rest of this paper is organized as follows. Section 2 introduces the rep-
resentation formalism on which our proposal is based. Then, Section 3 shows
how process models are learned, and 4 describes how they are exploited. Sec-
tion 5 presents experiments that show the effectiveness of the proposed approach.
Lastly, Section 6 concludes the paper and outlines future work directions.

2 Representation

When tracing process execution, events are usually listed as sequences of 6-
tuples (T, E,W, P, A,O) where T is a timestamp, E is the type of the event
(begin process, end process, begin activity, end activity), W is the name of the
workflow the process refers to, P is a unique identifier for each process execution,
A is the name of the activity, and O is the progressive number of occurrence of
that activity in that process [1, 12]. If contextual information is to be considered,
for inferring conditions on the model, we may assume that an additional type of
event ‘context’ can be specified, in which case A contains the logic atoms that
describe the relevant context. The predicates on which such atoms are built are
domain-dependent, and are defined by the knowledge engineer that is in charge
of setting up the reasoning or learning task.

E.g., an excerpt of a ‘sunday’ daily-routine workflow case trace might be:
(201109280900, begin_process, sunday, c3, start, 1)
(201109280900, context, sunday, c3, [john(j),happy(j),hot_temp], 1)
(201109280900, begin_activity, sunday, ¢3, wake_up, 1)
(201109280905, end_activity, sunday, c3, wake_up, 1)
(201109280908, begin_activity, sunday, c3, toilet, 1)
(201109280909, context, sunday, c3, [radio(r),status(r,rs),on(rs),listen(j,r)], 1)
(201109280909, begin_activity, sunday, ¢3, shower, 1)
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(201109282221, end_process, sunday, c¢3, stop, 1)
The activity-related 6-tuples in a case trace can be translated into FOL as a
conjunction of ground atoms built on the following reserved predicates [10]:

activity(S,T) : at step S task T is executed;
next (S’,S5"”) : step S” follows step S'.

Steps represent relevant time points in a process execution; they are derived from
event timestamps, and are denoted by unique identifiers. This formalism allows
to explicitly represent parallel executions in the task flow. So, here sequentiality
is not restricted to be a linear relationship: rather than being simple ‘strings’
of atoms, our representations induce a Directed Acyclic Graph. Given a FOL
case description D and one of its steps 3 (i.e., 3t s.t. activity(5,t) € D), the
presence in D of many next(3,s;) atoms indicates that the execution of s is
followed by the parallel execution of many other tasks corresponding to steps
s;. The presence in D of many next(s;,5) atoms indicates that the parallel
execution of the tasks corresponding to the s;’s converges to the execution of s.
A sequential execution, having just one input task and one output task, is the
special case of a single s; (or s;).

In addition to the flow of activities, many other kinds of sequential infor-
mation may be relevant in a process. So, we allow our descriptions to include
sequential relationships along several dimensions (e.g., time, space, etc.). We call
events the terms in a FOL description on which sequential relationships can be
set (so, steps are a special kind of events). Just like any other object, events may
have properties and relationships to other events and/or objects. We reserve the
following predicate to express sequential information among events [9]:

next (I1,I5,D) : event Iy immediately follows event I; along dimension D.

In this representation, the sequential relationship among steps becomes just one
of the allowed dimensions. We consider it as the default dimension, so we still
use for it the next/2 predicate, without an explicit dimension argument.

For instance, let us assume that the execution of activities and the sensing
of the context are asynchronous. Then, we may use an independent dimension
context for the flow of contextual information, and associate each activity-related
event to the corresponding context description using a context/2 predicate.

Thus, the FOL translation of the previous sample trace might start as follows:

activity(sy,start), start(start), context(sy,co), john(j), happy(co,j),
hot_temp(co), next(sy,s0), activity(so,wake_up), wake_up(wake_up),
context(sp,co), next(sp,s1), activity(si,toilet), toilet(toilet),
context(sy,co), next(co,c1,context), radio(ci,r), status(cy,r,rs),
on(ci,rs), listen(ci,j,r), next(sp,s2), activity(sz,shower),
shower (shower), context(s2,c1), ..., activity(se,stop)

to be read as: “The first activity in this Sunday process is wake_up, that takes
place in the initial context, where the temperature is hot and John is happy. The
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next activity, toilet, follows wake_up and takes place in the same context. Then,
the context changes, with the user listening to the radio, which is on. While
toilet is still running, the new parallel activity shower starts, associated to the
context in which the user is still listening to the radio.” And so on...

The structure of a workflow is expressed as a set (to be interpreted as a
conjunction) of atoms built on the following predicates:

task(t,C) : task t occurs in cases C, where C' is a multiset of case identifiers
(because a task may be carried out several times in the same case);

transition(/,0,p,C) : transition p, that occurs in cases C' (again a multiset),
consists in ending all tasks in I and starting all tasks in O.

In the previous example, we might have:

task(start,{c3,...}). |transition({start},{wakeup},t0,{c3,...}).
task(wake_ up,{c3,...}).|transition({wake up},{toilet,shower},t1,{c3,...}).
task(toilet,{c3,...}).
task(shower,{c3,...}).

task(stop,{c3,...}).

As regards conditions, each activity(s,t) atom in the case description gen-
erates an observation, to be used as a training example during the learning
phase, or as a test one during the monitoring phase. For the pre-conditions, the
observation includes only the atoms in the description associated to steps up to
s. In the ‘sunday’ case, activity(sy,shower) yields:

shower(s2) :- activity(s,,start), start(start), context(sy,co), john(j),
happy(co,j), hot_temp(co), next(sy,s0), activity(so,wake_up),
wake_up (wake_up), context(sp,co), next(sp,s1), activity(si,toilet),
toilet(toilet), context(si,cp), next(cop,ci,context), radio(ci,r),
status(ci,r,78), on(ci,rs), listen(ci,j,r), next(so,s2),
activity(sz,shower), shower(shower), context(sz,c1).

Sequential relationships are transitive. So, while observations are always ex-

pressed in terms of next/3 and next/2 relationships, conditions are expressed
in terms of a more general sequential relationship after/3:

after(ly,l2,D) : Iy (possibly indirectly) follows I; along dimension D.

representing the transitive closure of immediate adjacency, and defined as:

after(X,Y,D) :- next(X,Y,D).
after(X,Y,D) :- next(X,Z,D), after(Z,Y,D).

Thus, a precondition learned from the previous example might be:
shower (X) :- activity(X,Y), shower(Y), context(X,Z),
radio(Z,T), status(Z,T,W), on(Z,W), after(U,X,default),
start(U), context(U,S), hot_temp(S), after(U,V,default),
activity(V,R), toilet(R), context(V,S), after(S,Z,context).

(in order to have a shower, the radio must be on, and the toilet activity must have
started when the temperature was hot).

Again, in this representation sequentiality is not restricted to be a linear rela-
tionship, and induces a Directed Acyclic Graph for each dimension.
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3 Learning

Given the FOL description D of a case ¢, a model is built or refined as follows:

1. For each activity(s,t) atom in D,

(a) if an atom task(t,C) exists in the current model, then replace it by
task(t,C'U{c}); otherwise, add a new atom task(¢,{c}) to the current
model.

2. For each next(s’,s”) atom in D, indicating the occurrence of a transition,

(a) collect from ¢ the multisets I and O of the input and output task(s) of
that transition (respectively)?,

(b) if an atom transition(/,0,p,C) having the same inputs and outputs
exists in the current model, then replace it by transition(/,0,p,C'U
{c}); otherwise, create a new atom transition(l,0,p,{c}), where p
is a fresh transition identifier.

(c) remove from D the next/2 atoms used for the transition (to avoid that
the same occurrence of the transition is detected for each of such atom).

