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The third International Workshop on New Frontiers in Mining Complex Patterns
(NFMCP 2014) was held in Nancy in conjunction with the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD 2014) on September 19, 2014.

This workshop starts from awareness that modern automatic systems are
able to collect huge volumes of data, often with a complex structure (e.g. multi-
table data, XML data, web data, time series and sequences, graphs and trees).
This fact poses new challenges for current information systems with respect to
storing, managing and mining these sets of complex data.

The workshop follows the successful two previous editions (NFMCP 2012
and NFMCP 2013), which were held in conjunction with ECML-PKDD 2012
and ECML-PKDD 2013 respectively, as well as several editions of the interna-
tional workshop on Mining Complex Data (MCD 2006@IEEE ICDM 2006, MCD
2007@ECML/PKDD 2007, MCD 2008@IEEE ICDM 2008).

Our purpose in this workshop was to bring together researchers and practi-
tioners of data mining who are interested in the advances and latest developments
in the area of extracting patterns from complex data sources like blogs, event
or log data, medical data, spatio-temporal data, social networks, mobility data,
sensor data and streams, and so on.

We received nineteen submissions in several research fields ranging from
stream data mining to sequence mining, graph mining, bio-medic, process and
music mining. We were able to accept seventeen papers, based on a rigorous
reviewing process. Each submission was evaluated by three independent refer-
ees. Additionally, the scientific program also featured an invited talk by Thomas
Gärtner (University of Bonn and Fraunhofer IAIS) on “Sampling and Presenting
Patterns from Structured Data”.

We would like to thank all the authors who submitted papers, the invited
speaker and all the workshop participants and speakers. We are also grateful to
the members of the program committee and external referees for their excellent
work in reviewing submitted and revised contributions with expertise and pa-
tience. We would like to acknowledge the support of the European Commission
through the project MAESTRA - Learning from Massive, Incompletely anno-
tated, and Structured Data (Grant number ICT-2013-612944). A special thank
is due to both the ECML PKDD Workshop Chairs and to the members of ECML
PKDD organizers who made the event possible.
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Sampling and Presenting Patterns from
Structured Data

Thomas Gärtner

University of Bonn and Fraunhofer-Institut für Intelligente Analyse und
Informationssysteme

Schloss Birlinghoven, 53757 Sankt Augustin, Germany

Abstract. In this talk I will describe some approaches for efficient pat-
tern generation as well as presentation. In particular, I will show pattern
sampling algorithms that can easily be extended to structured data and
an interactive embedding technique that allows users to intuitively in-
vestigate pattern collections.
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Location Prediction of Mobile Phone Users
using Apriori-based Sequence Mining with

Multiple Support Thresholds

Ilkcan Keles, Mert Ozer, I. Hakki Toroslu, Pinar Karagoz, and Salih Ergut?

Computer Engineering Department
Middle East Technical University, Ankara, Turkey

{ilkcan,mert.ozer,toroslu,karagoz}@ceng.metu.edu.tr

Abstract. Due to the increasing use of mobile phones and their increas-
ing capabilities, huge amount of usage and location data can be collected.
Location prediction is an important task for mobile phone operators and
smart city administrations to provide better services and recommenda-
tions. In this work, we propose a sequence mining based approach for
location prediction of mobile phone users. More specifically, we present a
modified Apriori-based sequence mining algorithm for the next location
prediction, which involves use of multiple support thresholds for differ-
ent levels of pattern generation. The proposed algorithm involves a new
support definition, as well. We have analyzed the behaviour of the al-
gorithm under the change of threshold through experimental evaluation
and the experiments indicate improvement in comparison to conventional
Apriori-based algorithm.

Keywords: Sequential Pattern Mining, Location Prediction, Mobile Phone
Users

1 Introduction

Intensive amounts of basic usage data including base station, call records and
GPS records are stored by large-scale mobile phone operators. This data gives
companies ability to build their user’s daily movement models and helps them to
predict the current location of their users. Location prediction systems usually
make use of sequential pattern mining methods. One common method usually
follows two steps; extract frequent sequence patterns and predict accordingly.
These methods mostly use Apriori-based algorithms for the phase of extracting
sequence patterns.

Rather than using whole patterns contained in the CDR data implicitly, we
need to devise a control mechanism over the elimination of sequence patterns. It
is a well known fact that when minimum support gets lower, number of patterns
extracted increases, thereby size of prediction sets for the next location of a
person gets larger and accuracy of predictions eventually increases. However,

? AVEA, Istanbul, Turkey
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the larger number of patterns causes larger space cost. Conventional technique
to prevent space cost explosion is to increase minimum support value. Yet this
time, it decreases the number of frequent patterns and the size of the prediction
sets dramatically, and this causes to miss some interesting patterns in data. To
prevent possible space explosion and not to miss valuable information in data,
we propose a modified version of Apriori-based sequence mining algorithm, that
works with level-based multiple minimum support values instead of a global one.
To the best of our knowledge, this is the first work which uses different minimum
support values at different levels of pruning phases of the conventional algorithm.

Normally, the number of levels for Apriori-based sequence mining algorithms
is not pre-configured. However, in our case, we consider a predefined number of
previous steps to predict the next one. Therefore, we can set the number of levels
in Apriori search tree. Moreover, we slightly change the definition of minimum
support, which will be defined in the following sections, in our context. We have
experimentally compared the performance of the proposed method involving
multiple support thresholds in comparison to that of conventional Apriori-based
algorithm that uses only a single minimum support value. The experiments in-
dicate that the proposed approach is more effective to decrease the prediction
count and memory requirement.

The rest of this paper is organized as follows. Section 2 introduces previous
work on location prediction. Section 3 presents the details of the proposed so-
lution. Section 4 gives the information about evaluation metrics and Section 5
presents experimental results of our prediction method. Section 6 concludes our
work and points out possible further studies.

2 Previous Work

In recent years, a variety of modification of the minimum support concept in
Apriori-based algorithms have been proposed ([2], [3], [4],[5], [6]) for both asso-
ciation rule mining and location prediction problems. In [2], Han and Fu propose
a new approach over the conventional Apriori Algorithm that works with associ-
ation rules at multiple concept levels rather than single concept level. In [3], Liu
et al., propose a novel technique to the rare item problem. They define a modified
concept of minimum support which is a minimum item support having different
thresholds for different items. In [5], Toroslu and Kantarcioglu introduce a new
support parameter named as repetition support to discover cyclically repeated
patterns. The new parameter helps them to discover more useful patterns by
reducing the number of patterns searched. In [6], Ying et al. propose a location
prediction system using both conventional support concept and a score value
that is related with semantic trajectory pattern in the candidate elimination
phase.

In addition to the Apriori-based modifications mentioned above, in [8], Yavas
et al. presented an AprioriAll based sequential pattern mining algorithm to find
the frequent sequences and to predict the next location of the user. They added
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a new parameter which is named as maximum number of predictions and it is
used to limit the size of the prediction set.

Most of the multiple minimum support concept is based on the rare itemset
problem. To the best of our knowledge, this is the first work which uses different
minimum support values at the different levels of pruning phases of conventional
algorithm. In our previous work on location prediction with sequence mining
[7], we broadened the conventional pattern matching nature of sequence mining
techniques with some relaxation parameters. In this work, we use some of these
parameters introduced in [7].

3 Proposed Technique

3.1 Preliminaries

In this work, we utilized the CDR data of one of the largest mobile phone
operators of Turkey. The data corresponds to an area of roughly 25000 km2 with
a population around 5 million. Almost 70% of this population is concentrated
in a large urban area of approximately 1/3 of the whole region. The rest of the
region contains some mid-sized and small towns and large rural area with very
low population. The CDR data contains roughly 1 million users’ log records for
a period of 1 month. For each user, there are 30 records per day on average.
The whole area contains more than 13000 base stations. The records in CDR
data contain anonymized phone numbers (of caller and callee or SMS sender and
receiver), the base station id of the caller (sender), the time of the operation.

Unnecessary attributes in CDR data, such as city code, phone number etc.,
are filtered out and date and time information are merged into a single attribute
which is used to sort data in temporal order. After sorting, we created sequences
of fixed-length corresponding to user’s daily movement behavior.

A sequence is an ordered list of locations which is expressed as s < i, .., j >,
where i is the starting location and j is the last location in the sequence. A
sequence of length k is called k-sequence.

In Apriori-based sequence mining, the search space can be represented as a
hash tree. A path in the tree is a sequence of nodes such that each node is the
prefix of the path until the root and, for each node, its predecessor is the node’s
parent. p<a..b> expresses a path starting with node a and ending with node b.

We say that a path p is equal to a sequence s, denoted by p = s, if the length
of path p and sequence of s are equal and there is one to one correspondence
between the locations of s and the nodes of p.

We say that a sequence s < s1, s2, ..., sn > is contained in another sequence
s′ < s′1, s

′
2, ..., s

′
m > if there exists integers i1 < i2 < ... < in such that s1 =

s′i1 , s2 = s′i2 ...sn = s′in .

A sequence s is a subsequence of s′ if s is contained in s′ and it is denoted
by s ⊆ s′.
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3.2 Apriori-based Sequence Mining Algorithm with Multiple
Support Thresholds (ASMAMS)

To build a model which aims to predict the next location of the user, we devel-
oped a recursive hash tree based algorithm namely Apriori-based Sequence Min-
ing Algorithm with Multiple Support Thresholds (ASMAMS). This algorithm
constructs level based models i.e. hash trees whose nodes contain corresponding
base station id and frequency count of the sequence corresponding to the path
up to this node.

The main novelty of the algorithm in comparison to the conventional al-
gorithm is the level based support mechanism with a new level-based support
definition. In contrast to previous approaches that aim to extract all frequent
sequences, in this work, we focus on predicting the next item in a sequence.
Therefore, we defined a level-based support in order to keep track of the re-
lations between levels. Conventionally, support of a given sequence pattern is
defined as the ratio of the number of the sequences containing the pattern to the
number of all sequences in the dataset. In ASMAMS, support of an n-sequence
is defined as the ratio of the count of a given sequence s to the count of the
parent sequence with length (n-1).

support(s) =
# of occurrences of the sequence s with length n

# of occurrences of prefix of sequence s with length (n− 1)
. (1)

The following parameters will be used by ASMAMS:

– levelCount: The height of the hash tree.
– currentLevel: Current level throughout the construction of the hash tree.
– supportList: List of minimum support parameters for each level.
– sequences: A set of fixed-length location id sequences.
– tree: Hash tree where each node stores the location id and the count of

sequence represented by a path from root to this node.
– tolerance: Length tolerance of rule extraction phase.

ASMAMS algorithm has three phases which are model construction, rule
extraction and prediction. As given in Algorithm 1, model construction phase is
divided into two sub-phases: tree construction and pruning.

In the tree construction phase, the data is read sequentially, and new level
nodes are added to the corresponding tree nodes. For instance, assume that
we are constructing the fourth level of the tree and we have <1,2,3,4> as the
sequence. If <1,2,3> corresponds to a path in the input tree, 4 is added as a leaf
node as the prefix of this path with count 1. If we encounter the same sequence,
the algorithm only increments the count of this node. If the current tree does not
contain <1,2,3>, then it is not added to the tree. The construction algorithm is
given in Algorithm 2.

In the pruning phase, constructed model and the corresponding minimum
support value are taken as parameters. In this phase, initially we calculate leaf
nodes’ support values. If it is below the minimum support value, it is removed
from tree, otherwise no action is taken.
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Algorithm 1 ASMAMS Model Construction Phase

Input: sequences,levelCount,supportList,currentLevel← 1
Output: tree

1: function buildModel(sequences, levelCount, currentLevel, supportList, tree)
2: constructTree(sequences, tree, currentLevel)
3: pruneTree(tree, currentLevel, supportList[currentLevel])
4: if currentLevel 6= levelCount then
5: buildModel(levelCount, currentLevel + 1, supportList, tree)
6: end if
7: end function

Algorithm 2 ASMAMS Tree Construction Phase

Input: sequences, tree, currentLevel
Output: tree

1: function constructTree(sequences, tree, currentLevel)
2: for all s<l1..lcurrentLevel> ∈ sequences do
3: if ∃p<root..leaf> ∈ tree s.t p = s then
4: leaf.count = leaf.count + 1
5: else
6: if ∃p<root..leaf> ∈ tree s.t p = s<l1..lcurrentLevel−1> then
7: insert(tree, leaf, lcurrentLevel) //add lcurrentLevel as a child of leaf
8: lcurrentLevel.count = 1
9: end if

10: end if
11: end for
12: end function

Rule Extraction In the rule extraction phase, the algorithm extracts rules
from the hash tree built in model construction phase with respect to a tolerance
parameter. If tolerance parameter is set to 0, the algorithm extract rules, whose
left-hand side contains (levelCount − 1)-sequence and right-hand side contains
the output level location, from the levelCount-sequence s as follows:

[s1, s2, ..., slevelCount−1 → slevelCount] .

If tolerance is greater than 0, the algorithm extract rules until the left-hand
sides of the rules have the length of levelCount − (tolerance + 1) as shown in
Algorithm 3.

Prediction In the prediction phase, we use set of rules constructed by rule
extraction phase to predict user’s next location. The prediction algorithm takes
a sequence as input and returns a list of predicted locations.

The algorithm firstly checks whether rules with length of levelCount is con-
tained in the given sequence. In that case, the right-hand side of the rules con-
stitute the prediction set. If the rules of length levelCount are not contained in
the given sequence, then it checks whether the rules of length levelCount − 1
are contained in the given sequence. This continues until the rules are contained
in the sequence or until the tolerance parameter is reached but no output is
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Algorithm 3 ASMAMS Rule Extraction Phase

Input: tree, levelCount tolerance
Output: ruleSet

1: function ruleExtraction(tree, levelCount, tolerance)
2: for all s<s1, s2, ..., slevelCount> ∈ tree s.t. length(s) = depth(tree) do
3: for t = 0 to tolerance do
4: subSequencesSet← t-deleted subsequences of s<s1, ..., slevelCount−1>
5: for all subsequence s′ ∈ subSequencesSet do
6: ruleSet← ruleSet ∪ {s′ → slevelCount} //Add new rule to ruleSet
7: end for
8: end for
9: end for

10: end function

produced. The detailed algorithm of prediction phase can be found in Algorithm
4.

Algorithm 4 Prediction Algorithm

Input: sequence, ruleSet, levelCount, tolerance
Output: predictionSet

1: function predict(sequence, ruleSet, levelCount, tolerance)
2: for t = 0 to tolerance do
3: for all rule ∈ rules of length levelCount− t do
4: if lhs(rule) ⊆ sequence then
5: predictionSet← predictionSet ∪ {rhs(rule)}
6: end if
7: end for
8: if predictionSet 6= ∅ then
9: break

10: end if
11: end for
12: return predictionSet
13: end function

Running Example In this example, we set level count to 5 and minimum
support list to [0.16, 0.5, 0.5, 0.66, 0] and we use the sample sequences shown in
the Table 1.

In the first level, the data is traversed sequentially and the first location ids
in the sequences are added to the hash tree together with their counts. Then in
the pruning phase, their support values are calculated and nodes 2 and 3 are
pruned since their support fall below the given minimum support 0.16. In the
second level, 2-sequences are added to the hash tree with their counts. After
support values are found, the nodes <5,6>, <5,8> and <5,11> are pruned since
their support values are 0.33 and falls below the given minimum support 0.5.
The resulting hash trees can be seen in Figure 1.
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Table 1: Example Sequences

id sequence - id sequence

1 <1, 2, 3, 4, 5> 7 <4, 7, 11, 12, 15>

2 <1, 2, 3, 4, 6> 8 <4, 7, 11, 10, 9>

3 <1, 2, 3, 4, 5> 9 <5, 6, 11, 10, 9>

4 <2, 3, 4, 7, 8> 10 <5, 8, 9, 10, 11>

5 <3, 4, 7, 9, 10> 11 <5, 11, 10, 9, 4>

6 <4, 7, 11, 12, 13> 12 <1, 2, 3, 4, 5>

Fig. 1: Hash tree at the end of the first level (left), Hash tree at the end of the
second level (right)

In the third level, 3-sequences are added to the hash tree. None of the nodes
are pruned in this level, since the support values are all 1. In the fourth level,
after 4-sequences are added to the hash tree, the node <4,7,11,10> is pruned as
it does not have the required support. In the final level (which is the last level
of the hash tree), 5-sequences are added to the hash tree. Since the minimum
support value for this level is 0, there is no pruning. The resulting hash tree can
be seen in Figure 2.

Fig. 2: Hash tree at the end of the final level

Using the hash tree constructed by model construction phase which is shown
in Figure 2, the rules are extracted according to the tolerance parameter. If
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the tolerance parameter is 0, the following rules are extracted: [1, 2, 3, 4 → 5],
[1, 2, 3, 4→ 6], [4, 7, 11, 12→ 13], [4, 7, 11, 12→ 15].

In this case, for a sequence of <1, 2, 3, 4>, the algorithm gives the output
of 5 and 6. However, for a sequence of <1, 2, 8, 3>, the algorithm does not
generate any output. If the tolerance parameter is 1, the following extra rules
are extracted:[1, 2, 3 → 5], [1, 2, 4 → 5], [1, 3, 4 → 5], [2, 3, 4 → 5], [1, 2, 3 →
6], [1, 2, 4 → 6], [1, 3, 4 → 6], [2, 3, 4 → 6], [4, 7, 11 → 13], [4, 7, 12 → 13],
[4, 11, 12 → 13], [7, 11, 12 → 13], [4, 7, 11 → 15], [4, 7, 12 → 15], [4, 11, 12 → 15],
[7, 11, 12→ 15].

By using the tolerance parameter, for a sequence of <1, 2, 8, 3>, the algorithm
generates the output of 5 and 6, since the left side of the rule [1, 2, 3 → 5] and
[1, 2, 3→ 6] are contained in the given sequence.

4 Evaluation

For the experimental evaluation, CDR data obtained from one of the largest
mobile phone operators in Turkey has been used. A quick analysis shows that
around 76% of the users next location is their current location. We take this
value as the baseline for our experiments. For evaluation, we extract sequences
from raw CDR data set and try to predict the last element of the sequence
using the previous ones. After trying several lengths, we have determined that
5-sequences (i.e., using a given 4-sequence, try to predict the next element of
the sequence) produces the highest accuracy values. Therefore, we have used 5-
sequences extracted from data set, both for training and testing, by using k-fold
cross validation in order to assess the quality of predictions made. As training
phase, we run ASMAMS on fixed length sequences to build the sequence tree.
At the testing phase, for each test set sequence Algorithm 4 introduced in the
section 3.5 has been applied and the result of the prediction is compared against
the actual last element of the test set sequence. These results are used in the
calculations of the evaluation metrics which are introduced below.

Accuracy metric is used for evaluating the number of correctly predicted test
set sequences. It simply can be defined as the ratio of true predicted test se-
quences to the total number of test sequences. However, for some test cases,
there may be no relevant path in the tree for test sequence which means either
no such training sequence is come up or it is removed from the tree in one of the
pruning phases. The first accuracy metric, g-accuracy (general accuracy), is the
ratio of number of correctly predicted test sequences to the number of all test
sequences. The second one, p-accuracy (predictions’ accuracy), is the ratio of the
number of correctly predicted test sequences to the number of all test sequences
able to be predicted. In the first form of accuracy calculation, the accuracy result
superficially drops for cases that no prediction is able to be performed. These
accuracy measures have been described in more detail in our earlier work [7].
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Memory Requirement metric measures the relative peak RAM requirement
during the algorithm’s execution. All memory requirement values are projected
to the range [0-100], where 100 represents the maximum memory utilization.

Prediction Count metric is used to evaluate average size of the prediction set
in correctly predicted test sequences.

Score is introduced since there are 4 different parameters that we want to op-
timize. It is used for evaluating general performance of our model by combining
above metrics into a single one. This metric is only used to determine the pa-
rameters for the optimal model. It is defined as a weighted sum of g-accuracy,
p-accuracy, memory requirement(mem req) and prediction count(pred count) in
Equation 2.

Score = w1 ∗ g-accuracy + w2 ∗ p-accuracy + w3 ∗ (100-mem req) + w4 ∗ (100-pred count). (2)

Considering the importance of the parameters the weights are set as follows;
w1 = 0.6, w2 = 0.1, w3 = 0.1 and w4 = 0.2.

5 Experimental Results

For the experiments, we have used 5-sequences (i.e. level count in Algorithm 2
is set to 5), after trying longer and shorter sequences. While shorter sequences,
such as 4-sequences or 3-sequences, were superficially increasing prediction count,
longer sequences, such as 6-sequences, were decreasing g-accuracy sharply, even
though p-accuracy was increasing, since the number of predictable sequences
was quickly decreasing. Therefore, 5-sequences seemed as the best for the data
in hand, and shorter or longer sequences’ results were not useful.

After determining the sequence length and level count for experiments, we
first narrow down our search space by setting our support values to a set {10−5,
10−4, 10−3, 10−2, 10−1} for each level. We have used the score parameter intro-
duced above to determine this best support list as [10−5,10−3, 10−3, 10−3, 10−2].
Then we have tried all possible non-decreasing combinations as list of support
parameters. For every level, we fixed other levels’ support values to the support
values of the best model and we present results of changing this level’s minimum
support value according to evaluation metrics. Same percentage value refers to
the ratio of being in the same location as previous location and is included in
the figure to show the improvement provided by ASMAMS.

In a set of experiments, we have analyzed the effect of the minimum support
parameter for all levels. In order to do that, for each level, the experiments are
performed with the support values explained above and other levels’ support
parameters are set to the optimal values. In addition, the tolerance parameter
is fixed to 0 for first set of the experiments.

As it can be seen from the Figure 3, for all levels, g-accuracy drops as the
minimum support increases. However, this drop is much sharper in the first level.
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(a) (b)

Fig. 3: Change of g-Accuracy & p-Accuracy

Although, p-accuracy also shows the same trend in the first level, it shows slight
increase in intermediate levels, and then, there is also a small drop in the final
level. Figure 3 also shows the percentages of locations which are exactly the
same as the previous ones for all the experiments as well. Our p-accuracy results
show that, the correct prediction (of p-accuracy) can be increased even above
95% with our model.

(a) (b)

Fig. 4: Change of Prediction Count & Memory Requirement

Similar trends can be observed for the prediction count parameter. Sharp
drops occur in the first level as the minimum support value increases. However,
for intermediate levels these drops are almost negligible. Again, in the final level,
prediction count decreases much faster also. Figure 4 shows that the prediction
count values are at acceptable levels.

The amount of the drop in the memory requirement as the minimum support
value increases slows down with the increase of the levels. In the final level, there
is almost no drop in the memory requirement. Especially in the first level, since
most sequences are pruned with high minimum support requirement, the memory
requirement drops very quickly.

In addition to above mentioned experiments, we have also applied standard
AprioriAll algorithm [1]. The main drawback of AprioriAll algorithm is the size
of the prediction set. In order to obtain high accuracy results (g-accuracy) as
in our model, the minimum support value must be chosen as a very small value
(even zero), so that we can keep as much sequences as possible. However, this
results in high prediction count as well as increasing the memory requirement.
The accuracy obtained when no minimum support value is given is the upper
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bound that can be achieved with sequence matching approach. However, for that
setting the memory requirement is also the maximum, since the hash-tree keeps
all sequences without any pruning. As expected, this maximum accuracy can be
obtained only with a very high prediction count, which is more than 133. Since
this is unacceptably high, we tested AprioriAll with a non-zero, but very small
minimum support value. This resulted slight decrease in accuracy, while dropping
the prediction count and the memory requirement significantly with pruning of
large portion of hash-tree. Even though the memory requirement has dropped
a lot to a very good level, the decreased value of prediction count still stayed
unacceptably high value, which is almost 40. Further increases in minimum sup-
port values had dropped the accuracy levels to around and below baseline levels.
Therefore, they are not acceptable either. However, with ASMAMS we have
achieved almost the same accuracy levels of the best and optimal AprioriAll
accuracy values with a very low prediction count value, which is 4.43, with a
memory requirement less than the half of the optimal (and maximal) results of
AprioriAll setting. In addition to this, we have applied ASMAMS with a tol-
erance value 1 and we achieved a general accuracy of 88.68 with nearly same
prediction count. We have also applied ASMAMS with a tolerance value 2, how-
ever, since no prediction ratio is really low, it did not produce any improvement
for our dataset. These results are summarized in Table 2.

Table 2: The results for ASMAMS and AprioriAll methods

G-Accuracy P-Accuracy
Mem.
Req.

Pred.
Count

No Output
Ratio

Description

88.68 89.44 44 4.42 0.8%
ASMAMS Min. Sup. List:
[1e-5.1e-3.1e-3.1e-3.1e-2]

Tolerance:1

85.04 93.08 44 4.43 8.6%
ASMAMS Min. Sup. List:
[1e-5.1e-3.1e-3.1e-3.1e-2]

Tolerance:0

51.47 88.66 0.01 1.29 51.47% ApprioriAll Min. Sup: 1e-5

86.32 94.15 9.76 39.42 8.32% ApprioriAll Min. Sup: 1e-8

89.82 95.38 100 133.48 5.84% ApprioriAll Min. Sup: 0

6 Conclusion

In this work, we present an Apriori-based sequence mining algorithm for next
location prediction of mobile phone users. The basic novelty of the proposed
algorithm is a new, level-based support definition and the use of multiple sup-
port thresholds, each for different levels of pattern generation that corresponds
to generation of sequence patterns of different lengths. The evaluation of the
method is conducted on CDR data of one of the largest mobile phone operators
in Turkey. The experiments compare the performance of the proposed method in
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terms of accuracy, prediction count and space requirement under varying thresh-
olds for each level. Actually, these experiments serve for determination of the
best minimum support list for each level to obtain the highest accuracies, as well.
We have also compared the performance with conventional method involving a
single support threshold. We have observed that our method ASMAMS produces
almost the optimal accuracy results with very small prediction sets, whereas the
same accuracy can be obtained by AprioriAll with very low support thresholds
and much larger prediction sets. Considering that there are more than 13000
different locations, the prediction sets’ sizes, such as 4, obtained by ASMAMS
with almost optimal accuracy can be considered as quite useful result for the
mobile phone operator.

As the future work, we aim to extend this study by adding a region based
hierarchy to this model in order to increase prediction accuracy.

Acknowledgements. This research was supported by Ministry of Science, In-
dustry and Technology of Turkey with project number 01256.STZ.2012-1 and
title ”Predicting Mobile Phone Users’ Movement Profiles”.
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Temporal Constraints Improve Inexact
Subgraph Matching in Undirected Networks
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Abstract. Subgraph matching is the process of identifying embeddings
of a query graph in a network graph. Applications range from locating
suspicious patterns in financial transaction networks to finding patterns
of disease spread in epidemic networks. Sometimes the match must be in-
exact, since the data may be incomplete due to noise, or a user may seek
a range of graph structures similar to a query. However, inexact subgraph
matching increases the number of potential matches and computational
expense. If we require the matches to be temporally constrained, process-
ing time can be reduced. An embedding is temporally constrained if ad-
jacent interactions occur close in time, simple paths are time-respecting,
and cycles are mostly time-respecting. To validate our approach, we ap-
ply our algorithm to undirected face-to-face contact networks collected
from the SocioPatterns project. Our experimental results demonstrate
that our algorithm identifies query embeddings notably faster when tem-
poral information is incorporated.

1 Introduction

Many large network data sets are composed of sets of interactions that represent
some process or functionality within the network [10]. If a specific query graph –
made up of a combination of interactions – is of interest, then subgraph match-
ing may be employed to identify embeddings of the query graph in the network.
The structure of the query graph sought depends on the type of network be-
ing searched. In a financial transaction network, a query graph might represent
a pattern observed in fraud. In an epidemic network, a query with a cascade
structure might represent disease spreading. Dense structures in a communica-
tion network might represent communities. In a face-to-face contact network,
a query graph might represent a group of people facing each other, and later
perhaps mingling with other people standing close by.

However, network data which is gathered experimentally may be incomplete.
In a face-to-face contact network, devices which record contact may miss some
interactions, or record interactions erroneously. Also, a user seeking a particular
structure may want to examine a range of similar structures. Inexact subgraph

? This work was supported by Science Foundation Ireland [08/SRC/I1407,
SFI/12/RC/2289].
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matching is a more appropriate approach for this problem. This method seeks
embeddings of the query graph in the network which allow for some differences in
the structure. A side-effect of this more general approach to subgraph matching
is that the number of potential matches increases, which may be a problem in
large networks.

Increasingly, temporal information is available with network data sets, which
encodes the time at which interactions took place. In this work, we use temporal
information to constrain the inexact subgraph matching process. The traditional
approach of time-slicing first uses a sliding window to isolate data that occur
between a start and end time, then examines the resultant data as if it were
static. Time-slicing risks arbitrarily cutting potential contagions in a network,
whose originating and terminating individuals may not be present in a time-
slice, as an artifact of the time window choice. To avoid this problem, we enforce
temporal constraints on a subgraph at the level of its interactions. In this way,
if a contagion exists in the network, the entire structure can be found if the
pair-wise interactions making it up obey the temporal constraints.

We require that embeddings of a query graph in a network are temporally
constrained. For an embedding to be temporally constrained, three criteria must
be met. Firstly, adjacent interactions in the network must occur close in time,
where this closeness is specified by a time-delay threshold. Secondly, all cycles in
the embedding must be composed of interactions that follow each other in time
(one reversal of the sequence is inevitable, and allowed). Thirdly, interactions
on all simple paths (which are not part of cycles) must follow each other in
time. These restrictions reduce the number of embeddings, speeds up the search
process, and ensures that returned embeddings are meaningful in a temporal
context.

(a) (b) (c)

Fig. 1: Three examples of query graph embeddings in an undirected network.
All adjacent interactions occur close enough in time, if we set the time-delay
threshold to 6 time units. The interactions in all paths follow each other in time,
except for cycles, for example in Fig. 1a, t0 ≤ t1 ≤ t2, but t2 > t0.

A set of query graph embeddings are shown in Fig. 1. Time-stamps are
shown on the interactions, to demonstrate the temporal constraints. If noise were
present in the network, then some of the interactions in the embeddings might be
missing, or extra interactions might be present. In that case, an inexact matching
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algorithm would be required, to locate the interactions among individuals who
had been in contact in a way similar to that sought.

We apply our inexact matching algorithm to two undirected face-to-face con-
tact networks which were collected during the SocioPatterns project [6]. Our
approach is demonstrated to be faster when using temporal information than in
the static case, for a range of query graphs and measures of inexactness. Since
the interactions present within the temporally constrained embeddings occur
close in time, the subgraphs found are a good approximation for contact as it
occurred over specific time periods. So, although the number of embeddings re-
turned is smaller, the meaning of those embeddings is easier to interpret. As
the matches are allowed to vary more from the query structure, our temporal
approach performs orders of magnitude faster than if the networks searched were
static.

2 Related Work

This work draws upon the areas of temporal network analysis and inexact graph
and subgraph matching. We extend inexact subgraph matching to account for
temporal information in networks.

2.1 Inexact Graph and Subgraph Matching

Inexact graph matching is a generalization of conventional graph isomorphism.
The problem is also know as approximate graph matching [18], or error-tolerant
graph matching. The process of inexact graph matching is usually thought of as
a transformation from one graph into another, via a sequence of edits. Each edit
operation has a cost, which depends on the differences seen so far, between the
two matched graphs. These edits include the insertion, deletion and relabeling of
the nodes and edges, which are required to transform one graph into the other.

Given a visual representation of a system, such as in scene analysis, switch-
ing theory or chemical structure analysis, a graph representing relations is often
useful. The graph patterns may be deformed, so inexact graph matching comes
into play. Tsai and Fu [16] guide the search for matches using an ordered-search
algorithm. This finds embeddings that most closely match the query graph first.
Another application of inexact graph matching is to match chemical compounds,
in which the labeling needed to identify certain molecules is unknown. An algo-
rithm was proposed by Hofer et. al. which accounts for wildcard labeling in the
match [4]. Thus, when the label on a molecule is not known, it can assume a
label which makes sense based on chemical expert knowledge.

Inexact subgraph matching generalizes inexact graph matching. Instead of
checking that two entire graphs match inexactly, an embedded subgraph (or set
of subgraphs) in the larger graph is sought that inexactly matches some query
graph. Such an error-correcting subgraph isomorphism algorithm was proposed
by Tsai and Fu [17]. The G-Ray algorithm of Tong et. al. [15] aims to find
subgraphs that match a query pattern closely, by allowing indirect paths between
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attributed graph entities. The results are returned in order of their “goodness”,
as defined by the authors. Tian and Patel developed TALE [14], a tool which uses
an index structure to speed up the approximate matching of subgraph queries
in a database of graphs. This technique identifies nodes that are important in
the match, based on their position in the graph structure, then extends those
matches.

2.2 Temporal Network Analysis

Many techniques for static graph analysis must be revised for graphs which
contain temporal information. A comprehensive review is provided by Holme et
al. [5]. Kempe et al. [7] define a time-respecting path as a sequence of contacts
that occur at non-decreasing times.

Reachability graphs show which nodes are reachable from a single root node
[11]. In a reachability graph, there must be a time-respecting path between nodes
i and j for a directed edge to exist between them. Bearman et al. [2] analyze
the reachability graph within a dating network of high-school students. A time-
respecting subgraph [13] is a generalization of a reachability graph, similar to
how a subgraph generalizes a tree structure.

The lifespan of a piece of information may be specified by a time window [19].
This measures the time between two consecutive communications. The claim is
that the closer in time the contacts take place, the more likely they are to be
about the same topic. In the same way, the relay time of an interaction describes
the time taken for a newly infected node to spread the infection further via
subsequent interactions [8]. When matching temporally constrained subgraphs,
we require that consecutive interactions occur within a specified time. A cascade
models the spread of information through a network, for example the adoption
of new ideas or products [9]. The importance of time-constrained cascades is
emphasized for understanding contagion [1].

3 Methods

We introduce some graph theoretic notation. A graph is an abstraction of a
network. A graph G = (V,E) is composed of a set of vertices (nodes) V and a
set E of pairs of nodes called edges. The graph H = (W,F ) is a subgraph of
G if W is a subset of V and F is a subset of E, such that the nodes of each
edge in F are in W . The number of edges incident to a node v is called the
degree of v. The neighbors of v are nodes which are connected to v via an edge.
A pair of edges is adjacent if they share a node. Given that time is encoded as
an explicit part of our network representation, instead of referring to an “edge”
between two nodes, we use the term “interaction” to specify a triplet, composed
of two nodes and their time of contact. We define an undirected temporal graph
as follows:

Definition 1. An undirected temporal graph G consists of a set V of nodes
and a set E of pairs of nodes representing interactions. An interaction ei ∈ E
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is represented by a tuple ei = ({ui, vi}, ti), in which ui and vi comprise an
unordered set of nodes, and ti is the initiation time of the interaction.

3.1 Inexact Subgraph Matching

A key feature of our algorithm is that node labels are not required. In large
contact networks, labels are not necessarily useful as an aid for finding interesting
interaction patterns, since the people in the network are not known apriori. This
differs from networks of chemical compounds or protein interactions, in which
the identification of the entities may be very important. The challenge with
excluding node labels for inexact subgraph matching is that there are no obvious
starting nodes for the matching process, and the labels cannot be used to guide
the search.

We extend an implementation of the VF2 algorithm [3] from the NetworkX
Python library [12]. G1 represents the large graph in which a query graph G2 is
sought. The matching process is described by a state space representation. Given
an intermediate state s, the mapping is extended by first computing candidate
node pairs (one node each from G1 and G2), then testing their syntactic and
semantic feasibility as matching nodes.

Syntactic feasibility is based on topology. We define the cost of a match to be
the number of edits required to transform the query graph G2 into the embedded
subgraph of G1 in question. This cost is computed dynamically. In accumulating
the cost of a match, the edits we allow relate to interactions. From a state s, we
calculate the cost of adding the next candidate node pair (G1 node, G2 node),
and add that to the current cost. If the accumulated cost exceeds a threshold,
θ, the match is discarded.

The difference in the number of self-loops incident to G1 node and G2 node
adds to the cost of the match. There may also be effects on neighbors of the new
nodes. For G1, we check each neighbor of G1 node which is also in the partial
mapping of s. If the neighbors of G1 node found in G1 do not have counterparts
in G2 in the partial mapping, we increment the cost by one. If the number of
interactions between each of these neighbors and G1 node in G1 differs from
the number of interactions between their counterparts and G2 node in G2, we
increment the cost by the difference. The same check is performed from the
perspective of G2.

We do not allow edits related to nodes. If we allow extra or fewer nodes from
G1 to participate in a given match, there will be many more potential matches,
since the search is not limited through the use of node labels. If required, the user
can add or remove nodes from the query before the search is performed. This
is an easier task for the user than specifying every combination of interactions
that are of interest, which is the problem solved by our algorithm.

3.2 Temporal Constraints

Instead of node labels, we constrain the search space using temporal information.
We insist that the embedded subgraphs returned are connected and temporally
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constrained. There are three types of temporal constraint that we require. These
relate to adjacent interactions, paths and cycles.

Definition 2. Let ei and ej be interactions in an undirected temporal graph. The
interactions are temporally constrained if they are adjacent and |tj − ti| ≤ d, for
some threshold d.

Definition 3. A time-respecting path between two nodes v and w in an undi-
rected temporal graph is a finite alternating sequence v = v0, e1, v1, e2, ..., en, vn =
w of non-repeating nodes and interactions such that the ordered sequence of in-
teraction times is either monotonically increasing or decreasing.

Definition 4. A temporally constrained cycle is a path between a node and itself,
with no repeating nodes or interactions, such that the path is time-respecting but
for one inversion.

To see why we allow exactly one inversion, consider the following scenario, in
which we view a face-to-face contact network as a proxy for communication. At
time t0, individuals i and j communicate with each other. At time t1, individual
j communicates with individual k. There is potential for a piece of information
to have been transferred from i to k. Now suppose that k communicates with i
at time t2, dispensing that same piece of information. We can say that a flow of
information occurred from i to j to k and back to i, even though the adjacent
interaction sequence at times t2, t0 is not time-respecting.

Definition 5. A connected temporally constrained subgraph S = (V ′, E′) of a
temporal graph G = (V,E) is a subgraph such that

– every adjacent interaction pair is temporally constrained
– all cycles are temporally constrained
– all simple paths are time-respecting, unless they are connected to a cycle;

then the path subset formed from the non-cycle portion of the path and only
one adjacent interaction from the cycle must be time-respecting.

The first condition in Definition 5 is illustrated in Fig. 2. The adjacent in-
teractions share the central node. If, for example, the time delay threshold d
was set to four time units, then the interactions all occur within time d of each
other. The second condition is shown in Fig. 3. Every cycle must be temporally
constrained. The third condition, as shown in Fig. 4, requires that a simple path
is time-respecting. In the situation where a simple path intersects with a cycle,
as in Fig. 5, one interaction from the cycle must be time-respecting with respect
to the non-cycle portion of the path. This ensures that some method of informa-
tion flow is possible within the subgraph as a whole. In the illustrated example,
information communicated via the path may influence information spread within
the cycle, since the temporal sequence t1, t2 between the path and cycle is time-
respecting.

Within the VF2 algorithm, there is an option to test for semantic feasi-
bility during the matching process. In our setting, we use the dates on which
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Fig. 2: In a temporally constrained subgraph, all adjacent interactions must occur
within time d of each other. Thus, if t0 ≤ t1 ≤ t2 ≤ t3, then t3 − t0 ≤ d must be
true.

Fig. 3: A temporally constrained cycle, composed of a time-respecting path,
which starts and ends on the same node. The interactions incident to this node
constitute the only permissible inversion of the time-respecting sequence. In this
cycle, t0 ≤ t1 ≤ t2 ≤ t3, but t3 > t0.

Fig. 4: A time-respecting path, in which no nodes or interactions are repeated,
and the sequence of interactions occurs in a monotonically increasing order. Here,
t0 ≤ t1 ≤ t2.

Fig. 5: A time-respecting path which is connected to a cycle. The non-cycle
portion of the path includes the interactions at t0 and t1. The cycle includes
interactions at t2, t3 and t4. There are two interactions from the cycle which
are adjacent to the non-cycle path. If we take the interaction at t2, then the
sequence t0, t1, t2 is time-respecting.
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the interactions occur to test that the subgraph embedded in G1 is temporally
constrained. Since we aim to find subgraphs in a network that are temporally
constrained and have the topology of G2, we assume that G2 is temporally
constrained by construction and thus do not need to check this at runtime.

Since our algorithm uses a recursive backtracking approach, we explain the
semantic feasibility tests with regard to the new candidate node - G1 node -
in the embedding, at some given level of recursion. The first test checks that
all interactions adjacent to G1 node occur within time d of each other, as in
Fig. 2. To do this, we use a list neighbors containing the neighboring nodes of
G1 node in G1 which are part of the current mapping. The list dates contains
the dates, in increasing order, on which contacts between G1 node and the nodes
in neighbors were made. If the difference between the latest and earliest date
does not exceed d, we proceed to the next test.

To check that all cycles in the embedding are temporally constrained, we
first extract all cycles from the embedding. For each cycle, we construct a new
list dates, which stores the date between each interaction in the cycle. We step
through each date, testing if the sequence is monotonically increasing. We count
the inversions in the sequence. We then step through the dates again, this time
testing if the sequence is monotonically decreasing, and counting inversions. If
the number of inversions in one of the two orderings does not exceed one, we
proceed to the next test.

The final test involves simple paths. We start by computing all simple paths
between G1 node and every other node in the embedding. For each path, we
check the length of the portion of the path which is not part of any cycle in
the embedding. If no cycle intersects the path, we test that the path is time-
respecting. If it is, then G1 node is feasible for the match. Otherwise, if the
length of the non-cycle path is two or more, but continues into a cycle, then
we need to do more testing. Thus, we identify the two interactions in the cycle
which are adjacent to the path. If, with one of these interactions, the non-cycle
path remains time-respecting, then G1 node is feasible for the match.

When a candidate node is included in a potential embedding of G2 in G1,
the three conditions in Definition 5 must be fulfilled. If any of the tests fail, the
candidate node is discarded, and the recursive backtracking approach continues.

4 Results

The results in this section were generated by experiments performed on a Linux
server with a 2 GHz processor, limited to 5GB of physical memory.

4.1 Network Data

The SocioPatterns project was set up to study patterns in social dynamics [6].
The SocioPatterns sensing platform gathers face-to-face proximity data from
participants who wear wireless sensors. The data forms a contact network, in
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which a node represents a person and an interaction represents face-to-face con-
tact. The number of interactions between two people represents the number of
times they came into contact. The data is a useful proxy for communication.

One such experiment was performed at the ACM Conference on Hypertext
and Hypermedia 2009 in Turin, Italy. The Hypertext 2009 network contains 113
nodes and 9 865 interactions. Another experiment was performed at the Science
Gallery in Dublin during the INFECTIOUS: STAY AWAY exhibition in 2009.
The Infectious network contains 410 nodes and 17 298 interactions. The d-value
we chose for the Hypertext 2009 and Infectious data sets was 10 minutes, to
reflect the contact dynamics.

(a) Query. (b) One more
interaction.

(c) Two more
interactions.

(d) One less
interaction.

(e) Two less
interactions.

Fig. 6: A sample query graph and its topological variations. (6a) The original
query graph. (6b, 6c) Embeddings which match inexactly, with one or two more
interactions than the query graph. (6d, 6e) Embeddings with one or two fewer
interactions than specified by the query graph.

We selected 42 small connected graphs to act as query graphs in the matching
process (see an example and some variations in Fig. 6). Half of these have five
nodes, and the other half have six. The diameter of the query graphs ranges from
one to four. The diameter of a graph is the longest of all shortest paths between
any two nodes in the graph.

4.2 Inexact Matches

We ran three experiments on each data set. These allowed a cost threshold θ
of zero, one and two. The threshold restricts the number of interactions in the
embedding that are allowed to vary from the query graph. When θ is zero, the
match is exact. When θ is one, an interaction may be missing from the embedding
or an extra interaction my be present. When θ is two, either two interactions
are missing or two extra interactions are in the embedding. Examples of some
permissible variations to a query graph are shown in Fig. 6.

Although we allow the structure of embedded subgraphs to vary to a certain
extent, we do not allow the temporal constraint to be violated. Thus, the exam-
ples shown in Fig. 6 must be temporally constrained, for any instance of their
embedding. This ensures that the embedded structures will be interpretable in
a temporal context. The temporal constraints can be relaxed by increasing the
time scale over which interactions take place, by changing the d-value.
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(a) Hypertext - exact matching. (b) Infectious - exact matching.

(c) Hypertext - one interaction error allowed.(d) Infectious - one interaction error allowed.

(e) Hypertext - two errors allowed. (f) Infectious - two interaction errors allowed.

Fig. 7: The time taken for all embeddings of each query graph to be found in
the data sets, with a cost thresholds of θ = {0, 1, 2}. Each plot compares the
time taken for the process with and without the use of temporal information.
The x-axis lists the query graphs sought, in decreasing order from the one that
took longest to find without temporal pruning. The biggest peaks for the tem-
poral pruning approach occur for query graphs with cycles, which have many
embeddings in the network, leading to a slower matching process.
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4.3 Processing Time

To show that temporal information can speed up the matching process, we
recorded the time taken for embeddings of our set of query graphs to be found in
the Hypertext 2009 and Infectious data sets. The results are plotted in Fig. 7. In
all cases, independent of the error threshold, the query graphs are found faster
when temporal information is used. In many cases, the difference is notable .

It appears that temporal pruning always allows the search to terminate faster.
To see why, consider the following scenario. From a state s in a partial match, the
next candidate node pair (a node from G1 and one from G2) is evaluated. If the
pair is to be included in the match, the topology of the subgraphs they induce
(in G1 and G2 respectively) must match. If the match is correct, the search
will continue. However, if temporal information is used, then the embedding in
G1 must be temporally constrained. This facilitates an earlier discarding of the
match. The result is that fewer embeddings are returned, with each embedding
being temporally constrained.

Given that the number of interactions present in the Infectious network is
approximately twice that of those present in the Hypertext 2009 network, (17 298
versus 9 865 respectively), it is interesting to see that the temporal pruning
approach is still almost always faster than the static approach.

In the case where no temporal pruning is used, there is a pronounced differ-
ence in the time taken for embeddings of query graphs to be identified. This is
due to the fact that queries with longer diameters – composed of longer paths –
take longest to find without temporal pruning. Those which are found quickest
have short diameters, for example cliques and near-cliques. This may be ex-
tremely useful in real-world scenarios, when paths of contacts occurring close in
time are present.

5 Conclusion

When errors are present in network data, or when a user wants to find a range of
subgraphs similar to the one they consider important, inexact subgraph matching
comes into play. The solution to this problem is more computationally expensive
than exact matching. Traditionally, labels on the network nodes are used to
constrain the search. However, in many temporal networks, such node labels are
not available. Thus, we have introduced temporal inexact subgraph matching,
using temporal information to prune the search space. The returned embeddings
have the property of being temporally constrained, such that interactions in the
network take place within a given time window of each other.

When applied to two undirected contact networks, our approach outper-
formed the corresponding static inexact subgraph matching algorithm in terms
of processing time. From among the query graphs we sought, the greatest bene-
fit of the temporal method occurred when the diameter of the query graph was
longer. This may be useful when seeking longer paths in networks, for exam-
ple to find disease spreading in epidemic networks, or information diffusion in
communication networks.
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Abstract. Detecting and adapting to concept drift makes learning data
stream classifiers a difficult task. It becomes even more complex when
the distribution of classes in the stream becomes imbalanced. Currently,
proper assessment of classifiers for such data is still a challenge, as exist-
ing evaluation measures either do not take into account class imbalance
or are unable to indicate class ratio changes in time. In this paper, we
advocate the use of the area under the ROC curve (AUC) in imbalanced
data stream settings and propose an incremental algorithm that uses
a sorted tree structure with a sliding window to compute AUC using
constant time and memory. Additionally, we experimentally verify that
this algorithm is capable of correctly evaluating classifiers on imbalanced
streams and can be used as a basis for detecting sudden changes in class
definitions and imbalance ratio.

Keywords: AUC, data stream, class imbalance, concept drift

1 Introduction

Many modern information system, e.g. concerning sensor networks, recommen-
der systems, or traffic monitoring, record and process huge amounts of data.
However, the massive size and complexity of the collected datasets make the
discovery of patterns hidden in the data a difficult task. Such limitations are par-
ticularly visible when mining data in the form of transient data streams. Stream
processing imposes hard requirements concerning limited amount of memory
and small processing time, as well as the need of reacting to concept drifts,
i.e., changes in distributions and definitions of target classes over time. For su-
pervised classification, these requirements mean that newly proposed classifiers
should not only accurately predict class labels of incoming examples, but also
adapt to concept drifts while satisfying computational restrictions.

Classification becomes even more difficult if the data complexities also include
class imbalance. It is an obstacle even for learning from static data, as classifiers
are biased toward the majority classes and tend to misclassify minority class
examples. However, it has been also shown that class imbalance ratio is usually
not the only factor that impedes learning. Experimental studies [1, 2] suggest
that when additional data complexities occur together with class imbalance, the
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deterioration of classification performance is amplified and affects mostly the
minority class. In this paper, we focus our attention on the complexity resulting
from the combination of class imbalance, stream processing, and concept-drift.

Although for static imbalanced data several specialized learning techniques
have recently been introduced [3, 4], similar research in the context of data
streams is limited to a few papers [5–8]. However, these studies show that evolv-
ing and imbalanced data streams are particularly demanding learning scenarios,
and the problem of effectively evaluating a classifier is vitally important for such
data.

Currently, the performance of data stream classifiers is commonly measured
with predictive accuracy (or respective error), which is usually calculated in a
cumulative way over all incoming examples or at selected points in time when
examples are processed in blocks. However, when values of these measures are
averaged over an entire stream, they loose information about the classifier’s reac-
tions to drifts. Even recent proposals including a prequential way of calculating
accuracy [9] or using the Kappa statistic [10, 11] are not sufficient as they are
unable to depict changes in class distribution, which could appear in different
moments of evolving data streams. Moreover, when the ratio of positive to neg-
ative instances changes in a test set, a classifier chosen using these metrics may
no longer perform sufficiently good, or even acceptably [12].

For static imbalanced problems, a popular alternative to accuracy is the area
under the ROC (Receiver Operator Characteristic) curve (AUC). An important
property of AUC is that it is invariant to changes in class distribution. Moreover,
for scoring classifiers it has a very useful statistical interpretation as the expec-
tation that a randomly drawn positive example receives a higher score than a
random negative example. Thus, it measures the ranking ability of classifiers,
which is especially desirable if one wants to dynamically change the classification
threshold in response to changing class or cost distributions [12]. Finally, several
authors have shown that AUC is more preferable for model evaluation than total
accuracy [13].

However, in order to calculate AUC, one needs to sort a given dataset and
iterate through each example. Because the sorted order of examples defines the
resulting value, adding an example to the dataset forces the procedure to be
repeated. Therefore, AUC cannot be directly computed on data streams, as
this would require O(n) time and memory at each time point, where n is the
current length of the data stream (if previously sorted scores are preserved, one
only needs to insert a new score and linearly scan through the examples to
calculate AUC). Up till now, the use of AUC for data streams has been limited
to estimations on periodical holdout sets [8, 6] or entire streams [5, 7], making it
either potentially biased or computationally infeasible.

In this paper, we propose a new approach for calculating AUC incrementally
with limited time and memory requirements. The proposed algorithm incorpo-
rates a sorted tree structure with a sliding window as a forgetting mechanism,
making it both computationally feasible and appropriate for concept-drifting
streams. According to our best knowledge, such an approach has not been con-
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sidered in the literature. Furthermore, we argue that, compared to standard
accuracy, the analysis of changes of prequential AUC over time could provide
more information about the performance of classifiers with respect to different
types of drifts, in particular for streams with evolving class imbalance ratio.
To verify this hypothesis, we carry out experiments with several synthetic and
real datasets representing scenarios involving different types of drift, including
sudden changes in the class imbalance ratio.

The remainder of the paper is organized as follows. Section 2 presents related
work. In Section 3, we introduce an algorithm for calculating prequential AUC
and investigate its properties, while Section 4 shows how prequential AUC can
be used for concept drift detection. In Section 5, we present experimental results
on real and synthetic datasets, which demonstrate the properties of the proposed
algorithms. Finally, in Section 6 we draw conclusions and discuss future research.

2 Evaluating Data Stream Classifiers

In data stream mining, predictive abilities of a classifier are evaluated by using
a holdout test set, chunks of examples, or incrementally after each example [14].
More recently, Gama et al. [9] proposed prequential accuracy with forgetting
as a means of evaluating data stream classifiers and enhancing drift detection
methods. They have shown that computing accuracy only over the most recent
examples, instead of the entire stream, is more appropriate for continuous as-
sessment and drift detection in evolving data streams. Nevertheless, prequential
accuracy inherits the weaknesses of traditional accuracy, that is, variance with
respect to class distribution and promoting majority class predictions.

For imbalanced data streams, Bifet and Frank [10] proposed the use of the
Kappa statistic with a sliding window. Furthermore, this metric has been re-
cently extended to take into account temporal dependence [11]. However, the
Kappa statistic requires a baseline classifier, which is dependent of the current
class imbalance ratio. Furthermore, in contrast to accuracy, the Kappa statistic
is a relative measure without a probabilistic interpretation, meaning that its
value alone does not directly state whether a classifier will predict accurately
enough in a given setting, only that it performs better than general baselines.

The AUC measure has also been used for imbalanced data streams, however,
in a limited way. Some researchers chose to calculate AUC using entire streams [5,
7], while others used periodical holdout sets [8, 6]. Nevertheless, it was noticed
that periodical holdout sets may not fully capture the temporal dimension of
the data, whereas evaluation using entire streams is neither feasible for large
datasets nor suitable for drift detection. It is also worth mentioning that an
algorithm for computing AUC incrementally has also been proposed [15], yet
one which calculates AUC from all available examples and is not applicable to
evolving data streams. Although the cited works show that AUC is recognized
as a measure which should be used to evaluate classifiers for imbalanced data
streams, up till now it has been computed the same way as for static data. In
the following sections, we propose a simple and efficient algorithm for calculating
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AUC incrementally with forgetting, and investigate its properties with respect
to classifier evaluation and drift detection in evolving data streams.

3 Prequential AUC

Our main interest in this paper is to evaluate data stream classifiers for evolving
imbalanced data streams. For this purpose, we advocate the use of the area un-
der the receiver operator characteristic curve (AUC). Therefore, we will consider
scoring classifiers, i.e., classifiers that for each predicted class label additionally
return a numeric value (score) indicating the extent to which an instance is
predicted to be positive or negative. Furthermore, we will limit our analysis to
binary classification. It is worth mentioning, that most classifiers can produce
scores, and those that only predict class labels can be converted to scoring clas-
sifiers [12].

We propose to compute AUC incrementally using a forgetting mechanism
that employs a sorted window of classification scores of the most recent examples.
It is worth noting that, since the calculation of AUC requires sorting examples
with respect to their classification scores, it cannot be computed on an entire
stream or using fading factors without using additional memory. To efficiently
maintain a sorted set of scores, we propose to use a red-black tree [16], which
is capable of adding and removing elements in logarithmic time without any
additional memory. Furthermore, a window of scores is required to identify the
age of each score. With these two structures, for each incoming example a new
score is inserted into the window (line 16) as well as the tree (line 11) and, if
the window of examples has been exceeded, the oldest score is removed (lines
5 and 16). After the window has been updated, AUC is calculated by summing
the number of positive examples occurring before each negative example (lines
20–24) and normalizing that value by all possible pairs pn (line 25), where p is
the number of positives and n is the number of negatives in the window. This
method of calculating AUC is equivalent to summing the area of trapezoids for
each pair of sequential points in the ROC curve [12], but is more suitable for
our purposes as it requires very little computation given a sorted collection of
scores. Algorithm 1 lists the pseudo-code for calculating prequential AUC.

Let us now analyze the complexity of the proposed approach. For a window of
size d, the time complexity of adding and removing a score to the red-black tree is
O(2 log d). Additionally, the computation of AUC requires iterating through all
the scores in the tree, which is an O(d) operation. In summary, the computation
of prequential AUC has a complexity of O(d + 2 log d) per example and since
d is a user-defined constant this resolves to a complexity of O(1). It is worth
noticing that if AUC only needs to be sampled every k examples (a common
scenario while plotting metrics in time) lines from 19 to 25 can be executed only
once per k examples. In terms of space complexity, the algorithm requires O(2d)
memory for the red-black tree and window, which also resolves to O(1).

In contrast to error-rate performance metrics, such as accuracy [9, 14] or the
Kappa statistic [10, 11], the proposed measure is invariant of the class distribu-
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Algorithm 1 Prequential AUC

Input: S: stream of examples, d: window size
Output: θ̂: prequential AUC after each example

1: W ← ∅; n← 0; p← 0; idx← 0;
2: for all scored examples xt ∈ S do
3: // Remove oldest score from the window

4: if idx ≥ d then
5: scoreTree.remove(W [idx mod d]);
6: if isPositive(W [idx mod d]) then
7: p← p− 1;
8: else
9: n← n− 1;

10: // Add new score to the window

11: scoreTree.add(xt);
12: if isPositive(xt) then
13: p← p+ 1;
14: else
15: n← n+ 1;
16: W [idx mod d]← xt;
17: idx← idx+ 1;
18: // Calculate AUC

19: AUC ← 0; c← 0;
20: for all consecutive scored examples s ∈ scoreTree do
21: if isPositive(s) then
22: c← c+ 1;
23: else
24: AUC ← AUC + c;
25: θ̂ ← AUC

pn
;

tion. Furthermore, unlike accuracy it does not promote majority class predic-
tions. Additionally, in contrast to the Kappa statistic, AUC is a non-relative,
[0, 1] normalized metric with a direct statistical interpretation. As opposed to
previous applications of AUC to data streams [5–8], the proposed algorithm
can be executed after each example using constant time and memory. Finally,
compared to the method presented in [15], the proposed algorithm provides a for-
getting mechanism and uses a sorting structure, making it suitable for evolving
data streams and allowing for efficient sampling.

4 Drift Detection Using AUC

Prequential AUC assesses the ranking abilities of a classifier and is invariant of
the class distribution. These properties differentiate it from common evaluation
metrics for data stream classifiers and could be applied in an additional context.
In particular, for streams with high class imbalance ratios simple metrics, such as
accuracy, will suggest good performance (as they are biased toward recognizing
the majority class) and may poorly exhibit concept drifts. Therefore, we propose
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to investigate AUC not only as an evaluation measure, but also as basis for
drift detection in imbalanced streams, where it should better indicate changes
concerning the minority class.

For this purpose, we propose to modify the Page-Hinkley (PH) test [9], how-
ever, generally other drift detection methods could also have been adapted. The
PH test considers a variable mt, which measures the accumulated difference be-
tween the observed values e (originally error estimates) and their mean till the
current moment, decreased by a user-defined magnitude of allowed changes δ:
mt =

∑t
i=1 (et − ēt − δ). After each observation et, the test checks whether the

difference between the current mt and the smallest value up to this moment
min(mi, i = 1, . . . , t) is greater than a given threshold λ. If the difference ex-
ceeds λ, a drift is signaled. In this paper, we propose to use the area over the
ROC curve (1−AUC) as the observed value. Hence, according to the statistical
interpretation of AUC, instead of error estimates, we monitor the estimate of the
probability that a randomly chosen positive is ranked after a randomly chosen
negative. This way, the PH test will trigger whenever a classifier begins to make
severe ranking errors regardless of the class imbalance ratio.

The aim of using prequential AUC as an evaluation measure is to provide ac-
curate classifier assessment and drift detection for evolving imbalanced streams.
In the following section, we examine the characteristics of the proposed metric
in scenarios involving different types of drifts and imbalance ratios.

5 Experiments

We performed two groups of experiments, one showcasing the properties of pre-
quential AUC as an evaluation metric, and another assessing its effectiveness
as a basis for drift detection. In the first group, we tested five different classi-
fiers [14, 17]: Naive Bayes (NB), Very Fast Decision Tree with Naive Bayes leaves
(VFDT), Dynamic Weighted Majority (DWM), Online Bagging with an ADWIN
drift detector (Bag), and Online Accuracy Updated Ensemble (OAUE). Naive
Bayes and VFDT were chosen as incremental algorithms without any forgetting
mechanism, Online Bagging was chosen as an algorithm with a drift detector,
while OAUE and DWM were selected as representatives of ensemble learners.
For the second group of experiments, we only utilized VFDT with Naive Bayes
leaves, similarly as was done in [9].

All the algorithms and evaluation methods were implemented in Java as part
of the MOA framework [18]. The experiments were conducted on a machine
equipped with a dual-core Intel i7-2640M CPU, 2.8Ghz processor and 16 GB
of RAM. For all the ensemble methods (Bag, DWM, OAUE) we used 10 Very
Fast Decision Trees as base learners, each with a grace period nmin = 100, split
confidence δ = 0.01, and tie-threshold τ = 0.05 [14].
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5.1 Datasets

For the first group of experiments, with prequential AUC as an evaluation met-
ric, we used 2 real and 10 synthetic datasets1. The real datasets were Airlines
(Air) and PAKDD’09 (PAKDD), representing a balanced and imbalanced dataset
respectively. To create synthetic datasets we used three popular data stream gen-
erators from MOA: SEA (SEA), Hyperplane (Hyp), and Random RBF (RBF) [18].
More precisely, SEA was a dataset without drift, SEAx were datasets with a 1:x
class ratio and three sudden drifts, and SEARC contained three class ratio changes
(1:1→ 1:100→ 1:10→ 1:1). Furthermore, RBF contained two very short changes
(blips), whereas Hypx were datasets with a 1:x class ratio and a slow incremental
drift throughout the entire stream.

For assessing prequential AUC as a measure for monitoring drift, we created
7 synthetic datasets using the SEA (SEA), RBF (RBF), Random Tree (RT), and
Agrawal (Agr) generators [18]. Each dataset tested for a single reaction (or lack
of one): SEANoDrift contained no changes, and should not trigger any drift de-
tector; RT involved a sudden change after 30 k examples; Agr1, Agr10, Agr100
also contained a sudden change after 30 k examples, but had a 1:1, 1:10, 1:100
class ratio, respectively; SEARatio included a sudden 1:1 → 1:100 ratio change
after 10 k examples; RBFBlips contained two blips, which should not trigger the
detector. The main characteristics of all the datasets are given in Table 1.

Table 1. Characteristic of datasets.

Dataset #Inst #Attrs Class ratio Noise #Drifts Drift type

SEA 100 k 3 1:1 10% 3 none
SEAx 1 M 3 1:x 10% 3 sudden
Hypx 500 k 5 1:x 5% 1 incremental
RBF 1 M 20 1:1 0% 2 blips
SEARC 1 M 3 1:1/1:100/1:10 10% 4 virtual
Air 539 k 7 1:1 - - unknown
PAKDD 50 k 30 1:4 - - unknown

SEANoDrift 20 k 3 1:1 10% 1 none
Agrx 40 k 9 1:x 1% 1 sudden
RT 40 k 10 1:1 0% 1 sudden
SEARatio 40 k 3 1:1/1:100 10% 1 virtual
RBFBlips 40 k 20 1:1 0% 2 blips

5.2 Results

All of the analyzed algorithms were tested in terms of accuracy and prequential
AUC. In the first group of experiments, the results were obtained using the

1 Source code, test scripts, generator parameters, and links to datasets available at:
http://www.cs.put.poznan.pl/dbrzezinski/software.php
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test-then-train procedure [14], with a sliding window of 1000 examples. Table 2
presents a comparison of average classification accuracy and prequential AUC.

Table 2. Average prequential accuracy (Acc.) and AUC (AUC).

NB VFDT Bag DWM OAUE

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

SEAND 0.86 0.90 0.89 0.89 0.89 0.90 0.89 0.90 0.89 0.90
SEA1 0.84 0.88 0.85 0.87 0.89 0.88 0.89 0.88 0.89 0.88
SEA10 0.84 0.74 0.87 0.73 0.89 0.74 0.89 0.74 0.89 0.74
SEA100 0.89 0.54 0.89 0.54 0.90 0.54 0.90 0.54 0.90 0.54
Hyp1 0.78 0.85 0.81 0.87 0.88 0.93 0.88 0.92 0.88 0.93
Hyp10 0.88 0.80 0.89 0.74 0.91 0.81 0.91 0.76 0.91 0.82
Hyp100 0.94 0.57 0.93 0.53 0.94 0.56 0.94 0.52 0.94 0.55
RBF 0.74 0.83 0.96 0.98 0.99 1.00 0.98 1.00 0.99 1.00
SEARC 0.86 0.77 0.89 0.77 0.90 0.77 0.89 0.77 0.90 0.77
Air 0.65 0.66 0.64 0.65 0.64 0.65 0.65 0.65 0.67 0.68
PAKKD 0.56 0.64 0.73 0.57 0.80 0.63 0.80 0.50 0.80 0.62

By comparing average values of the analyzed evaluation metrics, we can see
that for datasets with a balanced class ratio (SEA, SEA1, Hyp1, RBF, Air) both
measures have similar values. As we expected, for datasets with class imbalance
(SEA10, SEA100, Hyp10, Hyp100, PAKKD, SEARC) accuracy does not demonstrate
the difficulties the classifiers have with recognizing minority class examples. The
differences between accuracy and AUC are even more visible on graphical plots
depicting algorithm performance in time. Figures 1–5 present selected perfor-
mance plots, which best characterize the differences between both metrics.
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Fig. 1. Prequential accuracy (left) and AUC (right) on a data stream with sudden
drifts and a balanced class ratio.
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Fig. 2. Prequential accuracy (left) and AUC (right) on a data stream with sudden
drifts and 1:100 class imbalance ratio.
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Fig. 3. Prequential accuracy (left) and AUC (right) on a data stream with incremental
drift and a balanced class ratio.
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Fig. 4. Prequential accuracy (left) and AUC (right) on a data stream with incremental
drift and 1:100 class imbalance ratio.
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Fig. 5. Prequential accuracy (left) and AUC (right) for data with class ratio changes.

Comparing Figures 1 and 2, we can notice how the class imbalance ratio
affects both prequential accuracy and AUC. The accuracy plot visibly flattens
when class imbalance rises, but absolute values almost do not change. AUC on
the other hand flattens but its value drastically changes, showing more clearly
the classifiers’ inability to recognize the minority class.

A similar situation is visible on Figures 3 and 4, where the classifiers were
subject to an ongoing slow incremental drift. When classes are balanced, the
plots are almost identical, both in terms of shape and absolute values. However,
when the class ratio is equal 1:100, the accuracy plot flattens and its average
value rises, while the AUC plot still clearly shows that classifiers are unstable
and additionally its average value signals poor performance.

Finally, Figure 5 depicts classifier performance for a data stream with class
ratio changes, which are sometimes called virtual drift. Apart from NB, all the
tested classifiers kept the same accuracy after each drift making the changes
invisible on the performance plot. However, on the AUC plot, ratio changes are
clearly visible providing valuable information about the ongoing processes in the
stream. In fact, the absolute values of AUC hint the severity of class imbalance in
a given moment in time. This situation illustrates the advantages of prequential
AUC as a measure for indicating class ratio changes.

The second group of experiments involved using the PH test to detect drifts
based on changes in prequential accuracy and AUC. To compare both metrics,
we used window sizes (1000–5000) and test parameters λ = 100, δ = 0.1, as
proposed in [9]. Table 3 presents the number of missed versus false detection
counts, with average delay time for correct detections. The results refer to total
counts and means over 10 runs of streams generated with different seeds.

Concerning datasets with balanced classes, both evaluation metrics provide
similar drift detection rates and delays. However, for datasets with high class im-
balance the PH test notes more missed detections for accuracy. This is probably
due to the plot “flattening” caused by promoting majority class predictions. On
the other hand, detectors which use AUC have less missed detections for highly
imbalanced streams, but still suffer from a relatively high number of false alarms.
This suggests that detectors using AUC should probably be parametrized dif-
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Table 3. Number of missed and false detections (in the format missed:false) obtained
using the PH test with accuracy (Acc) and AUC (AUC). Average delays of correct
detections are given in parenthesis, where (-) means that the detector was not trig-
gered or datasets did not contain any change. Subscripts in column names indicate the
number of examples used for estimating errors.

Acc1k Acc2k Acc3k Acc4k Acc5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 0:2 (1040) 0:1 (1859) 0:0 (2843) 1:0 (4033) 5:0 (4603)
Agr10 0:9 (1202) 0:3 (1228) 0:2 (1679) 0:2 (2190) 0:2 (2817)
Agr100 2:12 (1610) 2:17 (2913) 2:10 (3136) 3:12 (3903) 3:10 (4612)
RT 6:0 (1843) 7:0 (2621) 8:0 (2933) 8:0 (3754) 8:0 (4695)
SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)
RBFBlips 0:2 (-) 0:1 (-) 0:0 (-) 0:0 (-) 0:0 (-)

AUC1k AUC2k AUC3k AUC4k AUC5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)
Agr1 2:2 (1042) 3:1 (1760) 4:1 (2726) 4:0 (3773) 7:0 (4640)
Agr10 0:5 (868) 0:5 (1539) 0:1 (1506) 0:1 (1778) 1:1 (2197)
Agr100 0:19 (1548) 0:18 (2461) 1:9 (2664) 1:11 (3563) 2:9 (4835)
RT 3:0 (1815) 5:0 (2407) 6:0 (3105) 6:0 (4121) 7:0 (4725)
SEARatio 0:0 (1339) 0:0 (2249) 0:0 (3152) 0:0 (4057) 0:0 (4959)
RBFBlips 0:3 (-) 0:1 (-) 0:0 (-) 0:0 (-) 0:0 (-)

ferently than those using accuracy. However, the most visible differences are for
streams with class ratio changes. The PH test misses all virtual drifts when using
accuracy as the base metric, but detects all the drifts when prequential AUC is
used. This shows, that in imbalanced evolving environments the use of AUC as
an evaluation measure could be of more value than standard accuracy.

6 Conclusions

In case of static data, AUC is a useful metric for evaluating classifiers both on
balanced and imbalanced classes. However, up till now it has not been sufficiently
popular in data stream mining, due to its costly calculation. In this paper, we
introduced an efficient method for calculating AUC incrementally with forgetting
on evolving data streams. The proposed algorithm, called prequential AUC,
proved to be useful for visualizing classifier performance over time and as a
basis for drift detection. In particular, experiments involving real and synthetic
datasets have shown that prequential AUC is capable of correctly identifying
poor classifier performance on imbalanced streams and detecting virtual drifts,
i.e., changes in class ratio over time.

As our ongoing research, we are analyzing the possibility of using variations
of AUC, such as scored AUC [12], to detect drifts more rapidly. Furthermore, we
plan to analyze ROC curves plotted over time as a means of in-depth assessment
of classifier performance on evolving data streams.
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Abstract. Imbalanced data, where the number of instances of one class is much 
higher than the others, are frequent in many domains such as fraud detection, 
telecommunications management, oil spill detection and text classification. 
Traditional classifiers do not perform well when considering data that are sus-
ceptible to both within-class and between-class imbalances. In this paper, we 
propose the ClustFirstClass algorithm that employs cluster analysis to aid clas-
sifiers when aiming to build accurate models against such imbalanced data sets. 
In order to work with balanced classes, all minority instances are used together 
with the same number of majority instances. To further reduce the impact of 
within-class imbalance, majority instances are clustered into different groups 
and at least one instance is selected from each cluster. Experimental results 
demonstrate that our proposed ClustFirstClass algorithm yields promising re-
sults compared to the state-of-the art classification approaches, when evaluated 
against a number of highly imbalanced datasets. 

Keywords: Imbalanced data, Undersampling, Ensemble Learning, Cluster 
analysis 

1 Introduction 

Learning from data in order to predict class labels has been widely studied in machine 
learning and data mining domains. Traditional classification algorithms assume bal-
anced class distributions. However, in many applications the number of instances of 
one class is significantly less than in the other classes. For example, in credit card 
fraud detection, direct marketing, detecting oil spills from satellite images and net-
work intrusion detection the target class has fewer representatives compared to other 
classes. Due to the increase of these applications in recent years, learning in the pres-
ence of imbalanced data has become an important research topic. 

It has been shown that when classes are well separated, regardless of the imbal-
anced ratio, instances can be correctly classified using standard learning algorithms 
[1]. However, having class imbalance in complex datasets results in the misclassifica-
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tion of data, especially of the minority class instances. Such data complexity covers 
issues such as overlapping classes, within-class imbalance, outliers and noise. 

Within-class imbalance occurs when a class is scattered into smaller sub-parts rep-
resenting separate subconcepts [2]. Subconcepts with limited representatives are 
called “small disjuncts” [2]. Classification algorithms are often not able to learn small 
disjuncts. This problem is more severe in the case of undersampling techniques. This 
is due to the fact that the probability of randomly selecting an instance from small 
disjuncts within the majority class is very low. These regions may thus remain un-
learned. The main contribution of this paper is to address this issue by employing 
clustering techniques. 

In this paper, a novel binary-class classification algorithm is suggested to handle 
data imbalance, mainly within-class and between-class imbalance. Our Clust-
FirstClass technique employs clustering techniques and ensemble learning methods to 
address these issues. In order to obtain balanced classes, all minority instances are 
used together with the same number of majority instances, as obtained after applying 
a clustering algorithm. That is, to reduce the impact of within-class imbalance majori-
ty instances are clustered into different groups and at least one instance is selected 
from each cluster. In our ClustFirstClass method, several classifiers are trained with 
the above procedure and combined to produce the final prediction results. By deploy-
ing several classifiers rather than a single classifier, information loss due to neglecting 
part of majority instances is reduced. 

The rest of this paper is organized as follows. The next section presents related 
works for classification of imbalanced data. We detail our ClustFirstClass method in 
Section 3. Section 4 describes the setup and results of implementing and comparing of 
our algorithm with other state-of-the-art methods. Finally, Section 5 concludes the 
paper. 

2 Related Work 

Imbalanced class distribution may be handled by two main approaches. Firstly, there 
are sampling techniques that attempt to handle imbalance at data level by resampling 
original data to provide balanced classes. The second category of algorithms modifies 
existing classification methods at algorithmic level to be appropriate for imbalanced 
setting [3]. Most of the previous works in the literature have been concentrated on 
finding a solution at the data level. 

Sampling techniques can improve classification performance in most imbalanced 
applications [4]. These approaches are broadly categorized as undersampling and 
oversampling techniques. The main idea behind undersampling techniques is to re-
duce the number of majority class instances. Oversampling methods, on the other 
hand, attempt to increase the number of minority examples to have balanced datasets. 
Both simple under- and oversampling approaches suffer from their own drawbacks. 
The main drawback of undersampling techniques is information loss due to neglecting 
part of majority instances. A major drawback of oversampling methods is the risk of 
overfitting, as a consequence of repeating minority examples many times. 
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In recent years, using ensemble approaches for imbalanced data classification has 
drawn lots of interest in the literature. Since ensemble algorithms are naturally de-
signed to improve accuracy, applying them solely on imbalanced data does not solve 
the problem. However, their combination with other techniques such as under- and 
oversampling methods has shown promising results [16]. In [13] by integrating bag-
ging with undersampling techniques better results are obtained. In [5], an ensemble 
algorithm, namely EasyEnsemble, has been introduced to reduce information loss. 
EasyEnsemble obtains different subsets by independently sampling from majority 
instances and combines each subset with all the minority instances to train base classi-
fiers of the ensemble learner. In another work that extends bagging ensembles [20], 
the authors propose the use of so-called roughly balanced (RB) bagging ensembles, 
where the number of instances from the classes is averaged over all the subsets. A 
drawback of these bagging approaches is that they choose instances randomly, i.e. 
without considering the distribution of the data within each class while in [12] it has 
shown that one of the key factor in the success of ensemble method is majority in-
stance selection strategy. 