Differently from all previous approaches, this technique is fully incremental. It
can start with an empty model and learn from one case, while others need a large
set of cases to draw significant statistics. It can refine an existing model according
to new cases whenever they become available, introducing alternative routes
(alternative executions, represented by different transition/4 atoms having the
same I argument, may emerge from the analysis of several cases) or even adding
new tasks if they were never seen in previous cases. This ensures continuous
adaptation of the learned model to the actual practice, carried out efficiently,
effectively and transparently to the users. Noisy data can be handled naturally
by the learned models. Indeed, the probability of a transition is proportional to
the number of cases in which it occurred in the training cases. Each transition
stores the multiset of cases in which it occurred, and the multiset is updated
each time a case is processed. Thus, the weight of a transition is simply the ratio
of the cardinality of its associated multiset over the number of training cases.
While learning the workflow structure for a given case, examples for learn-
ing task pre-conditions are generated as well, and provided to the ILP system.
InTheLEx [5] was chosen both for its compliance with the fully incremental ap-
proach to learning the workflow structure, and because it is also endowed with
a positive-only-learning feature (the typical setting in Process Mining). It was
extended to handle sequential information according to the technique presented
in [9], which is peculiar in the current literature. While most works have focused
on sequential information on a single dimension [13, 14, 15, 16, 2, 11], it works
in a multidimensional setting, and allow complex interrelationships among any
mix of events and involved objects. This means, for instance, that events in dif-
ferent dimensions can be related to each other, which prevents simple extension

! Cases in which |I| > 1 and |O| > 1 represent complex situations where multiple
activities are needed to fire several new activities in the next step, which are not
handled by other systems in the literature.
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of single-dimension approaches to multiple orthogonal dimensions. Also, it goes
beyond strictly linear sequences requiring a total ordering relationship among
events, and allows for ‘parallel’ events along the same dimension. Moreover, it
allows to learn rules in the classical ILP fashion, but allowing preconditions to
include sequential information, while other works classify sequences [13], or infer
predictive models for them [14, 15, 2], or extract frequent patterns [16, 4].
Given two examples for learning conditions involving sequential information
described according to the formalism above, their generalization (in a positive-
examples-only setting no specialization is ever needed) is determined as follows:

1. set an association between a subset of events in the former description and
corresponding events in the latter;

2. generalize the corresponding sequential relationships;

3. generalize the rest of the descriptions consistently with the result of (2).

Since one is usually interested in generalizations fulfilling particular properties
(e.g., the least general ones), an optimization problem is cast where all possible
such generalizations must be computed for identifying the best one.

Unfortunately, step 1 alone introduces a significant amount of indeterminacy
(i.e., many portions of one description map onto many portions of the other):
given two sequences of events S' = (s});=1,. ., and S” = <5;-’>j:1,_“7m, with
n < m, there are > ;'_, (Z) . (7:) possible associations to be checked. It is clearly
unpractical. Thus, a heuristic is used, that directly selects a single, most promis-
ing association to be exploited as a base for steps 2 and 3. It is based on the
intuition that two events should be associated if they are similar to each other,
and that the best association should obtain the highest overall similarity among
all the possible associations. First of all, a description for each event is obtained
as the set of literals that are in a neighborhood of at most ¢ hops from literals
involving that event (where a hop exists between literals that share at least one
argument). Then, the overall association is obtained using a greedy approach: the
similarity of all pairs of descriptions of events, one from each clause, is computed
using the measure proposed in [7]; the pairs are ranked by decreasing similarity,
and the rank is scanned top-down, starting from the empty generalization and
progressively extending it by adding the generalization of the descriptions of each
pair whose association (involving both events and other objects) is compatible
with the cumulative association of the generalization computed so far.

Once the pairs of associated events in the two clauses have been determined,
the corresponding sequential predicates are generalized in step 2. First, we sim-
plify the sequential descriptions, removing all the sub-sequences of useless in-
termediate events that have not been associated and replacing them with ‘com-
pound’ after atoms. Then, these simplified atoms can be generalized.

Finally, in step 3, two clauses are created, each having as a body all non-
sequential literals not used in the event generalization step. These two clauses
are generalized using the standard (non-sequential) algorithm proposed in [7].
Since all the information concerning events was fixed in the previous steps, this
generalization is only in charge of finding the best mapping among the remaining
literals. This introduces additional indeterminacy.
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4 Exploitation

The learned model can be used to monitor a new case and check its compliance,
as described in [6]. As long as the 6-tuples of the case trace are fed to the system,
they are used to build the corresponding FOL case description, and compared
to the model as follows, depending on the type of event.

begin_process : load the corresponding process model; set the current marking
to {start}; pending transitions and pending/finished activities are empty.
begin_activity : add the activity to the set of pending activities; then, check
that the pre-conditions for that activity are satisfied, in which case:
— if the new activity belongs to the pending tasks of a pending partial
transition, delete the activity from the pending partial transition
— if the new activity is in the output tasks of a transition whose input
tasks are all satisfied by the current marking, the transition is not noisy,
and its pre-conditions are satisfied, then ‘apply’ the transition: delete its
input tasks from the current marking and add the output tasks other
than the activity (if any) to a new pending transition.
If the new activity neither belongs to a pending partial transition nor to the
output tasks of an enabled transition, or if any of the pre-conditions is not
satisfied, then it is not compliant with the model and a warning is raised.
Note that, for some models, there might be many valid options (i.e., several
partial transitions to be completed and/or transitions that are enabled by
the current marking). In this case all possible alternatives must be carried to
the next step, and then filtered out when they turn out to be incompatible
with the rest of the execution. An upper bound to the number of repetitions
of loops (if any) can be set (e.g., as the maximum number of repetitions
encountered in the training cases).
end _activity : if the activity is in the set of pending activities then delete it
and add a corresponding token to the current marking, otherwise raise an
erTor.
end _process : if an error was raised by previous events, or the current marking
is not empty, then raise an error; otherwise the FOL case description can be
used to refine the model (if no warning was raised by previous events, then
the refinement just affects the task statistics; otherwise, it causes a change
in the model structure and/or preconditions).

Noisy transitions are those whose associated multiset of cases C;, occurred in a
number of cases that represents a fraction of all n training cases less than the
allowed noise threshold N € [0,1] (i.e., |C¢|/n < N). Indeed, N represents the
minimum frequency threshold under which transitions are to be ignored.
Conditions are checked against the current context and status of the process.
Our approach works by associating the contextual information first, and then
completing the coverage with the sequential information, as follows:

1. apply preliminary coverage check to the non-sequential (i.e., contextual and
cross-event) part of the description, obtaining a covering association E also
including event bindings (there may be many);
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2. complete the coverage check: For all atoms after(X,Y ,D) in the model:

(a) pick the events s and t in the observation associated to X and Y, re-
spectively, using the event association fixed by F;

(b) check that the observation includes a sequence from s to ¢ along dimen-
sion D, not involving other events that have been fixed by E (if any,
this must be unique); if this check fails, backtrack on (1) to find another
covering association.

Step 1 can exploit existing (efficient) coverage procedures for non-sequential
representations. As regards sequence checking, we need to find all paths between
two events in the directed graph induced by the sequence, where nodes are
events and edges connect events between which a sequence atom is present in
the description. This operation can be optimized as follows. Let us consider the
set I of sequence atoms in the observation concerning a fixed dimension.

1. create the sequentiality graph G induced by I;

2. compute the topological sort T of G (i.e., the list of nodes in I in which a
node u appears after a node v if there exists a path from v to u in G);

3. Among all associations A C F between events in the model and events
in the observation, by which the model covers the observation (considering
non-sequential atoms only), find at least one for which the sequential part is
covered, to be checked as follows:

(a) For all sequence atoms after(X,Y,D) in the model:
i. pick events s and t associated to X and Y, respectively, by A;
ii. extract from T the sublist S = [s,...,t] (if ¢ does not follow s in T'
then S is empty, and hence this step fails);
iii. driven by the sequence of events in S, check whether in I there exists
a chain of sequence atoms that leads from s to ¢.