Cluster-based sampling techniques have been used to improve the classification of 
imbalanced data. Specifically, they have introduced “an added element of flexibility” 
that has not been offered by most of previous algorithms [4]. Jo et al. have suggested 
a cluster-based oversampling method to address both within-class and between-class 
imbalance [2]. In this algorithm, the K-means clustering algorithm is independently 
applied on minority and majority instances. Subsequently, each cluster is oversampled 
such that all clusters of the same class have an equal number of instances and all clas-
ses have the same size. The drawback of this algorithm, like most of oversampling 
algorithms, is the potential of overfitting the training data. In this paper, we also at-
tempt to handle within and between class imbalances by employing clustering tech-
niques. However, in our work we use undersampling techniques instead of over-
sampling, in order to avoid this drawback. In [6], a set of undersampling methods 
based on clustering (SBC) is suggested. In their approach, all the training data are 
clustered in different groups and based on the ratio of majority to minority samples in 
each cluster, a number of majority instances are selected from each cluster. Finally, 
all minority instances are combined with selected majority examples to train a classi-
fier. Our approach is completely different as we only cluster majority instances and 
the same number of majority instances is selected from all clusters. 

3 Proposed Algorithm 

In this section, a new cluster-based under-sampling approach, called ClustFirstClass, 
is presented for binary classification. However, it can be easily extended to multiclass 
scenarios. This method is capable of handling between-class imbalance by having the 
same number of instances from minority and majority classes and within-class imbal-
ance by focusing on all clusters within a class equally.  

To have more intuition why clustering is effective for classification of imbalanced 
data, consider the given distribution of Figure 1. In this figure, circles represent ma-
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jority class instances and squares are instances of minority class. Each of these classes 
contains several subconcepts. In order to have balanced classes, it follows that eight 
majority instances should be selected and combined with minority representatives to 
train a classifier. If these instances are randomly chosen, the probability of selecting 
an instance from region 1 and 2 will be low. Thus, the classifier will have difficulty 
classifying instances in these regions correctly. In general, the drawback of randomly 
selecting small number of majority class instances is that small disjuncts with less 
representative data may remain unlearned. By clustering majority instances in differ-
ent groups and then selecting at least one instance from each cluster, this problem can 
be resolved. 

 

Fig. 1. A dataset with between and within class imbalance 

3.1 Under-sampling based on clustering and K-nearest neighbor 

In this group of methods, a single classifier is trained using all minority instances and 
equal number of majority instances. In order to have a representative from all subcon-
cepts of the majority class, these instances are clustered into disjoint groups and one 
instance is selected from each cluster. However, rather than blindly selecting an in-
stance, we attempt to choose more informative representative from each cluster. Prin-
cipally, the difference between methods of this group is how these samples are select-
ed from each cluster. 

One of the most common representatives of a cluster is the cluster centroid. In our 
first suggested algorithm, clusters’ centroids are combined with minority instances to 
train a classifier. For the rest of our methods, we follow the same procedures as pre-
sented in [7] to choose one instance from each cluster based on K-nearest neighbor 
(KNN) classifier. These three methods are widely used and have shown to produce 
good results in many domains [7]. Firstly, NearMiss1 selects the majority example 
from each cluster that has the minimum average distance to the three closest minority 
instances, as compared to the other examples in its cluster. In the same way, in Near-
Miss2, the example with minimum distance to its three farthest minority instances is 
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chosen. The third alternative involves choosing the instance from each cluster that has 
the “most distance” to its three minority nearest neighbors. 

3.2 Under-sampling based on clustering and ensemble learning 

The main drawback of most undersampling methods, including those methods sug-
gested earlier in this paper, is the information loss caused by considering a small set 
of majority instances and subsequently neglecting other majority class instances that 
may contain useful information for classification. Ensemble methods can solve this 
problem by using more instances of the majority class in different base learners [4]. In 
our proposed ensemble method, several classifiers are trained and combined to gener-
ate the final results. Each classifier is trained by selecting at least one sample from 
each cluster. Recall that the advantage of using cluster-based sampling instead of 
blind sampling is that all subconcepts are represented in training data. Therefore, none 
of them remains “unlearned”. 

The proposed ensemble algorithm is developed by training several base classifiers 
that are combined using a weighted majority voting combination rule, where the 
weight of each classifier is proportional to inverse of its error on the whole training 
set. Each learner is trained using Dmin, whole minority instances, and Emaj, selected 
majority instances, where Emaj contains |Dmin|/k randomly selected instances from 
each cluster. By assigning a value between 1 and |Dmin| to k, a balanced learner is 
obtained, while ensuring that instances from all subconcepts of majority class partici-
pate in training a classifier. The following pseudo-code describes our proposed algo-
rithm in more details. 

ClusFirstClass Algorithm 
Input: D ={(xi, yi)}, i=1,…, N 
Divide D into Dmin and Dmaj 
Cluster Dmaj into k partition Pi i=1,…,k 
For each classifier Cj j=1,…,m 
  For each cluster Pi 
    Emaj+= Randomly selected |Dmin|/k instances of Pi 

  End For 
  Tr = Emaj + Dmin 

  Train Cj using Tr 
  ej= Error rate of  Cj on D 
  Wj= log (1/ ej) 
 End For 
Output: C!"#$%   x = argmax!    W!   C! x == c!

!!!  

4 Experiments and Results 

In this section, first, common evaluation metrics for imbalanced data are introduced 
and then datasets and experimental setting that are used in this paper are presented. 
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Finally, our proposed algorithms are evaluated and compared with several state-of-
the-art methods. 

4.1 Evaluation Criteria 

For imbalanced datasets, it is not sufficient to evaluate the performance of the classi-
fier by only considering the overall accuracy [4]. In this paper, following other re-
searchers, we use the F-measure and G-mean measures to evaluate the performance of 
different algorithms. Both F-measure and G-mean are functions of confusion matrix, a 
popular representation of the classifier performance. The F-measure considers both 
precision and recall at the same time while G-mean combines sensitivity and specific-
ity as an evaluation metric.  

4.2 Datasets and Experimental Settings 

In this section, first artificial and real datasets for our experiments are introduced and 
subsequently more details about our experimental settings are described. Our pro-
posed algorithm is particularly effective in presence of within and between class im-
balances. To evaluate efficiency of our proposed method, it is applied on two sets of 
artificial datasets with varying degree of between class imbalances and different num-
ber of subconcepts. Furthermore, it is tested on real datasets from UCI repository [9]. 
 

Table 1. Description of uni-dimensional artificial datasets 

Imbalance 
ratio 

Dataset 
Size 

0-0.25 
+ 

0.25-50 
- 

0.50-0.75 
+ 

0.75-1 
- 

1:9 
 

80 4 68 4 4 
400 20 340 20 20 

1600 80 1280 80 80 

1:3 
80 10 50 10 10 

400 50 250 50 50 
1600 200 1000 200 200 

Imbalance 
ratio 

Dataset 
Size 

0-
0.125 

+ 

0.125-
0.25 

- 

0.25-
0.375 

+ 

0.375-
0.50 

- 

0.50-
0.675 

+ 

0.675-
0.75 

- 

0.75-
0.875 

+ 

0.875-
1 
- 

1:9 
80 2 23 2 23 2 3 2 23 

400 10 13 10 119 10 119 10 119 
1600 40 466 40 466 40 466 40 42 

1:3 
80 5 18 5 6 5 18 5 18 

400 25 27 25 91 25 91 25 91 
1600 100 366 100 366 100 366 100 102 

 
To create artificial datasets with varying degree of imbalance ratio and the number of 
subconcepts, we follow the same procedure as [1] with one difference that majority 
class as well as minority class has small disjuncts. In our artificial datasets, majority 
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class instances have at least one small disjuncts. As in [1], three parameters are con-
sidered to create different datasets: dataset size, number of subconcepts and the im-
balance ratio. Two sets of artificial datasets one uni-dimensional and the other multi-
dimensional are generated.  

Table 1 describes the number and label of data in each subconcept in uni-
dimensional space. Data are distributed uniformly in intervals. For datasets with eight 
subconcepts, one of the intervals of majority data (negative label) is selected random-
ly as small disjunct with less representative data. Multi-dimensional datasets have five 
dimensions and we have the same clusters as [1]. The definition of subconcepts and 
dataset sizes is the same as described datasets in table 1. 

In [8], a benchmark of highly imbalanced datasets from UCI repository is collected 
and prepared for binary classification task. We selected 8 datasets with wide range of 
imbalance ratios (from 9 to 130), sizes (from 300 to over 4000 examples) and attrib-
utes (purely nominal, purely continuous and mixed) from this benchmark. Table 2 
shows the summary of these datasets. Here, all the nominal features have been con-
verted to binary values with multiple dimensions. Following [8], datasets that had 
more than two classes have been modified by selecting one target class as positive, 
and considering the rest of the classes as being negative. Continuous features have 
been normalized to avoid the effect of different scales for different attributes especial-
ly for our distance measurements. 

Table 2. The Summary of Datasets. In Features, N and C represent Nominal and Continuous 
respectively.  

Dataset 
 

Size Features Target Imbalance                  
ratio 

Ecoli 336 7C imU 1:9 
Spectrometer 531 93C LRS >=44 1:11 
Balance 625 4N Balance 1:12 
Libras Move 360 90C Positive 1:14 
Arrhythmia 452 73N, 206C Class=06 1:17 
Car Eval. 1728 6N Very good 1:25 
Yeast 1484 8C ME2 1:28 
Abalone 4177 1N, 7C Ring=19 1:130 

 
All algorithms are implemented in the MATLAB framework. In all experiments, 5-

fold stratified cross validation is applied. 5-fold cross validation is chosen due to lim-
ited number of minority instances in most datasets. The whole process of cross valida-
tion is repeated ten times and the final outputs are the means of these ten runs. 

Decision trees have been commonly used in several imbalanced problems as a base 
classifier [5], [11], [12]. In this paper, the CART algorithm [10] is chosen as base 
learning method for our experiments.  

We applied the K-means clustering algorithm to partition majority instances. How-
ever, instead of using the Euclidean distance to find similarity of instances, the L1-
norm is used. The advantage of using the L1-norm over the Euclidean distance is that 
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it is less sensitive to outliers in the data. Also, the probability of having a singleton 
partition for outliers is less than Euclidean distance [14]. Further, it has been shown 
that using the L1- norm is more suitable when learning in a setting which is suscepti-
ble to class imbalance, especially where the number of features is higher that the 
number of minority class examples [18]. 

4.3 Results and Analyses 

In the first experiment, we evaluate the performance of our proposed single classifi-
ers. Table 3 demonstrates the results of applying these methods on our real datasets 
and comparing them in terms of F-measure and G-mean. The results show that Near-
Miss1 has better performance compared to other classifiers and the classifier that uses 
the centroids as cluster representative has significantly lower F-measure and G-
means. It can be concluded that cluster centroids are not informative for our classifi-
cation task. In summary, as we expected, single undersampling learner suffers from 
information loss. In the rest of the experiments, we use an ensemble-learning method 
instead of using a single CART classifier.  

In the next experiment, to evaluate our proposed ensemble classifier ClusFirstClass 
in different scenarios with different degree of within and between class imbalances, it 
is applied on artificial datasets. We consider a bagging ensemble learner that chooses 
randomly a subset of majority instances to be combined with all minority instances, as 
the baseline and compare the performance of this algorithm with our proposed meth-
od. The only difference between baseline method and ClusFirstClass is that it chooses 
majority instances randomly. It has the same number of base learners and combina-
tion rule. 

Table 3. F-measure and G-mean of proposed single classifiers 

Dataset 
F-Measure G-Mean 

Near 
Miss1 

Near 
Miss2 

Most-
Distant 

Centroid 
Near 

Miss1 
Near 

Miss2 
Most-

Distant 
Centroid 

Ecoli 0.5915 0.5671 0.5392 0.5740 0.8433 0.8261 0.8357 0.8527 
Spectrometer 0.4874 0.5180 0.4746 0.4709 0.8488 0.8445 0.8488 0.8488 
Balance 0.1448 0.1417 0.1802 0.1415 0.5050 0.4600 0.5551 0.0581 
Libras Move 0.3945 0.3433 0.3154 0.3789 0.8147 0.7865 0.7708 0.7991 
Arrhythmia 0.3594 0.3074 0.3342 0.3646 0.7855 0.7411 0.7623 0.7737 
Car Eval. 0.8313 0.8057 0.2778 0.2394 0.9730 0.9857 0.8907 0.8513 
Yeast 0.2398 0.1999 0.1928 0.1138 0.7827 0.7657 0.7872 0.5412 
Abalone 0.0301 0.0328 0.0275 0.0174 0.6496 0.6820 0.6599 0.2873 
Average 0.3849 0.3645 0.2927 0.2876 0.7753 0.7614 0.7638 0.6265 

 
Figure 2 and 3 illustrates the results of applying our proposed method on previous-

ly described uni-dimensional and multi-dimensional artificial datasets respectively. In 
all 12 scenarios ClusFirstClass is compared to baseline method in terms of F-measure. 
For all datasets, our proposed method has considerably better performance compared 
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to baseline. In most cases, as the imbalance ratio and the number of subconcepts in-
crease the difference between our proposed classifier and baseline algorithm becomes 
more significant.  

In the first experiment with proposed single classifiers, we have clustered majority 
instances into k groups using the k-means algorithm, where k=|Dmin|. In experiments 
on artificial datasets, obviously the number of clusters is equal to the number of sub-
concepts within the majority class. For the next experiments, in order to compute the 
natural number of clusters, different number of k from 1 to |Dmin| is tested to find the 
one with the best average Silhouette plot [17]. 
 

  
a) In the case of having four subconcepts 

 

  
b) In the case of having eight subconcepts 

Fig. 2. Results of applying our proposed method on previously described uni-dimensional 
artificial datasets in terms of F-measure 

Table 4 shows the results of comparing our proposed undersampling ensemble algo-
rithm based on clustering with another undersampling ensemble method, EasyEnsem-
ble [5] and two cluster-based algorithms, Cluster-based oversampling [2] and SBC 
[6]. Our algorithm outperforms other undersampling ensemble methods on almost all 
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datasets in terms of F-Measure and G-Mean. Compared to the cluster-based over-
sampling, although that method achieves better F-measure on two (out of 9) datasets, 
the averaged F-measure and G-Mean of our algorithm is better than that of Cluster-
based oversampling. Clust-First-Class outperforms SBC on all datasets. 

 

  
a) In the case of having four subconcepts 

 

  
b) In the case of having eight subconcepts 

Fig. 3. Results of applying our proposed method on previously described multi-dimensional 
artificial datasets in terms of F-measure 

5 Conclusion and Future Work 

In this paper, we introduce a new cluster-based classification framework for learning 
from imbalanced data. In our proposed framework, first majority instances are clus-
tered into k groups and then at least one instance from each cluster is selected to com-
bine with all minority instances, prior to training. This approach is capable of han-
dling between-class imbalance by selecting approximately the same number of in-
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stances from minority and majority classes. Further, we address within-class imbal-
ance by focusing on all clusters equally. Finally, to reduce information loss due to 
choosing small number of majority instances in highly imbalanced datasets, we em-
ploy an ensemble learning approach to train several base learners with different sub-
sets of majority instances. An advantage of our ClustFirstClass method is that we 
guide the selection of majority instances used during training, as based on the clusters 
obtained by the k-means algorithm 

To evaluate the efficiency of our proposed method, it is applied on two sets of arti-
ficial datasets with varying degree of between class imbalances and different number 
of subconcepts. For all datasets, our proposed method has considerably better perfor-
mance compared to the baseline method. In most cases, as the imbalance ratio and the 
number of subconcepts increase, the difference between our proposed classifier and 
baseline algorithm becomes more significant. Experimental results on real datasets 
demonstrate that our proposed ensemble learner has better performance than our pro-
posed single classifiers. It also shows that our suggested ensemble method yields 
promising results compared to other state-of-the-art methods in terms of G-means and 
F-measure.  

Several directions of future research are open. Our experimental results indicate 
that using the K-means algorithm yield encouraging results. However, we are inter-
ested in exploring other cluster analysis algorithms, since the K-means algorithm may 
not be ideal when considering highly imbalanced datasets [19], or when considering 
extending our work to the multi-class problems. Thus, we plan to investigate the use 
of more sophisticated clustering algorithms to partition the majority instances. Anoth-
er direction would be to consider other ensemble-based techniques. In particular, 
ECOC [15] may be a favorable choice as it targets performance improvement in a 
binary classification setting. We also plan to extend our experiments with more da-
tasets and compare it with more ensemble algorithms such as RB bagging [20] and 
also testing other base learning algorithms such as SVM and KNN. 

Table 4. F-measure and G-mean of proposed ensemble classifier, ClustFirstClass, compared to 
EasyEnsemble, Cluster-oversampling and SBC methods 

Dataset 

F-Measure G-Mean 
Clust 
First 
Class 

Easy 
Ensemble 

Clust 
Over 

Sample 
SBC 

Clust 
First 
Class 

Easy 
Ensemble 

Clust 
Over 

Sample 
SBC 

Ecoli 0.5961 0.5612 0.5088 0.5140 0.8689 0.8658 0.6899 0.8489 
Spectrometer 0.5944 0.6924 0.6740 0.4485 0.8878 0.9064 0.8053 0.8186 
Balance 0.1524 0.0793 0.0290 0.1508 0.5223 0.3452 0.0967 0.4971 
Libras Move 0.5912 0.4806 0.6652 0.4258 0.8451 0.8407 0.8006 0.7372 
Arrhythmia 0.7475 0.6360 0.5757 0.5996 0.9489 0.8802 0.7548 0.9219 
Car Eval. 0.8331 0.3613 0.9566 0.6892 0.9918 0.9237 0.9812 0.9792 
Yeast 0.2720 0.2613 0.2798 0.2065 0.8054 0.8044 0.5095 0.8016 
Abalone 0.0449 0.0381 0.0618 0.0315 0.7446 0.7309 0.1903 0.6794 
Average 0.4790 0.3888 0.4689 0.3832 0.8267 0.7872 0.6035 0.7855 
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Abstract. The availability of automatic support may determine the
successful accomplishment of many real-world procedures. However, the
underlying process models are too complex for writing and setting up
them manually, and even standard machine learning approaches may be
unable to infer them. Additionally, suitable conditions may that deter-
mine whether some tasks are to be carried out or not. These conditions
may be in turn very complex, involving sequential relationships that take
into account the past history of the process.
This paper presents a First-Order Logic approach to learn complex pro-
cess models extended with conditions. It combines two powerful Induc-
tive Logic Programming systems. The overall system was applied to
learning the daily routines of the user of a smart environment, for pre-
dicting his needs and comparing the actual situation with the expected
one. Promising results have been obtained, that proved its efficiency and
effectiveness, and with a domain-specific dataset.

1 Introduction

Many real-world procedures are nowadays so complex that automatic supervi-
sion and support may be determinant for their successful accomplishment. This
requires providing the automatic systems with suitable process models. How-
ever, these models are too complex for writing and setting up them manually,
and even standard machine learning approaches may be unable to infer them.
The expressive power of these models can be enhanced by allowing them to set
suitable conditions that determine whether some tasks are to be carried out or
not. These conditions may be in turn very complex, involving sequential rela-
tionships that take into account the past history of the process.

This paper presents an approach to learn complex process models extended
with complex conditions on their components. It works in First-Order Logic
(FOL), that allows to express in a single formalism both the models and the
associated conditions. FOL allows automatic reasoning and learning with struc-
tured representations that are able to represent and handle relationships among
the involved entities and their properties. These capabilities go beyond tradi-
tional representations, where any description must consist of a fixed number of
values, such as feature vectors. Our approach is based on the combination of



51

two powerful learning systems: WoMan [10, 6], that is in charge of learning the
process model, and InTheLEx [5], that is in charge of learning the conditions.
Compared to [6], here we present for the first time in detail the interaction be-
tween WoMan and InTheLEx, especially as regards the learning and exploitation
of conditions involving (possibly multidimensional) sequential information.

Let us introduce some preliminary notions and terminology. A process is a
sequence of events associated to actions performed by agents [3]. A workflow is
a (formal) specification of how a set of tasks can be composed to result in valid
processes, often modeled as directed graphs where nodes are associated to states
or tasks, and edges represent the potential flow of control among activities. It
may involve sequential, parallel, conditional, or iterative executions [18]. Each
task may have pre- and post-conditions, which determine whether they will be
executed or not [1]. An activity is the actual execution of a task. A case is a par-
ticular execution of actions in a specific order compliant to a given workflow [12].
Process Mining [19]) aims at inferring workflow models from examples of cases.
Inductive Logic Programming (ILP) [17] is the branch of Machine Learning based
on FOL as a representation language.

The rest of this paper is organized as follows. Section 2 introduces the rep-
resentation formalism on which our proposal is based. Then, Section 3 shows
how process models are learned, and 4 describes how they are exploited. Sec-
tion 5 presents experiments that show the effectiveness of the proposed approach.
Lastly, Section 6 concludes the paper and outlines future work directions.

2 Representation

When tracing process execution, events are usually listed as sequences of 6-
tuples (T,E,W,P,A,O) where T is a timestamp, E is the type of the event
(begin process, end process, begin activity, end activity), W is the name of the
workflow the process refers to, P is a unique identifier for each process execution,
A is the name of the activity, and O is the progressive number of occurrence of
that activity in that process [1, 12]. If contextual information is to be considered,
for inferring conditions on the model, we may assume that an additional type of
event ‘context’ can be specified, in which case A contains the logic atoms that
describe the relevant context. The predicates on which such atoms are built are
domain-dependent, and are defined by the knowledge engineer that is in charge
of setting up the reasoning or learning task.

E.g., an excerpt of a ‘sunday’ daily-routine workflow case trace might be:
(201109280900, begin process, sunday, c3, start, 1)

(201109280900, context, sunday, c3, [john(j),happy(j),hot temp], 1)

(201109280900, begin activity, sunday, c3, wake up, 1)

(201109280905, end activity, sunday, c3, wake up, 1)

(201109280908, begin activity, sunday, c3, toilet, 1)

(201109280909, context, sunday, c3, [radio(r),status(r,rs),on(rs),listen(j,r)], 1)

(201109280909, begin activity, sunday, c3, shower, 1)
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. . .

(201109282221, end process, sunday, c3, stop, 1)

The activity-related 6-tuples in a case trace can be translated into FOL as a
conjunction of ground atoms built on the following reserved predicates [10]:

activity(S,T) : at step S task T is executed;
next(S′,S′′) : step S′′ follows step S′.

Steps represent relevant time points in a process execution; they are derived from
event timestamps, and are denoted by unique identifiers. This formalism allows
to explicitly represent parallel executions in the task flow. So, here sequentiality
is not restricted to be a linear relationship: rather than being simple ‘strings’
of atoms, our representations induce a Directed Acyclic Graph. Given a FOL
case description D and one of its steps s (i.e., ∃t s.t. activity(s,t) ∈ D), the
presence in D of many next(s,si) atoms indicates that the execution of s is
followed by the parallel execution of many other tasks corresponding to steps
si. The presence in D of many next(sj,s) atoms indicates that the parallel
execution of the tasks corresponding to the sj ’s converges to the execution of s.
A sequential execution, having just one input task and one output task, is the
special case of a single si (or sj).

In addition to the flow of activities, many other kinds of sequential infor-
mation may be relevant in a process. So, we allow our descriptions to include
sequential relationships along several dimensions (e.g., time, space, etc.). We call
events the terms in a FOL description on which sequential relationships can be
set (so, steps are a special kind of events). Just like any other object, events may
have properties and relationships to other events and/or objects. We reserve the
following predicate to express sequential information among events [9]:

next(I1,I2,D) : event I2 immediately follows event I1 along dimension D.

In this representation, the sequential relationship among steps becomes just one
of the allowed dimensions. We consider it as the default dimension, so we still
use for it the next/2 predicate, without an explicit dimension argument.

For instance, let us assume that the execution of activities and the sensing
of the context are asynchronous. Then, we may use an independent dimension
context for the flow of contextual information, and associate each activity-related
event to the corresponding context description using a context/2 predicate.

Thus, the FOL translation of the previous sample trace might start as follows:

activity(sb,start), start(start), context(sb,c0), john(j), happy(c0,j),
hot temp(c0), next(sb,s0), activity(s0,wake up), wake up(wake up),

context(s0,c0), next(s0,s1), activity(s1,toilet), toilet(toilet),

context(s1,c0), next(c0,c1,context ), radio(c1,r), status(c1,r,rs),
on(c1,rs), listen(c1,j,r), next(s0,s2), activity(s2,shower),

shower(shower), context(s2,c1), ..., activity(se,stop)

to be read as: “The first activity in this Sunday process is wake up, that takes
place in the initial context, where the temperature is hot and John is happy. The
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next activity, toilet, follows wake up and takes place in the same context. Then,
the context changes, with the user listening to the radio, which is on. While
toilet is still running, the new parallel activity shower starts, associated to the
context in which the user is still listening to the radio.” And so on. . .

The structure of a workflow is expressed as a set (to be interpreted as a
conjunction) of atoms built on the following predicates:

task(t,C) : task t occurs in cases C, where C is a multiset of case identifiers
(because a task may be carried out several times in the same case);

transition(I,O,p,C) : transition p, that occurs in cases C (again a multiset),
consists in ending all tasks in I and starting all tasks in O.

In the previous example, we might have:
task(start,{c3,...}). transition({start},{wake up},t0,{c3,...}).
task(wake up,{c3,...}). transition({wake up},{toilet,shower},t1,{c3,...}).
task(toilet,{c3,...}). . . .
task(shower,{c3,...}).
. . .
task(stop,{c3,...}).

As regards conditions, each activity(s,t) atom in the case description gen-
erates an observation, to be used as a training example during the learning
phase, or as a test one during the monitoring phase. For the pre-conditions, the
observation includes only the atoms in the description associated to steps up to
s. In the ‘sunday’ case, activity(s2,shower) yields:

shower(s2) :- activity(sb,start), start(start), context(sb,c0), john(j),
happy(c0,j), hot temp(c0), next(sb,s0), activity(s0,wake up),

wake up(wake up), context(s0,c0), next(s0,s1), activity(s1,toilet),
toilet(toilet), context(s1,c0), next(c0,c1,context ), radio(c1,r),
status(c1,r,rs), on(c1,rs), listen(c1,j,r), next(s0,s2),
activity(s2,shower), shower(shower), context(s2,c1).

Sequential relationships are transitive. So, while observations are always ex-
pressed in terms of next/3 and next/2 relationships, conditions are expressed
in terms of a more general sequential relationship after/3:

after(I1,I2,D) : I2 (possibly indirectly) follows I1 along dimension D.

representing the transitive closure of immediate adjacency, and defined as:

after(X,Y ,D) :- next(X,Y ,D).
after(X,Y ,D) :- next(X,Z,D), after(Z,Y ,D).

Thus, a precondition learned from the previous example might be:

shower(X) :- activity(X,Y ), shower(Y ), context(X,Z),
radio(Z,T), status(Z,T,W), on(Z,W), after(U,X,default ),

start(U), context(U,S), hot temp(S), after(U,V ,default ),

activity(V ,R), toilet(R), context(V ,S), after(S,Z,context ).
(in order to have a shower, the radio must be on, and the toilet activity must have
started when the temperature was hot).

Again, in this representation sequentiality is not restricted to be a linear rela-
tionship, and induces a Directed Acyclic Graph for each dimension.
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3 Learning

Given the FOL description D of a case c, a model is built or refined as follows:

1. For each activity(s,t) atom in D,
(a) if an atom task(t,C) exists in the current model, then replace it by

task(t,C∪{c}); otherwise, add a new atom task(t,{c}) to the current
model.

2. For each next(s′,s′′) atom in D, indicating the occurrence of a transition,
(a) collect from c the multisets I and O of the input and output task(s) of

that transition (respectively)1,
(b) if an atom transition(I,O,p,C) having the same inputs and outputs

exists in the current model, then replace it by transition(I,O,p,C ∪
{c}); otherwise, create a new atom transition(I,O,p,{c}), where p
is a fresh transition identifier.

(c) remove from D the next/2 atoms used for the transition (to avoid that
the same occurrence of the transition is detected for each of such atom).

Differently from all previous approaches, this technique is fully incremental. It
can start with an empty model and learn from one case, while others need a large
set of cases to draw significant statistics. It can refine an existing model according
to new cases whenever they become available, introducing alternative routes
(alternative executions, represented by different transition/4 atoms having the
same I argument, may emerge from the analysis of several cases) or even adding
new tasks if they were never seen in previous cases. This ensures continuous
adaptation of the learned model to the actual practice, carried out efficiently,
effectively and transparently to the users. Noisy data can be handled naturally
by the learned models. Indeed, the probability of a transition is proportional to
the number of cases in which it occurred in the training cases. Each transition
stores the multiset of cases in which it occurred, and the multiset is updated
each time a case is processed. Thus, the weight of a transition is simply the ratio
of the cardinality of its associated multiset over the number of training cases.

While learning the workflow structure for a given case, examples for learn-
ing task pre-conditions are generated as well, and provided to the ILP system.
InTheLEx [5] was chosen both for its compliance with the fully incremental ap-
proach to learning the workflow structure, and because it is also endowed with
a positive-only-learning feature (the typical setting in Process Mining). It was
extended to handle sequential information according to the technique presented
in [9], which is peculiar in the current literature. While most works have focused
on sequential information on a single dimension [13, 14, 15, 16, 2, 11], it works
in a multidimensional setting, and allow complex interrelationships among any
mix of events and involved objects. This means, for instance, that events in dif-
ferent dimensions can be related to each other, which prevents simple extension

1 Cases in which |I| > 1 and |O| > 1 represent complex situations where multiple
activities are needed to fire several new activities in the next step, which are not
handled by other systems in the literature.
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of single-dimension approaches to multiple orthogonal dimensions. Also, it goes
beyond strictly linear sequences requiring a total ordering relationship among
events, and allows for ‘parallel’ events along the same dimension. Moreover, it
allows to learn rules in the classical ILP fashion, but allowing preconditions to
include sequential information, while other works classify sequences [13], or infer
predictive models for them [14, 15, 2], or extract frequent patterns [16, 4].

Given two examples for learning conditions involving sequential information
described according to the formalism above, their generalization (in a positive-
examples-only setting no specialization is ever needed) is determined as follows:

1. set an association between a subset of events in the former description and
corresponding events in the latter;

2. generalize the corresponding sequential relationships;
3. generalize the rest of the descriptions consistently with the result of (2).

Since one is usually interested in generalizations fulfilling particular properties
(e.g., the least general ones), an optimization problem is cast where all possible
such generalizations must be computed for identifying the best one.

Unfortunately, step 1 alone introduces a significant amount of indeterminacy
(i.e., many portions of one description map onto many portions of the other):
given two sequences of events S′ = ⟨s′i⟩i=1,...,n and S′′ = ⟨s′′j ⟩j=1,...,m, with

n ≤ m, there are
∑n

k=1

(
n
k

)
·
(
m
k

)
possible associations to be checked. It is clearly

unpractical. Thus, a heuristic is used, that directly selects a single, most promis-
ing association to be exploited as a base for steps 2 and 3. It is based on the
intuition that two events should be associated if they are similar to each other,
and that the best association should obtain the highest overall similarity among
all the possible associations. First of all, a description for each event is obtained
as the set of literals that are in a neighborhood of at most i hops from literals
involving that event (where a hop exists between literals that share at least one
argument). Then, the overall association is obtained using a greedy approach: the
similarity of all pairs of descriptions of events, one from each clause, is computed
using the measure proposed in [7]; the pairs are ranked by decreasing similarity,
and the rank is scanned top-down, starting from the empty generalization and
progressively extending it by adding the generalization of the descriptions of each
pair whose association (involving both events and other objects) is compatible
with the cumulative association of the generalization computed so far.

Once the pairs of associated events in the two clauses have been determined,
the corresponding sequential predicates are generalized in step 2. First, we sim-
plify the sequential descriptions, removing all the sub-sequences of useless in-
termediate events that have not been associated and replacing them with ‘com-
pound’ after atoms. Then, these simplified atoms can be generalized.

Finally, in step 3, two clauses are created, each having as a body all non-
sequential literals not used in the event generalization step. These two clauses
are generalized using the standard (non-sequential) algorithm proposed in [7].
Since all the information concerning events was fixed in the previous steps, this
generalization is only in charge of finding the best mapping among the remaining
literals. This introduces additional indeterminacy.
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4 Exploitation

The learned model can be used to monitor a new case and check its compliance,
as described in [6]. As long as the 6-tuples of the case trace are fed to the system,
they are used to build the corresponding FOL case description, and compared
to the model as follows, depending on the type of event.

begin process : load the corresponding process model; set the current marking
to {start}; pending transitions and pending/finished activities are empty.

begin activity : add the activity to the set of pending activities; then, check
that the pre-conditions for that activity are satisfied, in which case:
– if the new activity belongs to the pending tasks of a pending partial

transition, delete the activity from the pending partial transition
– if the new activity is in the output tasks of a transition whose input

tasks are all satisfied by the current marking, the transition is not noisy,
and its pre-conditions are satisfied, then ‘apply’ the transition: delete its
input tasks from the current marking and add the output tasks other
than the activity (if any) to a new pending transition.

If the new activity neither belongs to a pending partial transition nor to the
output tasks of an enabled transition, or if any of the pre-conditions is not
satisfied, then it is not compliant with the model and a warning is raised.
Note that, for some models, there might be many valid options (i.e., several
partial transitions to be completed and/or transitions that are enabled by
the current marking). In this case all possible alternatives must be carried to
the next step, and then filtered out when they turn out to be incompatible
with the rest of the execution. An upper bound to the number of repetitions
of loops (if any) can be set (e.g., as the maximum number of repetitions
encountered in the training cases).

end activity : if the activity is in the set of pending activities then delete it
and add a corresponding token to the current marking, otherwise raise an
error.

end process : if an error was raised by previous events, or the current marking
is not empty, then raise an error; otherwise the FOL case description can be
used to refine the model (if no warning was raised by previous events, then
the refinement just affects the task statistics; otherwise, it causes a change
in the model structure and/or preconditions).

Noisy transitions are those whose associated multiset of cases Ct, occurred in a
number of cases that represents a fraction of all n training cases less than the
allowed noise threshold N ∈ [0, 1] (i.e., |Ct|/n < N). Indeed, N represents the
minimum frequency threshold under which transitions are to be ignored.

Conditions are checked against the current context and status of the process.
Our approach works by associating the contextual information first, and then
completing the coverage with the sequential information, as follows:

1. apply preliminary coverage check to the non-sequential (i.e., contextual and
cross-event) part of the description, obtaining a covering association E also
including event bindings (there may be many);
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2. complete the coverage check: For all atoms after(X,Y ,D) in the model:
(a) pick the events s and t in the observation associated to X and Y , re-

spectively, using the event association fixed by E;
(b) check that the observation includes a sequence from s to t along dimen-

sion D, not involving other events that have been fixed by E (if any,
this must be unique); if this check fails, backtrack on (1) to find another
covering association.

Step 1 can exploit existing (efficient) coverage procedures for non-sequential
representations. As regards sequence checking, we need to find all paths between
two events in the directed graph induced by the sequence, where nodes are
events and edges connect events between which a sequence atom is present in
the description. This operation can be optimized as follows. Let us consider the
set I of sequence atoms in the observation concerning a fixed dimension.

1. create the sequentiality graph G induced by I;
2. compute the topological sort T of G (i.e., the list of nodes in I in which a

node u appears after a node v if there exists a path from v to u in G);
3. Among all associations A ⊆ E between events in the model and events

in the observation, by which the model covers the observation (considering
non-sequential atoms only), find at least one for which the sequential part is
covered, to be checked as follows:
(a) For all sequence atoms after(X,Y ,D) in the model:

i. pick events s and t associated to X and Y , respectively, by A;
ii. extract from T the sublist S = [s, ..., t] (if t does not follow s in T

then S is empty, and hence this step fails);
iii. driven by the sequence of events in S, check whether in I there exists

a chain of sequence atoms that leads from s to t.

5 Evaluation

The proposed techniques were implemented in YAP Prolog 6.2.2, and tested on
a notebook PC endowed with an Intel Dual Core processor (2.0 GHz), 4 GB
RAM + 4 GB SWAP, and Linux Mint 13 operating system. We evaluated our
approach in a Process Mining task aimed at learning user’s daily routines in a
Smart Environment domain [8]. The learned model will be used to predict his
needs, so that the environment may provide suitable support, and to compare the
actual situation with the expected one, in order to detect and manage anomalies.
For this purpose, we used a real-world dataset taken from the CASAS repository
(http://ailab.wsu.edu/casas/datasets.html), concerning daily activities of
people living in cities all over the world. In particular, we selected the Aruba
dataset, involving an elderly person visited from time to time by her children.
The Aruba dataset reports data concerning 220 days, represented as a sequence
of timestamped sensor data, some of which annotated with a label indicating
the beginning or end of a meaningful activity2.

2 Actually, for one day the activity labels were missing, for which reason the corre-
sponding case was removed from the dataset.
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Fig. 1. Learning curves for the Aruba dataset: model (left) and pre-conditions (right)

We obtained a set of cases by splitting this dataset into daily cases according
to the following logic: a new day starts after the last sleeping activity between
midnight and noon. The 219 case descriptions were filled with contextual in-
formation coming from the status of the various sensors in the house. Three
kinds of sensors are available: movement sensors (identified by prefix ‘m’), open-
ing/closing sensors for doors and windows (identified by prefix ‘d’) and tempera-
ture sensors (identified by prefix ‘t’). Then, the resulting descriptions were used
to learn both the process model and the preconditions for each task, i.e. regu-
larities in context that were present in all executions of each task. The dataset
involved 6530 activity instances (29.68 per day on average), each of which gener-
ated a pre-condition example. The average number of literals per pre-condition
example was 739.85, with a minimum of 16 and a maximum of 2570.