5 Evaluation

The proposed techniques were implemented in YAP Prolog 6.2.2, and tested on
a notebook PC endowed with an Intel Dual Core processor (2.0 GHz), 4 GB
RAM + 4 GB SWAP, and Linux Mint 13 operating system. We evaluated our
approach in a Process Mining task aimed at learning user’s daily routines in a
Smart Environment domain [8]. The learned model will be used to predict his
needs, so that the environment may provide suitable support, and to compare the
actual situation with the expected one, in order to detect and manage anomalies.
For this purpose, we used a real-world dataset taken from the CASAS repository
(http://ailab.wsu.edu/casas/datasets.html), concerning daily activities of
people living in cities all over the world. In particular, we selected the Aruba
dataset, involving an elderly person visited from time to time by her children.
The Aruba dataset reports data concerning 220 days, represented as a sequence
of timestamped sensor data, some of which annotated with a label indicating
the beginning or end of a meaningful activity?.

2 Actually, for one day the activity labels were missing, for which reason the corre-
sponding case was removed from the dataset.
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Fig. 1. Learning curves for the Aruba dataset: model (left) and pre-conditions (right)

We obtained a set of cases by splitting this dataset into daily cases according
to the following logic: a new day starts after the last sleeping activity between
midnight and noon. The 219 case descriptions were filled with contextual in-
formation coming from the status of the various sensors in the house. Three
kinds of sensors are available: movement sensors (identified by prefix ‘m’), open-
ing/closing sensors for doors and windows (identified by prefix ‘d’) and tempera-
ture sensors (identified by prefix ‘t’). Then, the resulting descriptions were used
to learn both the process model and the preconditions for each task, i.e. regu-
larities in context that were present in all executions of each task. The dataset
involved 6530 activity instances (29.68 per day on average), each of which gener-
ated a pre-condition example. The average number of literals per pre-condition
example was 739.85, with a minimum of 16 and a maximum of 2570.

We simulated a real setting in which the system starts from scratch, and
learns the process model from the first day, progressively refining it as days go
by. Each event is checked against the current model to assess its compliance.
In case of non-compliance, a revision of the model is started. In the compliance
check, since all examples are positive, there can be no False Positives nor True
Negatives. Thus, as regards the predictive performance, Precision is always 1,
and Accuracy is the same as Recall. The learning curves are reported in Figure 1.
On the left, the curve shows how many non-compliant transitions were performed
in each day. The fact that peaks become lower and sparser after day 7 confirms
that the learned model converges to the ‘correct’ routine. The analogous curve
for tasks is not shown, since it soon becomes flat at 0 after day 7. On the right,
the curve shows the Accuracy of the pre-conditions learned. It passes 80% after
about 600 examples (i.e., about 20 days), and goes on improving as days go
by until 98.27%. The process model was learned in 497msec (2.27msec per day
on average), including both the check and the learning effort if needed. This
amounts to less than 0.1msec per activity on average. It involved 13 tasks and
96 transitions. The runtime for learning task pre-conditions was 263sec (0.04sec
per example on average). This confirms that the approach can be applied on-
line to the given environment, without causing unnecessary delays in the normal
activities of the system or of the involved people.
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Table 1. Preconditions generated by InTheLEx on the whole dataset

act_Sleeping(A) :- after(_,A,default), context(A,.), activity(A,.).

act Meal Preparation(A) :- after(_,A,default), context(A,.),
activity(4,.).

act_Relax(A) :- context(A, ), activity(A,.).

act_Housekeeping(A) :- after(B,A,default), after(C,B,default),
after(D,C,default), after(_,D,default), context(D,E),
after(E,F,context), after(F,G,context), after(G,H,context),
context(C,F), context(B,G), context(A,H), activity(4,.),
activity(B,.).

act_Eating(A) :- after(_,A,default), context(A,B), statusm014(B,.),
activity (4, ).

act_Wash Dishes(A) :- after(_,A,default), context(A,B),
after(C,B,context), after(_,C,context), activity(A,.).

act_Leave_Home(A) :- after(B,A,default), after(_,B,default), context(B,.),
context (A, ), activity(A,.).

act_Enter_Home(A) :- after(B,A,default), act_Leave_Home(B),
after(C,B,default), after(_,C,default), context(B,D),
after(D,E,context), context(A,E), activity(B,.), activity(A,.).

act_Work(A) :- after(B,A,default), after(_,B,default), context(B,C),
after(C,D,context), status_.m026(D,E), on(E), context(A,D),
activity(4,.).

act_Bed_to_Toilet(A) :- after(_,A,default), context(A, ), activity(4,.).

act_Resperate(A) :- after(B,A,default), after(_,B,default), context(B,C),
after(C,D,context), status.m006(D,E), off(E), status_m008(D,F),
off(F), status.m014(D,G), off(G), status_.m018(D,H), off(H),
status_.m020(D,I), off(I), status.m021(D,J), off(J), statusm022(D,.),
status_.m026(D,_), status_.m028(D,.), status_.m013(C,.), status_m018(C,.),
status_.m019(C,_), status_m020(C,_), status.m021(C,_), context(A,D),
activity(B,.), activity(A,.).

The task preconditions learned by InTheLEx are reported in Table 1. Ac-
cording to these rules, activity Leave_Home may be executed after running at
least two activities, carried out in any two contexts unrelated to each other. As
expected, activity Enter_Home is always carried out after activity Leave_Home,
which in turn must be preceded by the execution of at least two more activi-
ties, carried out in two different but connected contexts. Again this is sensible,
since activity Enter_Home is expected to always follow Leave_Home. As to ac-
tivity Work, it can be carried out after at least any two other activities, but
necessarily in a context in which sensor ‘m026’ (corresponding to the chair in
the studio) has status ‘on’. This suggests that the person, for being at work,
must necessarily be sitting in the studio chair. Activity Bed_To_Toilet has the
same precondition as Meal Preparation previously described. Activity Resperate
may be carried out after any two activities, but requires a very detailed context
(possibly due to its being peculiar, or possibly due to only 6 examples being
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available for it): sensors ‘m006’ (situated on the bedroom door), ‘m008’ (situ-
ated at the bedroom exit), ‘m014’ (situated on the chair near the table in the
dining room), ‘m018’ (situated at the kitchen entrance), ‘m020’ (situated near
the garage entrance), ‘m021’ (situated in the middle of the house in between the
various rooms) must all be in status ‘off’; moreover, sensors ‘m022’ (situated in
the main corridor), ‘m026’ (situated on the studio chair) and ‘m028’ (situated
at the studio entrance) must be involved in any status. Also the context of the
activity preceding Resperate has some restrictions: it must involve, in any sta-
tus, sensors ‘m013’ (situated in the living room), ‘m018’ (situated at the kitchen
entrance), ‘m019’ (situated in the kitchen), ‘m020’ (situated in the living zone)
and ‘m021’ (situated in the middle of the house).

6 Conclusions

Since many human processes are nowadays very complex, tools that provide au-
tomatic support to their accomplishment are welcome. However, the underlying
models are too complex for writing and setting up them manually, and even stan-
dard machine learning approaches may be unable to infer them. Endowing these
models with the capability of specifying conditions that determine whether some
tasks are to be carried out or not is a further source of complexity, especially if
these conditions may involve sequential relationships.

This paper presented a First-Order Logic approach to learn complex process
models extended with conditions, and use the learned models to monitor subse-
quent process enactment. A real-world experiment was run concerning the daily
routines of the user of a smart environment, for predicting his needs and com-
paring the actual situation with the expected one. Positive results have been
obtained, both for efficiency and for effectiveness. In future work, we plan to
further extend and improve the expressiveness of the models, and to apply them
to different complex domains.

Acknowledgments

This work was partially funded by the Italian PON 2007-2013 project
PON02_00563_3489339 ‘Puglia@Service’.

References

[1] R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from
workflow logs. In Proceedings of the 6th International Conference on Extending
Database Technology (EDBT), 1998.

[2] C. R. Anderson, P. Domingos, and D. S. Weld. Relational markov models and
their application to adaptive web navigation. In D. Hand, D. Keim, and R. Ng,
editors, Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-02), pages 143-152. ACM Press,
2002.

60



3]

[4]

[5]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

J.E. Cook and A.L. Wolf. Discovering models of software processes from event-
based data. Technical Report CU-CS-819-96, Department of Computer Science,
University of Colorado, 1996.

F. Esposito, N. Di Mauro, T.M.A. Basile, and S. Ferilli. Multi-dimensional rela-
tional sequence mining. Fundamenta Informaticae, 89(1):23-43, 2008.