We simulated a real setting in which the system starts from scratch, and
learns the process model from the first day, progressively refining it as days go
by. Each event is checked against the current model to assess its compliance.
In case of non-compliance, a revision of the model is started. In the compliance
check, since all examples are positive, there can be no False Positives nor True
Negatives. Thus, as regards the predictive performance, Precision is always 1,
and Accuracy is the same as Recall. The learning curves are reported in Figure 1.
On the left, the curve shows how many non-compliant transitions were performed
in each day. The fact that peaks become lower and sparser after day 7 confirms
that the learned model converges to the ‘correct’ routine. The analogous curve
for tasks is not shown, since it soon becomes flat at 0 after day 7. On the right,
the curve shows the Accuracy of the pre-conditions learned. It passes 80% after
about 600 examples (i.e., about 20 days), and goes on improving as days go
by until 98.27%. The process model was learned in 497msec (2.27msec per day
on average), including both the check and the learning effort if needed. This
amounts to less than 0.1msec per activity on average. It involved 13 tasks and
96 transitions. The runtime for learning task pre-conditions was 263sec (0.04sec
per example on average). This confirms that the approach can be applied on-
line to the given environment, without causing unnecessary delays in the normal
activities of the system or of the involved people.
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Table 1. Preconditions generated by InTheLEx on the whole dataset

act Sleeping(A) :- after( ,A,default), context(A, ), activity(A, ).

act Meal Preparation(A) :- after( ,A,default), context(A, ),

activity(A, ).

act Relax(A) :- context(A, ), activity(A, ).

act Housekeeping(A) :- after(B,A,default), after(C,B,default),

after(D,C,default), after( ,D,default), context(D,E),

after(E,F,context), after(F,G,context), after(G,H,context),

context(C,F), context(B,G), context(A,H), activity(A, ),

activity(B, ).

act Eating(A) :- after( ,A,default), context(A,B), status m014(B, ),

activity(A, ).

act Wash Dishes(A) :- after( ,A,default), context(A,B),

after(C,B,context), after( ,C,context), activity(A, ).

act Leave Home(A) :- after(B,A,default), after( ,B,default), context(B, ),

context(A, ), activity(A, ).

act Enter Home(A) :- after(B,A,default), act Leave Home(B),

after(C,B,default), after( ,C,default), context(B,D),

after(D,E,context), context(A,E), activity(B, ), activity(A, ).

act Work(A) :- after(B,A,default), after( ,B,default), context(B,C),

after(C,D,context), status m026(D,E), on(E), context(A,D),

activity(A, ).

act Bed to Toilet(A) :- after( ,A,default), context(A, ), activity(A, ).

act Resperate(A) :- after(B,A,default), after( ,B,default), context(B,C),

after(C,D,context), status m006(D,E), off(E), status m008(D,F),

off(F), status m014(D,G), off(G), status m018(D,H), off(H),

status m020(D,I), off(I), status m021(D,J), off(J), status m022(D, ),

status m026(D, ), status m028(D, ), status m013(C, ), status m018(C, ),

status m019(C, ), status m020(C, ), status m021(C, ), context(A,D),

activity(B, ), activity(A, ).

The task preconditions learned by InTheLEx are reported in Table 1. Ac-
cording to these rules, activity Leave Home may be executed after running at
least two activities, carried out in any two contexts unrelated to each other. As
expected, activity Enter Home is always carried out after activity Leave Home,
which in turn must be preceded by the execution of at least two more activi-
ties, carried out in two different but connected contexts. Again this is sensible,
since activity Enter Home is expected to always follow Leave Home. As to ac-
tivity Work, it can be carried out after at least any two other activities, but
necessarily in a context in which sensor ‘m026’ (corresponding to the chair in
the studio) has status ‘on’. This suggests that the person, for being at work,
must necessarily be sitting in the studio chair. Activity Bed To Toilet has the
same precondition as Meal Preparation previously described. Activity Resperate
may be carried out after any two activities, but requires a very detailed context
(possibly due to its being peculiar, or possibly due to only 6 examples being
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available for it): sensors ‘m006’ (situated on the bedroom door), ‘m008’ (situ-
ated at the bedroom exit), ‘m014’ (situated on the chair near the table in the
dining room), ‘m018’ (situated at the kitchen entrance), ‘m020’ (situated near
the garage entrance), ‘m021’ (situated in the middle of the house in between the
various rooms) must all be in status ‘off’; moreover, sensors ‘m022’ (situated in
the main corridor), ‘m026’ (situated on the studio chair) and ‘m028’ (situated
at the studio entrance) must be involved in any status. Also the context of the
activity preceding Resperate has some restrictions: it must involve, in any sta-
tus, sensors ‘m013’ (situated in the living room), ‘m018’ (situated at the kitchen
entrance), ‘m019’ (situated in the kitchen), ‘m020’ (situated in the living zone)
and ‘m021’ (situated in the middle of the house).

6 Conclusions

Since many human processes are nowadays very complex, tools that provide au-
tomatic support to their accomplishment are welcome. However, the underlying
models are too complex for writing and setting up them manually, and even stan-
dard machine learning approaches may be unable to infer them. Endowing these
models with the capability of specifying conditions that determine whether some
tasks are to be carried out or not is a further source of complexity, especially if
these conditions may involve sequential relationships.

This paper presented a First-Order Logic approach to learn complex process
models extended with conditions, and use the learned models to monitor subse-
quent process enactment. A real-world experiment was run concerning the daily
routines of the user of a smart environment, for predicting his needs and com-
paring the actual situation with the expected one. Positive results have been
obtained, both for efficiency and for effectiveness. In future work, we plan to
further extend and improve the expressiveness of the models, and to apply them
to different complex domains.
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Abstract. Sampling from Large Scale Social Networks is a hot topic in
recent research. In telecommunications services, there are many networks
with millions of nodes and billions of edges. They are complex and dif-
ficult to analyze. Sampling, together with vizualization techniques, are
required for exploratory data analysis and event detection. Until now,
to visualize and analyze the massive network data we would rely on
aggregation of communities, k-Core decompositions and matrix feature
representations, among others. In social network visualization and anal-
ysis the goal is to get more information from the data with the least
alienation possible from the actors of the network. Our contribution is
to treat the data like a continuous data stream and represent it by sam-
pling the full network. We also propose group visualization and analysis
of influential actors in the network by using a Top-K representation of
the network data stream.

Keywords: Sampling Large Scale Social Networks; Data Streams; Telecommu-
nication Networks.

1 Motivation

Large network visualization is known to be a hard problem to solve with typical
hardware or software sets. It is vulgar to see software and hardware suffer to
output networks with more than a few thousands nodes and edges. The software
and the observer himself seems to be the main constraints in visualization tasks of
large networks. It must be said that even if the software is capable of outputting
a network of millions of nodes on the screen it is a very hard task for the observer
to gather valuable information from the visual outcome. This document main
contribution is our proposal to treat the data as a stream of networked data with
Landmark, Sliding Windows and Top-K algorithm implementations to help the
observer visualize the network and be able to acquire knowledge from the output.
The main goal is to sample the stream by highlighting the Top-K nodes thus
providing clear insight on the most active nodes in the network. This document
presents a Telecommunications network data case study for application of our
methods. The network size is of several millions of nodes and edges. The results
were obtained with a vulgar commodity machine.
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2 Related Work

2.1 Visualization

The definition of large scale networks regarding number of nodes or edges varies
a lot. While researching this field it is usual to see researchers considering a
large scale network ranging from something like some dozens of thousands of
nodes to millions of nodes and billions of edges. The main goal of any graph
visualization technique is to be visually understandable. It is also desirable that
the information it outputs to the viewer is sufficiently clear and objective to
convey knowledge acquiring. Some studies have been performed to study two
types of graph representations, node-link and matrix graph representations like
in [13]. Those studies concluded visualization comprehensibility is highly related
with the network size (number of nodes) and density (average number of edges
per node). Node-link representation is mentioned to have low performance with
dense networks and it requires aggregation methods reducing density to increase
visual comprehensibility of output. Matrix representation is usually combined
with hierarchical aggregation [1]. The hierarchical clustering implies the group-
ing of nodes but not the ordering of them. The main goal of this representation
type is to have a fast clustering algorithm and meaningful clusters of the net-
work. Matrix representation methods can also rely on the reordering of rows
and columns of the matrix representation instead of just clustering the nodes
and there are several examples of these implementations in [11]. This type of or-
dered matrix representation might enhance the structure visualization and give
more information to the viewer because the data is not only clustered. On the
other side this solution is difficult to use with networks of millions of nodes due
to the computations needed to reordering of matrix. More recently some inno-
vations were introduced for fast reordering mechanism, data aggregations and
GPU-accelerated rendering to deliver solutions with higher scalability [6]. Other
solutions rely on controlling the visual density of graph view and limiting the
clusterization overlap probability to low levels in [17]. Moreover a new probabil-
ity based network metric were introduced in [9] to identify potentially interesting
or anomalous patterns in the networks. In the next sections we will write our
approach by inspecting Top-K actors in the network and also to the case study
in hands.

2.2 Top-K Networks

There is some effort by the scientific community to achieve efficient ways of data
streams summarization. Regarding streaming networks the exact solution im-
plies the knowledge of all the nodes and edges frequency, therefore this exact
solution might be impossible to achieve in large scale networks. The problem of
finding the most frequent items in a data stream S of size N is, roughly put, the
problem to find the elements ei whose relative frequency fi is higher than a user
specified support φN , with 0 ≤ φ ≤ 1 [7]. Given the space requirements that
exact algorithms addressing this problem would need [3], several algorithms were
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already proposed to find the top-k frequent elements. Generically, there are two
different types of approaches: Counter-based and Sketch-based [16]. Counter-
based techniques rely on the updates of individual counters for each element in
a specific data subset. If there is no counter for some particular element and
therefore it is not being monitored some algorithm action is taken. Counter-
based techniques are said to have fast per-element processing and provable error
bounds [16]. Sketch-based techniques are different from Counter-based topolo-
gies because they do not monitor a subset of elements but rely on a frequency
estimation for all elements by using bit-maps of counters [16]. Therefore they
are more expensive in terms of processing than the Counter-based implemen-
tations. Moreover Sketch-based implementations do not guarantee frequency es-
timation/approximation errors. Simple counter-based algorithms such as Sticky
Sampling and Lossy Counting were proposed in [15], which process the stream
in reduced size. Yet, they suffer from keeping a lot of irrelevant counters. Fre-
quent [5] keeps only k counters for monitoring k elements, incrementing each ele-
ment counter when it is observed, and decrementing all counters when a unmoni-
tored element is observed. Zeroed-counted elements are replaced by new unmon-
itored element. This strategy is similar to the one applied by Space-Saving [16],
which gives guarantees for the top-m most frequent elements. Sketch-based al-
gorithms usually focus on families of hash functions which project the counters
into a new space, keeping frequency estimators for all elements. The guarantees
are less strict but all elements are monitored. The CountSketch algorithm [3]
solves the problem with a given success probability, estimating the frequency of
the element by finding the median of its representative counters, which implies
sorting the counters. Also, GroupTest method [4] employs expensive probabilis-
tic calculations to keep the majority elements within a given probability of error.
Although generally accurate, its space requirements are large and no information
is given about frequencies or ranking.

We adopted the Space-Saving algorithm described in [16] throughout our
Top-K implementation because it is a memory efficient implementation and guar-
antees most active users which is our goal.

3 Case Study

The characteristics of the large scale data will be presented in this section.
Telecommunication networks generate large amount of continuous data from
phone users and network equipment. In this case study we used CDR (call detail
records) log files retrieved from equipment distributed geographically. The net-
work data has, on average, 10 million calls (edges in the social network) per day.
This represents an average of 6 million of unique users (nodes in the network)
per day. Each edge represents a call between A and B phone numbers. We had
available 135 days of anonymized data. For each edge/call there is a timestamp
information with the date and time with resolution to the second representing
the beginning of the call. The volume of data speed ranges from 10 up to 280
calls per second usually around mid-night and mid-day time, respectively.
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3.1 Data Description

In a first analysis, we look for the distribution of calls. We started by counting
the number of calls from A→B in one day of the data. This operation was done
with a MySql database query by selecting pairs of caller and receiver numbers
and counting the occurrences of those pairs in the database. The obtained results
imply a compressed representation of the original network i.e. without repeated
edges. After the previous operation we studied the distribution of the aggregated
data and concluded that this representation has a Power Law distribution [2] as
can be seen in Fig. 1(left). Therefore we can expect a high number of single calls
between some A→B numbers and a low number of many calls between A→B
numbers per day.

Fig. 1. A→B Calls Distribution (left) and respective Log-Log Plot (right)

We then studied the Log-Log representation of the distribution per day of
aggregated data as seen in Fig. 1(right). With this representation we can visualize
an approximation to a monomial.

For the received and caller calls distributions of the original data with this
same representation method we could also obtain a monomial and we could also
conclude both distributions follow a Power Law distribution by using the method
to test the Power Law hypothesis in [8].

The previous Figures provides us a visualization of an important data charac-
teristic which is the great amount of isolated calls between some pairs of numbers
and a low amount of repeated calls between them. We conclude it is logical to
disregard these isolated calls to improve visualization and analysis quality as we
will later see in this document with the Top-K visualization method.

3.2 Landmark Windows

Landmark Window Algorithm 1 provides the representation of all the events that
occur in the network starting at a specific time stamp, for example 01h48m09s
of 1st January 2012.
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Algorithm 1 Landmark algorithm Pseudo-Code

Input: start, wsize, tinc . start timestamp, window size and time increment
Output: edges
1: R← {} . data rows
2: E ← {} . edges currently in the graph
3: R← getRowsFromDB (start)
4: new time← start
5: while (R <> 0) do
6: for all edge ∈ R do
7: addEdgeToGraph(edge)
8: E ← E

⋃
{edge}

9: end for
10: new time← new time + tinc
11: R← getRowsFromDB (new time)
12: end while
13: edges← E

This type of representation is not very useful because it implies a crescent
number of events outputted on the screen and comprehensibility lowers as this
number reaches and surpasses some thousands of events. This landmark imple-
mentation is however useful in other contexts like for example if user network
is relatively small and the user wants to check all events in the network. If the
user wants to follow the evolution of a large network events the implementation
described in the next subsection is better.

3.3 Sliding Windows

With the need to treat the large data stream we did a dynamic sample rep-
resentation of the data designated by sliding window. This sliding window is
defined as a data structure with fixed number of registered events. Each event is
a call between any particular pair of phone numbers. As these events have time
stamps the time period between the first call and the last call in the window
is easily computed. The input parameters of this algorithm are start date and
time and also the maximum number of events/calls the sliding window can have.
The SNA model used in this implementation is full network directed since any
nodes in the network are outputted to the screen and for the particular window
of events[10].

Visually, the example result can be seen in Fig. 2. In this representation
several nodes appear bigger and that represents more received/made calls by
these particular numbers. This is the representation of a window with 1000
events/calls for a period of time beginning at 00h01m52s and until 00h02m40s.
The reader can check the evolution of the network and visually and immediately
conclude that the anonymized brown, dark blue and light blue are the nodes
with more influence in this window of time.
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Fig. 2. Visualization of the phone calls using a Sliding Window approach

Fig. 3. Visualization of the phone calls using a Sliding Window approach

One can also see the connection between the dark blue node and the brown
node being established in the represented window. Fig. 2 also displays the average
data speed in the window i.e. the speed was approximately 22 calls per second.
This average data speed is calculated regarding number of events/calls in the
window of events and the time period between the first event time stamp and
the last event time stamp represented in the visualized window. Throughout
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other experimental conditions for example with windows around mid-day we
experienced data speed increases with more calls per second. Considering these
data speed changes and after several experiments with window size parameter
we concluded that it should not be smaller than approximately 100 events and
also not bigger than approximately 1000 events. With the minimum data speed
conditions, 100 events represents a window period of around 10 seconds of events.
With the maximum data speed and a window of 1000 events it represents around
5 seconds of calls data. Less than 100 events with this data represents changes
in the window that are too fast to be visually comprehensible and more than
1000 events represents too much events decreasing visual comprehension of the
screen output.

Fig. 3 represents the next window between 00h02m41s and 00h03m30s. From
Fig. 2 we can visually check the evolution of the network and immediately con-
clude that the anonymized brown, dark blue and light blue are the nodes with
more influence in this window of 1000 events.

Algorithm 2 Sliding Window algorithm Pseudo-Code

Input: start, wsize, tinc . start timestamp, window size and time increment
Output: edges
1: R← {} . data rows
2: E ← {} . edges currently in the graph
3: V ← {} . buffer to manage removal of old edges
4: R← getRowsFromDB (start)
5: new time← start
6: p← {}
7: while (R <> 0) do
8: for all edge ∈ R do
9: addEdgeToGraph(edge)

10: E ← E
⋃
{edge}

11: k ← 1 + (p mod wsize)
12: old edge← V [k]
13: removeEdgeFromGraph(old edge)
14: E ← E \ {old edge}
15: V [k]← edge
16: p← p + 1
17: end for
18: new time← new time + tinc
19: R← getRowsFromDB (new time)
20: end while
21: edges← E

3.4 Top-K Networks

Algorithm 3 represents our version of the Top-K space saving algorithm. The
space-saving algorithm is one of the most efficient one-pass algorithms to find
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the most frequently occurring items in the stream. In our case-study, we are
interested in continuously maintain the top-k most active phone users. Activity
can be defined as making a call, receiving a call, or communications pairs of
users. In this section, we restrict the analysis to the most active calling users.

Algorithm 3 Top-K algorithm Pseudo-Code for made calls inspection

Input: start, k param, tinc . start timestamp, k parameter and time increment
Output: edges
1: R← {} . data rows
2: E ← {} . edges currently in the graph
3: R← getRowsFromDB (start)
4: new time← start
5: while (R <> 0) do
6: for all edge ∈ R do
7: before← getTopKNodes()
8: updateTopNodesList(edge) . update node list counters
9: after ← getTopKNodes()

10: maintained← before
⋂

after
11: removed← before \maintained
12: for all node ∈ after do . add top-k edges
13: if node ⊂ edge then
14: addEdgeToGraph(edge)
15: E ← E

⋃
{edge}

16: end if
17: end for
18: for all node ∈ removed do . remove non top-k nodes and edges
19: removeNodeFromGraph(node)
20: for all edge ∈ node do
21: E ← E \ {edge}
22: end for
23: end for
24: end for
25: new time← new time + tinc
26: R← getRowsFromDB (new time)
27: end while
28: edges← E

For this representation the input parameters of this algorithm are start date
and time and also the maximum number of nodes to be represented (the K
parameter). From the inputted start date and time the Top-K implementation
would visually output the evolving network of the Top-K actors. The user has
also the option to choose to inspect the Top-K network of the numbers that
initiate calls, the numbers that receive calls and finally the Top-K representation
of the A→B calls. From now on and in this document we define the caller number
as the main actor for our Top-K model and we will only provide results and
experiments for this situation. Therefore the weight of each actor is related to
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the number of made calls by each actor i.e. the number of edges representing
initiated calls by the focused network phone number.

Fig. 4 represents the output of the Top-100 nodes or phone numbers with
more made calls until 00h44m33s. The program started running at midnight of
the first day of July 2012 and shown the 100 most active phone numbers in that
period.

Fig. 4. Top-100 numbers with more made calls and their connections without running
the layout algorithm

Fig. 5 represents the output of the Top-100 anonymized nodes or phone
numbers with higher number of made calls but now with the layout algorithm
running. The output only considers algorithm results until 01h09m45s.

ForceAtlas2 was the chosen layout algorithm. This layout algorithm has some
good characteristics [12], [14]. These special ForceAtlas2 characteristics are:

– Continuous layout algorithm, that allows the manipulation of the graph while
it is being rendered. It is based on the linear-linear model where the attrac-
tion and repulsion are proportional to distance between nodes. The conver-
gence of the graph is considered to be very efficient once that features an
unique adaptive convergence speed.

– Proposes summarized settings, focused on what impacts the shape of the
graph (scaling, gravity. . . ). It is suitable for large graph layout because it
features a Barnes Hut optimization (performance drops less with big graphs).

This layout algorithm although being reported to be slow with more than
dozens of thousands nodes is perfectly capable of outputting the layout of the
used windows sizes throughout all our experiences. As explained before it is
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Fig. 5. Top-100 numbers with more calls and their connections with layout algorithm
running

expected with our data that the windows size do not get much bigger than
1000 events for the Sliding Windows representations and also K parameter lower
than 100-200 nodes for the Top-K representation. Numbers much higher than
these start to turn the output less understandable and the layout algorithm also
becomes slow.

4 Conclusions

This document tries to expose a new type of treatment for Large Scale Telecom-
munications Networks visualization. With the use of data time stamps we ap-
proach the data with a streaming point of view and try to visualize samples of
data in a way that is both understandable to the viewer and also allows him/her
to gather knowledge from the visual output.

Landmark Windows experiments proved to suffer from the problems we wish
to avoid i.e. low visual comprehensibility of the network and even memory issues
with the software. This happens when the number of nodes and edges exceeds
dozens of thousands of nodes. With our data this number of nodes represented
in the screen typically corresponds to a time period of just a few minutes. Slid-
ing windows were used as a way to continuously check for the full network
events. Sliding Windows allow us to continuously inspect temporal evolution of
the networks. The Top-K implementation is a very good approach to our data
presenting a Power Law distribution for calls. This allows us to focus on the
influential individuals and discard isolated calls which are the majority of calls
in our data. Finally we conclude that our method for evolving networks visual-
ization, specially with Sliding Windows or the Top-K model is a light method to
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visualize massive networks. The use of a vulgar commodity machine made pos-
sible to simulate a data stream and achieve visualization results very proximate
to the node-link level. This means we tried avoiding other types of representa-
tions previously mentioned in this document’s related work. These other types
however use hierarchical aggregation of features, for example node communities
that we could also add i.e. simultaneously make community detection of the net-
work and output the network with added information to the node-level. This is
true for communities, centrality measures like betweeness or closeness centrality
could also be added to the node information complementing its visualization on
the screen.

The goal and future work is to use this kind of real time data streaming
leveraging telecommunication systems and being able to visualise the evolving
network in real time. This can lead to applicable uses for fraud detection by
inspection of Top-K users in the network or commercial purposes by detecting
central actors in the network for example. If more information was available in
the data it could also be added to the visual output. A simple mouse pointer over
the node and the additional node information could be interactively checked by
the system user. Future work also includes testing the models with time decay
factors to be possible to use for example the Landmark model, giving more
importance to recent data and disregarding old data.
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Abstract. We present a new approach to mine dependencies between
streams of interval-based events that links two events if they occur in a
similar manner, one being often followed by the other one in the data.
The proposed technique is robust to temporal variability of events and
determines the most appropriate time intervals whose validity is assessed
by a χ2 test. TEDDY algorithm prunes the search space while certifying
the discovery of all valid and significant temporal dependencies.

1 Introduction

The recent breakthroughs in sensor technology have given users the ability
to monitor many events in real time producing multiple heterogeneous data
streams. This highly innovative context has been a fruitful source of motivation
for the development of many data stream management and analysis techniques
that extend classical pattern mining techniques to be able to mine the data faster
than the data generation process. In this paper, events are characterized by a set
of intervals in which they occur and we aim at identifying temporal dependen-
cies between them. Two events are linked if the intervals of one are repeatedly
followed by the intervals of the other one. Considering time intervals makes it
possible to improve existing time-point based approaches by (1) better handling
events that are rare but occur for a long period of time; (2) being more robust
to the temporal variability of events; (3) allowing the discovery of sophisticated
relations based on Allen’s algebra [10]. Our interval-based approach also deter-
mines the most appropriate time-delay intervals that may exist between them.
Valid and significant temporal dependencies are mined: The strength of the de-
pendency is evaluated by the proportion of time where the two events intersect
and its significance is assessed by a χ2 test. As several intervals may redundantly
describe the same dependency, the approach retrieves only the few most specific
ones with respect to a dominance relationship. Discovering all valid and sig-
nificant temporal dependencies is challenging since, for every couple of events,
all possible time-delay intervals have to be considered. Therefore, we propose
an efficient algorithm TEDDY, TEmporal Dependency DiscoverY, that benefits
from different properties in order to prune the search space while certifying the
completeness of the extraction.
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Fig. 1. An example.

2 Temporal dependencies

Data streams are generally considered as temporal sequences of time-point events,
S =< (a, t) >, that is to say sequences of couples made of a nominal sym-
bol a ∈ A, and a time stamp t ∈ Ts, with Ts the discrete time of observa-
tion. For example on Fig. 1, A = {open, close} and the time-point events are
< (open, 1), (close, 2), · · · , (close, 9) >. But, in many application domains, this
is the time interval between time-point events that conveys the most valuable in-
formation. For example, the time intervals during which a door is open may be in
temporal dependency with the detection of a moving object by a camera. There-
fore, it can be interesting to examine the intervals associated to these events.
A point-based event sequence S is turned into as many interval-based event se-
quences as there are symbols a ∈ A. The resulting interval-based sequences are
denoted by capital letter A. Thus, the interval-based sequence associated to the
event a is denoted A and is defined by:

A =< [ti, ti+1) | ti, ti+1 ∈ Ts > where ∀t ∈ ([ti, ti+1) ∩ Ts) , (a, t) ∈ S

Following the example on Fig. 1, the interval set associated to the event
open is Open door =< [1, 2), [4, 5), [8, 9) > and the one associated to close
is Closed door =< [2, 4), [5, 8) >. The significance of an interval-based event,
called event hereafter, is evaluated by the sum of the lengths of its intervals:
len(A) =

∑
[ti,ti+1)∈A(ti+1 − ti). On Fig. 1, len(Open door) = 3

The dependency of two events A and B is evaluated on the basis of the
intersection of their intervals: len(A ∩ B) = len(< [ti, ti+1) ∩ [tj , tj+1) >) with
[ti, ti+1) ∈ A and [tj , tj+1) ∈ B). However, two events A and B can be in
temporal dependency A→ B while not being synchronous. It happends when B
is time-delayed with respect to A. To capture such dependencies the intervals of
B may undergo some transformations so as to better coincide with the intervals
of A: (1) B can be shifted of β time units so as to maximize its intersection with
A (the two end-points of the intervals are advances of β time units), and (2) B
can be slightly extended so as to make the temporal dependency measure more
robust to the inherent variability of the data (the first end-point is advanced
of α time units and the second end-point is advanced of β time units, with α
slightly greater than β): B[α,β] =< [tj − α, tj+1 − β) > with [tj , tj+1) ∈ B and
α ≥ β ≥ 0.
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Fig. 2. Example of interval set shifts

2.1 Temporal dependency assessment

Given a shifting interval [α, β], the temporal dependency of A
[α,β]−−−→ B is evalu-

ated by the proportion of time where the two events simultaneously occur over
the length of A:

conf(A
[α,β]−−−→ B) =

len(A ∩B[α,β])

len(A)

We can observe that conf(A
[α,β]−−−→ B) is equal to 1 iff each interval of A is

included in an interval of B[α,β]. To statistically assess the value of conf(A
[α,β]−−−→

B), we propose to perform a Pearson’s chi-squared test of independence [8]. The
test determines whether or not the occurrences of A and B[α,β] are statistically
independent over the period of observation T defined by T = [tbegin, tend) with

tbegin = min{ min
[ti,ti+1)∈A

ti, min
[tj ,tj+1)∈B

tj} and tend = max{ max
[ti,ti+1)∈A

ti+1, max
[tj ,tj+1)∈B

tj+1}

A given time point of T might belong or not to an interval of A. These two
possible outcomes are denoted A and A. Table 1 (top) is the contingency table
O that crosses the observed outcomes of A and B[α,β]. The null hypothesis states

B[α,β] B[α,β]

A len(A ∩B[α,β]) len(A)− len(A ∩B[α,β])

A len(B[α,β])− len(A∩B[α,β]) len(T )−len(A)−len(B[α,β])+len(A∩B[α,β])

Matrix O of observations.

B[α,β] B[α,β]

A len(B[α,β])×len(A)
len(T )

(len(T )−len(B[α,β]))×len(A)

len(T )

A len(B[α,β])×(len(T )−len(A))
len(T )

(len(T )−len(B[α,β]))×(T−len(A))

len(T )

Matrix E of expected outcomes under the null hypothesis.

Table 1. χ2 statistic computation.

that the occurrences of A and B[α,β] are statistically independent: If we suppose

that A occurs uniformly over T , there are len(A)
len(T ) chances that event B[α,β] occurs

at the same time. As B[α,β] occurs during len(B[α,β]) time stamps, the expected
number that B[α,β] occurs simultaneously with A under the null hypothesis

Utente
Text Box



77

4

is len(B[α,β])×len(A)
len(T ) . The three other outcomes under the null hypothesis are

constructed on the same principle. All these expected outcomes E are given in
table 1 (bottom). The value of the statistical test is

X2 =

2∑
i=1

2∑
j=1

(Oij − Eij)2

Eij

=
len(T )

(
len(T ) len

(
A ∩B[α,β]

)
− len(A)len(B[α,β])

)2
len(A)len(B[α,β])(len(T )− len(A))(len(T )− len(B[α,β]))

(1)

The null distribution of the statistic is approximated by the χ2 distribution with
1 degree of freedom, and for a significant level of 5%, the critical value is equal
to χ2

0.05 = 3.84. Consequently, X2 has to be greater than 3.84 to establish that
the intersection is sufficiently large not to be due to chance. From equation (1)
we derive the following quadratic equation in len

(
A ∩B[α,β]

)
:(

len(T ) len
(
A ∩B[α,β]

)
− len(A)len(B[α,β])

)2
≥

3.84

len(T )
len(A)len(B[α,β])(len(T )− len(A))(len(T )− len(B[α,β]))

which is satisfied iff 0 ≤ len
(
A ∩B[α,β]

)
≤ ∩1 or len(T ) ≥ len

(
A ∩B[α,β]

)
≥

∩2, ∩1 and ∩2 being the roots of this equation. Intersection values that range be-
tween 0 and ∩1 are much smaller than the ones expected under the null hypoth-
esis. Such values can be used to detect anomalies, but, in the following we focus
on the intersection values that are unexpectedly high. Therefore, we conclude

that a temporal dependency A
[α,β]−−−→ B is valid iff conf(A

[α,β]−−−→ B) ≥ ∩2

len(A) .

As the χ2 test only works well when the dataset is large enough, we use the
conventional rule of thumb [8] that enforces all the expected numbers (cells in
Table 1 (bottom)) to be greater than 5.

2.2 Significant temporal dependencies selection

For two events in temporal dependency, a huge number of shifting intervals
[α, β] may exist that result in valid temporal dependencies. These intervals may
describe distinct temporal dependencies (e.g., different paths may exist between
two motion captors), but they can also depict the same phenomenon several
times. Redundancy mainly relies on confidence monotonicity:

Property 1 (Confidence monotonicity). Let A and B be two events and [α1, β1],

[α2, β2] be two shifting intervals. If [α1, β1] ⊆ [α2, β2], then conf(A
[α1,β1]−−−−→ B) ≤

conf(A
[α2,β2]−−−−→ B).

Proof. [α1, β1] ⊆ [α2, β2] implies that B[α1,β1] ⊆ B[α2,β2] and len(B[α1,β1]∩A) ≤
len(B[α2,β2] ∩A). As a result, conf(A

[α1,β1]−−−−→ B) ≤ conf(A
[α2,β2]−−−−→ B). �
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To best describe the temporal dependencies of two events while avoiding the
pattern redundancy, we consider the intervals that have (1) a high confidence
value and (2) be as specific as possible with respect to the inclusion relation.
This leads to the following definition of the dominance relationship:

Definition 1 (Dominance relationship). We say that A
[α1,β1]−−−−→ B domi-

nates A
[α2,β2]−−−−→ B, denoted �, iff [α1, β1] ⊆ [α2, β2] and

1− conf(A
[α1,β1]−−−−→ B)

conf(A
[α2,β2]−−−−→ B)

< 1− len(B[α1,β1])

len(B[α2,β2])
(2)

The rationale behind this definition is that when [α1, β1] dominates [α2, β2], the
loss of the confidence measure of [α1, β1] is less than the reduction of its interval
set length and thus B[α2,β2]\[α1,β1] ∩A is almost empty. Indeed, if the reduction
of the interval length of B[α,β] is uniformly distributed over [tbegin, tend], then
the length of its intersection with A will be reduced in the same proportion.
But, if the reduction mainly occurs when A does not occur, then the length of
its intersection with A decreases less, as stated by equation (2).

This dominance relationship makes it possible to refine an interval while
controlling the loss of the confidence measure. If an interval reduction leads to a
significant loss, then the refinement process has to be stopped, since the portion
of A non covered by the interval will not be subsequently either. Therefore,
significant temporal dependencies are the most specific temporal dependencies
that dominate all their supersets:

Definition 2 (Significant temporal dependencies). For two events A and

B, let Σ be the set of temporal dependencies d[α,β] = A
[α,β]−−−→ B such that (i)

d[α,β] dominates all of its supersets, and (ii) every superset of d[α,β] dominates
its supersets as well:

Σ = {d[α1,β1] | ∀ [α2, β2] such that [α1, β1] ⊆ [α2, β2], d[α1,β1] � d[α2,β2]

and ∀ [α3, β3] such that [α2, β2] ⊆ [α3, β3], d[α2,β2] � d[α3,β3]}

Temporal dependencies that belong to the positive border of (Σ,�) are said to be
significant.

Property 2 (Σ-belonging monotonicity). Let [α1, β1] ⊆ [α2, β2]. From defini-
tion 2, we can derived that, if d[α1,β1] belongs to Σ, then d[α2,β2] ∈ Σ.

3 Efficient Temporal Dependencies Discovery

Discovering temporal dependencies is time-consuming for large volumes of data.
Considering that there is no meaning to look for temporal dependencies with
large time lag, we restrict the search of shifting intervals [α, β] in [tmin, tmax]
set by the end-user. A naive algorithm, that looks for dependencies between
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two events A and B, will explore all possible time shift intervals included in
[tmin, tmax], whose number is in Θ((tmax−tmin)2). For each interval, it computes
its confidence value in Θ(#I), where #I is the number of intervals of A or B.
Such an algorithm has to be executed with a relatively high frequency over
data stream batches of length T . Our proposed algorithm TEDDY, TEmporal
Dependency DiscoverY, (1) takes advantage of the monotonic property of the
confidence measure, as stated in property 1; (2) exploits an upper bound on
the confidence measure, whose complexity is O(1); (3) explores the search space
using a level-wise approach in order to discover significant temporal dependencies
while computing the confidence value of each interval at most once.

Algorithm 1 TEDDY

Require: IS a set of interval-based sequences, [tbegin, tend), and [tmin, tmax].
Ensure: All significant temporal dependencies over IS.
1: for all A ∈ IS do
2: for all B ∈ IS do
3: Border ← ∅
4: Cand0 ← [tmin, tmax]
5: d← 0
6: while Candd 6= ∅ do
7: Promd ←Pruning based on confidence(Candd)
8: [Σd, Border]←Pruning based on dominance(Promd, Border)
9: Candd+1 ←Candidate generation(Σd)

10: d← d+ 1
11: end while
12: SignificantA→B ←Compute valid and significant TD(Border)
13: end for
14: end for
15: return

⋃
A,BSignificantA→B

TEDDY is sketched in Algorithm 1. For every pair of events, it explores the
temporal dependencies in a breadth-first approach. The inclusion operation over
time shift intervals defines a semi-lattice, where intervals at given depth d have
the length tmax− tmin−d and are denoted Candd. Line 7, Promd is computed as
the restriction of Candd to the dependencies whose confidence value is greater
than the lower bound defined in property 4. If a dependency dominates its two
ancestors, then it is a promising dominant candidate and thus belongs to Σd (line
8). As such, it is added to the Border set whereas its ancestors are removed.
Line 9, d+1-depth candidates are generated if their d-depth ancestors belongs to
Σd. Line 12 processes Border to only extract valid and significant dependencies.
This four most important steps are detailed below.

Candidate time shifts generation: As stated in property 1, the confidence
measure increases monotonically with time shift interval inclusion. In addition,
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property 2 stipulates that Σ-belonging is also a monotonic property. So, to prune
the search space made of temporal dependencies that are not valid or not signif-
icant, the interval semilattice is traversed from the largest interval down to the
singletons. If a time shift interval is not valid or does not dominate one of its
direct ancestors, then none of the intervals included in it can be a solution. As
each interval at depth d+ 1 is included in at most two intervals at depth d, we
generate d+ 1-depth candidates by intersecting two elements of Σd.

Pruning-based on confidence measure: In order to avoid the computation
of the confidence values of unpromising dependencies, we consider the follow-
ing property, that bounds the difference of confidence between two time shift
intervals:

Property 3 (Bounds on confidence). Let A and B be two events, and [α1, β1]
and [α2, β2] be two time shift intervals:

|conf(A
[α1,β1]−−−−→ B)− conf(A

[α2,β2]−−−−→ B)| ≤ (|α1 − α2|+ |β1 − β2|)×#B

len(A)

where #B represents the number of intervals in B.

Proof. By shifting an interval [tj−α1, tj+1−β1] ∈ B[α1,β1] with [α2−α1, β2−β1],
the length of the resulting interval may win or lose a maximum of (|α1 − α2|+
|β1−β2|) time units. By multiplying this quantity by the number of intervals in
B, the result follows. �

Furthermore, as stated by the χ2-based threshold, valid temporal dependencies
have a confidence value greater than

MinConfidence (L(α, β)) ≡
λL(α, β) +

√
3.84
T λ(T − λ)L(α, β)(T − L(α, β))

λT

where L(α, β) = len(B[α,β]) and λ = len(A). Property 4 provides a lower bound
on MinConfidence (L(α, β)):

Property 4 (Lower bound on MinConfidence (L(α, β))).

MinConfidence (L(α, β)) ≥ min (1,MinConfidence (L(0, 0)))

Proof. L(α, β) (T − L(α, β)) is a quadratic function which vanishes at L(α, β) =
0 and L(α, β) = T . Therefore, MinConfidence (L(α, β)) first increases and then
decreases over [0, T ] with MinConfidence (0) = 0 and MinConfidence (T ) =
1. Let x1 < T be such that MinConfidence (x1) = 1. We can observe that
MinConfidence (x) increases over [0, x1] (see figure in the following paragraph).
As L(α, β) ≥ L(α, α) = L(0, 0), we have:
MinConfidence (L(α, β)) ≥ min (1,MinConfidence (L(0, 0))). �

conf(A
[α,β]−−−→ B) is upper bounded by 1, therefore if MinConfidence >

1, there is no valid temporal dependency. Algorithm 2 details the evaluation
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of the confidence measure. The confidence
value of the first candidate is computed (line
4). Then, the confidence value of the follow-
ing candidates is estimated based on Prop-
erty 3 (line 7). If the upper-bound (lastConf
+ maxGain) of the confidence value of a can-
didate is lower than MinConfidence (L(0, 0))
(boundMinConfidence, estimated thanks to
property 4), then the candidate cannot be
valid. Otherwise, its exact confidence is evaluated (line 10) and, if it is greater
than boundMinConfidence (line 11), the candidate is considered as a promising
valid temporal dependency. Notice that the confidence measure is stored for fu-
ture needs (line 12). This confidence value is used as a new reference for further
maxGain evaluations, since maxGain tends to decrease when evaluated on distant
intervals in Cand.

Algorithm 2 Pruning based on confidence

Require: Cand, an ordered list of candidate intervals, #B and len(A).
Ensure: Prom, the set of promising valid dependencies and their confidence values.
1: Prom ← ∅
2: k ← 0
3: [α, β]←Cand[k]

4: lastConf← conf(A
[α,β]−−−→ B)

5: while k < #Cand do
6: [αk, βk]←Cand[k]
7: maxGain← (|α− αk|+ |β − βk|)× #B

len(A)

8: if (lastConf + maxGain ≥ boundMinConfidence then
9: [α, β]←Cand[k]

10: lastConf← conf(A
[α,β]−−−→ B)

11: if (lastConf ≥ boundMinConfidence then
12: Cand[k].confidence← lastConf
13: Prom ← Prom ∪ Cand[k]
14: end if
15: end if
16: k ← k + 1
17: end while
18: return Prom

Pruning-based on dominance relationships: It consists simply in eval-
uating whether each promising candidate satisfies equation (2) for its direct
ancestors. If so, it is added to the Border set whereas its ancestors are removed.
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Dataset # Events Duration Avg events

SYNT02 85,806 3 hours 2

SYNT04 173,645 3 hours 4

SYNT16 696,677 3 hours 18

1

8

4

2

5

7

3

6

Fig. 3. Dataset characteristics (left). Synthetic testbed (right).

Identification of valid and significant dependencies: Finally, TEDDY
checks whether the dependencies of Border are valid: It removes any dependen-
cies that are more general than another one and recursively considers its direct
ancestors. If Prom is implemented as an interval tree, evaluating that a tempo-
ral dependency is the most specific among n elements can be done in O(log(n)).
Finding all the dependencies of Prom that are more general than d[α,β] can be
done in O(min(n, k log(n))) where k is the number of output dependencies [4].

4 Experimental Study

This section reports experimental results that illustrate the performance of
TEDDY. We use a multi-camera test bed that makes possible to specify the
number of generated events and their frequencies. All experiments were per-
formed on a 8 GB RAM computer with a octo-core processor cadenced at 3
GHz, running Windows 7. TEDDY algorithm is implemented in standard C++.

We built a simulator of a sensor surveillance network that consists in the
simulation of 8 video cameras. Each camera captures the images of an elliptical
area as described in Fig. 3 (right). The simulation consists in moving objects
along eight predefined rectilinear paths. To control the number of events occur-
ring per unit of time, objects are generated according to a Poisson distribution.
The area covered by each camera is divided into 27 subareas that make in total
216 data streams. An interval-based event “object detected” corresponds to ob-
jects located in the associated subarea. We generate three datasets which differ
from the average number of events per minute and sequence (see Fig. 3 left).

We study the behavior of TEDDY with respect to various parameters: the
frequency of events, the period of observation T and tmax. In all the experiments,
tmin is set to 0. Besides, we examine the impact of the constraints that define
valid and significant temporal dependencies on the search space size as well as
on the execution time. To this end, the four following configurations of algo-
rithm 1 are studied: (1) WP (without pruning): lines 7 and 8 are removed and
all possible temporal dependencies are considered; (2) Chi2 (χ2-based pruning):
line 8 is removed and only the constraint on the confidence measure is pushed
aside to reduce the search space; (3) Gradient (dominance-based pruning): line
7 is removed and only the dominance constraint makes it possible to discard
unpromising dependencies; (4) TEDDY: both constraints are fully exploited as
presented in algorithm 1.
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Fig. 4. Ratio of WP to TEDDY. W.r.t. T (tmax = 10): Runtime (A) and search space
size (B); W.r.t. tmax (T = 900): Runtime (C) and search space size (D).

We first study the performance of TEDDY in comparison with WP. This
algorithm considers all dependencies and removes, in a post-treatment, the non
valid or non significant ones. For these experiments, we do not take into account
the execution time required by this post-processing step. Fig. 4 depicts the be-
havior of TEDDY when T and tmax vary by evaluating the running time and
search space size ratios of WP to TEDDY. Each value is averaged over all the
sequences of the same size. In most cases, TEDDY is at least twice as fast as
WP. The ratio of the execution time increases with tmax since the number of
intervals is quadratic in tmax− tmin and TEDDY can prune a large part of them
early on. On the contrary, when T increases, the ratio tends to decrease since the
number of intervals of each event tends to increase and TEDDY do not prune
the search space as much. Indeed, maxGain increases linearly with #B and the
condition at line 8 of algorithm 2 tends to be always true which implies that
the time interval cannot be pruned. Furthermore, we can notice that the denser
the datasets, the lower the ratios are. The number of extracted dependencies
increases with the dataset density as well as the size of the search space.

Fig. 5 shows the proportion of the search space explored by TEDDY. Among
the pruned candidates, we make a distinction between those removed thanks to
the chi2-based or the gradient-based constraint. A first observation is that the
number of candidates avoided thanks to the two constraints is much higher than
the number of dependencies considered by TEDDY, except when the dataset is
very dense and tmax very small. The gradient constraint is even more efficient
when the dataset density increases or the values of T and tmax grow. While
T increases, the number of candidates avoided with gradient-based constraint
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Fig. 5. Constraint impact on the search space size w.r.t. T (top) and tmax (bottom).

increases or remains stable whatever the dataset density. This pruning criterion
becomes even more effective when tmax increases. The larger the length of a
pruned interval, the greater the size of the pruned search space. Indeed, if an
interval [α, β] does not dominate one of its direct ancestors, it is pruned by the

gradient-based constraint as well as (β−α)×(β−α+1)
2 −1 other candidates. Beside,

chi2-based pruning tends to be less efficient when tmax and/or T increase.
Similarly to what has been observed from Fig. 5, Fig. 6 shows that TEDDY

benefits from the two pruning techniques. Notice that the execution time is
always much lower than T length (at least 200 times) and thus, the temporal
dependencies computation is faster than the data acquisition process.

5 Related work

The proposed approch is related to time series research area where algorithms
are devised for measuring the similarity between time series pairs [9]. Most of
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Fig. 6. Runtime w.r.t. T (tmax = 10) (A) and w.r.t. tmax (T = 900) (B).
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them extend the Dynamic Time Warping (DTW) algorithm [6] that makes it
possible to find an optimal time alignment between two time series. However,
the time-series are warped non-linearly to be robust w.r.t. non-linear time vari-
ations. In our work, we consider linear transformations to find out dependencies
as well as their most specific time-delay intervals. On another hand, temporal
pattern mining [2] extracts frequent patterns among a set of sequences of time-
point based events. To discover more sophisticated relations than the “before”
/ “after” one, interval-based events are considered to find complex relations us-
ing Allen’s algebra [10]. Incorporating statistical metric like χ2 test within the
pattern mining process is a well-studied issue [7]. But these measures are often
considered in addition to others such as confidence and support measures. In this
paper, this statistical assessment is used to automatically set the thresholds.

6 Conclusion

Our work identifies temporal dependencies between interval-based events. Our
approach is robust to the temporal variability of events and characterizes the
time intervals during which the events are dependent. As several intervals may
redundantly describe the same dependency, the approach retrieves only the few
most specific ones. The experiments show that the pruning techniques are very
efficient and speed up the running time by a factor between 2 and 60.
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Abstract. Data stream mining is the process of applying data mining methods 
to a data stream in real-time in order to create descriptive or predictive models. 
Due to the dynamic nature of data streams, new classes may emerge as a data 
stream evolves, and the concept being modelled may change with time. This 
gives rise to the need to continuously make revisions to the predictive model. 
Revising the predictive model requires that labelled training data should be 
available. Manual labelling of training data may not be able to cope with the 
speed at which data needs to be labelled. This paper proposes a predictive 
modeling framework which supports two of the common decisions that need to 
be made in stream mining. The framework uses a One-Versus-All (OVA) 
ensemble whose predictions make it possible to decide whether a newly arrived  
instance belongs to a new unseen class and whether an instances require manual 
labelling or not. 

Key words:  data mining, stream mining, OVA classification, ensemble 
classification, instance labelling.  

1. Introduction 

A data stream is defined as a continuous ordered sequence of data items. Data stream 
mining is defined as the process of applying data mining methods to a data stream in 
real-time in order to create descriptive or predictive models for the process that 
generates the data stream [1], [2], [3]. Due to the dynamic nature of data streams, new 
classes may emerge as a data stream evolves. Secondly, the concept being modelled 
may change abruptly or gradually with time [4], [5], [6]. The arrival of new classes 
and the changes in the concept being modelled give rise to the need to continuously 
make revisions to, or completely rebuild the predictive model when these changes are 
detected. Rebuilding the predictive model requires that labelled training data should 
be available. Data labelling for stream mining needs to be a fast process since stream 
data may arrive at a very high speed. Traditional methods of labelling training data 
may not be able to cope with the speed at which data needs to be labelled.  

Given the foregoing discussion, various decisions need to be made for the 
predictive modeling process  in stream mining  [7]. Three of these decisions are: (1) 
detecting the emergence of new classes (2) determining concept change / drift and (3) 
deciding which newly arrived instances should be manually labelled for future model 
revisions. This paper proposes a predictive modeling framework for stream mining 
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based on binary classification. The main objective of this framework is to reduce the 
number of instances that require manual labelling. Other secondary objectives are to 
detect the arrival of instances that belong to new classes, and to give an indication of 
the occurrence of concept change. The framework uses an ensemble model composed 
of One-Versus-All (OVA) base models [8], [9], [10]. Each base model specialises in 
the prediction of instances in one region of the instance (measurement) space. The 
predictions produced by the ensemble make it possible to decide whether a predicted 
class label should be confidently assumed to be correct, or whether it could be 
confusion between two classes so that manual verification is required, or whether the 
ensemble is not equipped to provide a class label for the instance. The experimental 
results demonstrate that the proposed framework has a high potential to reduce the 
number of instances that require manual labelling. The rest of this paper is organised 
as follows: Section 2 provides the background to the reported  research. Section 3 
presents the proposed stream mining framework. The experimental results are 
presented in Section 4. Section 5 concludes the paper.  

2. Background 

2.1 Challenges in stream mining 

One major challenge for mining data streams is due to the fact that it is infeasible to 
store the data stream in its entirety. This problem makes it necessary to select and use 
training data that is not outdated for the mining task. The second challenge for stream 
mining is due to the phenomenon of concept drift, which is defined as the gradual or 
rapid changes in the concept that a mining algorithm attempts to model [1], [2], [3]. 
Given these challenges, there is a need to continuously revise the model.  The third 
challenge is due to the fact that for predictive classification modelling there is a need 
to rapidly and continuously provide training data which consists of instances that are 
labelled with the classes.  

One approach to selecting data for mining data streams is called the sliding 
window approach. A sliding window, which may be of fixed or variable width, 
provides a mechanism for limiting the data used for modeling to the most recent 
instances. The main advantage of this technique is to prevent stale data from 
influencing the models obtained in the mining process [5], [6]. Two main problems 
with this approach are that firstly, for predictive modeling, there is an in-built 
assumption that labelled training data is rapidly available. Secondly, the predictive 
model needs to be continuously recreated as the window slides. Data stream instances 
do not typically arrive in an independent and identically distributed (iid) fashion. It is 
possible for instances of one class to arrive over a prolonged period of time. When 
this is the case, it may become infeasible to employ the sliding window approach, as 
the model could end up being trained on instances of one class only! A second 
approach to stream mining is to employ ensemble classification. Ensemble models for 
stream mining resolve the problems created by the sliding window approach by 
creating a new base model only when a new batch of labelled instances arrives and  
keeping base models that are trained on both old and new instances. At any point in 
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time, available training data is also very likely to be imbalanced in the class 
distributions due to the non-iid nature of a data stream. OVA ensemble classification 
has been proposed by Hashemi et. al [9] for resolving this problem. 

Masud et. al  [11], Zhu et. al [12] and Zhang et. al [13] have all observed that, for 
stream mining, manual labelling of data is a costly and time consuming exercise. In 
practice it is not possible to label all stream data, especially when the data arrives at a 
high speed. It is therefore common practice to label only a small fraction of the data 
for training and testing purposes. Masud et. al [11] have proposed the use of ensemble 
classification models based on semi-supervised clustering, so that only a small 
fraction (5%) of the data needs to be labelled for the clustering algorithm. Zhu et. al 
[12] have proposed an active learning framework for solving the instance labelling 
problem. The main challenge of active learning is to identify the most informative  
instances that should be labelled in order to achieve the highest accuracy.  

2.2 Ensemble classification for stream mining 

Several ensemble classification methods for stream mining have been reported in the 
literature. These methods include the use of All-Classes-At-once (ACA) base models 
(e.g. [14], [15]), the use of All-Versus-All (AVA) base models (e.g. [16] ) or the use 
of OVA base models (e.g. [9] ). The main objective of ACA ensembles for stream 
mining is to (1) avoid overfitting, (2) avoid the use of a very limited amount of 
training data as is the case for the sliding window model, and (3) reduce the 
computational effort of revising the whole model when concept change/drift is 
detected [14], [15]. Examples of ACA ensemble frameworks that have been reported 
in the literature are the streaming ensemble algorithm (SEA) [17], the accuracy-
weighted ensemble  (AWE) [14], and the dynamically weighted majority (DWM) 
ensemble [15]. The main objectives of ensembles which use binary classification base 
models for stream mining is to (1) provide an easy approach to handle imbalanced 
training data (2) provide a fast method of model revision and (3) increase predictive 
accuracy [9]. Hashemi et. al [9] have studied the use of OVA classification tree 
ensembles for stream mining and have concluded that these ensembles provide fast 
and accurate performance compared with state-of-the art stream classification 
algorithms e.g. CVFDT [18]. They have also observed that OVA ensembles provide 
very fast reaction to concept drift / change since only the base models for the class(es) 
for which concept drift has been detected need to be changed. 

2.3 Active learning 

It was stated above that manual labelling of instances for model training is a costly 
and time consuming exercise. Active learning is a branch of machine learning 
concerned with the automated selection of the most useful instances that should be 
manually labelled by a human expert [19]. Settles [19] has observed that the original 
motivation for active learning was to enable a learning algorithm  to choose the data 
from which it learns, so that it would perform better with less training. More recently, 
a second motivation for active learning is to enable a learning algorithm to learn more 
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economically. So, an active learning scheme automatically identifies the useful 
instances for manual labelling and then requests a human expert for the class labels. 
Active learning schemes are typically characterised by the methods they employ to 
select the instances for labelling. Two selection methods that are generally suited to 
stream mining and are not tied to any specific classification algorithm are uncertainty 
sampling and query by committee (QBC) [19].  

In the context of active learning a query is defined as an unlabelled instance  that is 
passed to a human expert for labelling. For the uncertainty sampling scheme, the 
learner queries the instances about which it is most uncertain on how to label. One 
approach to uncertainty sampling is to query those instances whose posterior 
probability of belonging to any of the classes is very close to the probability for 
random guessing which is 0.5 for a 2-class problem [19]. A second approach is to use 
margin sampling where instances selected for querying are those for which the 
posterior probabilities of the winning class and the second best class are very close 
(i.e. the difference is less than a user specified margin) [19]. A third approach uses 
entropy as a measure of the level of variability in the assignment of prior probabilities 
for the predicted classes. The lower the variability, the more uncertain the prediction. 
The query by committee (QBC) scheme maintains a committee of classifiers all 
trained on the same training data but representing competing hypotheses (target 
functions) [19].  Each committee member is then requested to vote on the class labels 
of the query instances. The most informative instances are those on which the 
committee members disagree the most. Measures of disagreement for QBC schemes 
include the entropy vote and the Kullback-Leibler divergence measure [19]. 

Settles [19] has observed that even though active learning provides a practical 
solution to the cost reduction for instance labelling, it suffers from two major 
weaknesses. The first major weakness is due to the fact that the training instances are 
a biased distribution and not an iid sample which represents the underlying natural 
density of the available data. The second major weakness is due to the 
computationally intensive algorithms for active learning. For each instance that is 
processed by the algorithm, a value must be computed for the measure of 
informativeness, measure of disagreement, or some other measure.  

3. Proposed stream mining framework 

As stated above, the main objective for the research reported in this paper was to 
study methods for reducing the amount of effort for labelling training data. For this to 
be made possible, the approach that was adopted was to create a stream mining model 
consisting of OVA base models where each base model can predict one class for a k-
class prediction task. This section presents the motivation for using OVA 
classification as well as the details of for the proposed framework. 

3.1 OVA classification 

OVA classification [8] is a method of classification where a k-class prediction 
problem is decomposed into k sub-problems for classification. Base classifiers, 
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kOVA,...,OVA1 , are created and combined into one ensemble where the base model 
predictions are combined and the best prediction is selected based on the value of a 
decision function. OVA classification was selected as the method to be studied for the 
proposed framework for the following reasons: Firstly, each OVA classifier solves a 
2-class problem which greatly simplifies the base models and can provide  very high 
levels of predictive accuracy compared to a single k-class model [10]. Several 
researchers (e.g. [20]) have conducted studies which indicate that the use of simple 
models has the potential to reduce the bias and variance components of the prediction 
error. In the context of the proposed framework, the reduction of the number of 
instances that need manual labelling requires the use a predictive model that provides 
very high levels of predictive accuracy.  Secondly, OVA classification enables the 
creation of base models where each base model specialises in one region of the 
instance space. Given this capability, it is ideally easy to determine the region where a 
test or query instance lies based on the nature of the OVA base model predictions. If 
only one base model predicts a class then the instance comes from the decision region 
for the class that the base model is designed to predict. If two base models predict 
their classes then this can be interpreted to mean that the instance is located in the 
decision boundary for the two classes and is therefore difficult to predict. If none of 
the base models predict their classes this can be interpreted as an instance which is 
either noise or belongs to a new class that the ensemble is not designed to predict. 
Thirdly, an OVA ensemble simplifies the necessary model revisions for stream 
mining. It is not uncommon for instances of only one class or a subset of the classes 
to arrive for a prolonged period of time. It is also important to include the most 
recently labelled training instances to ensure that the model is always up to date as 
much as possible. OVA modeling supports these stream mining aspects since the base 
model for a class can be quickly revised whenever a sufficiently large amount of 
training data for the class becomes available. 

3.2 Making stream mining decisions 

Figure 1 depicts the components and outputs of the framework. The predictive model 
for the framework consists of OVA base models and a combination / decision 
algorithm. The combination algorithms receives the base model predictions of the 
form (class, score) for each test or query instance and produces an output which is a 
triple (class, score, category) for the instance. An instance is assigned to one of three 
categories: sure, notsure, or dontknow. When only one OVAi base model provides a 
prediction for class Ci, and all the other OVA base models predict ‘other’, then the 
prediction is considered to be a confident prediction so that no manual labelling is 
needed. This decision is contingent on the base model for the class having a very high 
level of predictive accuracy. For this outcome, the output of the combination / 
decision algorithm is (Ci, scorei, sure). When several OVA base models predict the 
classes they are designed to predict,  this is an indication that there is confusion in the 
ensemble so that the ensemble is not sure about which class the instance belongs to. 
In practice, the prediction with the highest score is taken as the ensemble prediction 
[10]. In the proposed framework, the output of the combination / decision algorithm 
for this outcome, is (Ci, scorei, notsure) where Ci is the predicted class with the 
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highest score. When all the OVA base models predict ‘other’, it is assumed that the 
instance belongs to a new class. The output for this outcome is (other, 0, dontknow). 
 

 
Figure 1: The components and outputs of the proposed framework 

3.3 Problems that are solved by the proposed framework 

It was stated in Section 2.3 that active learning results in the usage of training samples 
which have a biased probability distribution. This could be problematic for real-world 
applications for which classification models are only useful if the training data 
samples are iid so that they reflect the underlying probability density. This is for 
example the case if lift analysis of the classification results is required. The proposed 
framework makes it possible for training data to be obtained from all the regions of 
the instance space while at the same time reducing the number of instances that 
require manual labelling. Active learning involves intensive computations for the 
measure of informativeness, or measure of disagreement, or some other measure. 
These measures need to be computed for every instance. For large quantities of data 
such as typically found in stream mining, this computational overhead may not be 
feasible. The proposed framework does not require any intensive computations for 
deciding on which instances require manual labelling. 

4. Experiments to study the ensemble performance 

This section reports the results of the exploratory experiments that were conducted to 
study the performance of the proposed framework in terms of predictive accuracy and 
reliable labelling of data stream instances. 

4.1  Dataset and classification algorithm 

The See5 classification modeling software [21] was used for the exploratory studies 
using the forest cover type dataset available from the UCI KDD archive [22]. 
Zliobaite et. al [23] have observed that when the instances in the forest cover type 
dataset are sorted on the elevation attribute (feature) one simulates the effect of 
gradual concept change/drift as the elevation (altitude) increases, causing class 
descriptions to change, some classes to disappear, and new classes to emerge. The 
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sorted dataset also exhibits other characteristics that provide challenges in data stream 
mining. One such challenge is the  extreme imbalance of class distributions over 
different time periods. For these reason, the forest cover type dataset was used for the 
exploratory studies. The dataset consists of 581,012 instances, 54 features and 7  
classes (C1, C2,..,C7). After sorting the dataset on the elevation feature, a new feature  
(called ID) was added to the dataset, with values in the range [1,581012] as a pseudo-
timestamp. Figure 2 shows a plot of the class distributions for the pseudo-time periods 
used in the studies. Each time period represents the ‘arrival’ of  30,000 instances. It is 
clear from Figure 2 that classes C1 and C2 are the majority classes and that these 
classes are present in the data stream for the duration of the data arrival. Classes C3, 
C4, C5 and C6 initially appear in the stream and then disappear, while class C7 is not 
initially present in the stream but appears towards the end. 
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Figure 2: Class distribution for the Cover type data stream  

4.2 Creation of the initial model 

The top 150,000 instances of the sorted forest cover type dataset were used for the 
creation and testing of the base models for the initial ensemble. The top 120,000 
instances were divided into four batches of training instances and were used to select 
the training data for each OVA base model. The next 30,000 instances were used to 
initially test the predictive performance of the base models and the ensemble. Table 1 
shows the instance counts by class for the top 4 time periods. It is clear that not all 
classes are present for each time period. Due to the imbalanced class distributions, 
training data for the base models was taken from different time periods with the 
criterion of always using the most recent data for each class. The OVA1 training data 
was taken from period 30K-120K. The OVA2 training data was taken from period 
90K-120K. For OVA3, training data was taken from period 30K-120K. For OVA4 
training data was taken from period 0K-30K. For OVA5 training data was taken from 
period 30K-120K. For OVA6 training data was taken from period 60K-120K.  
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Table 1. Class distribution for the top 120,000  instances 
Class counts for training data for time period:    

class 0K-30K 30K-60K 60K-90K 90K-120K Total for class 
C1 0 403 1,283 2,927 4,613 
C2 747 12,248 21,522 22,716 57,233 
C3 18,580 10,683 4,579 1,235 35,077 
C4 2,699 48 0 0 2747 
C5 0 474 665 2,244 3,383 
C6 7,974 6,144 1,951 878 16,947 
C7 0 0 0 0 0 
Total 30,000 30,000 30,000 30,000 120,000 

4.3 Experimental results 

Exploratory experiments were conducted to answer the following questions: (1) Does 
the proposed framework provide reliable categories of ‘sure’, ‘notsure’ and 
‘dontknow’ categories of class predictions? (2) Does the proposed framework provide 
a practically significantly reduction in the number of data stream instances that 
require manual labelling? (3) Can the proposed framework provide reliable 
information on the emergence of new classes? (4) Can the proposed framework 
provide useful information that can lead to the detection of concept change and/or 
concept drift? The OVA ensemble design presented in the last section was tested on 
the next 461,012 instances of the data stream. For analysis purposes, the test instances 
were divided into sixteen time periods of 30,000 instances each. Additionally the 
OVA1 and OVA2 base models were re-trained and used at the beginning of time 
periods 300K-330K and 450K-480K. The OVA7 base model was added to the 
ensemble at the beginning of time period 540K-570K. Figure 2 shows the percentages 
of the prediction categories ‘sure’, ‘notsure’ and ‘dontknow’ for the OVA ensemble, 
for the sixteen time periods for all classes. The description of how these categories are 
determined was given in Section 3.2. The analysis results indicate that for all classes 
taken together the levels of ‘sure’ predictions are very high.  
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Figure 2: Classification categories for all classes for 16 time periods 
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The ‘sure’ predictions for the majority classes C1 and C2 were further analysed to 
establish the levels of reliability for each class. Figures 3 and 4 show the results of the 
analysis. The results of Figure 3 indicate that even though for each time period there 
is a high level of ‘sure’ predictions for class C1, the number of ‘sure’ predictions that 
are also correct predictions is initially very low but increases in the last five time 
periods. On the other hand, the results of Figure 4 indicate that for class C2 there is a 
high level of ‘sure’ predictions which are also correct predictions for all time periods.  
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Figure 3:  Analysis of sure predictions for class C1 for 16 time periods 
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Figure 4:  Analysis of sure predictions for class C2 for 16 time periods 

4.5 Supporting stream mining modeling decisions 

The results of the last section lead to the following conclusions: (1) If a class is easy 
to predict correctly (e.g. class C2) then the predictions for that class are largely 
reliable so that they can be treated as ‘sure’ predictions. For purposes of instance 
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labelling for stream mining, it is not necessary to perform manual labelling of the 
instances of that class. (2) If a class is difficult to predict correctly (e.g. class C1 in the 
first 11 time periods), then the predictions for that class should not be treated as 
reliable. For purposes of instance labelling for stream mining, it is necessary to 
perform manual labelling of the instances of that class. It was stated previously that 
two of the objectives of the proposed framework are to reduce the amount of stream 
data that requires manual labelling and to provide an indication when new classes 
have arrived. The discussion of the last section has indicated that query instances that 
are categorised as ‘sure’ predictions by the ensemble should be taken as correctly 
labelled, but only for those classes for which it has been established that the class is 
easy to predict correctly. Since the ease of prediction may changes with time, periodic 
testing is needed to establish the classes that are easy to predict at a given time. The 
testing should be done whenever any base model is revised. All instances that do not 
fall in the ‘sure’ category as predicted by an OVA base model for an easy class 
require manual labelling. Table 2 provides an analysis of the reduction in the required 
instance labelling for the sixteen time periods. 
 
 
Table 2: Analysis of the reduction in the required instance labelling 

 Count for category for all classes for  16 time periods (initial model) 
Needs labelling 

Time period 
sure-
correct 

sure-
incorrect notsure dontknow no yes 

%  needs 
labelling 

120K-150K 18731 3897 4683 2689 18731 11269 37.6 

150K-180K 14512 5838 6788 2862 14512 15488 51.6 

180K-210K 14069 5987 7052 2892 14069 15931 53.1 

210K-240K 14132 5545 6797 3526 14132 15868 52.9 

240K-270K 12793 6746 8168 2293 12793 17207 57.4 

270K-300K 12918 7220 7455 2407 12918 17082 56.9 

300K-330K 16955 3712 6845 2488 16955 13045 43.5 

330K-360K 12976 7152 6588 3284 12976 17024 56.7 

360K-390K 11515 8682 6464 3339 11515 18485 61.6 

390K-420K 10943 9177 7048 2832 10943 19057 63.5 

420K-450K 9936 9325 7730 3009 9936 20064 66.9 

450K-480K 18305 2974 6676 2045 18305 11695 39.0 

480K-510K 13772 5586 7028 3614 13772 16228 54.1 

510K-540K 13528 6457 6536 3479 13528 16472 54.9 

540K-570K 8725 6598 11908 2769 8725 21275 70.9 

570K-581K 3119 2420 4995 478 3119 7893 71.7 
 
For the first time period, only 37.6% of data stream instances need manual labelling. 
As time progresses, the percentage of instances that need manual labelling gradually 
increases until model revision when the percentage drops again. This is evident for 
periods 300K-33K and 450K-480K where revised OVA1 and OVA2 base models 
were added to the ensemble. When a query (or test) instance is categorised as 
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‘dontknow’ this may be due to the fact that it belongs to an existing class but cannot 
be predicted correctly, or it may be because it belongs to a previously unseen (new) 
class. It was observed above that as time progresses, the number of instances that 
require manual labelling increases. This is an indication of the fact that the current 
ensemble is gradually finding it more and more difficult to confidently and correctly 
classify the data stream instances. This can be used to determine when base models 
revision is necessary. It was stated in Section 3.3 that the proposed framework makes 
it possible to economically obtain iid  training data samples. Based on the discussion 
in this section, data for training can be obtained from the set of instances that are 
categorised as ‘sure’ predictions as well as the instances that are manually labelled.  

5. Conclusions 

The first question for the exploratory studies was: Does the proposed framework 
provide reliable categories of ‘sure’, ‘notsure’ and ‘dontknow’ categories of class 
predictions? The answer to this question is yes. The experimental results presented in 
Section 4 have demonstrated that the framework can indeed provide reliable 
categories that can be used determine whether manual instance labelling is required. 
The second question was: Does the proposed framework provide a practically 
significant reduction in the number of data stream instances that require manual 
labelling?  Again, the answer is yes. The results of Table 2 have demonstrated that 
this is the case for the forest cover type data set. The third question was: Can the 
proposed framework provide reliable information on the emergence of new classes? 
Based on the data that was used for the experiments, there is no conclusive evidence 
to support a ‘yes’ answer to this question. It was observed that instances that are 
categorised as ‘dontknow’ may belong to a new class (class C7) or they may be mis-
classifications. Further studies are needed before any conclusions can be made. The 
fourth question was: Can the proposed framework provide useful information that can 
lead to the detection of concept change and/or concept drift? The answer is a 
tentative ‘yes’. Gradual or sudden increases in the ‘notsure’ and ‘dontknow’ 
predictions provide an indication that there are changes in the concept for which the 
model was created. Again, further studies are needed before a firm answer can be 
given for this question. 
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Mining Positional Data Streams
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Abstract. We study frequent pattern mining from positional data stre-
ams. Existing approaches require discretised data to identify atomic
events and are not applicable in our continuous setting. We propose
an efficient trajectory-based preprocessing to identify similar movements
and a distributed pattern mining algorithm to identify frequent trajec-
tories. We empirically evaluate all parts of the processing pipeline.

1 Introduction

Recent advances in telecommunication, sensing, and recording technologies allow
for storing positions from moving objects at large scales in (near) real time.
Analysing positional data streams is highly important in many applications;
examples range from navigation and routing systems, network traffic, animal
migration/tracking to tactics in team sports.

In this paper, we focus on identifying frequent movement patterns in posi-
tional data streams that consist of a possible infinite sequence of coordinates.
Existing approaches to frequent pattern mining [3, 17] use identities of atomic
events to define sequences (episodes) [12]. In positional data, events correspond
to sequences of positions (i.e., trajectories) and due to the continuous domain it
is very unlikely to observe a trajectory twice. Instead, we observe a multitude
of different trajectories that give rise to an exponentially growing set of pos-
sibly frequent sequences. Consequentially, mining positional data can only be
addressed in the context of big data.

Our contribution is threefold: (i) To remedy the absence of matching atomic
events, we propose an efficient preprocessing of the positional data using locality
sensitive hashing and approximate dynamic time warping. (ii) To process the
resulting near-neighbour trajectories we present a frequent pattern mining al-
gorithm that generalises Achar et al. [1] to positional data. (iii) We present a
distributed algorithm for processing positional data at large-scales. Empirically,
we evaluate all stages of our approach on positional data of a real soccer game
where cameras and sensors realise a bird’s eye view of the pitch that allows for
locating the players and the ball several times per second.

2 Related Work

Spatio-temporal data mining aims to extract the behaviour and relation of mov-
ing objects from (positional) data streams and is frequently used in compu-
tational biology for mining animal movements. Trajectory-based patterns are
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first introduced by [5]. These patterns represent a set of individual trajectories
that share the property of visiting the same sequence of places within similar
travel time. Trajectory-based approaches use a discretisation of the movements
to identify places that are also known beforehand. Our contribution considers
a continuous generalisation: every coordinate on the pitch is a place of interest
and trajectories are relations between coordinates and travel time.

Event sequence mining has been introduced by [3] as a problem of mining
frequent sequential patterns in a set of sequences. Sequential pattern mining
discovers frequent subsequences as patterns in a sequence database. The most
common example is the cart analysis proposed by [3]. Frequent episode discovery
is a technique to describe and find patterns in a stream of events [12]. Achar et
al. [1] propose the first approach to mine unrestricted episodes. Our approach
generalises [1] to mining positional data streams.

The behaviour of individual players is analysed by [6] and [7]. [6] analyse
groups of players and their behaviour using self organising maps on top of the
positional data. Every neuron of the network represents a certain area of the
pitch. Thus, whenever a player moves into such an area, the respective neu-
ron is activated. Similarly, [7] uses positional data to assess player positions in
particular areas of the pitch, such as catchable, safe or competing zones. Prior
work for instance also utilises positional data to identify tactical patterns [13].
However, these approaches usually focus on detecting a priori known patterns
in the data stream. By contrast, we leverage the findings of trajectory pattern
and frequent episode discovery to devise a purely data-driven approach to find
tactical patterns in positional data without making any assumptions on zones,
tasks or movements.

3 Efficiently Finding Similar Movements

3.1 Representation

Given a positional data stream D with ` objects o1, . . . ,o`. Every object oi

is represented by a sequence of coordinates Pi = 〈xi
1,x

i
2, . . .〉 where xt =

(x1, x2, . . . , xd)> denotes the position of the object in d-dimensional space at
time t. A trajectory or movement of the i-th object is a subset p[t,t+m] ⊆ Pi of
the stream, e.g., p[t,t+m] = 〈xi

t,x
i
t+1, . . . ,x

i
t+m〉, where m is the length of the

trajectory. In the remainder, the time index t is omitted and each element of a
trajectory is indexed by offsets 1, . . . ,m.

For generality, we focus on finding similar trajectories where (i) the exact
location of a trajectory does not matter (translation invariance), (ii) the range
of the trajectory is negligible (scale invariance), and where turns such as left or
right are considered identical (rotation invariance). Note that, depending on the
application at hand, one or more of these requirements may be inappropriate
and can be dropped by altering the representation accordingly.

Using the requirements (i)-(iii) gives rise to the so-called angle/arc-length
representation [16] of trajectories that represents movements as a list of tuples
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of angles θt and distances vt = xt − xt−1. The difference vt is called the move-
ment vector at time t and the angles are computed with respect to a (randomly
drawn) reference vector vref = (1, 0)>. Transformed trajectories are normalised
by subtracting the average so that θi ∈ [−π,+π] for all i and by normalising
the total distance to one. Finally, we discard the difference vectors and represent
trajectories solely by their sequences of angles, p 7→ p̃ = 〈θ1, . . . , θn〉.

3.2 Approximate Dynamic Time Warping

Recall that pairs of trajectories may contain phase shifts, that is, a movement
may begin slowly and then speeds-up while another starts fast and then slows
down towards the end. Such phase shifts are well captured by alignment-based
similarity measures such as dynamic time warping [14].

Dynamic time warping (DTW) is a non-metric distance function that mea-
sures the distance between two sequences and is often used in speech recognition
problems. Given two sequences s = 〈s1, . . . , sn〉 and q = 〈q1, . . . , qm〉 and a
cost function cost(si, qj) detailing the costs of matching si with qj . The goal of
dynamic time warping is to find an alignment of sequences s and q that has
minimal costs subject to boundary, continuity, and monotonicity constraints [9].
Note that che cost function cost can be arbitrarily defined and the complexity
of DTW is O(|s||q|) which is prohibitive for mining positional data streams.

Efficient approximations of dynamic time warping can be obtained by lower
bounds. The rationale is that lower bound functions can be computed in less time
and are therefore often used as pruning techniques in applications like indexing
or information retrieval. The exact DTW computation only needs to be carried
out if the lower bound value is above a given threshold. We make use of two
lower bound functions, fkim [10] and fkeogh [8], that are defined as follows: fkim
focuses on the first, last, greatest and smallest values of two sequences [10] and
can be computed in O(m):

fkim(s, q) = max {|s1 − q1|, |sm − qm|, |max(s)−max(q)|, |min(s)−min(q)|} .

If the greatest and the smallest entries are normalised to a specific value their
computation can be ignored and the time complexity reduces to O(1). The sec-
ond lower bound fkeogh [8] uses minimum `i = min(qi−r, . . . , qi+r) and maximum
values ui = max(qi−r, . . . , qi+r) for sub-sequences of the query q where r is a
user defined threshold. Trivially, ui ≥ qi ≥ `i holds for all i and the lower bound
fkeogh is given by fkeogh(q, s) =

√∑m
i=1 ci where ci = (si − ui)

2 if si > ui,
ci = (si − `i)2 if si < `i, and ci = 0 otherwise. The function fkeogh can also
be computed in O(m). The result is a non-metric distance function that only
violates the triangle inequality of a metric distance.

3.3 An N-Best Algorithm

Given a trajectory q ∈ D, the goal is to find the most similar trajectories in D.
Trivially, a straight forward approach is to compute the DTW values of q for all
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trajectories in D and sort the outcomes accordingly. However, this requires |D|
DTW computations, each of which is quadratic in the length of the trajectories,
and renders the approach clearly infeasible.

We now sketch how to compute the N most similar trajectories for a given
query q efficiently by making use of the lower bound functions fkim and fkeogh.
The algorithm begins with computing the DTW distances of the first N entries
in the database and stores the entry with the highest distance to q. A loop
over the remaining trajectories in D first applying the lower bound functions
fkim and fkeogh to efficiently filter irrelevant movements before using the exact
DTW distance for the remaining candidates. Every trajectory, realising a smaller
DTW distance than the current maximum, replaces its peer; auxiliary variables
maxdist and maxind are updated accordingly. Note that the complexity of the
algorithm is linear in the number of trajectories in D. In the worst case, the
sequences are sorted in descending order by the DTW distance, which requires
to compute all DTW distances. In practice much lower run-times are observed.