F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy theory revision:
Induction and abduction in inthelex. Machine Learning Journal, 38(1/2):133-156,
2000.

S. Ferilli. Woman: Logic-based workflow learning and management. IEEE Trans-
action on Systems, Man and Cybernetics: Systems, 44:744-756, 2014.

S. Ferilli, T. M.A. Basile, M. Biba, N. Di Mauro, and F. Esposito. A general
similarity framework for horn clause logic. Fundamenta Informatice, 90(1-2):43—
46, 2009.

S. Ferilli, B. De Carolis, and D. Redavid. Logic-based incremental process mining
in smart environments. In Recent Trends in Applied Artificial Intelligence, volume
7906 of Lecture Notes in Artificial Intelligence, pages 392-401. Springer, 2013.

S. Ferilli and F. Esposito. A heuristic approach to handling sequential information
in incremental ilp. In AT*IA 2013: Advances in Artificial Intelligence, Lecture
Notes in Artificial Intelligence.

S. Ferilli and F. Esposito. A logic framework for incremental learning of process
models. Fundamenta Informaticae, 128:413-443, 2013.

B. Gutmann and K. Kersting. Tildecrf: Conditional random fields for logical se-
quences. In In Proceedings of the 15th European Conference on Machine Learning
(ECML-06, pages 174-185. Springer, 2006.

J. Herbst and D. Karagiannis. An inductive approach to the acquisition and adap-
tation of workflow models. In Proceedings of the IJCAI’99 Workshop on Intelligent
Workflow and Process Management: The New Frontier for Al in Business, pages
52-57, 1999.

N. Jacobs. Relational sequence learning and user modelling, 2004.

K. Kersting, L. De Raedt, B. Gutmann, A. Karwath, and N. Landwehr. Proba-
bilistic inductive logic programming. chapter Relational sequence learning, pages
28-55. Springer-Verlag, Berlin, Heidelberg, 2008.

K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards discovering struc-
tural signatures of protein folds based on logical hidden markov models. Technical
Report report00175, Institut f ur Informatik, Universit at Freiburg, 2002, June 13.
S.D. Lee and L. De Raedt. Constraint based mining of first order sequences in
seqlog. In Database Support for Data Mining Applications, volume 2682 of Lecture
Notes in Computer Science, pages 155-176. Springer-Verlag, 2004.

S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295-318, 1991.

W.M.P. van der Aalst. The application of petri nets to workflow management.
The Journal of Clircuits, Systems and Computers, 8:21-66, 1998.

A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering workflow models
from event-based data. In V. Hoste and G. De Pauw, editors, Proceedings of
the 11th Dutch-Belgian Conference of Machine Learning (Benelearn 2001), pages
93-100, 2001.

61



Visualization for Streaming Networks
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Abstract. Sampling from Large Scale Social Networks is a hot topic in
recent research. In telecommunications services, there are many networks
with millions of nodes and billions of edges. They are complex and dif-
ficult to analyze. Sampling, together with vizualization techniques, are
required for exploratory data analysis and event detection. Until now,
to visualize and analyze the massive network data we would rely on
aggregation of communities, k-Core decompositions and matrix feature
representations, among others. In social network visualization and anal-
ysis the goal is to get more information from the data with the least
alienation possible from the actors of the network. Our contribution is
to treat the data like a continuous data stream and represent it by sam-
pling the full network. We also propose group visualization and analysis
of influential actors in the network by using a Top-K representation of
the network data stream.

Keywords: Sampling Large Scale Social Networks; Data Streams; Telecommu-
nication Networks.

1 DMotivation

Large network visualization is known to be a hard problem to solve with typical
hardware or software sets. It is vulgar to see software and hardware suffer to
output networks with more than a few thousands nodes and edges. The software
and the observer himself seems to be the main constraints in visualization tasks of
large networks. It must be said that even if the software is capable of outputting
a network of millions of nodes on the screen it is a very hard task for the observer
to gather valuable information from the visual outcome. This document main
contribution is our proposal to treat the data as a stream of networked data with
Landmark, Sliding Windows and Top-K algorithm implementations to help the
observer visualize the network and be able to acquire knowledge from the output.
The main goal is to sample the stream by highlighting the Top-K nodes thus
providing clear insight on the most active nodes in the network. This document
presents a Telecommunications network data case study for application of our
methods. The network size is of several millions of nodes and edges. The results
were obtained with a vulgar commodity machine.
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2 Related Work

2.1 Visualization

The definition of large scale networks regarding number of nodes or edges varies
a lot. While researching this field it is usual to see researchers considering a
large scale network ranging from something like some dozens of thousands of
nodes to millions of nodes and billions of edges. The main goal of any graph
visualization technique is to be visually understandable. It is also desirable that
the information it outputs to the viewer is sufficiently clear and objective to
convey knowledge acquiring. Some studies have been performed to study two
types of graph representations, node-link and matrix graph representations like
in [13]. Those studies concluded visualization comprehensibility is highly related
with the network size (number of nodes) and density (average number of edges
per node). Node-link representation is mentioned to have low performance with
dense networks and it requires aggregation methods reducing density to increase
visual comprehensibility of output. Matrix representation is usually combined
with hierarchical aggregation [1]. The hierarchical clustering implies the group-
ing of nodes but not the ordering of them. The main goal of this representation
type is to have a fast clustering algorithm and meaningful clusters of the net-
work. Matrix representation methods can also rely on the reordering of rows
and columns of the matrix representation instead of just clustering the nodes
and there are several examples of these implementations in [11]. This type of or-
dered matrix representation might enhance the structure visualization and give
more information to the viewer because the data is not only clustered. On the
other side this solution is difficult to use with networks of millions of nodes due
to the computations needed to reordering of matrix. More recently some inno-
vations were introduced for fast reordering mechanism, data aggregations and
GPU-accelerated rendering to deliver solutions with higher scalability [6]. Other
solutions rely on controlling the visual density of graph view and limiting the
clusterization overlap probability to low levels in [17]. Moreover a new probabil-
ity based network metric were introduced in [9] to identify potentially interesting
or anomalous patterns in the networks. In the next sections we will write our
approach by inspecting Top-K actors in the network and also to the case study
in hands.

2.2 Top-K Networks

There is some effort by the scientific community to achieve efficient ways of data
streams summarization. Regarding streaming networks the exact solution im-
plies the knowledge of all the nodes and edges frequency, therefore this exact
solution might be impossible to achieve in large scale networks. The problem of
finding the most frequent items in a data stream S of size NN is, roughly put, the
problem to find the elements e; whose relative frequency f; is higher than a user
specified support ¢N, with 0 < ¢ < 1 [7]. Given the space requirements that
exact algorithms addressing this problem would need [3], several algorithms were
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already proposed to find the top-k frequent elements. Generically, there are two
different types of approaches: Counter-based and Sketch-based [16]. Counter-
based techniques rely on the updates of individual counters for each element in
a specific data subset. If there is no counter for some particular element and
therefore it is not being monitored some algorithm action is taken. Counter-
based techniques are said to have fast per-element processing and provable error
bounds [16]. Sketch-based techniques are different from Counter-based topolo-
gies because they do not monitor a subset of elements but rely on a frequency
estimation for all elements by using bit-maps of counters [16]. Therefore they
are more expensive in terms of processing than the Counter-based implemen-
tations. Moreover Sketch-based implementations do not guarantee frequency es-
timation/approximation errors. Simple counter-based algorithms such as Sticky
Sampling and Lossy Counting were proposed in [15], which process the stream
in reduced size. Yet, they suffer from keeping a lot of irrelevant counters. Fre-
quent [5] keeps only k counters for monitoring k elements, incrementing each ele-
ment counter when it is observed, and decrementing all counters when a unmoni-
tored element is observed. Zeroed-counted elements are replaced by new unmon-
itored element. This strategy is similar to the one applied by Space-Saving [16],
which gives guarantees for the top-m most frequent elements. Sketch-based al-
gorithms usually focus on families of hash functions which project the counters
into a new space, keeping frequency estimators for all elements. The guarantees
are less strict but all elements are monitored. The CountSketch algorithm [3]
solves the problem with a given success probability, estimating the frequency of
the element by finding the median of its representative counters, which implies
sorting the counters. Also, GroupTest method [4] employs expensive probabilis-
tic calculations to keep the majority elements within a given probability of error.
Although generally accurate, its space requirements are large and no information
is given about frequencies or ranking.