A crucial factor is the tightness of the lower bound functions. The better the
approximation of the DTW, the better the pruning. For N = 1, the maximum
value drops faster towards the lowest possible value. By contrast, setting N = |D|
requires to compute the exact DTW distances for all entries in the database.
Hence, in most cases, N � |D| is required to reduce the overall computation
time. The computation can trivially be distributed with Hadoop; computing
distances is performed in the mapper and sorting is done in the reducer.

3.4 Distance-based Hashing

An alternative to the introduced N -Best algorithm provides locality sensitive
hashing (LSH). A general class of LSH functions are called distance-based hash-
ing (DBH) that can be used together with arbitrary spaces and (possibly non-
metric) distances [4]. The hash family is constructed as follows. Let h : X → R be
a function that maps elements x ∈ X to a real number. Choosing two randomly
drawn members x1, x2 ∈ X , the function h is defined as

hx1,x2
(x) =

dist(x, x1)2 + dist(x1, x2)2 − dist(x, x2)2

2 dist(x1, x2)
.

The binary hash value for x simply verifies whether h(x) lies in an interval [t1, t2],

that is h
[t1,t2]
x1,x2 (x) = 1 if hx1,x2

(x) ∈ [t1, t2] and h
[t1,t2]
x1,x2 (x) = 0 otherwise. where

the boundaries t1 and t2 are chosen so that the probability that a randomly
drawn x ∈ X lies with 50% chance within and with 50% chance outside of
the interval. Given the set T of admissible intervals and hash function h, the
DBH family is defined as the set of all admissible hash functions h[t1,t2]. Using
random draws from HDBH , new hash families can be constructed using AND-
and OR-concatenation.

We use DBH to further improve the efficiency of an N -Best algorithm by
removing a great deal of trajectories before processing them. Given a query
trajectory q ∈ D, the retrieval process first identifies candidate objects that
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Algorithm 1 FSATransition(α, fsa, t, events)

1: if fsa.currentState.Open = ∅ then
2: return fsa {FSA is in final state}
3: end if
4: for n ∈ sourceNodes(fsa.currentState.Open) do
5: for e ∈ events do
6: if e ∼ nodeMappingα(n) then
7: fsa.currentState.Open = fsa.currentState.Open \ n
8: fsa.currentState.Done = fsa.currentState.Done ∪ n
9: fsa.lastTransition = t

10: if fsa.startT ime == undefined then
11: fsa.startT ime = t
12: end if
13: break inner loop {Only one possible similarity (injective episode)}
14: end if
15: end for
16: end for
17: return fsa

are hashed to the same bucket for at least one of the hash functions, and then
computes the exact distances of the remaining candidates using the N -Best
algorithm. As distance measure of the DBH hash family we use the lower bound
fkim. The computation is again easily distributed with Hadoop.

4 Frequent Episode Mining for Positional Data

The main difference between frequent episode mining and mining frequent tra-
jectories from positional data streams is the definition of events. For positional
data, every trajectory in the stream is considered an event. Thus, events may
overlap and are very unlikely to occur more than just once. We resort to the
previously defined approximate distance functions in the mining step.

An event stream is a time-ordered stream of trajectories. Every event is
represented by a tuple (A, t) where A is an event and t denotes its timestamp.
An episode α is a directed acyclic graph, described by a triplet (V,≤,m) where
V is a set of nodes, ≤ is a partial order on V (directed edges between the nodes),
and m : V → E is a bijective function that maps nodes to events in the event
stream. We focus on transitive closed episodes [15] in the remainder, that is if
node A is ordered before B (A < B) there must be a direct edge between A
and B, that is, ∀A,B ∈ V if A < B =⇒ edge(A,B). The partial ordering of
nodes upper bounds the number of possible directed acyclic graphs on the event
stream. The ordering makes it impossible to include two identical (or similar)
events in the same episode. Episodes that do not allow duplicate events are called
injective episodes [1].

An episode α is called frequent, if it occurs often enough in the event stream.
The process of counting the episode α consists of finding all episodes that are
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Algorithm 2 Map(id, α)

1: eventStream = loadEventStreamFormFile()
2: frequency = 0; fsas = {new FSA}
3: for all (t, events) ∈ eventsStream do
4: for all fsa ∈ fsas do
5: inStartState = inStartState(fsa)
6: hasChanged = FSATransition(α, fsa, t, events)
7: if inStartState and hasChanged then
8: fsas = fsas ∪ new FSA
9: end if

10: if inF inalState(fsa) then
11: fsas = {new FSA}
12: frequency+ = 1
13: else
14: fsas = RemoveAllOlderFSAsInSameState(fsas)
15: end if
16: end for
17: end for
18: if frequency >= userDefinedThreashold then
19: EMIT (blockstart− id(α), α)
20: end if

similar to α. A sub-episode β of an episode α can be created by removing exactly
one node n and all its edges from and to n; e.g., for the episode A→ B → C the
sub-episodes are A→ B, A→ C and B → C. The sub-episode of a singleton is
denoted by the empty set ∅.

Frequent episodes can be found by Apriori-like algorithms [2]. The principles
of dynamic programming are exploited to combine already frequent episodes
to larger ones [12, 11]. We differentiate between alternating episode generation
and counting phases. Every newly generated episodes must be unique, transi-
tive closed, and injective. Candidates possessing infrequent sub-episodes are dis-
carded due to the downward closure lemma [1]. We now present novel counting
and episode generation algorithms for processing positional data with Hadoop.

4.1 Counting phase

The frequency of an episode is defined as the maximum number of non-overlapp-
ing occurrences of the episode in the event stream [11].1 Non-overlapping episodes
can be detected and counted with finite state automata (FSAs), where every FSA
is tailored to accept only a particular episode. The idea is as follows. For every
episode that needs to be counted, an FSA is created and the event stream is
processed by each FSA. If an FSA moves out of the initial state, a new FSA is
created for possibly later occurring episodes and once the final state has been

1 Two occurrences of an episode are said to be non-overlapping, if no event associated
with one appears in between the events associated with the other.
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Algorithm 3 Align(α, β)

Require: |nodes(α)| = |nodes(β)|
1: f = int array of length |nodes(α)|
2: used = boolean array of length |nodes(α)|
3: n = 0
4: for i = 1 to |nodes(α)| do
5: eventi,α = m(α)[i]
6: found = false
7: for j = 1 to |nodes(β)| do
8: eventj,β = m(β)[j]
9: if (not used[j]) and eventi,α ∼ eventj,β then

10: f [i] = j
11: used[j] = true
12: found = true
13: end if
14: end for
15: if found = false then
16: f [i] = −1
17: increment(n)
18: end if
19: end for
20: return f, n

reached, the episode counter is incremented and all FSA-instances of the episode
are deleted except for the one still remaining in the initial state.

Algorithm 1 shows the FSA transition function that counts an instance of an
episode. Whenever the FSA reaches its final state its frequency is incremented.
As input, Algorithm 1 gets the fsa instance which contains the current state, the
last transition time and the first transition time. Additionally, the appropriate
episode, the current time stamp and the events starting at that time stamp are
passed to the function. First, in case the FSA is already in the final state, the
function returns without doing anything (line 1). Algorithm 1 iterates over all
source nodes in the current state and all events that had happened at time t
(line 4-5). Whenever there is an event e that is similar to the appropriate event
of source node n (line 6), the FSA is traversed to the next state. The algorithm
also keeps track of the start time and the last transition time to check the expiry
time (line 9 and line 11).

The FSA transition function allows the definition of the counting algorithm
shown in Algorithm 2 as a map-function for the Hadoop/MapReduce framework.
The function first loads the event stream2 (line 1) and initialises an empty FSA
for every episode. Next, the event stream and the FSAs are traversed and passed
to the FSA transition function. Whenever an FSA leaves the start state a new
FSA must be added to the set of FSAs. This ensures that there is exactly one

2 In practice one would read the event stream block wise instead of loading the whole
data at once into memory. We chose the latter for ease of presentation.
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Algorithm 4 Combine(α,β)

1: π, n = Align(α, β)
2: if n 6= 1 then
3: return −1
4: end if
5: sumα = 0; sumβ = 0

6: sum = |π|×(|π|−1)
2

7: for i = 1 to |π| do
8: if π[i] ≥ −1 then
9: sumα = sumα + i

10: sumβ = sumβ + π[i]
11: end if
12: end for
13: return (sum− sumα, sum− sumβ)

FSA in a start state. In case an FSA reaches its final state, all other FSAs can
be removed and the process starts again with only one FSA in start state. In
case more than one FSA reaches the final state, Algorithm 2 removes all but the
youngest one in final state as this one has higher chances to meet the expiry time
constraints. The test for expiry time is not shown in the pseudo code. Instances
violating the expiry time do not contribute to the frequency count. Neither do
FSAs that associate overlapping events with the same object. Note that the
general idea of the counting algorithm is very similar to [1]. However, due to the
different notions of an event, many optimisation do not apply in our case.

Following [1] we also employ bidirectional evidence as frequencies alone are
necessary but not sufficient for detecting frequent episodes. The entropy-based
bidirectional evidence can be integrated in the counting algorithm, see [1] for
details. We omit the presentation here for lack of space.

4.2 Generation phase

Algorithm 4 is designed to efficiently find the indices of the differentiated
nodes of two episodes α and β. Therefore, it first tries to find the bijective
mapping π, that maps each node (and its corresponding event) of episode α
to episode β (line 1). In case such a complete mapping can not be found, π
returns only the possible mappings and n contains the number of missing nodes
in the mapping (see Algorithm 3). Episodes α and β are combinable, if and
only if n = 1. The remainder of the algorithm finds the missing node indices
by accumulating over the existing indices and by subtracting the accumulated
result from the sum of all indices. This little trick finds the missing indices in
time O(n). The function returns the node indices that differentiate between α
and β.

To prevent the computation of Algorithm 4 on all pairs of episodes, each
episode is associated with its block start identifier [1]. The idea is the following.
All generated episodes from an episode α share the same sub-episode. This sub-
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Algorithm 5 Reduce(blockstartId, xs)

1: k = −1; result = ∅
2: for i = 0 to |xs| do
3: α = xs(i); currentBlockStart = k + 1
4: for j = i+ 1 to |xs| do
5: β = xs(j)
6: if α.blockStart == β.blockStart then
7: candidates = Combine(α, β)
8: for c ∈ candidates do
9: if transitiveClose(c) then

10: c.blockStart = currentBlockStart
11: result = result ∪ c
12: k = k + 1
13: end if
14: end for
15: else
16: break
17: end if
18: end for
19: end for
20: EMIT (id, result)

episode is trivially identical to α as it originates from adding a node to α. The
generation step thus takes only those episodes into account that possess the same
block start identifier.

Given two combinable episodes α and β and the differentiated nodes a and
b (found by Algorithm 4), it is now possible to combine these episodes to up to
three new candidates, as described by [1]. The first candidate originates from
adding node b to episode α including all its edges from and to b. The second
candidate is generated from the first candidate by adding an edge from node a
to node b and the third one adds an edge from b to a to the first candidate.
In contrast to [1], we do not test wether all sub-episodes of each candidate are
frequent as this would require an efficient lookup of all episodes which can be
quite complex for positional data. Candidates with infrequent sub-episodes are
allowed at this stage of the algorithm as they will be eliminated in the next
counting step anyway.

The complete episode generation algorithm is shown in Algorithm 5. As in-
put, a list of frequent episodes ordered by their block start identifier is given.
The result of the algorithm is a list of new episodes that are passed on to the
counting algorithm. In line 2 and line 4, all episode pairs are processed as long
as they share the same block start identifier (line 6). Then, three possible candi-
dates are generated (line 7) and kept in case they are transitive closed (line 9).
Before adding it to the result set, the block start identifier of the new episode
is updated (line 10). Analogously to the counting phase, domain specific con-
straints may be added to filter out unwanted episodes (e.g. in terms of expiry
time, overlapping trajectories of the same object, etc.).
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Figure 5.1: Run time of di↵erent similarity algorithm

Table 5.2: Pruning e�ciency

trajectories (|D|) fkim fkeogh DBH Total

1000 0% 0% 11.42% 11.42%
5000 0.28% 34.00% 16.33% 50.61%
10000 9.79% 41.51% 17.80% 60.10%
15000 17.50% 46.25% 11.82% 75.57%
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Figure 5.2: Accuracy of DBH.
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n fkim fkeogh LSH Σ

1000 0% 0% 11.42% 11.42%
5000 0.28% 34.00% 16.33% 50.61%

10000 9.79% 41.51% 17.80% 60.10%
15000 17.50% 46.25% 11.82% 75.57%

Fig. 1. Left: Run-time. Right: Pruning efficiency.

5 Empirical Evaluation

5.1 Positional Data

We use positional data from the DEBS Grand Challenge 20133. that is recorded
from a soccer game with 8 players per team. We average player data over 100ms
to obtain a single measurement for every player at each point in time. The set
of trajectories is created by introducing sliding windows that begin every 500ms
and last for one second. This procedure gives us 111.041 trajectories in total,
50.212 for team A, 50.245 for team B, and 10.584 for the ball.

5.2 Near Neighbour Search

The first set of experiments evaluates the run-time of the three distance func-
tions Exact, N -Best, and LSH. Since the exact variant needs quadratically many
comparisons in the length of the stream, we focus on only a subset of 15,000
consecutive positions of team A in the experiment and fix N = 1000. Figure 1
(left) shows the run-times in seconds for varying sample sizes.

Unsurprisingly, the computation time of the exact distances grows expo-
nentially in the size of the data. By contrast, the N -Best algorithm performs
slightly super-linear and significantly outperforms its exact counterpart. Pre-
filtering trajectories using LSH results in only a small additional speed-up. The
figure also shows that distributing the computation significantly improves the
run-time of the algorithms and indicates that parallelisation allows for computing
near-neighbours on large data sets very efficiently. The observed improvements
in run-time are the result of a highly efficient pruning strategy (Figure 1, right).

Figure 2 shows the most similar trajectories for three query trajectories.
For common trajectories (top rows), the most similar trajectories are true near
neighbours. It can also be seen that the proposed distance function is rotation
invariant. For uncommon trajectories (bottom row), the found candidates are
very different from the query. In the remainder we focus on the N -Best algorithm
with for a loss-free and exact computation of the top-N matches.

3 http://www.orgs.ttu.edu/debs2013
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Figure 5.3: Influence of each individual player to the similarity set

Table 5.5: Most similar trajectories for a given query.

Query 1st 2nd 3rd

A (common)

B (common)

A (uncommon)

B (uncommon)

10 (common)

14 (common)

45

Fig. 2. Most similar trajectories for a given query

5.3 Episode discovery

The first experiments of the episode discovery algorithm focus on the influ-
ence of the parameters wrt the number of generated and counted episodes. The
algorithm depends on four different parameters, the similarity, frequency, the
bidirectional evidence, and the expiry time. For this set of experiments, we use
the trajectories of team A to find frequent tactical patterns in the game. The
results are shown in Figure 3.

The similarity threshold strongly impacts the number of generated episodes:
small changes may already lead to an exponential growth in the number of tra-
jectories and large values quickly render the problem infeasible even on medium-
sized Hadoop clusters. A similar effect can be observed for the expiry time
threshold. Incrementing the expiry time often requires decreasing the similar-
ity threshold. The number of counted episodes is adjusted by the frequency
threshold. As shown in the figure, the number of generated episodes can often
be reduced by one or more orders of magnitudes. By contrast, the bidirectional
evidence threshold affects the result only marginally.

6 Conclusion

We proposed a novel method to mining frequent patterns in positional data
streams where consecutive coordinates of objects are treated as movements. We
proposed an efficient preprocessing of the positional data using locality sensitive
hashing and approximate dynamic time warping and presented a distributed
frequent pattern mining algorithm that generalised Achar et al. [1] to positional
data at large-scales.
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5.3.1 Amount of counted and generated episodes

The first experiments of the episode discovery alogrtihm focus on the in-
fluence of the parameters to the number of generated and counted episode.
For this and all following experiments only the trajectories of team A with-
out the ball are used to find tactical patterns in the game. The algorithm
depends on four di↵erent parameters. First, the similarity threshold de-
fines, if two trajectories are similar or not. For example, given a similarity
threshold of 0.15, two trajectories a and b are similar, if d(a, b)  0.15. The
frequency threshold and the bidirectional evidence threshold decide, if a gen-
erate episode is frequent in the data set. Only if an episode exceeds both
thresholds an episode is called frequent. Finally, the expiry time threshold
defines the maximum length of an episode.

The most interesting and problematic parameter is the similarity thresh-
old. While di↵erent values lead to di↵erent final episodes, the similarity
threshold also has a strong impact to the number of generated episodes.
Figure 5.4a shows this influence. Only a small change to the threshold leads
to an exponential growth in the number of trajectories. A further increase
of the similarity threshold leads to even more trajectories and the total com-
putation quickly increases to a time span of several days or weeks; even on
a Hadoop cluster. A similar e↵ect can be discovered with the expiry time
threshold (Figure 5.7). Incrementing the expiry time often just works by
decreasing the similarity threshold.

The main influence to the number of counted episode is given by the
frequency threshold (Figure 5.5b). The number of generated episodes can
be reduced often by one or more orders of magnitudes. In contrast, the
bidirectional evidence threshold has only minimal e↵ects to the end result
(Figure 5.5a).
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Fig. 3. Top row: Varying similarity (first and second columns) and frequency (third
and fourth columns) thresholds. Bottom row: Varying bidirectional evidence (first and
second columns) and expiry time (third and fourth columns) thresholds.
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Abstract. The most common machine learning approach is supervised
learning, which uses labeled data for building predictive models. How-
ever, in many practical problems, the availability of annotated data is
limited due to the expensive, tedious and time-consuming annotation
procedure. At the same, unlabeled data can be easily available in large
amounts. This is especially pronounced for predictive modelling problems
with structured output space. Semi-supervised learning (SSL) aims to use
unlabeled data as an additional source of information in order to build
better predictive models than can be learned from labeled data alone.
The majority of work in SSL considers the simple tasks of classification
and regression where the output space consists of a single variable. Much
less work has been done on SSL for structured output prediction. In this
study, we address the task of multi-target regression (MTR), a type of
structured output where the output space consists of multiple numerical
values. Our main objective is to investigate whether we can improve over
supervised methods for MTR by using unlabeled data. We use ensembles
of predictive clustering trees in a self-training fashion: most reliable pre-
dictions on unlabeled data are iteratively used to re-train the model. We
use variance of an ensemble models as an indicator of the reliability of
predictions. Our results provide a proof-of-concept: Unlabeled data im-
proves predictive performance of ensembles for multi-target regression,
however further efforts are needed to automatically select the optimal
threshold for reliability of predictions.

Keywords: semi-supervised learning, self-training, multi-target, multi-
output, multivariate, regression, ensembles, structured outputs, PCTs

1 Introduction

The major machine learning paradigms are supervised learning (e.g., classifica-
tion, regression), where all the data are labeled, and unsupervised learning (e.g.,
clustering) where all the data are unlabeled. Semi-supervised learning (SSL) [1]
examines how to combine both paradigms and exploit both labeled and un-
labeled data, aiming to benefit from the information that unlabeled data can
bring. SSL is of important practical value since the following scenario can often
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be encountered: labeled data are scarce and hard to get because they require
human experts, expensive devices or time-consuming experiments, while, at the
same time, unlabeled data abound and are easily obtainable. Real-world clas-
sification problems of this type include: phonetic annotation of human speech,
protein 3D structure prediction, and spam filtering. Intuitively, SSL yields best
results when there are few labeled examples as compared to unlabeled ones (i.e.,
large-scale labelling is not affordable). Such a scenario is in particular relevant
for machine learning tasks with complex (structured) outputs, where providing
the labels of data is a laborious and/or an expensive process, while at the same
time large amounts of unlabeled data are readily available.

In this study, we are concerned with the semi-supervised learning for multi-
target regression (MTR). MTR is a type of structured output prediction task
where the goal is to predict multiple continuous target variables (also known
as multi-output or multivariate regression). In many real life problems, we are
interested in simultaneously predicting multiple continuous variables. Prominent
examples come from ecology: predicting abundance of different species living
in the same habitat [2], or predicting properties of forest [3]. There are several
advantages of learning a multi-target (i.e., global) model over learning a separate
(i.e., local) model for each target variable: Global models are typically easier to
interpret, perform better and overfit less than collection of single-target models
[4]. In the past, classical (single-target) regression received much more attention
than MTR, however several researchers proposed methods for solving the task
of MTR directly and demonstrated their effectiveness [5–8].

Semi-supervised methods able to solve MTR problems are scarce. Most com-
monly, SSL methods for structured output prediction are dealing with discrete
outputs. Here, prominent work was done by Brefeld [9], who used co-training
paradigm and the principle of maximizing the consensus among multiple in-
dependent hypotheses to develop semi-supervised support vector learning algo-
rithm for joint input-output spaces and arbitrary loss. Zhang and Yeung [10]
proposed a semi-supervised method based on Gaussian processes for a task re-
lated to MTR: multi-task regression. In multi-task learning the aim is to predict
multiple single-target variables with different training sets (in general, with dif-
ferent descriptive attributes) at the same time. Also related, Navaratnam et al.
[11] proposed a semi-supervised method for multivariate regression specialized
for computer vision. The goal is to relate features of images (z) to joint angles
(θ). Unlabeled examples are used to help the fitting of the joint density p(z, θ).

In this work, we propose a self-training approach [12] (also called self-teaching
or bootstrapping) for performing SSL for MTR. As a base predictive model,
we use predictive clustering trees (PCTs), or more precisely, random forest of
predictive clustering trees for MTR [8]. PCTs are a generalization of standard
decision trees towards predicting structured outputs. They are able to make pre-
dictions for several types of structured outputs [8]: tuples of continuous/discrete
variables, hierarchies of classes and time series.

The main feature of self-training is that it iteratively uses its own most
reliable predictions in the learning process. The most reliable predictions are
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selected by using a threshold on the reliability scores. The main advantage of the
iterative semi-supervised learning approach is that it can be “wrapped” around
any existing (supervised) method. The only prerequisite is that the underlying
method is able to provide a reliability score for its predictions. With our base
predictive models, i.e., random forest of PCTs for MTR, this score is estimated
by using the variance of the votes from the ensemble members of an example.

The concept of self-training was first proposed by Yarowsky [13] for word
sense disambiguation, i.e., deciding the meaning of a homonym in a given con-
text. Other successful applications of self training include: detection of objects
on image [14], identification of subjective nouns [15] and learning human motion
over time [16]. There are several examples of methods based on self-training (or
based on closely related co-training) implemented for solving the task of (single-
target) regression [17–21]. To the best of our knowledge, self-training was not
implemented yet for the problem of multi-target regression.

The main purpose of this study is to investigate the following question: Can
unlabeled data improve predictive performance of the models for MTR in a self-
training setting? To this end, we compared our semi-supervised method to its
supervised counterpart in the following evaluation scenario: We consider the best
result (considering different thresholds for reliability score) of semi-supervised
method. Results show that the proposed semi-supervised method is able to im-
prove over supervised random forest in 4 out of 6 considered datasets. Thus, the
evaluation provides a positive answer to our research question posed above, and
motivates further research efforts in this direction.

2 Semi-supervised learning with ensembles of PCTs

The basis of the semi-supervised method proposed in this study is the use,
in an ensemble learning fashion, of predictive clustering trees (PCTs). In this
section, we first briefly describe PCTs for multi-target regression, followed by
a description of the method for learning random forest. We then present in
details the adaptation of semi-supervised self-training approach for multi-target
regression with random forest of PCTs.

2.1 Predictive clustering trees for MTR

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters: the top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [22], which is available for
download at http://clus.sourceforge.net.

PCTs are induced with a standard top-down induction of decision trees
(TDIDT) algorithm [23] (see Table 1). It takes as input a set of examples (E)
and outputs a tree. The heuristic (h) that is used for selecting the tests (t) is
the reduction in variance caused by the partitioning (P) of the instances corre-
sponding to the tests (t) (see line 4 of the BestTest procedure in Table 1). By
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Table 1. The top-down induction algorithm for PCTs.

procedure PCT
Input: A dataset E
Output: A predictive clustering
tree

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ 6= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)

5: return
node(t∗,

⋃
i{treei})

6: else
7: return leaf(Prototype(E))

procedure BestTest
Input: A dataset E
Output: the best test (t∗), its heuristic
score (h∗) and the partition (P∗) it induces
on the dataset (E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = partition induced by t on E
4: h = Var(E)−

∑
Ei∈P

|Ei|
|E| Var(Ei)

5: if (h > h∗)∧Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

maximizing the variance reduction, the cluster homogeneity is maximized and
the predictive performance is improved.

The main difference between the algorithm for learning PCTs and a standard
decision tree learner is that the former considers the variance function and the
prototype function (that computes a label for each leaf) as parameters that can
be instantiated for a given learning task. So far, PCTs have been instantiated
for the following tasks [8]: multi-target prediction (which includes multi-target
regression), hierarchical multi-label classification and prediction of time-series.
In this article, we focus on the task of multi-target regression (MTR).

The variance and prototype functions of PCTs for MTR are instantiated as
follows. The variance (used in line 4 of the procedure BestTest in Table 1) is
calculated as the sum of the variances of the target variables, i.e., V ar(E) =∑T

i=1 V ar(Yi), where T is the number of target variables, and V ar(Yi) is the
variance of target variable Yi. The variances of the targets are normalized, so
each target contributes equally to the overall variance. The normalization is
performed by dividing with the estimates with the standard deviation for each
target variable on the available training set. The prototype function (calculated
at each leaf) returns as a prediction the mean values of the target variables,
calculated by using the training instances that belong to the given leaf.

2.2 Ensembles of PCTs

We consider random forest of PCTs for structured prediction, as suggested by
Kocev et al. [8] in the CLUS system. The PCTs in the random forest are con-
structed by using the random forests method given by Breiman [24]. The algo-
rithm of this ensemble learning method is presented in Table 2, left.

A random forest (Table 2, left) is an ensemble of trees, where diversity among
the predictors is obtained by using bootstrap replicates and additionally by
changing the set of descriptive attributes during learning. Bootstrap samples
are obtained by randomly sampling training instances, with replacement, from
the original training set, until an equal number of instances as in the training
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Table 2. The learning algorithms for random forests and semi-supervised self-training
(CLUS-SSL). Here, El is the set of the labeled training examples, Eu is a set of unla-
beled examples, k is the number of trees in the forest, f(D) is the size of the feature
subset considered at each node during tree construction for random forests and τ is
the threshold for reliability of predictions.

procedure RForest(El, k, f(D))
returns Forest

1: F = ∅
2: for i = 1 to k do
3: Ei = bootstrap(El)
4: Ti = PCT rnd(Ei, f(D))
5: F = F

⋃
{Ti}

6: return F

procedure CLUS-SSL(El, Eu, τ , k, f(D))
returns Forest

1: repeat
2: F = RForest(El, k, f(D))
3: predict(F,Eu)
4: for each eu ∈ Eu do
5: if Reliability(F, eu) ≥ τ then
6: move eu from Eu to El

7: until No example eu is moved from Eu

to El

set is obtained. Breiman [25] showed that bagging can give substantial gains in
predictive performance, when applied to an unstable learner (i.e., a learner for
which small changes in the training set result in large changes in the predictions),
such as classification and regression tree learners.

To learn a random forest, the classical PCT algorithm for tree construction
(Table 1) is replaced by PCT rnd which replaces the standard selection of at-
tributes with a randomized selection. More precisely, at each node in the decision
trees, a random subset of the descriptive attributes is taken, and the best at-
tribute is selected from this subset. The number of attributes that are retained
is given by a function f of the total number of descriptive attributes D (e.g.,
f(D) = 1, f(D) = b

√
D+1c, f(D) = blog2(D)+1c . . . ). The reason for random

selection of attributes is to avoid (possible) correlation of the trees in a boot-
strap sample. Namely, if only few of the descriptive attributes are important for
prediction of target variables, these will be selected by many of the bootstrap
tress, generating highly correlated trees.

In the random forest of PCTs, the prediction for a new instance is obtained
by combining the predictions of all the base predictive models. For the MTR
task, the predictions for each target variable is computed as the average of the
predictions obtained from each tree.

2.3 Self-training for MTR

To perform semi-supervised learning with ensembles of PCTs for MTR, we con-
sider a self-training approach. In self-training, first a predictive model (i.e., a
random forest of PCTs) is constructed by using the available labeled instances.
The unlabeled instances are then labeled by using the obtained predictive model.
Next, the examples with the most reliable predictions are selected and then
added to the training set. A predictive model is again constructed and the pro-
cedure is repeated until a stopping criterion is satisfied.
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To adapt the self-training procedure to the MTR task, we need to define:
i) a reliability measure of the predictions, ii) a criterion to select the most
reliable predictions and iii) a stopping criterion. Since self-training relies on the
assumptions that its own (most reliable) predictions are correct, the most crucial
part of the algorithm is the definition of a good reliability measure. This measure
should be able to discern correct (with high reliability score) from wrong (with
low reliability score) predictions. At this purpose, we exploit a solution provided
directly with the ensemble learning – we use the variance of the votes of an
ensemble as an indicator of reliability.

When an unlabeled example is predicted by a random forest, we consider the
prediction reliable if predictions of individual trees (i.e., votes) in the ensemble
are coherent. Otherwise, if the predictions by individual trees in the ensemble are
very heterogeneous, we consider the prediction unreliable. The variance has been
previously used in bagging where it has been found to perform the best in an
extensive empirical comparison of various approaches for estimating reliability
of regression predictions [26].

Here we present the procedure for calculation of reliability score in more
detail. Formally, for each iteration of the self-training algorithm, we have to solve
an MTR problem with m continuous target variables by learning a random forest
ensemble F with k trees. These trees are trained on a set of labeled examples El

and applied on a set of unlabeled examples Eu. First, for each unlabeled example
eu ∈ Eu, per-target standard deviation of votes of ensemble riu is calculated as:

riu =

√√√√ 1

k − 1

k∑
j=1

(
treeij(eu)− F i(eu)

)2
, i = 1 . . .m,

where treeij is a vote (i.e., a prediction score) for eu returned by the jth tree for

the ith target. F i is the prediction for eu returned by the ensemble for the ith

target (i.e., the average of the votes of each tree).
In order to equally weight the contribution of each target attribute in the

reliability of the prediction obtained for each unlabeled example, we normalize
per-target standard deviations in the interval [0, 1] as follows:

r̄iu =

riu − min
j=1...|Eu|

rij

max
j=1...|Eu|

rij − min
j=1...|Eu|

rij
, i = 1 . . .m.

After normalization, the reliability score for an example eu can be computed by
considering the average of the normalized per-target standard deviations:

Reliability(F, eu) = 1− 1

m

m∑
i=1

(
r̄iu
)

In this formula we have that, a small standard deviation leads to a high score
(high reliability).
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Table 3. Characteristics of the datasets. N : number of instances, D/C: number of
descriptive attributes (discrete/continuous), T : number of target variables.

Dataset N D/C T

Forestry LIDAR IRS [27] 2731 0/29 2
Sigmea real [28] 817 0/4 2
Soil quality [2] 1944 0/142 3
Solar flare-2 [29] 1066 10/0 3
Vegetation clustering [30] 29679 0/65 11
Water quality [31] 1060 0/16 14

The self-training algorithm for MTR with ensembles of PCTs (named CLUS-
SSL) is presented in Table 2 (right). To choose which unlabeled examples should
be added to the training set we use a user-defined threshold for the reliability
score: τ ∈ [0, 1]. If the reliability of the prediction of an unlabeled example is
greater than τ , the example is moved from the unlabeled set (Eu) to the training
set (El), together with its multi-target predictions. The iterations are repeated
until no unlabeled example is moved from the set Eu to the set El. This can
happen for two reasons, either the set Eu becomes empty, or the reliability score
for all the unlabeled examples is smaller than τ .

It is noteworthy that, the combination of random forest and self-training
can be considered as a variant of the co-training learning schema where, at
each iteration, we do not keep the same views used in the previous iteration
and independence among the views is (partially) guaranteed by the ensemble
learning approach. This guarantees that the semi-supervised approach can still
improve prediction even if, at each iteration, it considers the same features.

3 Experimental design

The semi-supervised method for MTR proposed in this study (CLUS-SSL) it-
eratively trains random forest tree ensemble for MTR. Thus, we compare the
predictive performance of the CLUS-SSL to the performance of a supervised ran-
dom forest, which is considered as baseline for comparison. The exact evaluation
procedure is presented in more details in the remainder of this section.

3.1 Data description

To evaluate the predictive performance of the methods, we use six dataset with
multiple continuous target variables. The selected datasets are mainly from the
domain of ecological modelling. The main characteristics of the datasets are
provided in Table 3. We can observe that the datasets vary in the size, number
of attributes and number of target variables.
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3.2 Experimental setup and evaluation procedure

Random forests used in the experimental evaluation were constructed with 100
trees. Trees were not pruned and the number of random features used in random
forest was set to blog2(D) + 1c, where D is the total number of features, as
recommended by Breiman [24].

To evaluate the predictive performance of the models, we use a procedure
similar to 5-fold cross validation, with the difference that the training folds are
further partitioned into labeled and unlabeled. More specifically, the data are
first randomly divided into 5 folds. Each fold is used once as a test set, and the
remaining four folds are used for training. From the training folds, we randomly
chose a percentage of the data which serve as labeled examples. We remove the
labels of other examples and provide them to the algorithm to serve as unlabeled
data during training. Supervised random forests were trained only on the labeled
part of the data. The predictive performance reported in the results is the average
obtained on the 5 test sets.

To investigate the influence of the amount of labeled data, for each dataset
we vary the ratio of labeled versus unlabeled data, where percentage of labeled
relative to unlabeled data ranges in the following set: [1%, 3%, 5%, 7%, 10%,
15%, 20%, 30%, 50%].

For the CLUS-SSL algorithm, we need to set the threshold τ for the reliability
score, which is used throughout the iterations. For each percentage of labeled
data, we tested 15 different thresholds:

τ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99} .

Therefore, 15 predictive models were built (one model corresponding to one
threshold) for each percentage of labeled data. Among these, we report the
predictive performance of the best model.

We evaluate the algorithms by using the root mean square error (RMSE):

RMSE =

√√√√1/(N ∗m) ∗
m∑
i=1

N∑
j=1

(
aij − pij

)2
,

where m is the number of target variables, N is the number of examples, aij is

the real value of the ith target of the jth example, and pij is the predicted value

of the ith target of the jth example.
In order to make results comparable across different percentages of labeled

examples, we opted to use an evaluation procedure where the test sets are con-
sistent for all the settings. In the results reported in this paper, we consider
that the optimal threshold is provided by an ‘oracle’. Such threshold selection
procedure suffices for answering the research question investigated in this work:
Can unlabeled data potentially improve the predictive performance of models for
MTR? A more general solution for selecting the threshold, would be to use
a cross-validation procedure or by implementing smarter thresholding system
in self-training which tries to automatically detect the optimal threshold. This
aspect is left as future work.
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Fig. 1. Comparison of predictive performance of random forest (CLUS-RF) and semi-
supervised self-training (CLUS-SSL). Percentage of labeled data varies from 1% to
50%. For each pertentage of labeled data, the best result for CLUS-SSL is presented,
considering the different thresholds for confidence of predictions. Optimal threshold
is indicated on the plot. CLUS-SSL performs very similar to CLUS-RF (a and c) or
improves over CLUS-RF (b, d, e and f).

4 Results and discussion

The results of the experimental evaluation are presented in Figure 1. Their anal-
ysis reveals that the proposed semi-supervised method (CLUS-SSL) outperforms
its supervised counterpart (CLUS-RF) on 4 out of 6 datasets: Sigmea real, So-
lar flare-2, Water quality and Vegetation clustering. On the other two datasets
(Forestry LIDAR IRS and Soil quality), the two methods perform very similar,
with small improvements or degradations in performance made by CLUS-SSL.
It was noted before that the success of SSL is domain depended, i.e., methods
can behave very differently depending on the nature of the datasets, and that no
single SSL method consistently performs better than supervised learning [32].
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Table 4. Optimal threshold for reliability of predictions (τ), the percentage of un-
labeled examples added to the training set after the completion of the self-training
procedure (E) and the number of iterations performed (I) of the CLUS-SSL method.

Dataset
Percentage of labeled data

1% 3% 5% 7% 10% 15% 20% 30% 50%

Forestry
LIDAR

IRS

τ 0.99 0.99 0.9 0.99 0.95 0.95 0.9 0.95 0.95
E 0% 0% 28% 0% 5% 3% 26% 3% 2%
I 1 1 80.8 1 26.4 18 57.4 14 8.2

Sigmea
real

τ 0.4 0.85 0.6 0.95 0.85 0.55 0.7 0.8 0.65
E 100% 100% 100% 100% 100% 100% 100% 99% 100%
I 6.8 9.8 7 16 8.8 6.4 8 5.6 5.2

Soil
quality

τ 0.9 0.95 0.7 0.9 0.99 0.95 0.9 0.99 0.95
E 4% 1% 95% 26% 0% 2% 34% 0% 4%
I 3.8 2.6 8.8 15 1 2.4 11 1 5.2

Solar
flare-2

τ 0.9 0.7 0.8 0.55 0.65 0.75 0.75 0.55 0.9
E 99% 98% 91% 100% 100% 97% 96% 100% 83%
I 15.2 5 11 4 5.4 9 7 4.4 9.2

Vegetation
clustering

τ 0.1 0.5 0.4 0.95 0.9 0.85 0.9 0.9 0.95
E 100% 100% 100% 0% 1% 7% 2% 2% 0%
I 2 7.4 4.6 1.2 32.8 82.6 43.6 52.4 7.2

Water
quality

τ 0.3 0.65 0.65 0.5 0.4 0.65 0.5 0.4 0.55
E 100% 100% 100% 100% 100% 99% 100% 100% 99%
I 3.2 36.2 32.2 8 3.8 29.8 8.2 4.2 16.8

Results reported in this paper are, thus, consistent with results obtained in pre-
vious research on tasks which are different from MTR.

The analysis of the results by varying the percentage of labeled data shows
that, as expected, RMSE error decreases with the increase of the percentage of la-
beled data used to construct the predictive model (better models are learned with
more data). However, these trends are not observed across all of the datasets.
We can observe the saturation in performance for Sigmea real and Solar flare-2
datasets. There, from about 5% to 7% percent of labeled data, both meth-
ods (CLUS-SSL and CLUS-RF) were not able to improve much in the abso-
lute terms. In spite of that, CLUS-SSL is consistently performing better than
CLUS-RF, meaning that even in situations where supervised models reached
saturation, unlabeled data can further boost the performance. On the other two
datasets where unlabeled data helps (Vegetation clustering and Water quality),
the improvements of CLUS-SSL over CLUS-RF are more notable with smaller
percentages of labeled data. Such behavior is expected, since SSL has the best
potential when not much labeled examples are available.