We adopted the Space-Saving algorithm described in [16] throughout our
Top-K implementation because it is a memory efficient implementation and guar-
antees most active users which is our goal.

3 Case Study

The characteristics of the large scale data will be presented in this section.
Telecommunication networks generate large amount of continuous data from
phone users and network equipment. In this case study we used CDR (call detail
records) log files retrieved from equipment distributed geographically. The net-
work data has, on average, 10 million calls (edges in the social network) per day.
This represents an average of 6 million of unique users (nodes in the network)
per day. Each edge represents a call between A and B phone numbers. We had
available 135 days of anonymized data. For each edge/call there is a timestamp
information with the date and time with resolution to the second representing
the beginning of the call. The volume of data speed ranges from 10 up to 280
calls per second usually around mid-night and mid-day time, respectively.
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3.1 Data Description

In a first analysis, we look for the distribution of calls. We started by counting
the number of calls from A—B in one day of the data. This operation was done
with a MySql database query by selecting pairs of caller and receiver numbers
and counting the occurrences of those pairs in the database. The obtained results
imply a compressed representation of the original network i.e. without repeated
edges. After the previous operation we studied the distribution of the aggregated
data and concluded that this representation has a Power Law distribution [2] as
can be seen in Fig. 1(left). Therefore we can expect a high number of single calls
between some A—B numbers and a low number of many calls between A—B
numbers per day.

Distribution for A->B calls Distribution for A->B calls (Log Log Plot)
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Fig. 1. A—B Calls Distribution (left) and respective Log-Log Plot (right)

We then studied the Log-Log representation of the distribution per day of
aggregated data as seen in Fig. 1(right). With this representation we can visualize
an approximation to a monomial.

For the received and caller calls distributions of the original data with this
same representation method we could also obtain a monomial and we could also
conclude both distributions follow a Power Law distribution by using the method
to test the Power Law hypothesis in [8].

The previous Figures provides us a visualization of an important data charac-
teristic which is the great amount of isolated calls between some pairs of numbers
and a low amount of repeated calls between them. We conclude it is logical to
disregard these isolated calls to improve visualization and analysis quality as we
will later see in this document with the Top-K visualization method.

3.2 Landmark Windows

Landmark Window Algorithm 1 provides the representation of all the events that
occur in the network starting at a specific time stamp, for example 01h48m09s
of 1st January 2012.
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Algorithm 1 Landmark algorithm Pseudo-Code
Input: start, wsize, tinc > start timestamp, window size and time increment
Output: edges
t R+ {} > data rows
E+ {} > edges currently in the graph
R + getRowsFromDB (start)
new-time < start
while (R <> 0) do
for all edge € R do
ADDEDGETOGRAPH (edge)
E + E|J{edge}
end for
new_time < new_time + tinc
R + getRowsFromDB (new_time)
: end while
. edges < F

_ ==
[ I I e

This type of representation is not very useful because it implies a crescent
number of events outputted on the screen and comprehensibility lowers as this
number reaches and surpasses some thousands of events. This landmark imple-
mentation is however useful in other contexts like for example if user network
is relatively small and the user wants to check all events in the network. If the
user wants to follow the evolution of a large network events the implementation
described in the next subsection is better.

3.3 Sliding Windows

With the need to treat the large data stream we did a dynamic sample rep-
resentation of the data designated by sliding window. This sliding window is
defined as a data structure with fixed number of registered events. Each event is
a call between any particular pair of phone numbers. As these events have time
stamps the time period between the first call and the last call in the window
is easily computed. The input parameters of this algorithm are start date and
time and also the maximum number of events/calls the sliding window can have.
The SNA model used in this implementation is full network directed since any
nodes in the network are outputted to the screen and for the particular window
of events[10].

Visually, the example result can be seen in Fig. 2. In this representation
several nodes appear bigger and that represents more received/made calls by
these particular numbers. This is the representation of a window with 1000
events/calls for a period of time beginning at 00h01m52s and until 00h02m40s.
The reader can check the evolution of the network and visually and immediately
conclude that the anonymized brown, dark blue and light blue are the nodes
with more influence in this window of time.
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Stop Layout | | Rescale Graph | info: 2014-01-25 13:09:50 | Average Data Speed in Window: 21.84 calls/second | Window Limits Start: 2012-07-05 00:01:52 to End: 2012-07-05 00:02:40

Fig. 2. Visualization of the phone calls using a Sliding Window approach

[ Star Layaut | | Rescale Graph | info: 2014-01-25 13:10:20 | Average Data Speed in Window: 21.51 calls’second | Window Limits Start: 2012-07-05 00:02:41 to End: 2012-07-05 00:03:30

Fig. 3. Visualization of the phone calls using a Sliding Window approach

One can also see the connection between the dark blue node and the brown
node being established in the represented window. Fig. 2 also displays the average
data speed in the window i.e. the speed was approximately 22 calls per second.
This average data speed is calculated regarding number of events/calls in the
window of events and the time period between the first event time stamp and
the last event time stamp represented in the visualized window. Throughout
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other experimental conditions for example with windows around mid-day we
experienced data speed increases with more calls per second. Considering these
data speed changes and after several experiments with window size parameter
we concluded that it should not be smaller than approximately 100 events and
also not bigger than approximately 1000 events. With the minimum data speed
conditions, 100 events represents a window period of around 10 seconds of events.
With the maximum data speed and a window of 1000 events it represents around
5 seconds of calls data. Less than 100 events with this data represents changes
in the window that are too fast to be visually comprehensible and more than
1000 events represents too much events decreasing visual comprehension of the
screen output.

Fig. 3 represents the next window between 00h02m41s and 00h03m30s. From
Fig. 2 we can visually check the evolution of the network and immediately con-
clude that the anonymized brown, dark blue and light blue are the nodes with
more influence in this window of 1000 events.

Algorithm 2 Sliding Window algorithm Pseudo-Code

Input: start, wsize, tinc > start timestamp, window size and time increment
Output: edges

1: R« {} > data rows
2: E«{} > edges currently in the graph
3V {} > buffer to manage removal of old edges
4: R + getRowsFromDB (start)

5: new_time < start
6:
T
8

p<{}
while (R <> 0) do
for all edge € R do

9: ADDEDGETOGRAPH (edge)

10: E + EJ{edge}

11: k < 1+ (p mod wsize)

12: old_edge < V[k]

13: REMOVEEDGEFROMGRAPH(old_edge)
14: E + E\ {old_edge}

15: V[k] + edge

16: pp+1

17: end for

18: new_time < new-time + tinc

19: R + getRowsFromDB (new_time)
20: end while
21: edges <+ FE

3.4 Top-K Networks

Algorithm 3 represents our version of the Top-K space saving algorithm. The
space-saving algorithm is one of the most efficient one-pass algorithms to find
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the most frequently occurring items in the stream. In our case-study, we are
interested in continuously maintain the top-k most active phone users. Activity
can be defined as making a call, receiving a call, or communications pairs of
users. In this section, we restrict the analysis to the most active calling users.

Algorithm 3 Top-K algorithm Pseudo-Code for made calls inspection

Input: start, k_param, tinc > start timestamp, k parameter and time increment
Output: edges
1: R+ {} > data rows
2: E«{} > edges currently in the graph
3: R« getRowsFromDB (start)
4: new_time < start
5: while (R <> 0) do
6: for all edge € R do
7 be fore < GETTOPKNODES()
8: UPDATETOPNODESLIST(edge) > update node list counters
9: after < GETTOPKNODES()
10: maintained < before(after
11: removed < before \ maintained
12: for all node € after do > add top-k edges
13: if node C edge then
14: ADDEDGETOGRAPH(edge)
15: E < EJ{edge}
16: end if
17: end for
18: for all node € removed do > remove non top-k nodes and edges
19: REMOVENODEFROMGRAPH(node)
20: for all edge € node do
21: E + E\ {edge}
22: end for
23: end for
24: end for
25: new-time <— new-time + tinc

26: R + getRowsFromDB (new_time)
27: end while
28: edges < E

For this representation the input parameters of this algorithm are start date
and time and also the maximum number of nodes to be represented (the K
parameter). From the inputted start date and time the Top-K implementation
would visually output the evolving network of the Top-K actors. The user has
also the option to choose to inspect the Top-K network of the numbers that
initiate calls, the numbers that receive calls and finally the Top-K representation
of the A—B calls. From now on and in this document we define the caller number
as the main actor for our Top-K model and we will only provide results and
experiments for this situation. Therefore the weight of each actor is related to
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the number of made calls by each actor i.e. the number of edges representing
initiated calls by the focused network phone number.

Fig. 4 represents the output of the Top-100 nodes or phone numbers with
more made calls until 00h44m33s. The program started running at midnight of
the first day of July 2012 and shown the 100 most active phone numbers in that
period.

Start Layout | | Rescale Graph | info: 2014-01-25 14:51:11 | Window Limits Start: 2012:07-01 00:00:00 to End: 2012-07-01 00:44:33

Fig. 4. Top-100 numbers with more made calls and their connections without running
the layout algorithm

Fig. 5 represents the output of the Top-100 anonymized nodes or phone
numbers with higher number of made calls but now with the layout algorithm
running. The output only considers algorithm results until 01h09m45s.

ForceAtlas2 was the chosen layout algorithm. This layout algorithm has some
good characteristics [12], [14]. These special ForceAtlas2 characteristics are:

— Continuous layout algorithm, that allows the manipulation of the graph while
it is being rendered. It is based on the linear-linear model where the attrac-
tion and repulsion are proportional to distance between nodes. The conver-
gence of the graph is considered to be very efficient once that features an
unique adaptive convergence speed.

— Proposes summarized settings, focused on what impacts the shape of the
graph (scaling, gravity...). It is suitable for large graph layout because it
features a Barnes Hut optimization (performance drops less with big graphs).

This layout algorithm although being reported to be slow with more than
dozens of thousands nodes is perfectly capable of outputting the layout of the
used windows sizes throughout all our experiences. As explained before it is
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Start Layout | | Rescale Graph | info: 2014-01-25 15:09:41 | Window Limits Start: 2012:07-01 00:00:00 to End: 2012-07-01 01:09:45
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Fig. 5. Top-100 numbers with more calls and their connections with layout algorithm
running

expected with our data that the windows size do not get much bigger than
1000 events for the Sliding Windows representations and also K parameter lower
than 100-200 nodes for the Top-K representation. Numbers much higher than
these start to turn the output less understandable and the layout algorithm also
becomes slow.

4 Conclusions

This document tries to expose a new type of treatment for Large Scale Telecom-
munications Networks visualization. With the use of data time stamps we ap-
proach the data with a streaming point of view and try to visualize samples of
data in a way that is both understandable to the viewer and also allows him /her
to gather knowledge from the visual output.

Landmark Windows experiments proved to suffer from the problems we wish
to avoid i.e. low visual comprehensibility of the network and even memory issues
with the software. This happens when the number of nodes and edges exceeds
dozens of thousands of nodes. With our data this number of nodes represented
in the screen typically corresponds to a time period of just a few minutes. Slid-
ing windows were used as a way to continuously check for the full network
events. Sliding Windows allow us to continuously inspect temporal evolution of
the networks. The Top-K implementation is a very good approach to our data
presenting a Power Law distribution for calls. This allows us to focus on the
influential individuals and discard isolated calls which are the majority of calls
in our data. Finally we conclude that our method for evolving networks visual-
ization, specially with Sliding Windows or the Top-K model is a light method to
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visualize massive networks. The use of a vulgar commodity machine made pos-
sible to simulate a data stream and achieve visualization results very proximate
to the node-link level. This means we tried avoiding other types of representa-
tions previously mentioned in this document’s related work. These other types
however use hierarchical aggregation of features, for example node communities
that we could also add i.e. simultaneously make community detection of the net-
work and output the network with added information to the node-level. This is
true for communities, centrality measures like betweeness or closeness centrality
could also be added to the node information complementing its visualization on
the screen.

The goal and future work is to use this kind of real time data streaming
leveraging telecommunication systems and being able to visualise the evolving
network in real time. This can lead to applicable uses for fraud detection by
inspection of Top-K users in the network or commercial purposes by detecting
central actors in the network for example. If more information was available in
the data it could also be added to the visual output. A simple mouse pointer over
the node and the additional node information could be interactively checked by
the system user. Future work also includes testing the models with time decay
factors to be possible to use for example the Landmark model, giving more
importance to recent data and disregarding old data.
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Abstract. We present a new approach to mine dependencies between
streams of interval-based events that links two events if they occur in a
similar manner, one being often followed by the other one in the data.
The proposed technique is robust to temporal variability of events and
determines the most appropriate time intervals whose validity is assessed
by a x? test. TEDDY algorithm prunes the search space while certifying
the discovery of all valid and significant temporal dependencies.

1 Introduction

The recent breakthroughs in sensor technology have given users the ability
to monitor many events in real time producing multiple heterogeneous data
streams. This highly innovative context has been a fruitful source of motivation
for the development of many data stream management and analysis techniques
that extend classical pattern mining techniques to be able to mine the data faster
than the data generation process. In this paper, events are characterized by a set
of intervals in which they occur and we aim at identifying temporal dependen-
cies between them. Two events are linked if the intervals of one are repeatedly
followed by the intervals of the other one. Considering time intervals makes it
possible to improve existing time-point based approaches by (1) better handling
events that are rare but occur for a long period of time; (2) being more robust
to the temporal variability of events; (3) allowing the discovery of sophisticated
relations based on Allen’s algebra [I0]. Our interval-based approach also deter-
mines the most appropriate time-delay intervals that may exist between them.
Valid and significant temporal dependencies are mined: The strength of the de-
pendency is evaluated by the proportion of time where the two events intersect
and its significance is assessed by a x? test. As several intervals may redundantly
describe the same dependency, the approach retrieves only the few most specific
ones with respect to a dominance relationship. Discovering all valid and sig-
nificant temporal dependencies is challenging since, for every couple of events,
all possible time-delay intervals have to be considered. Therefore, we propose
an efficient algorithm TEDDY, TEmporal Dependency DiscoverY, that benefits
from different properties in order to prune the search space while certifying the
completeness of the extraction.
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Fig.1. An example.

2 Temporal dependencies

Data streams are generally considered as temporal sequences of time-point events,
S =< (a,t) >, that is to say sequences of couples made of a nominal sym-
bol a € A, and a time stamp t € T,, with T, the discrete time of observa-
tion. For example on Fig. [1} A = {open, close} and the time-point events are
< (open, 1), (close,2),--- ,(close,9) >. But, in many application domains, this
is the time interval between time-point events that conveys the most valuable in-
formation. For example, the time intervals during which a door is open may be in
temporal dependency with the detection of a moving object by a camera. There-
fore, it can be interesting to examine the intervals associated to these events.
A point-based event sequence S is turned into as many interval-based event se-
quences as there are symbols a € A. The resulting interval-based sequences are
denoted by capital letter A. Thus, the interval-based sequence associated to the
event a is denoted A and is defined by:

A=< [ti,t“_l) | ti,tiv1 € Ts > where Vit € ([ti;ti+1) ﬂTS), (a,t) es

Following the example on Fig. the interval set associated to the event
open is Open door =< [1,2), [4,5), [8,9) > and the one associated to close
is Closed door =< [2,4), [5,8) >. The significance of an interval-based event,
called event hereafter, is evaluated by the sum of the lengths of its intervals:
len(A) =31 ;.. ealti+1 — ;). On Fig. |1} len(Open door) = 3