In Table 4, the specific conditions used to obtain and evaluate the CLUS-SSL
models (whose performances are depicted in Fig. 1) are given. When observing
the variability of the optimal thresholds for the reliability score, we cannot de-
tect regularities. They vary greatly from one dataset to another, and from one
percentage of labeled data to another, meaning that it is hard to tell in advance
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Fig. 2. Analysis of per target performance for the Solar flare-2 dataset, in terms of
difference in performance between CLUS-RF and CLUS-SSL (∆RMSE). Positive values
suggest that CLUS-SSL is better, while negative that CLUS-RF is better. Zero means
that there is no difference in performance.

which threshold should be used. Self-training can also degrade performance of
the underlying method if a sub-optimal threshold is chosen. In particular, if a
too permissive threshold is selected, it can allow wrongly predicted examples to
enter in the training set. A classification error in the earliest iterations can rein-
force itself in the next iterations, leading to a degradation of the performance.
On the other hand, if a too stringent threshold is set, it is possible that none,
or very few, of the unlabeled examples will enter the training set, meaning that
we will miss the opportunity to improve performance with unlabeled data.

Similar observation can be made for the number of performed self-training
iterations, they are very heterogeneous regarding the different datasets and per-
centages of labeled data. Analysis of the number of unlabeled examples added to
the training set reveals that, in the cases where semi-supervised learning helps,
almost all of the unlabeled examples were moved to the training set at the end of
the self-training procedure. This is very consistent across datasets where CLUS-
SSL improves over CLUS-RF: Sigmea real, Solar flare-2, Vegetation clustering
(for the cases with 1 to 5% percent of labeled data) and Water Quality. The
fundamental assumption of self-training is that its most reliable predictions are
correct. Thus, the success of this method depends on the ability to learn an
accurate model from the data at hand. The assumption is apparently met on
the former four cases. Moreover, the (good) predictive ability of the models was
retained throughout iterations, as all unlabeled examples were eventually added
to the training set. Contrary, if CLUS-SSL was not able to improve over CLUS-
RF, then generally very few, or none of the unlabeled examples were added to
the training set. This is the case at Forestry LIDAR IRS, Soil Quality and Veg-
etation Clustering (for more than 5% of labeled data) datasets. The predictive
models learnt from these datasets are most probably prone to errors and the
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self-training approach would only lead to a propagation of the errors (this is
confirmed by the optimal threshold for reliability close to 1).

A different perspective of the results is provided in Figure 2, where per-target
RMSE improvements over the baseline are shown. As it is possible to see, these
results show that the improvement provided by the semi-supervised setting is not
uniform over the different targets. This means that for some target attributes,
there is still a large margin for improvement with respect to accuracy reached
by the random forest approach.

5 Conclusions and further work

Semi-supervised learning is an intriguing research area because of potential gains
in performance for ‘free’ – labeling of the data is expensive and laborious, while
freely available unlabeled data can be used to enhance the performance of tra-
ditional, supervised, machine learning methods. Such proposition is even more
relevant for learning problems with structured outputs, where labeling of the
data is even more expensive and problematic.

We address the task of semi-supervised learning for multi-target regression –
a type of structured output, where the goal is to simultaneously predict multiple
continuous variables. To the best of our knowledge, semi-supervised methods
dealing with this task do not exist thus far. We propose a self-training approach
to semi-supervised learning by using a random forest of predictive clustering
trees for multi-target regression. In the proposed approach, a model uses its own
most reliable predictions in an iterative fashion.

Due to its relative simplicity and intuitiveness, self-training can be considered
as a baseline semi-supervised approach, i.e., a starting point for investigation of
the influence of unlabeled data. In this study, we wanted to investigate whether
unlabeled data can improve predictive performance of the models for MTR in
a self-training setting. The results of the experimental evaluation show that the
proposed method outperforms its supervised counterpart on 4 out of 6 datasets.
These are encouraging results and prompt further investigation.

In future, we plan to extend this work along several directions. First, we
plan to implement an intelligent threshold selection procedure. Namely, here
we consider a relatively simple implementation of self-training (with respect to
the thresholding system and the stopping criteria), but there are several pos-
sibilities to implement more sophisticated variants of it. For instance, so-called
’airbag’ stopping criteria [33] can detect degradation in performance and stop
self-training. Alternatively, we can utilize ’out-of-bag properties’ of the random
forest to automatically detect the optimal threshold for the reliability score. Sec-
ond, success of the reliability estimate of regression predictions can vary depend-
ing on the domain or the regression model used. The most appropriate estimates
can be automatically detected [34] and used during self-training. Third, mod-
ularity of predictive clustering trees enables easy extension of the self-training
approach to the other types of structured outputs, such as multi-target classifi-
cation or time-series prediction.
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7. Kocev, D., Džeroski, S., White, M.D., Newell, G.R., Griffioen, P.: Using single-
and multi-target regression trees and ensembles to model a compound index of
vegetation condition. Ecological Modelling 220(8) 1159–1168

8. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recognition 46(3) (2013) 817–833

9. Brefeld, U.: Semi-supervised Structured Prediction Models. PhD thesis, Humboldt-
Universität zu Berlin, Berlin, Germany (2008)

10. Zhang, Y., Yeung, D.Y.: Semi-supervised multi-task regression. In Buntine, W.,
Grobelnik, M., Mladeni, D., Shawe-Taylor, J., eds.: Machine Learning and Knowl-
edge Discovery in Databases. Volume 5782 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2009) 617–631

11. Navaratnam, R., Fitzgibbon, A., Cipolla, R.: The joint manifold model for semi-
supervised multi-valued regression. In: Proceedings of the 11th IEEE International
Conference on Computer Vision. (2007) 1–8

12. Zhu, X.: Semi-supervised learning literature survey. Technical report, Computer
Sciences, University of Wisconsin-Madison (2008)

13. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised meth-
ods. In: Proceedings of the 33rd annual meeting on Association for Computational
Linguistics. (1995) 189–196

14. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of ob-
ject detection models. In: Proceedings of the 7th IEEE Workshop on Applications
of Computer Vision. (2005)

15. Riloff, E., Wiebe, J., Wilson, T.: Learning subjective nouns using extraction pat-
tern bootstrapping. In: Proceedings of the 7th Conference on Natural Language
Learning. (2003) 25–32



123

16. Bandouch, J., Jenkins, O.C., Beetz, M.: A self-training approach for visual tracking
and recognition of complex human activity patterns. International Journal of
Computer Vision 99(2) (2012) 166–189

17. Brefeld, U., Grtner, T., Scheffer, T., Wrobel, S.: Efficient co-regularised least
squares regression. In: Proceedings of the 23rd international conference on Machine
learning. (2006) 137–144

18. Zhou, Z.H., Li, M.: Semi-supervised regression with co-training style algorithms.
IEEE Transaction in Knowledge Data Engineering 19(11) (2007) 1479–1493

19. Appice, A., Ceci, M., Malerba, D.: An iterative learning algorithm for within-
network regression in the transductive setting. In Gama, J., Costa, V., Jorge, A.,
Brazdil, P., eds.: Discovery Science. Volume 5808 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2009) 36–50

20. Appice, A., Ceci, M., Malerba, D.: Transductive learning for spatial regression with
co-training. In: Proceedings of the 2010 ACM Symposium on Applied Computing.
(2010) 1065–1070

21. Yang, M.C., Wang, Y.C.F.: A self-learning approach to single image super-
resolution. IEEE Transactions on Multimedia 15(3) (2013) 498–508

22. Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation.
Journal of Machine Learning Research 3 (2002) 621–650

23. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression
Trees. Chapman & Hall/CRC (1984)

24. Breiman, L.: Random forests. Machine Learning 45(1) (2001) 5–32
25. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
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Abstract. Motivated by an increasing number of new applications, the
research community is devoting an increasing amount of attention to the
task of multi-label classification (MLC). Many different approaches to
solving multi-label classification problems have been recently developed.
Recent empirical studies have comprehensively evaluated many of these
approaches on many datasets using different evaluation measures. The
studies have indicated that the predictive performance and efficiency of
the approaches could be improved by using data derived (artificial) hier-
archies, in the learning and prediction phases. In this paper, we compare
different clustering algorithms for constructing the label hierarchies (in a
data-driven manner), in multi-label classification. We consider flat label
sets and construct the label hierarchies from the label sets that appear
in the annotations of the training data by using four different cluster-
ing algorithms (balanced k-means, agglomerative clustering with single
and complete linkage and predictive clustering trees). The hierarchies
are then used in conjunction with global hierarchical multi-label classi-
fication (HMC) approaches.

Keywords: multi-label, hierarchical, classification, clustering

1 Introduction

Multi-label learning is concerned with learning from examples, where each ex-
ample is associated with multiple labels. Multi-label classification (MLC) has
received significant attention in the research community over the past few years,
motivated by an increasing number of new applications. The latter include se-
mantic annotation of images and video (news clips, movies clips), functional
genomics (predicting gene and protein function), music categorization into emo-
tions, text classification (news articles, web pages, patents, e-mails, bookmarks...),
directed marketing and others.

Madjarov et al. [1] presented an extensive experimental evaluation of the
most popular methods for multi-label learning using a wide range of evaluation
measures on a variety of datasets. In particular, the authors have experimen-
tally evaluated 12 methods using 16 evaluation measures over 11 benchmark
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datasets. The results reveal that the best performing methods over all evalua-
tion measures are the Hierarchy Of Multi-label classifiERs (HOMER) [2] and
Random Forests of Predictive Clustering Trees for Multi-target Classification
(RF-PCTs for MTC) [3], followed by Binary Relevance (BR) [4] and Classifier
Chains (CC) [5].

We believe that the better predictive performance and efficiency of the HOMER
method as compared to BR and CC, is a result of the data derived (artificial)
hierarchy, that HOMER defines over the output space of the original MLC prob-
lem first, and then uses it in the learning and prediction phases. In particular,
HOMER transforms the (original, flat) multi-label learning task into a hierar-
chy of (simpler) multi-label learning tasks, based on a hierarchy of labels derived
from the data. The hierarchy is obtained by applying an unsupervised (cluster-
ing) approach to the label part of the data that comes from the original MLC
problem. An example hierarchy of labels (and classifiers) produced for a multi-
label classification task with 8 labels {λ1, λ2, ..., λ8} is given in Figure 1.

λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8

λ1, λ2 λ6, λ7, λ8λ3, λ4, λ5

h1,

μ3μ2 μ4

h2 h3 h4

μ1

λ1 λ2 λ3 λ5λ4 λ6 λ8λ7

Fig. 1. An example of labels and classifiers considered by HOMER (λ - label, µ -
meta-label, h - multi-label classifier).

In this paper, we experimentally evaluate the influence of different data-
derived label hierarchies on the predictive performance of multi-label classifiers.
Additionally, we confirmed even stronger, that structuring the output space (la-
bel part) of a flat MLC problem, and using this structure by a classifier that
can directly handle hierarchical multi-label classification (HMC) problems can
improve the predictive performance of a classifier that does not use this struc-
ture and directly solves the flat MLC problems. More specifically, we derive a
hierarchy from the output space of the (original) flat MLC problem using four
different clustering approaches first, and then use PCTs for HMC [6] for solving
the newly defined hierarchical multi-label classification problem.

To show the improvements that can be achieved by using the data derived
structure on the label space and to evaluate the influence of the different data-
derived label hierarchies in multi-label classification, we compare: single PCT [6]
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for solving classical MLC problems [3], and single PCT for solving HMC prob-
lems [7] (both in global settings). The transformation of the (original) flat MLC
problem to HMC problem is made by balanced k-means clustering [2], agglom-
erative clustering with single and complete linkage [8] and clustering performed
by predictive clustering trees for multi-target classification (MTP) [6].

The remainder of this paper is organized as follows. Section 2 defines the tasks
of multi-label classification, multi-label ranking and hierarchical multi-label clas-
sification. The use of data derived label hierarchies in multi-label classification is
presented in Section 3. Section 4 describes the multi-label datasets, the evalua-
tion measures and the experimental setup, while Section 5 presents and discusses
the experimental results. Finally, the conclusions and directions for further work
are presented in Section 6.

2 Background

In this section, we define the task of multi-label classification and the task of
hierarchical multi-label classification.

2.1 The task of multi-label classification (MLC)

Multi-label learning is concerned with learning from examples, where each exam-
ple is associated with multiple labels. These multiple labels belong to a predefined
set of labels. We can distinguish two types of tasks: multi-label classification and
multi-label ranking.

In the case of multi-label classification, the goal is to construct a predictive
model that will provide a list of relevant labels for a given, previously unseen
example. On the other hand, the goal of the task of multi-label ranking is to
construct a predictive model that will provide, for each unseen example, a list
of preferences (i.e., a ranking) on the labels from the set of possible labels.

The task of multi-label learning is defined as follows [9]:
Given:

– An input space X that consists of vectors of values of primitive data types
(nominal or numeric), i.e., ∀xi ∈ X ,xi = (xi1 , xi2 , ..., xiD ), where D is the
size of the vector (or number of descriptive attributes),

– an output space Y that is defined as a subset of a finite set of disjoint labels
L = {λ1, λ2, ..., λQ} (Q > 1 and Y ⊆ L)

– a set of examples E, where each example is a pair of a vector and a set from
the input and output space respectively, i.e., E = {(xi,Yi)|xi ∈ X ,Yi ⊂
L, 1 ≤ i ≤ N} where N is the number of examples of E (N = |E|), and

– a quality criterion q, which rewards models with high predictive performance
and low computational complexity.

If the task at hand is multi-label classification, then the goal is to
Find: a function h: X → 2L such that h maximizes q.
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On the other hand, if the task is multi-label ranking, then the goal is to
Find: a function f : X×L → R, such that f maximizes q, whereR is the ranking
on the labels for a given example.

An extensive bibliography of learning methods for solving multi-label learning
problems can be found in [10] [4] [11] [1].

2.2 The task of hierarchical multi-label classification (HMC)

Hierarchical classification differs from the multi-label classification in the follow-
ing: the labels are organized in a hierarchy. An example that is labeled with a
given label is automatically labeled with all its parent-labels (this is known as
the hierarchy constraint). Furthermore, an example can be labeled simultane-
ously with multiple labels that can follow multiple paths from the root label.
This task is called hierarchical multi-label classification (HMC).

Here, the output space Y is defined with a label hierarchy (L,≤h), where L is
a set of labels and ≤h is a partial order representing the parent-child relationship
(∀ λ1, λ2 ∈ L : λ1 ≤h λ2 if and only if λ1 is a parent of λ2) structured as a tree
[9]. Each example from the set of examples E is a pair of a vector and a set from
the input and output space respectively, where the set satisfies the hierarchy
constraint, i.e., E = {(xi,Yi)|xi ∈ X ,Yi ⊆ L, λ ∈ Yi ⇒ ∀λ′ ≤h λ : λ′ ∈ Yi, 1 ≤
i ≤ N} where N is the number of examples of E (N = |E|). The quality criterion
q, rewards models with high predictive performance and low complexity as in
the task of multi-label classification.

An extensive bibliography of learning methods for hierarchical classification
scattered across different application domains is given by [12].

3 The use of data derived label hierarchies in multi-label
classification

In this study, we suggest to transform the flat multi-label classification problem
into a hierarchical multi-label one and solve it by using an approach for HMC
[12]. In particular, one should derive a hierarchy from the label part of the
original (flat) multi-label classification problem first, and then use this hierarchy
to construct hierarchical classification problem that later solves by using a HMC
approach [12].

Table 1 shows an example of a multi-label dataset and its corresponding
transformed hierarchical multi-label dataset. The transformation is performed
according to the label hierarchy generated by a clustering algorithm that con-
siders only the label part (output space) of the training data. In particular,
the third column (Original label set) in Table 1 shows the labels of the (orig-
inal) label space of a multi-label learning dataset with five examples. It is de-
fined over a set of eight labels (L = {λ1, λ2, ..., λ8}). The fourth column in the
same table (Hierarchical label set), shows the corresponding hierarchical label
set (for the same dataset), obtained by using the label hierarchy from Figure 1
(HL = {µ1, µ2, µ3, µ4, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8}). Each example in the HMC
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dataset is actually labeled with multiple paths of the hierarchy, defined from
the root to the leaves (represented by the relevant labels for the corresponding
example in the original MLC dataset).

Table 1. A hierarchical multi-label dataset obtained by transforming an original flat
multi-label dataset (the label hierarchy from Figure 1 is used)

Example Features Original label set Hierarchical label set 
𝐱𝐱𝟏𝟏 𝑥𝑥11, 𝑥𝑥12, … , 𝑥𝑥1𝐷𝐷 {𝝀𝝀𝟏𝟏,  𝝀𝝀𝟒𝟒,  𝝀𝝀𝟖𝟖} {𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3, 𝜇𝜇4,𝝀𝝀𝟏𝟏,𝝀𝝀𝟒𝟒,𝝀𝝀𝟖𝟖} 
𝐱𝐱𝟐𝟐 𝑥𝑥21, 𝑥𝑥22, … , 𝑥𝑥2𝐷𝐷 {𝝀𝝀𝟑𝟑,  𝝀𝝀𝟔𝟔} {𝜇𝜇1, 𝜇𝜇3, 𝜇𝜇4,𝝀𝝀𝟑𝟑,𝝀𝝀𝟔𝟔} 
𝐱𝐱𝟑𝟑 𝑥𝑥31, 𝑥𝑥32, … , 𝑥𝑥3𝐷𝐷 {𝝀𝝀𝟏𝟏} {𝜇𝜇1, 𝜇𝜇2,𝝀𝝀𝟏𝟏} 
𝐱𝐱𝟒𝟒 𝑥𝑥41, 𝑥𝑥42, … , 𝑥𝑥4𝐷𝐷 {𝝀𝝀𝟐𝟐,  𝝀𝝀𝟑𝟑,  𝝀𝝀𝟒𝟒,  𝝀𝝀𝟖𝟖} {𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3, 𝜇𝜇4, 𝝀𝝀𝟐𝟐,𝝀𝝀𝟑𝟑,𝝀𝝀𝟒𝟒,𝝀𝝀𝟖𝟖} 
𝐱𝐱𝟓𝟓 𝑥𝑥51, 𝑥𝑥52, … , 𝑥𝑥5𝐷𝐷 {𝝀𝝀𝟏𝟏,  𝝀𝝀𝟒𝟒,  𝝀𝝀𝟕𝟕} {𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3, 𝜇𝜇4,𝝀𝝀𝟏𝟏,𝝀𝝀4,𝝀𝝀𝟕𝟕} 
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3.1 Generating a label hierarchy on a multi-label output space

The process of generating label hierarchies on a multi-label output space is criti-
cal for the good performance of the HMC methods on the transformed problems.
When we build the hierarchy over the label space, there is only one constraint
that we should take care of: the original MLC task should be defined by the
leaves of the label hierarchy. In particular, the labels from the original MLC
problem represent the leaves of the tree hierarchy (Figure 1), while the labels
that represent the internal nodes of the tree hierarchy are so-called meta-labels
(that model the correlation among the original labels).

In this study, we use four different clustering approaches (two divisive and two
agglomerative) for deriving the hierarchy on the output space of the (original)
MLC problem:

– balanced k-means clustering approach [2] (divisive approach),
– predictive clustering trees [6] (divisive approach),
– agglomerative clustering by using complete linkage [8], and
– agglomerative clustering by using single linkage [8].

Balanced k-means creates the label hierarchy by partitioning the original
labels recursively in a top-down depth-first fashion. The top node of the hierarchy
contains all labels. At each node n, k <= |Ln| child nodes are created. The labels
of the current node are distributed (divided) using a clustering method into k
disjoint subsets (k meta-labels) with an explicit constraint on the size of each
subset, one for each child of the current node.

In this work, we use a specific setting from the predictive clustering frame-
work as in [13] [3], where the target space is equal to the descriptive space,
i.e., the descriptive variables are used to provide descriptions for the obtained
clusters. This focuses the predictive clustering setting on the task of clustering
instead of classification.
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Agglomerative clustering algorithms treat each example as a singleton cluster
at the outset and then successively merge pairs of clusters until all clusters have
been merged into a single cluster that contains all examples.

The predictive clustering trees and the agglomerative approaches produce
binary tree hierarchies, while the balanced k-means clustering approach produces
multi-branch tree hierarchies for k > 2.

3.2 Solving MLC problems by using classification approaches for
HMC

After the transformation of the original MLC problem into a HMC one, the new
HMC problem can be solved by a hierarchical multi-label learning approach. The
transformed hierarchical multi-label dataset satisfies the hierarchy constraint (an
example that is labeled with a given label is automatically labeled with all its
parent-labels).

Figure 2 presents the pseudo-code of the algorithm for solving a MLC problem
by using data-derived label hierarchies and a classification approach for HMC.
The algorithm first defines the hierarchy, then solves the HMC problem by using
a classification approach for HMC. It finally extracts the predictions for the
leaves of the hierarchy (that are actually the predictions for the original labels)
and evaluates the performance.

Etrain and Etest denote the training and testing examples, while Wtrain is
only the label part (label data) of the training set. Using the label hierarchy
derived from the label data, Wtrain is transformed into new hierarchically orga-
nized label data Wtrain

H . Etrain
H and Etest

H denote the corresponding hierarchi-
cal multi-label datasets obtained by transforming the original (flat) multi-label
datasets (Etrain and Etest) into hierarchical form.

PH denotes the predictions for the examples of the hierarchical multi-label
dataset Etest

H , while P denotes the predictions for the original labels. The latter
are obtained by extracting the probabilities in the leaves of the label tree from
the predictions PH . The predictions PH are represented as vectors of probabil-
ities (one vector for one example), where each probability is associated to only
one label from the hierarchy (meta-label representing an internal node or origi-
nal label representing a leaf). Predictions P in the original multi-label scenario
can be obtained by using different approaches for transforming the hierarchical
multi-label predictions PH . In this work, we use the simplest approach: only the
probabilities for the leaves from the hierarchical predictions PH are evaluated,
while the other probabilities (for the meta-labels) are simply ignored.

3.3 Classification approaches for HMC

Based on the existing literature, Silla et al. [12] propose a unifying framework
for hierarchical classification, including a taxonomy of hierarchical classification
problems and methods. One of the dimensions along which the hierarchical clas-
sification methods differ is the way of using (exploring) the hierarchical label



130

procedure MLCToHMC(Etrain ,Etest) returns performance

1: Wtrain = ExtractLabelSet(Etrain);
2: Wtrain

H = DefineHierarchy(Wtrain);
3:
4: //transform multi-label dataset to hierarchical multi-label one
5: Etrain

H = MLCToHMCTrainDataset(Etrain, Wtrain
H );

6: Etest
H = MLCToHMCTestDataset(Etest, Wtrain

H );
7:
8: //solve transformed hierarchical multi-label problem
9: //by using approach for HMC

10: HMCModel = HMCMetod(Etrain
H );

11:
12: //generate HMC predictions
13: PH = HMCModel(Etest

H );
14:
15: //Extract predictions only for the leaves from the HMC predictions PH

16: P = ExtractLeavesPredictionsFromHMCPredictions(PH , Wtrain
H , Wtrain);

17: return EvaluatePredictions(P);

Fig. 2. Solving flat MLC problems by using classification approaches for HMC.

structure in the learning and prediction phases. They reviewed two different ap-
proaches that utilize the hierarchy: the top-down (or local) approach that uses
local information to create a set of local classifiers and the global (or big-bang)
approach.

The recent research show that learning a single global model for all labels (in
the hierarchy) can have some advantages [3] [14] over the local approaches. The
total size of the global classification model is typically smaller as compared to
the total size of all the local models learned by local classifier approaches. Also,
in the global classifier approach, a single classification model is built from the
training set, taking into account the label hierarchy and relationships. During
the prediction phase, each test example is classified using the induced model, in
a process that can assign labels to a test example at potentially every level of
the hierarchy. Because of that, in this study we compare PCTs for MTP (as flat,
global MLC approach) and PCTs for HMC (in a global setting) [3].

4 Experimental design

4.1 Datasets and evaluation measures

We use four multi-label classification benchmark problems used in previous stud-
ies and evaluations of methods for multi-label learning. Table 2 presents the basic
statistics of the datasets. The datasets come from the domain of text categoriza-
tion and pre-divided into training and testing parts as used by other researchers.

In any multi-label experiment, it is essential to include multiple and contrast-
ing measures because of the additional degrees of freedom that the multi-label
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Table 2. Description of the benchmark problems in terms of number of training
(#tr.e.) and test (#t.e.) examples, number of features (D), total number of labels
(Q) and label cardinality - average number of labels per example (lc).

Reference #tr.e. #t.e. D Q lc

tmc2007 [15] 21519 7077 500 22 2.16
bibtex [16] 4880 2515 1836 159 2.40
bookmarks [16] 60000 27856 2150 208 2.03
delicious [2] 12920 3185 500 983 19.02

setting introduces. In our experiments, we used various evaluation measures that
have been suggested by [11] In particular, we used 12 bipartitions-based evalua-
tion measures: six example-based evaluation measures (hamming loss, accuracy ,
precision, recall , F measure and subset accuracy) and six label-based evaluation
measures (micro precision, micro recall , micro F1, macro precision, macro recall
and macro F1). Note that these evaluation measures require predictions stating
that a given label is present or not (binary 1/0 predictions). However, most pre-
dictive models predict a numerical value for each label and the label is predicted
as present if that numerical value exceeds some pre-defined threshold τ . The
performance of the predictive model thus directly depends on the selection of an
appropriate value of τ .

Also, we used four ranking-based evaluation measures (one-error , coverage,
ranking loss and average precision) that compare the predicted ranking of the
labels with the ground truth ranking. A detailed description of the evaluation
measures can be found in [1].

4.2 Experimental setup

The comparison of the multi-label learning methods was performed using the
CLUS1 system for predictive clustering. All experiments were performed on a
server with an Intel Xeon processor at 2.5GHz and 64GB of RAM with the
Fedora 14 operating system. We used the default settings of CLUS to learn the
single PCT approaches (PCTs for MTP - as flat MLC approach, and PCTs for
HMC). The threshold τ for the bipartitions-based evaluation measures was set
to 0.5 for all compared methods.

The balanced k-means clustering method requires to be configured the num-
ber of clusters k in each node of the hierarchy. For this parameter, five different
values (2-6) were considered in the cross-validation phase [2]. After determin-
ing the best value of k on every dataset (via cross-validation on the training
dataset), the PCT for HMC was trained using all available training examples and
was evaluated by recognizing all test examples from the corresponding dataset.
The values of the parameter k are 3 for the tmc2007, bibtex and bookmarks

1 http://clus.sourceforge.net
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datasets, and 4 for the delicious dataset. Also, for the balanced k-means and the
agglomerative methods, Euclidean distance was used as a distance measure.

5 Results and discussion

In this section, we present the results from the experimental evaluation. Table 3
shows the predictive performance of the compared methods:

– PCTs for MTP, that don’t use a hierarchy for solving the original MLC
problem (labeled as no hierarchy (flat MLC))

– PCTs for HMC, that use data-derived label hierarchies, defined by:
• balanced k-means clustering approach (labeled as balanced-k-means)
• agglomerative clustering by using complete linkage (labeled as agglom-

erative (complete))
• agglomerative clustering by using single linkage (labeled as agglomerative

(single))
• predictive clustering trees (labeled as PCTs)

The first column of the table describes the methods used for defining the
hierarchies, while the other columns show the predictive performance of the
compared methods and hierarchies in terms of the 16 performance evaluation
measures. The best results per dataset are shown in boldface.

Inspecting Table 3, we note that PCTs for HMC outperform PCTs for MLC
on all datasets and on almost all evaluation measures. The instantiation of PCTs
for MTP (for solving flat multi-label classification problems) shows better pre-
dictive performance only on micro precision evaluation measure on the bibtex
and bookmarks datasets.

PCTs for HMC that use balanced k-means clustering for deriving the la-
bel hierarchies outperform PCTs for HMC that use agglomerative clustering
with single and complete linkage and PCTs for deriving the label hierarchies on
datasets with higher number of labels (bibtex, bookmarks and delicious). PCTs
for HMC with agglomerative clustering perform the best on tmc2007 dataset.
The two agglomerative clustering methods (single and complete linkage) derived
identical label hierarchies on all MLC problems, which result in same predictive
performance in the experimental evaluation.

The highest improvement of utilizing the data-derived hierarchies is obtained
on delicious dataset, as a result of the largest number of labels and the largest
label cardinality (average number of labels per example). A large number of
labels and large label cardinality yields a larger hierarchy that emphasizes the
relations between labels, and improves the process of learning and prediction.
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Table 3. The predictive performances of PCTs for MLC obtained on the original (flat) MLC problems and PCTs for HMC obtained on
the transformed (newly) defined HMC problems by using four different clustering approaches (balanced k-means, predictive clustering
trees, and agglomerative clustering with complete and single linkage) along 16 performance evaluation measures.
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balanced-k-means - HMC 0.067 0.515 0.688 0.604 0.643 0.253 0.704 0.563 0.625 0.735 0.341 0.409 0.246 3.35 0.066 0.774
agglomerative (complete) - HMC 0.068 0.501 0.699 0.571 0.628 0.250 0.717 0.524 0.605 0.629 0.283 0.344 0.247 3.54 0.071 0.767
agglomerative (single) - HMC 0.068 0.501 0.699 0.571 0.628 0.250 0.717 0.524 0.605 0.629 0.283 0.344 0.247 3.54 0.071 0.767
PCTs - HMC 0.101 0.559 0.746 0.703 0.723 0.184 0.742 0.625 0.678 0.675 0.358 0.418 0.084 11.64 0.055 0.835
bibtex
no hierarchy (flat MLC) 0.014 0.046 0.140 0.046 0.069 0.004 1.000 0.057 0.108 0.006 0.006 0.006 0.783 58.60 0.256 0.212
balanced-k-means - HMC 0.015 0.243 0.368 0.290 0.324 0.113 0.550 0.259 0.352 0.296 0.174 0.202 0.449 30.36 0.105 0.491
agglomerative (complete) - HMC 0.014 0.175 0.289 0.183 0.225 0.103 0.749 0.145 0.243 0.079 0.044 0.052 0.589 45.74 0.190 0.341
agglomerative (single) - HMC 0.014 0.175 0.289 0.183 0.225 0.103 0.749 0.145 0.243 0.079 0.044 0.052 0.589 45.74 0.190 0.341
PCTs - HMC 0.014 0.197 0.328 0.204 0.251 0.117 0.796 0.161 0.268 0.082 0.056 0.062 0.541 36.93 0.152 0.388
bookmarks
no hierarchy (flat MLC) 0.009 0.133 0.133 0.137 0.135 0.129 0.947 0.076 0.141 0.018 0.016 0.017 0.817 73.78 0.258 0.213
balanced-k-means - HMC 0.009 0.205 0.224 0.211 0.217 0.188 0.776 0.139 0.236 0.299 0.071 0.097 0.651 50.46 0.169 0.370
agglomerative (complete) - HMC 0.009 0.160 0.163 0.165 0.164 0.153 0.875 0.097 0.175 0.103 0.026 0.030 0.729 57.99 0.200 0.302
agglomerative (single) - HMC 0.009 0.160 0.163 0.165 0.164 0.153 0.875 0.097 0.175 0.103 0.026 0.030 0.729 57.99 0.200 0.302
PCTs - HMC 0.009 0.177 0.185 0.181 0.183 0.167 0.846 0.110 0.195 0.116 0.036 0.044 0.699 56.31 0.193 0.328
delicious
no hierarchy (flat MLC) 0.019 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.592 691.62 0.172 0.206
balanced-k-means - HMC 0.018 0.118 0.429 0.132 0.201 0.007 0.621 0.120 0.201 0.162 0.049 0.062 0.386 548.01 0.121 0.336
agglomerative (complete) - HMC 0.019 0.074 0.354 0.081 0.132 0.003 0.590 0.077 0.136 0.064 0.018 0.022 0.440 558.78 0.131 0.293
agglomerative (single) - HMC 0.019 0.074 0.354 0.081 0.132 0.003 0.590 0.077 0.136 0.064 0.018 0.022 0.440 558.78 0.131 0.293
PCTs - HMC 0.019 0.097 0.376 0.107 0.167 0.002 0.609 0.101 0.173 0.066 0.029 0.034 0.418 553.65 0.128 0.316
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6 Conclusions and further work

In this paper, we have investigated the use of label hierarchies in multi-label
classification, constructed in a data-driven manner. We consider flat label-sets
and construct label hierarchies from the label sets that appear in the annotations
of the training data by using clustering approaches based on balanced k-means
clustering, agglomerative clustering with single and complete linkage, and clus-
tering performed by PCTs. The hierarchies are then used in conjunction with
hierarchical multi-label classification approaches in the hope of achieving better
multi-label classification.

In particular, we investigate and evaluate the utility of four different data-
derived label hierarchies in the context of predictive clustering trees for HMC.
The experimental results clearly show that the use of the hierarchy results in im-
proved performance and the more balanced hierarchy offers better representation
of the label relationships.

The label hierarchies used in PCTs for HMC greatly improve the perfor-
mance of PCTs for MTP (as used for MLC): The results show improvement in
performance on almost all evaluation measures considered. Multi-branch hier-
archy (defined by balanced k-means clustering) outperforms binary hierarchies
(defined by agglomerative clustering with single and complete linkage and PCTs)
on datasets with higher number of labels (bibtex, bookmarks and delicious). This
improvement is especially emphasized on the delicious dataset, as a result of
the higher label cardinality that this dataset has in comparison to the other
evaluated datasets.

The final recommendation considering the performance of the evaluated meth-
ods is that we should use data-derived label hierarchies. We should transform
the original (flat) multi-label classification problem into hierarchical multi-label
one by using more balanced hierarchies, and solve the newly defined hierarchical
classification problem by a classifier that can directly handle HMC problems.

We plan to extend this study by using more multi-label classification datasets,
in particular more diverse ones. These would include different numbers of possi-
ble labels, different numbers of labels per example and different joint distribution
properties for the labels (e.g., different degrees of (in)dependence among the la-
bels). This would allow us to draw stronger conclusions on the conditions under
which the use of a hierarchy on the label space and the way of its construction
improves the performance of the different MLC approaches.

A final direction for further work might be the comparison of hierarchies
constructed by humans and hierarchies generated in a data-driven fashion. For
HMC problems, we can consider the MLC task defined by the leaves of the
provided label hierarchy. We can then construct label hierarchies automatically,
as described above, and compare these hierarchies (and their utility) to the
originally provided label hierarchy.
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Abstract. Metagenomics is an emerging field in which the power of
genome analysis is applied to entire communities of microbes. It is fo-
cused on the understanding of the mixture of genes (genomes) in a
community as whole. The gene prediction task is a well-known prob-
lem in genomics, and it remains an interesting computational challenge
in metagenomics too. A large variety of classifiers has been developed for
gene prediction though there is lack of an empirical evaluation regard-
ing the core machine learning techniques implemented in these tools.
In this work we present an empirical performance comparison of dif-
ferent classification strategies for gene prediction in metagenomic data.
This comparison takes into account distinct supervised learning strate-
gies: one lazy learner, two eager-learners and one ensemble learner. The
ensemble-based strategy has achieved the overall best result and it is
competitive with the prediction baselines of well-known metagenomics
tools.

Keywords: Machine learning, classification methods, gene prediction, metagenomics

1 Introduction

Since the human genome project several computation strategies have been devel-
oped to shed a light on the amazing complexity of the complex human genome.
Completed in 2003, this international research e�ort provided, for the fist time,
the blueprint for building a human being. Nowadays, we are facing a new voyage
of discovery into the microorganism world. Microbial communities support all
life on Earth, and metagenomics is a revolutionary new approach to better un-
derstanding the microbial world. This new science opens doors to a large amount
of scientific exploration and can help understand some of the most complex med-
ical, agricultural, environmental, and economic challenges of today’s world [1,
2].

Metagenomics is the application of shotgun sequencing to DNA obtained
directly from an environmental sample or series of related samples, and it is also a
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derivation of conventional microbial genomics, with the key di�erence being that
it bypasses the requirement for obtaining pure cultures for sequencing [3]. It is
focused on the understanding of the mixture of genes (genomes) in a community
as a whole [4]. The gene prediction task is a well-known problem in genomics,
and it remains an interesting computational challenge in metagenomics too.

Gene prediction is the procedure of finding protein and RNA coding sequences
in the sample DNA. Depending on the applicability and success of the assembly,
gene prediction can be done on post assembly contigs1, on reads from unassem-
bled metagenomes or on a mixture of contigs and individual unassembled reads.
There are two main strategies for gene prediction [3]: i) evidence-based gene-
calling methods use homology searches to find genes similar to those observed
previously (reference microbial genomes); and ii) ab initio gene-calling relies on
the intrinsic features of the DNA sequence to discriminate between coding and
noncoding regions, allowing for the identification of homologs in the available
databases. The former approach has two major drawbacks. Low values of simi-
larity to known sequences either due to evolutionary distance or due to the short
length of metagenomic coding sequences and the presence of sequence errors re-
strict the identification of homologs. In addition, novel genes without similarities
are completely ignored. The latter approach usually employs Machine Learning
(ML) algorithms which can smooth the previous gene prediction drawbacks. Still
this requires a proper use of sophisticated classification methods and careful se-
lection of potential DNA sequence features that could best discriminate between
coding and noncoding sequences.

A large variety of classifiers has been developed for gene prediction. The hid-
den Markov models (HMM) is the state-of-the-art ML technique used since the
90’s, and it is at the core of the pipeline called GeneMark.hmm [5]. Recently,
metagenomic pipelines have adopted new classification strategies such as i) sup-
port vector machines(SVM) [6] (MetaGUN) and ii) artificial neural networks
(ANN) [7](Orphelia). As an example, in Orphelia first a linear discrimination
analysis takes place to select candidate features followed by ANN that calculates
the probability of an ORF2 being a potential coding sequence.