The dependency of two events A and B is evaluated on the basis of the
intersection of their intervals: len(A N B) = len(< [t;, ti41) N [t;,tj+1) >) with
[ti,tiv1) € A and [t;,t;41) € B). However, two events A and B can be in
temporal dependency A — B while not being synchronous. It happends when B
is time-delayed with respect to A. To capture such dependencies the intervals of
B may undergo some transformations so as to better coincide with the intervals
of A: (1) B can be shifted of 8 time units so as to maximize its intersection with
A (the two end-points of the intervals are advances of 8 time units), and (2) B
can be slightly extended so as to make the temporal dependency measure more
robust to the inherent variability of the data (the first end-point is advanced
of o time units and the second end-point is advanced of S time units, with «
slightly greater than 3): BI*fl =< [t; — a,t;41 — B) > with [t;,t;41) € B and
a>fp>0.
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2.1 Temporal dependency assessment

Given a shifting interval [, 5], the temporal dependency of A 18l B is evalu-
ated by the proportion of time where the two events simultaneously occur over
the length of A:

. o8]
len(A)

We can observe that conf(A 1N B) is equal to 1 iff each interval of A is

included in an interval of BI*#]. To statistically assess the value of conf(A LN

B), we propose to perform a Pearson’s chi-squared test of independence [§]. The
test determines whether or not the occurrences of A and Bl*#] are statistically
independent over the period of observation T' defined by T = [tyegin, tena) With

thegin = min{ min ¢;, min ¢;} and tepg = max{ max ¢;41, max
[titiv1)€EA  [tj.tj4+1)€EB [titi+1)€A [tj tj+1)EB

A given time point of T' might belong or not to an interval of A. These two
possible outcomes are denoted A and A. Table (1| (top) is the contingency table
O that crosses the observed outcomes of A and Bl*#!. The null hypothesis states

Bl Bl
A [len(A N B*AT) len(A) — len(A N BI*AT)
A |len(B™") —1en(AN B [len(T) —len(A) —len(B™ ") +len(AN B> 7T)

Matrix O of observations.

Blosl Bla.b]
A len(BI*Al)xlen(A) (1en(T)—1en(B!*PT)) xlen(A)
~ len(T) len(T)
A | len(B!*#) x (len(T) ~len(4)) (1len(T)—1en (B> P1)) x (T—len(A))
len(T) len(T)

Matrix E of expected outcomes under the null hypothesis.

Table 1. x? statistic computation.

that the occurrences of A and B[®#] are statistically independent: If we suppose

that A occurs uniformly over T, there are iZEE?; chances that event Bl*#! occurs

at the same time. As B[*f] occurs during len(B[a’B]) time stamps, the expected
number that Bl*#] occurs simultaneously with A under the null hypothesis
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foc,]
W. The three other outcomes under the null hypothesis are

constructed on the same principle. All these expected outcomes E are given in
table [1| (bottom). The value of the statistical test is

2 2
x2=y"% (05 ;‘Eij)z
i=1 j=1 v

B len(T) (len(T) len (A N B[a’ﬂ]) — len(A)len(B[O‘vﬁ]))2
~ len(A)len(BleA)(len(T) — len(A))(len(T) — len(BlAl))

is

(1)

The null distribution of the statistic is approximated by the x? distribution with
1 degree of freedom, and for a significant level of 5%, the critical value is equal
to X3 g5 = 3.84. Consequently, X2 has to be greater than 3.84 to establish that
the intersection is sufficiently large not to be due to chance. From equation
we derive the following quadratic equation in len (A NnB [aﬁ});

2
<1en(T) len (A N B[a,B}) - len(A)len(B[“’ﬁ])) >

.84
%len(A)len(B[o"m)(len(T) —len(A))(len(T) — len(Bl*AlY)
which is satisfied iff 0 < len (AN Bl*A) < Ny or len(T) > len (AN Bl*Al) >
N2, N1 and Ny being the roots of this equation. Intersection values that range be-
tween 0 and Ny are much smaller than the ones expected under the null hypoth-
esis. Such values can be used to detect anomalies, but, in the following we focus
on the intersection values that are unexpectedly high. Therefore, we conclude

that a temporal dependency A M) B is valid iff conf(A oAl B) > leg("‘A).
As the x2 test only works well when the dataset is large enough, we use the
conventional rule of thumb [8] that enforces all the expected numbers (cells in

Table [1f (bottom)) to be greater than 5.

2.2 Significant temporal dependencies selection

For two events in temporal dependency, a huge number of shifting intervals
[, B] may exist that result in valid temporal dependencies. These intervals may
describe distinct temporal dependencies (e.g., different paths may exist between
two motion captors), but they can also depict the same phenomenon several
times. Redundancy mainly relies on confidence monotonicity:

Property 1 (Confidence monotonicity). Let A and B be two events and [aq, 81],
[z, B2] be two shifting intervals. If [ay, £1] C [z, 2], then conf(A M B) <

conf(A lozf2], B).

Proof. [y, B1] C [, B2] implies that Ble1:#1l C Ble2:#2l and len(BlrA1lN A)

<
len(Bl*>#21 0 A). As a result, conf(A lonful, B) < conf(A loz 2], B). O
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To best describe the temporal dependencies of two events while avoiding the
pattern redundancy, we consider the intervals that have (1) a high confidence
value and (2) be as specific as possible with respect to the inclusion relation.
This leads to the following definition of the dominance relationship:

Definition 1 (Dominance relationship). We say that A 1Bl B gomi-

nates A M B, denoted =<, iff [a1, 81] C [aa, B2] and

| _ conf(4 " B) len(Bl*2])

1
I(B[O‘Q”BQ])

2

conf(A loz ol B) ?
The rationale behind this definition is that when [ay, 81] dominates [as, 53], the
loss of the confidence measure of [y, 1] is less than the reduction of its interval
set length and thus Ble2#21\1.511 0 A is almost empty. Indeed, if the reduction
of the interval length of BleAl g uniformly distributed over [tpegin, tend], then
the length of its intersection with A will be reduced in the same proportion.
But, if the reduction mainly occurs when A does not occur, then the length of
its intersection with A decreases less, as stated by equation .

This dominance relationship makes it possible to refine an interval while
controlling the loss of the confidence measure. If an interval reduction leads to a
significant loss, then the refinement process has to be stopped, since the portion
of A non covered by the interval will not be subsequently either. Therefore,
significant temporal dependencies are the most specific temporal dependencies
that dominate all their supersets:

Definition 2 (Significant temporal dependencies). For two events A and

B, let X be the set of temporal dependencies dj, g = A oAl B such that (i)
dja,5) dominates all of its supersets, and (ii) every superset of djo g dominates
its supersets as well:

Y ={dja,,p,] | V [z, B2] such that o, B1]
and Y [as, B3] such that [asg, Bs]

[OLQ,BQ], d[al,,@ﬂ = d[az,ﬁz]

-
g [a?nﬁ?)]? d[ocz,,@z] j d[QByBS]}

Temporal dependencies that belong to the positive border of (X, <) are said to be
significant.

Property 2 (X-belonging monotonicity). Let [a1,81] C [ag,B2]. From defini-
tion we can derived that, if d|,, g, belongs to X, then d|, g,] € X

3 Efficient Temporal Dependencies Discovery

Discovering temporal dependencies is time-consuming for large volumes of data.
Considering that there is no meaning to look for temporal dependencies with
large time lag, we restrict the search of shifting intervals [, 8] in [tmin, tmaz)
set by the end-user. A naive algorithm, that looks for dependencies between
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two events A and B, will explore all possible time shift intervals included in
[tmin, tmaz], whose number is in ©((tmaz —tmin)?). For each interval, it computes
its confidence value in ©(#I), where #I is the number of intervals of A or B.
Such an algorithm has to be executed with a relatively high frequency over
data stream batches of length T. Our proposed algorithm TEDDY, TEmporal
Dependency DiscoverY, (1) takes advantage of the monotonic property of the
confidence measure, as stated in property [l} (2) exploits an upper bound on
the confidence measure, whose complexity is O(1); (3) explores the search space
using a level-wise approach in order to discover significant temporal dependencies
while computing the confidence value of each interval at most once.

Algorithm 1 TEDDY

Require: IS a set of interval-based sequences, [toegin; tend), and [tmin, tmaz]-
Ensure: All significant temporal dependencies over I.S.

1: for all A€ IS do

2 for all B € IS do

3 Border + 0

4: Ca.l’ldo — [tmin, tmam]

5: d<+0

6: while Candy # 0 do

7 Promg <Pruning based_on_confidence(Candg)

8 [Ya, Border] +Pruning based_on_dominance(Promg, Border)
9: Candg4+1 <Candidate_generation(Xy)

10: d<—d+1

11: end while

12: Significant 4 p —Compute_valid_and_significant_TD(Border)
13: end for

14: end for

15: return |J, gSignificantap

TEDDY is sketched in Algorithm [I} For every pair of events, it explores the
temporal dependencies in a breadth-first approach. The inclusion operation over
time shift intervals defines a semi-lattice, where intervals at given depth d have
the length ¢4 — tmin —d and are denoted Candgy. Line 7, Promy is computed as
the restriction of Candy to the dependencies whose confidence value is greater
than the lower bound defined in property [4] If a dependency dominates its two
ancestors, then it is a promising dominant candidate and thus belongs to Xy (line
8). As such, it is added to the Border set whereas its ancestors are removed.
Line 9, d+ 1-depth candidates are generated if their d-depth ancestors belongs to
4. Line 12 processes Border to only extract valid and significant dependencies.
This four most important steps are detailed below.

Candidate time shifts generation: As stated in property [l the confidence
measure increases monotonically with time shift interval inclusion. In addition,
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property [2|stipulates that X-belonging is also a monotonic property. So, to prune
the search space made of temporal dependencies that are not valid or not signif-
icant, the interval semilattice is traversed from the largest interval down to the
singletons. If a time shift interval is not valid or does not dominate one of its
direct ancestors, then none of the intervals included in it can be a solution. As
each interval at depth d + 1 is included in at most two intervals at depth d, we
generate d + 1-depth candidates by intersecting two elements of 3.

Pruning-based on confidence measure: In order to avoid the computation
of the confidence values of unpromising dependencies, we consider the follow-
ing property, that bounds the difference of confidence between two time shift
intervals:

Property 3 (Bounds on confidence). Let A and B be two events, and [y, £1]
and [aw, B2] be two time shift intervals:

(a1 — az| + |B1 — Ba]) X #B
len(A)

ay,B1] ) s, 52]

|conf(A LNy conf(A B)| <

where # B represents the number of intervals in B.

Proof. By shifting an interval [t; —ai,t; 41— 1] € BlevAil with [an —aq, Ba— 1],
the length of the resulting 1nterval may win or lose a maximum of (Ja; — as| +
|81 — B2|) time units. By multiplying this quantity by the number of intervals in
B, the result follows. O

Furthermore, as stated by the y2-based threshold, valid temporal dependencies
have a confidence value greater than

AL(@, §) + /BN = V)L, §)(T ~ La 3))
AT

where L(a, 8) = len(Bl*fl) and X = len(A). Propertyprovides a lower bound
on MinConfidence (L(a, §)):

Property 4 (Lower bound on MinConfidence (L(«, 8))).

MinConfidence (L(«, 3))

MinConfidence (L(c, 8)) > min (1, MinConfidence (L(0, 0)))

Proof. L(«a, ) (T — L(«, 8)) is a quadratic function which vanishes at L(«, 8) =
0 and L(a, 8) = T. Therefore, MinConfidence (L(c, 8)) first increases and then
decreases over [0,7] with MinConfidence (0) = 0 and MinConfidence (T') =
1. Let #; < T be such that MinConfidence (z;) = 1. We can observe that
MinConfidence () increases over [0,z1] (see figure in the following paragraph).
As L(a, B8) > L(o, ) = L(0,0), we have:
MinConﬁdence (L(a £)) > min (1, MinConfidence (L(0,0))). O
conf(A ——= [ il B) is upper bounded by 1, therefore if MinConfidence >
1, there is no valid temporal dependency. Algorithm [2] details the evaluation
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of the confidence measure. The confidence 2
value of the first candidate is computed (line

4). Then, the confidence value of the follow- b
ing candidates is estimated based on Prop-
erty (line 7). If the upper-bound (lastConf
+ maxGain) of the confidence value of a can- 0s
didate is lower than MinConfidence (L(0,0))
(boundMinConfidence, estimated thanks to g . '
property 7 then the candidate cannot be

valid. Otherwise, its exact confidence is evaluated (line 10) and, if it is greater
than boundMinConfidence (line 11), the candidate is considered as a promising
valid temporal dependency. Notice that the confidence measure is stored for fu-
ture needs (line 12). This confidence value is used as a new reference for further
maxGain evaluations, since maxGain tends to decrease when evaluated on distant
intervals in Cand.

MinConfidence(x) ------
ower bound

Algorithm 2 Pruning based_on_confidence

Require: Cand, an ordered list of candidate intervals, #B and len(A).
Ensure: Prom, the set of promising valid dependencies and their confidence values.
1: Prom + ()
2: k<0
3: [a, B] +Cand|k]
4: lastConf<+ conf(A LGN B)
5: while k < #Cand do
6 [ak, Bk] «Cand[k]
7:  maxGain< (la — ag| + |8 — Bk|) X %
8 if (lastConf + maxGain > boundMinConfidence then

9: (e, B] «—Cand[k]

10: lastConf<+ conf(A LN B)

11: if (lastConf > boundMinConfidence then
12: Cand[k].confidence< lastConf

13: Prom <+ Prom U Candl[k]

14: end if

15:  end if

16: k+—k+1
17: end while
18: return Prom

Pruning-based on dominance relationships: It consists simply in eval-
uating whether each promising candidate satisfies equation for its direct
ancestors. If so, it is added to the Border set whereas its ancestors are removed.
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‘ Dataset ‘# Evonts‘Duration‘Avg cvcnts‘

SYNTO02| 85,806 | 3 hours 2
SYNTO04| 173,645 | 3 hours 4
SYNT16| 696,677 | 3 hours 18

Fig. 3. Dataset characteristics (left). Synthetic testbed (right).

Identification of valid and significant dependencies: Finally, TEDDY
checks whether the dependencies of Border are valid: It removes any dependen-
cies that are more general than another one and recursively considers its direct
ancestors. If Prom is implemented as an interval tree, evaluating that a tempo-
ral dependency is the most specific among n elements can be done in O(log(n)).
Finding all the dependencies of Prom that are more general than d, g can be
done in O(min(n, klog(n))) where k is the number of output dependencies [4].

4 Experimental Study

This section reports experimental results that illustrate the performance of
TEDDY. We use a multi-camera test bed that makes possible to specify the
number of generated events and their frequencies. All experiments were per-
formed on a 8 GB RAM computer with a octo-core processor cadenced at 3
GHz, running Windows 7. TEDDY algorithm is implemented in standard C++.

We built a simulator of a sensor surveillance network that consists in the
simulation of 8 video cameras. Each camera captures the images of an elliptical
area as described in Fig. [3] (right). The simulation consists in moving objects
along eight predefined rectilinear paths. To control the number of events occur-
ring per unit of time, objects are generated according to a Poisson distribution.
The area covered by each camera is divided into 27 subareas that make in total
216 data streams. An interval-based event “object detected” corresponds to ob-
jects located in the associated subarea. We generate three datasets which differ
from the average number of events per minute and sequence (see Fig. [3|left).

We study the behavior of TEDDY with respect to various parameters: the
frequency of events, the period of observation T" and ¢,,4.. In all the experiments,
tmin is set to 0. Besides, we examine the impact of the constraints that define
valid and significant temporal dependencies on the search space size as well as
on the execution time. To this end, the four following configurations of algo-
rithm [1] are studied: (1) WP (without pruning): lines 7 and 8 are removed and
all possible temporal dependencies are considered; (2) Chi2 (x2-based pruning):
line 8 is removed and only the constraint on the confidence measure is pushed
aside to reduce the search space; (3) Gradient (dominance-based pruning): line
7 is removed and only the dominance constraint makes it possible to discard
unpromising dependencies; (4) TEDDY: both constraints are fully exploited as
presented in algorithm
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