Applications of supervised machine learning methodologies continue to grow
in the scientific literature across several domains. Jensen and Bateman conducted
a careful text-mining over several biomedical articles in PubMed and they ob-
served a moderate decrease in the use of both ANN and HMM, and an increase
in usage of SVM and Random Forest in the literature [8]. This study takes into
account, basically, the citation of these ML methods. In this work we present an
empirical performance evaluation of the core ML techniques explored for gene
prediction by some of the most used metagenomic pipelines.

1 A contig is a continuous sequence resulting from the assembly of overlapping small
DNA fragments (sequence reads).

2 An ORF is a sequence of DNA that starts with a start codon, usually “ATG", and
ends with any of the three termination codons (TAA, TAG, TGA).
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2 Materials and Methods

In Figure 1 we depict the overall architecture devised for the comparison of the
classifiers. It follows the classical steps of data preprocessing, learning and test.
First, coding and non-coding sequences are extracted for the identification of
potential sequence features, and next classification models are built for further
prediction analysis (Figure 1-A). Once new sequences are retrieved it is possible
to classify them in accordance with the classification models, and thus, an appre-
ciation regarding whether it is a coding sequence or not can be done(Figure 1-B).

Fig. 1: The overall architecture devised for the comparison of the classification
methods.

2.1 Classification methods

We have selected four classification strategies for the comparison study. These
methods employ distinct learning strategies, and ideally, each one has a particu-
lar manner to generalize the search space. The gene prediction problem is simply
a binary classification or concept learning (positive class: coding sequence and
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negative class: no coding sequence). This comparison takes into account distinct
supervised learning strategies: one lazy learner (KNN: K-Nearest Neighbors),
two eager-learner (SVM: Support Vector Machines and ANN: Artificial Neural
Networks) and one ensemble learner (RF: Random Forest).

Random forest (RF) It is a well-known ensemble approach for classification
tasks proposed by Breiman [9]. Its basis comes from the combination of tree-
structured classifiers with the randomness and robustness provided by bagging
and random feature selection. Several decision trees are trained with random
bootstrap samples from the original data set ( 2/3 of data) and afterwards,
results are combined into a single prediction: for classification tasks, by means of
voting; for regression tasks, by averaging the results of all trees. The fact that the
predicted class represents the mode of all the classes output by individual trees
gives robustness to this ensemble classifier in relation to a single tree classifier.
Given its basis on an ensemble learning it is less impacted by overfitting, making
it a potential candidate ML approach in bioinformatics problems [10]. Though,
as far as we know it has not been explored as a solution in the gene prediction
of metagenomic sequences.

K-Nearest Neighbors (KNN) Nearest-neighbor classifiers are based on learn-
ing by analogy, by comparing a given test instance with training instances that
are similar to it [11]. The training instances are described by n features. Each
instance represents a point in a n-dimensional space. Thus, all of the training
instances are stored in an n-dimensional pattern space. When an unknown in-
stance is provided, a k-nearest-neighbor classifier searches the pattern space for
the k training instances closest to the unknown instance. Closeness is usually
defined in terms of a distance metric, such as Euclidean distance. K-nearest
neighbors are also used as a baseline strategy for comparison among distinct
classifiers.

Artificial Neural Networks (ANN) A neural network is a set of connected
input/output units in which each connection has a weight associated with it.
During the learning stage, the network learns by adjusting the weights with aims
to predict the correct class label of the input instances. ANN also involves long
training times and are also criticized for their poor interpretability. Nevertheless,
it has a higher tolerance to noisy data as well as the ability to classify patterns
on which it has not been trained. Backpropagation is the most popular ANN
algorithm and it performs learning on a multilayer feed-forward neural network
[11]. A multilayer feed-forward neural network basically consists of an input
layer, one or more hidden layers, and an output layer.

Support Vector Machines (SVM) It uses a linear model to implement non-
linear class boundaries. SVM transform the input using a nonlinear mapping,
thus, turning the instance space into a new space. A linear model (the maximum
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margin hyperplane) constructed in the new space can represent a nonlinear de-
cision boundary in the original space. The maximum margin hyperplane is the
one that gives the greatest separation between classes. The instances that are
closest to this hyperplane, so the ones with minimum distance to it, are called
support vectors. Other kernel functions can be used instead to implement distinct
nonlinear mappings. Two that are often suggested are the radial basis functions

(RBF) kernel and the sigmoid kernel. These functions do not present large dif-
ferences in terms of prediction accuracy, though this observation depends on the
application domain. SVM has been used extensively in several domains, and in
some cases it outperforms ANN [12].

2.2 Feature engineering

Feature engineering is at the core of classification strategies and it is a crucial
step on prediction modeling. Essentially, two di�erent types of information are
currently used to try to find genes in a genomic sequence: i) extrinsinc content

sensors explore a su�cient similarity between a genomic sequence region and a
protein or DNA sequence present in a database in order to determine whether the
region is transcribed and/or coding; and ii) intrinsic content sensors proposed
particularly for prokaryotic genomes, in which features that characterize the
sequence as “coding” for a protein are carefully calculated for discrimination
analysis [13, 14]. Examples of content sensors are: nucleotide composition and
especially (G + C) content (introns being more A/T-rich than exons, especially
in plants), codon composition, hexamer frequency, base occurrence periodicity,
etc. Hexamer usage has been widely exploited by a large number of algorithms
through di�erent methods [14]. Table 1 presents six content sensors that are
strongly used by gene prediction tools in metagenomics. For the comparison
study we focused on three main types of features: (G + C) content, length and
codon usage. From this information we derived a total of six features as follows:
1) GC content, 2) GC content in the first position of each codon, 3) GC content
in the second position of each codon, 4) GC content in the third position of
each codon, 5) the sequence length, 6) the codon usage variance among the 61
monocodons.

GC
Content Length Codon

usage
Dicodon

usage TIS Aminoacid
usage

Orphelia x x x x x
MetaGUN x x x
MGC x x x x x x
MetaGene x x x
F ragGeneScan x

Table 1. Content sensors features used [x] by gene prediction tools in metagenomics.
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GC-content It is the percentage of guanine and cytosine bases in all bases of
a sequence. It has been used extensively by several gene prediction tools. This
utilization is mainly due to the fact that coding regions present, on average, a
higher GC content than on non coding sequences [15]. Di�erently from previous
studies (see Table 1), we calculated the total level of GC content, and the content
at the first, second and third monocodon positions with the aim to evaluate their
impact in the gene prediction task. In this way, four features are derived from
the GC content.

Length Another feature for discrimination between coding and non-coding se-
quence is its length. The intergenic regions are usually smaller than coding re-
gions[14].

Codon Usage Perhaps the most important features for the discrimination be-
tween coding and non-coding sequences can be calculated from codon usage [16],
in particular the frequencies of 43 monocodons. These frequencies represent the
occurrences of successive trinucleotides (non-overlapping). For the characteriza-
tion of monocodon usage, we compute the variance among the 61 monocodons,
since gene sequences do not contain stop codons.

2.3 Training Data

The training data is basically DNA sequences having both coding sequences
(positive) and intergenic regions (negative) instances. Our approach to compare
the four classification methods is based on a learning scheme over eight prokary-
otic genomes, namely two Archaeas and six Bacterias, available in GenBank3

(Table 2). The choice of these organisms has to do with the experimental metage-
nomic data that will be evaluated while testing the predictive models. Thus,
either these organisms belong to the same branch of the evolutionary tree or
they are associated to Acid Mine Drainage biofilms (Section 2.4).

We have developed an algorithm to properly extract the coding and non-
coding regions, on both forward and reverse strands, from these eight “complete”
genomes. This algorithm was applied to regions with sequence lengths higher
than 59 bp. Sequences less than 60 bp are ignored since they are too short to
provide useful information [6]. Those originating from the annotated genes are
used as positive instances of coding sequences, whereas others are treated as
items of the non-coding class. After running this procedure we came up with a
total of 30144 sequences, being 10106 related to intergenic regions and remaining
20038 of coding sequences.

2.4 Test Data

The metagenomic data selected for the comparison study is the Acid Mine
Drainage (AMD) biofilm [17], freely available at the site of NCBI 4. This biofilm
3 http://www.ncbi.nlm.nih.gov/news/10-22-2013-genbank-release198
4 http://www.ncbi.nlm.nih.gov/books/NBK6860/
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Species GenBank Acc.

Thermoplasma acidophilum * NC_002578
Thermoplasma volcanium * NC_002689
Acidimicrobium ferrooxidans NC_013124

Acidithiobacillus caldus NC_015850
Acidithiobacillus ferrooxidans NC_011206
Acidithiobacillus ferrivorans NC_015942

Candidatus Nitrospira defluvii NC_014355
Thermodesulfovibrio yellowstonii NC_011296

Table 2. The prokaryotic genomes used as reference for the training data. The “*”
symbol highlights the two Archaeas.

sequencing project was designed to explore the distribution and diversity of
metabolic pathways in acidophilic biofilms. Acidophilic biofilms are self-sustaining
communities that grow in the deep subsurface and receive no significant inputs
of fixed carbon or nitrogen from external sources. While some AMD is caused by
the oxidization of rocks rich in sulfide minerals, this is a very slow process and
most AMD is due directly to microbial activity [18]. More information regarding
the AMD study as well as environmental sequences, metadata and analysis can
be obtained at [17].

We have selected prokaryotic genomes associated to the same species found
in Tyson[17]. Thus, five genomes (2 Archaeas and 3 Bacterias) were extracted
from GenBank to create the test data (Table 3).

Species GenBank Acc.

FA: Ferroplasma acidarmanus * NC_021592
TA: Thermoplasmatales archaeon BRNA * NC_020892

LFI: Leptospirillum ferriphilum NC_018649
LFO: Leptospirillum ferrooxidans NC_017094

SA: Sulfobacillus acidophilus NC_015757

Table 3. The prokaryotic genomes used as reference for the test data. The “*” symbol
highlight the two Archaeas.

2.5 Measures of prediction performance

The classifiers will be evaluated through the evaluation of classical prediction
performance measures, namely, accuracy (ACC), specificity (SPE), sensitivity
(SEN) and Kappa. All these measures are easily calculated from the resulting
confusion matrix for each classifier. This matrix usually has two rows and two
columns that reports the number of false positives (FP), false negatives (FN),
true positives (TP), and true negatives (TN). Though we provide the results
for all these measures, we believe that Kappa is the most suitable measure to
compare distinct classifiers. Kappa measures how closely the instances labeled
by the classifiers matched the data labeled as ground truth, controling for the
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ACC of a random classifier as measured by the expected accuracy. Thus, the
kappa for one classifier is properly comparable to others kappa’s classifiers for
the same classification task.

ACC = T P +T N
P +N (1)

SPE = T N
T N+F P (2)

SEN = T P
T P +F N (3)

Kappa = P r(a)≠P r(e)
1≠P r(e) (4)

3 Results and Discussion

3.1 Performance of the classifiers

The prediction modeling and evaluation was carried out with the caret R pack-
age [19]. We use the built-in tune() function for resampling and tuning to opti-
mize all classifiers parameters. The best values were as follows: i) RF (mtry 4),
KNN (k=5), ANN (size=5 and decay=0.1), SVML (C=0.5). The performance
measures were calculated from the average performance of three repetition of
a 10-fold cross validation scheme (Table 4). The most promising results were
obtained by the RF model using 200 trees (Figure 2).

ACC KAPPA

RF model 0.94 0.87

KNN model 0.87 0.70
ANN model 0.91 0.80

SVML model 0.88 0.74

Table 4. The average performance of the classifiers. The orange cells highlight the
best performance achieved by the RF classifier.
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Fig. 2: RF has the best performance among all classifiers.

3.2 Comparison of classifiers using independent test data

In this section we present the performance comparison of the selected classifiers
using the independent test data discussed in Section 2.4. So, the main goal
was to evaluate how classifiers correctly classify the known coding sequences for
the species associated to the AMD metagenome. As we expected the ensemble
learning classifier employed by RF has achieved the best performance among all
classifiers (Table 5 and Table 6). Ensembles are designed to increase the accuracy
of a single classifier by training several distinct classifiers and combine their
decisions to output a single class label. Given such accuracy-oriented design,
ensemble learning algorithms are less likely to overfitting when dealing with
imbalanced data.

The SVM has an overall performance similar to KNN (base classifier), and
this is partially due to the generalization carried by a linear SVM. Probably a
radial SVM model would be able to generalize better the search space. On the
other hand, the other eager learner, ANN, presents competitive results. As an
example, ANN outperforms RF for the LFI specie (Kappa=0.9097).

Let us assume that we built a gene prediction method that is solely based on
a RF model, so the overall performance of our model would have SEN=0.91
for a “hypothetical” metagenome (as the one discussed in Section 2.4). Ta-
ble 7 presents a prediction baseline discussed in [6], where the MetaGUN tool,
based on a SVM classifier, outperforms the other two well-known gene prediction
pipelines. Though SVM would hypothetically outperform our RF model, it is
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important to mention that our feature set is less complex than the one employed
by MetaGUN .

SEN SPE
Species RF ANN KNN SVML RF ANN KNN SVML
FA 0.9380 0.8801 0.6337 0.6521 0.9047 0.8642 0.9503 0.8662
LFI 0.8945 0.8783 0.8139 0.8203 0.9304 0.9316 0.9352 0.9276
LFO 0.8797 0.8469 0.7939 0.7743 0.9599 0.9628 0.9570 0.9504
SA 0.9317 0.9017 0.8145 0.8517 0.9433 0.9398 0.9486 0.9267
TA 0.9085 0.8408 0.7711 0.7642 0.9889 0.9679 0.9640 0.9522

Table 5. The comparison performance of classifiers in accordance to the SEN and SPE
measures. The highlighted cells show the best results.

ACC Kappa
Species RF ANN KNN SVML RF ANN KNN SVML
FA 0.9173 0.8702 0.8302 0.785 0.8275 0.7298 0.6182 0.5317
LFI 0.9156 0.9097 0.8854 0.8835 0.8256 0.9097 0.7599 0.7565
LFO 0.9263 0.9143 0.8888 0.8767 0.8472 0.8213 0.7666 0.741
SA 0.9383 0.9235 0.8913 0.8947 0.8741 0.8434 0.7746 0.7834
TA 0.957 0.9175 0.8875 0.9175 0.9089 0.8243 0.7577 0.737

Table 6. The comparison performance of classifiers in accordance to the ACC and
Kappa measures. The highlighted cells show the best results.

1200 bp 870 bp 535 bp 120 bp
Sen Spec Sen Spec Sen Spec Sen Spec

MetaGUN (SVM) 97.7 94,8 97.4 95.2 96.9 95.4 93.2 89.6
FragGeneScan (Markov Models) 95.7 87.3 95.5 88.0 95.2 88.4 90.4 82.1
Orphelia (Neural Network) 94.6 94.7 94.1 94.7 93.3 94.6 82.0 76.4

Table 7. The performance of three well-known pipelines for gene prediction in metage-
nomic data. The highlighted cells show the best results obtained for detecting the real
signal (gene).

4 Conclusions

Gene prediction is a well-known computational challenge in both genome and
metagenome analysis. This latter poses an even more di�cult problem since:
i) metagenomes are a mixture of several distinct genomes and ii) most of the
available genomes are not completed, so mainly draft genomes are available.
Therefore, the task of gene prediction is biased in the proper selection of potential



146

features in this complex domain as well as the choice of a robust machine learning
algorithm.

In this work we presented an empirical comparison of several well-known
classification methods applied to gene discovery in experimental metagenomic
data. Though the performance of the four base classifiers was good, the ensemble-
based strategy Random Forest has achieved the overall best result. As it can be
observed by the associated ML literature. Ensemble learning strategies such
as Random forest has been successfully applied on a large variety of business
and scientific applications. Basically such observation is due to the fact the
combination of models could be able to best generalize the hypothesis space.
Though the best approach to combine models continues an open problem in
ensemble learning research.

We plan to develop a new gene prediction pipeline having its basis on Random
Forest. To the extent of our knowledge there is no reference of gene prediction
algorithms based on a RF classifier.
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Abstract. Domains like emergency management, health care, or re-
search and innovation development, are characterized by the execution of
so-called knowledge-intensive processes, which require skilled personnel
capable of facing complex issues which necessitate both judgment and
creativity. Such processes are typically highly uncertain, with little or no
structure; consequently, classical process discovery techniques, aimed at
extracting complete process schemas from execution logs, usually obtain
rather poor performances when applied on these processes. As a rem-
edy, in the present work we propose a methodology aimed at extracting
relevant subprocesses, representing meaningful collaboration behavioural
patterns. Furthermore, we deal with the problem of the lack of a well-
formed event log, which is typical in most creative and unstructured
domains whose activities are not supported by dedicated information
systems. We consider a real case study regarding the development of re-
search activities, to test the approach and compare its results with the
outcome of classical process discovery techniques.

Keywords: behavioural patterns discovery; knowledge-intensive pro-
cesses; hierarchical clustering

1 Introduction

Nowadays process analysis techniques are more and more focused on the analysis
of so-called knowledge-intensive processes, that are defined as processes whose
value “can only be created through the fulfillment of knowledge requirements
of the process participants" [9]. In other words, these processes usually require
high-qualified and skilled personnel, capable of facing complex, ambiguous is-
sues which necessitate both judgment and creativity [5]. Examples of knowledge-
intensive processes can be found in emergency management, diagnosis and treat-
ment in the health care domain, Research & Development, enterprise strategic
planning, innovation development and so on. Such processes usually require to
combine knowledge and competencies of different domains experts; indeed, they
are typically managed by inter-disciplinary teams, whose members can also be
physically distributed. As a result, an efficient management of collaboration is
required in order to achieve the requested goals.
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While typical business processes are usually driven by well-defined schemas,
activities in knowledge-intensive processes are non-repetitive and difficult to
plan; indeed, the actual activity flow is mainly established by the decisions of
process participants, which usually depend on the particular context of pro-
cess execution, thus introducing a high degree of variability. The author in [1]
calls this kind of unstructured processes spaghetti processes, to distinguish them
from structured ones, named lasagna processes. It’s noteworthy that classical
process discovery techniques, aimed at deriving complete process schemas from
corresponding event logs, usually obtain poor results when applied to complex
spaghetti processes. Although a number of alternative techniques were devel-
oped in the literature to deal with spaghetti processes (e.g. [10]), they mostly
try to simplify the final outcome removing infrequent activities, hence loosing
significant knowledge about the process. In the present work, we propose an
alternative methodology for the analysis of spaghetti processes. Our approach
moves from the extraction of the complete process schema towards the discovery
of most relevant behavioural patterns, that is common work practices of teams
involved in knowledge-intensive processes. These behavioural patterns provide a
valuable support in the management of activities and for process improvement;
for instance, they can be used to analyse the correlation between behaviours and
desired/undesired process outcomes, or to identify bottlenecks and improve par-
allelism when possible. In particular, we intend to exploit a hierarchical graph
clustering technique, which returns a taxonomy of behavioural patterns where
patterns at the top level of the hierarchy are the most common ones and lower-
level patterns are defined on the basis of upper-level ones.

Another relevant issue to face when dealing with knowledge-intensive pro-
cesses, regards event logs. While in some domains, like health care, information
systems exist supporting the activities tracking and, hence, the building of well-
formed logs, this is not the case in more creative and unstructured domains, like
research or innovation. In fact, involved team members usually perform their ac-
tivities on an arbitrary number of digital tools, like emails, chats, collaborative
document editing tools, shared calendars, social media and so forth. As a con-
sequence, information about activities is spread in a number of logs of different
formats, thus requiring significant data fusion efforts in order to obtain a single
process event log. Our methodology takes into account the presence of multiple,
heterogeneous data sources, thus resulting suitable also for such contexts where
activity monitoring systems are not available.

The rest of this work is organised as follows. In Subsection 1.1 some related
works are introduced; in Section 2 we introduce a real case study, that we will use
through the paper; in Section 3 we explain the main phases of our methodology;
Section 4 discusses some experiments we performed to validate our approach.
Finally, in Section 5 we draw some conclusions, and delineate future works.

1.1 Related Work

Process Mining (PM) is a set of methodologies used to analyse process event logs,
like the ones produced by ERP systems, Workflow Management Systems or other



150

process-aware enterprise systems, to extract corresponding process schemas. Al-
though some examples of usage of PM to analyse spaghetti processes exist, like
[15, 11], regarding the software development domain, these techniques are typi-
cally applied to structured business processes, for which it is usually possible to
derive a proper schema. However, when dealing with complex domains and un-
structured processes, the adoption of a single schema to model such processes can
likely originate too complex models or, on the contrary, oversimplified models,
not so useful for the analyst.

Therefore, our approach is oriented to discover patterns instead of schemas,
focusing on parts of the process (i.e. patterns) rather than on the whole process.
In particular, the methodology we propose is based on the one introduced in [7],
where a graph-based hierarchical clustering algorithm is used to discover patterns
from process schemas. Clustering techniques previously proposed in the litera-
ture are mainly aimed at enhancing the quality of discovered process schemas
[8, 16, 3], while the application of clustering techniques to process schemas them-
selves, as proposed in this paper, is almost new. To the best of our knowledge,
the only similar approach is in [13]. Major differences between [13] and the pro-
posal discussed here are: (1) the process schema is translated in vector format
and then traditional agglomerative clustering techniques are used instead of ex-
ploiting graph clustering, and (2) clusters of whole processes are generated while
similar substructures cannot be recognized.

As regards analysis of collaborative activities, some similarities with our work
can be found in the Computer Supported Collaborative Learning (CSCL) field
[14], aimed to grasp knowledge about the collaborative learning process. Our
approach, however, differs from typical CSCL ones, which usually exploit a cen-
tralized and dedicated platform where all activities are carried out, thus allowing
the storage of all needed data in a simple and efficient way. Examples of such
an approach are DIAS [4] and DEGREE [2]. Also, in these works they produce
general process indicators instead of extracting behavioural patterns.

2 Case Study: Collaborative Research Activity

To illustrate our methodology we introduce a real case study describing the de-
velopment of a scientific paper performed by the authors, which represents a
typical collaborative situation. More precisely, we consider a team of 4 people
who have collaborated for approximately six months to develop the paper, i.e.
from December 2012 to May 2013. During such a period, team members per-
formed several different activities, among which we selected three main kinds of
tasks, namely a) writing of the paper, which involved file editing, b) experimen-
tal activities, which regarded programming and, finally, c) communication and
coordination activities, in particular emails and Skype discussions. We collected
the logs from those tools with which each member of the team usually works.
In particular, Dropbox for tasks of kind a), SVN for tasks b) and finally emails
and Skype conversations for tasks c). Such a scenario presents some interesting
issues to deal with. Firstly, collaboration activities are spread in the temporal
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dimension, since writing the paper required several months, where we observed
relevant changes in team workload, usually more significant in certain periods
(e.g. the days immediately before the submission deadline). Secondly, as usually
happens, during the given period the whole research team (or just a subset) took
part in several projects involving some external collaborators. Hence, to analyse
a specific project we needed to isolate its activities. Moreover, we also had to
filter activities related to private life of each member, usually stored in their PCs
(e.g. chat with her family). Finally, the heterogeneous and distributed nature of
data. Although we chose a limited number of software as data sources, team
members had been using different versions of these tools running over different
operating systems. In general, when dealing with collaborative tasks we have
to consider an arbitrary large set of data sources, typically spread among team
members machines and stored in an arbitrary way. Such kind of issues are quite
common in most collaborative scenarios, thus allowing us to generalise the ob-
tained results for several kinds of collaboration analysis problems. We introduce
such a methodology in the next Section.

3 Methodology

Our methodology begins with the generation of log traces, which involves the
collection of data from heterogeneous data sources and their transformation
and integration into a single data log. Then, process traces are transformed into
graphs in order to extract common and frequent sub-graphs by means of a graph
mining clustering technique.

The log building and the event clustering phases are described in Subsection
3.1, whereas graph mining clustering techniques are described in Subsection 3.2.

3.1 Log building

In this phase we collect and manipulate raw data from several sources to obtain a
single log. More precisely, first we have to extract data, by identifying interesting
data sources; to this end, we need to involve team members, to know which tools
they commonly use for their activities. In our example, we take into account
Dropbox, SVN repository, emails and Skype.

Once we obtain the various logs, we transform them in the format we use for
our analysis, where each event is described by its id, its timestamp, one or more
actors (i.e. the “resource”) and the process instance it refers to (i.e. the “case id”).
During this transformation we apply some rules aimed at filtering noise events;
for instance, as regards Dropbox events, we only consider events about files or
folders whose names contain at least one of the keywords regarding the domain
of the case study, e.g., the name and the acronym of the conference, the title of
the paper, and so forth. It’s noteworthy that while for Dropbox and SVN tools
the transformation is quite straight, since they both produce logs in a format
similar to the one we need, messaging tools require more efforts, since they do
not provide any support for event tracking. As a remedy, we introduce the notion
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of “event”, modeling it as a communicating act. More precisely, in asynchronous
messaging tools an event consists in sending an email with a certain subject to
someone, while in synchronous messaging tools the event consists in sending the
first message of a chat. We consider as event resource the member who sends the
email, in the first case, and all members which actively participate to the chat
(i.e. they wrote at least one message), in the second one.

Finally, we have to integrate all converted logs into a single one. More pre-
cisely, firstly we have to integrate sources for each single member and, then,
proceed with the final integration between all members logs. We can note, how-
ever, that the first step is mostly addressed in the previous phase, from which
we obtain logs homogeneous with respect to the established format, that can
be merged simply by ordering events on the basis of timestamps. Instead, the
integration between logs of different team members requires to take into account
both low-level issues, mainly regarding system and hardware heterogeneities (e.g.
compare timestamps of not synchronized systems) and high-level ones, concern-
ing team members working habits (e.g. different email contacts aliases). Strate-
gies to deal with such heterogeneities mainly depend on the particular context.
In our case, an example consists in the collection from each member of the list of
email aliases of her contacts, in order to identify the people they refer to. Details
on the whole procedure for log building are available in [6].

3.2 Hierarchical clustering

Once log traces have been obtained, we proceed by converting them in graphs.
Such a conversion is quite straight: a node is created for each event in the trace,
while each pair of subsequent events is linked through an edge. Once we obtained
the graphs, it is possible to analyse them by exploiting a hierarchical clustering
technique. Such techniques are aimed at extracting frequent substructures (i.e.,
sub-graphs) out of a set of input graphs. Such clusters are then arranged in
a hierarchy of clusters, where the top-level clusters are defined only through
elements belonging to input graphs (i.e., nodes and edges), while lower-level
clusters extend upper-level clusters with other elements, implicitly defining a
lattice structure. Therefore, descending the hierarchy, we pass from structures
that are very common in input graphs (i.e., frequently occurring, with a high
support) to structures specific for each input graph (i.e., with low support).

An example is shown in Figure 1 where a lattice is generated by a repository
of graphs. A, B, C are specific activities and Si are substructures. Graphs that
contain the substructure S1={A → A} belong to cluster C1, while graphs con-
taining the substructure S2={B → A; B → C} belong to C2. The cluster C3 is
described by S1 plus an additional node B. Therefore, C3 is a specialization of
C1, because the former extends the latter, given that it contains the structure
{A → A → B}. Finally, C4 is child of both C1 and C2, since it is the set of
graphs where S1 is linked to S2. Note that different clusters can be children of
the same parents: for instance, a cluster described by the substructure {S1→
A→ S2} would be sibling of C4.
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Fig. 1: A hierarchical clustering lattice

Among the hierarchical clustering algorithms, in this work we refer to Sub-
due [12] that, by iteratively analysing input graphs, is capable to extract at each
step all existing substructures and to discover the one that best compresses the
graphs. After each iteration, such a substructure is then actually used to com-
press the graphs, by replacing each occurrence of the substructure with a single
node. Hence, the chosen substructure becomes a cluster of the lattice, and the
compressed graphs are presented to Subdue again, in order to repeat these steps
until no more compression is possible. The search for the best substructure is
driven by the minimum DL (Description Length) criterion, aimed to the mini-
mization of the description length of the graph after the compression, i.e., the
number of bits needed to represent its adjacency matrix. In more details, the
algorithm at each step tries to maximize the multiplicative inverse of the fol-
lowing compression index, that globally takes into account both the dimension
of a substructure and its frequency, and is computed as DL(S)+DL(G|S)

DL(G) , where
DL(G) is the DL of the input graph, DL(S) is the DL of the substructure S and
DL(G|S) is the DL of G compressed by S.

Despite the fact that the lattice is a clustering model, we can not use well-
known clustering evaluation measures, namely intra- and inter-clusters measures:
indeed, due to its hierarchical nature, a lattice is characterized by a high overlap
among all children of the same cluster, thus making not suitable the typical
evaluation measures. Hence, we have to refer to measures that take into account
the structure of the hierarchy as well; in [12] some measures are introduced to
evaluate the lattice discovered by Subdue. In the present work we especially refer
to measures related to the cardinality of a cluster, representing the number of
times the related substructure occurs in the input graph, namely frequency and
representativeness (REP). The main difference between the two measures is that
the latter does not consider repetitions of substructures in a graph, measuring
the number of input graphs holding the given substructure at least once. For
example, given a simple dataset of two graphs G={(A→ A); (A→ A → C →
A → A)} and the lattice in Figure 1, the REP of the cluster C1 is 2 and its
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Table 1: Dataset characteristics

# instances # act min # act/proc max # act/proc avg # act/week
24 693 3 253 29

frequency is 3. Both these measures have to be taken in proper account when
the hierarchical cluster is used for information retrieval tasks.

4 Experiments

In this Section we show some experimental results obtained from the log of
our case study. We’d like to point out that since activities in the log are de-
scribed with very low-level details, we assigned each activity to a class. Hence, a
class is an aggregation of low-level events describing them with a higher level of
abstraction. In particular, we identified the following classes: a) articleCreation,
articleDeleting, articleUpdate to represent activities regarding the paper writing,
b) codeCreation, codeDeleting, codeUpdate for activities related to code editing,
c) Chat, emailSending for messaging activities, i.e. Skype chat and emails re-
spectively. Interested readers can find a more detailed description of the log
preprocessing in [6]. In order to have different process instances, we split the log
of our case study, that is related to only one paper, in 24 process instances on the
basis of weeks; each of them was delimited by two artificial events representing
the “Start” and the “End” of the week. Table 1 shows the characteristics of the
dataset. There are 693 activities on the whole dataset spread over the 24 weeks.
The shortest process is made of just 3 activities including the “Start” and the
“End”, while the longest has 253 activities, and there are 29 activities per week
on average.

In the following Subsections we show the results obtained both by means
of a classical process mining technique and by the Subdue algorithm. Then, we
discuss and compare such outcomes, pointing out main benefits and drawbacks
of both approaches.

4.1 Fuzzy Miner

Fuzzy Miner [10] is a process mining algorithm commonly used for processes with
little or no structure (as those we consider), because it is aimed at extracting
the main process behaviour rather than the precise process schema, usually too
detailed to be useful. The algorithm outcome is a schema involving just the most
relevant events (i.e. schema nodes), displayed as single events or aggregated in
clusters, and their sequences (i.e. schema edges). The algorithm exploits two
parameters: significance and correlation. The former represents both the impor-
tance of each event and of the events sequences, the latter how closely related
are subsequent events. The least relevant events are simply deleted from the final
output or, if they belong to a set of highly correlated events, they are clustered
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Fig. 2: The fuzzy miner outcome

in a single event. Similarly, least relevant sequences are not displayed in the out-
come. The user can decide between several possible ways to compute significance
and correlation, e.g. the frequency for the significance and the proximity for cor-
relation, that is how temporally close two events are. Such a value is used to
define a filter: only events and sequences whose values are greater than a given
threshold will be used to define the final outcome. In our analysis we use the
standard algorithm configuration implemented in ProM Framework1.

Figure 2 shows the outcome obtained by the Fuzzy Miner in our case. The
square nodes represent single events types (i.e. different event id), while edges
represent sequences of events; the significance of an edge is represented by its
gray level, i.e. the more significant the edge is, the darker the corresponding arc
in the graph is. The significance of a node is reported under the event name. Oc-
tagonal nodes represent clusters of low-significant and highly correlated events,
containing the number of events belonging to the cluster and their mean signif-
icance.
1 http://www.promtools.org/prom6/
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a b

c d

Fig. 3: The top four discovered substructures

4.2 Subdue

By using the Subdue algorithm, we obtained as a result a lattice formed by 245
substructures, with 49 top-level substructures (i.e. the 20%); the first ten top-
level substructures have a representativeness of 22.1% on average. Note that in
order to not affect the result of the experiment in favour of Subdue, we have just
used the default parameters settings, as in the case of Fuzzy Miner.

Figure 3 shows the top four substructures obtained by the algorithm.

4.3 Discussion

Both previous approaches allow us to derive some interesting knowledge about
the process. However, they have different aims, consisting respectively in deriving
a complete process schema, for Fuzzy Miner, and in extracting the most signif-
icant patterns for Subdue. Therefore, the first technique is the most suitable if
one is interested in exploring the activity flow as a whole, since it provides an
overview of the entire process as shown in Figure 2. Nevertheless, the analysis of
the outcome allows us to uderstand also significant behaviours in the process. For
instance, we can check if some of the members assumed a key role in conducting
one of the activities; in our case, in the left section of the graph, we can note that
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code editing operations involved only Laura and Emanuele. Moreover, there are
not significant relationships between code operations performed by Emanuele
and those performed by Laura; such nodes are mostly connected to messaging
nodes. Such configuration suggests that the two members mostly worked on dis-
tinct code parts, coordinating each other by emails or Skype. Similarly, we can
derive that the member most involved in email exchange was Domenico.

It is noteworthy that in Fuzzy Miner’s outcome the discovery of significant
patterns is not straightforward: it requires further processing, i.e. removal of
activities and edges having significance lower than a manually chosen threshold.
On the contrary, Subdue is aimed at identifying the most frequent and relevant
substructures, hence highlighting the most significant patterns. Clearly, in such
a way we lose the overall vision about the process. As a consequence, in order to
gain knowledge regarding particular process aspects, like the ones discussed in
the previous example, several substructures have to be explored. For instance,
in Figure 3, code editing operations are in SUB4, whose actor is only Laura.
Then, in order to find the communication with Emanuele we need to explore the
SUB4 sub-lattice (3.b) towards the SUB200. Since the representativeness of a
substructure is always less than or equal to the representativeness of its parents,
we can derive that such a collaborative pattern is actually not very relevant
in this context. Moreover, by looking for code editing operations performed by
Emanuele, we were able to find them only in the SUB26, thus suggesting us that
code editing operations were more frequently performed by Laura.

An interesting result obtained by using Subdue concerns the team work or-
ganizations. Indeed, by exploring the first SUBs, we mostly found simple sub-
structures regarding actions performed by a single member, like SUB2, SUB3

represented in 3.c and 3.d. The coordination activities are described only in lower
level substructures. This reveals that a relevant trend for this case study consists
in a well-defined work division, where each member was involved in specific parts
of paper development. This can suggest the need of some actions aimed to enrich
cooperation between team members.

Finally, we’d like to focus on SUB1. Such a substructure presents a quite sur-
prising behaviour, namely that one of the members usually sent at least three
emails one after the other during the analysed period. Since it seemed an anoma-
lous behaviour, we explored our log to identify possible causes for the presence
of this substructure. By doing so, we discovered that the pattern is present in
weeks between the first submission and the acceptance notification, when pa-
per and code editing activities were stopped, and then activities related to the
organization of a satellite workshop organized by team members emerged. In
particular they refer to workshop advertising and authors notification patterns
that clearly justify multiple separate emails sending. Although related to the
conference, this pattern can be regarded as noise with respect to the focus of
paper development, suggesting further preprocessing in order to remove emails
related to the workshop. In other words, the approach can also detect anoma-
lous behaviours, thus originating an iterative process of event log improving.
Note that we cannot derive this anomaly from the Fuzzy Miner outcome.
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Before closing this Section, we’d like to draw some considerations about the
data used in our case study. As already mentioned, we took into account only
one scientific paper, splitting its activities on the basis of weeks; in such a way
we obtained process instances quite different from each other. In particular,
we observed that activities about paper editing and code editing were mainly
performed in different weeks; therefore, it is very unlikely that we can extract
complex shared patterns by considering weekly activities distributions. We can
note that the average representativeness of the first top ten substructures allows
us to estimate the overall quality of the model, also without exploring the derived
patterns. In fact, we have obtained a value of 20.1%, which means that we have
to expect not very relevant substructures.

Results show that the applied technique is actually able to aid users in process
analysis, returning at least the same information extracted by a schema discovery
technique and resulting more suitable to explore collaborative patterns. We can
likely figure out that, if the technique were applied over more process instances,
more significant patterns could be inferred, that can reveal us common working
practices.

5 Conclusions and future work

In the present work, we discussed a methodology aimed at deriving relevant col-
laboration patterns belonging to unstructured processes, usually performed in
knowledge-intensive domains. To this end, we exploit a hierarchical clustering
technique, that is able to extract relevant patterns representing valuable knowl-
edge about the collaboration process. To validate our approach, we applied it
to a real case study, regarding the development of a scientific paper; we also
compared the obtained results with the outcome of a well-known process mining
technique. In such a way, we highlighted some benefits of our methodology with
respect to the schema discovery approach, e.g. the focus on relevant substruc-
tures, not immediately available or not considered by exploiting such kind of
approach.

However, we also pointed out that in our case study we couldn’t derive very
complex patterns, mainly because we considered only one paper, thus limiting
the algorithm in extracting complex common behaviours. Currently, we are ex-
tending our data collection, in order to consider more different cases. In such
a way, we expect to be able to derive patterns that represent the general team
working habits as regards paper development. Another interesting issue regards
the detection of parallel branches in events sequence. By now, we just take into
account the temporal sequences of events; in future works we intend to consider
the presence of possible parallelism in team members’ actions, enabling us to
discover more significant collaboration patterns.
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Abstract. Neural network techniques are widely applied to obtain high-quality
distributed representations of words, i.e., word embeddings, to address text
mining and natural language processing tasks. Recently, efficient methods have
been proposed to learn word embeddings from context that captures both
semantic and syntactic relationships between words. However, it is challenging
to handle unseen words or rare words with insufficient context. In this paper,
we propose a framework that can leverage general pairwise word similarity
to address these challenges. As an example, we propose to take advantage of
seemingly less obvious but essentially important morphological word similarity
to show the power of our framework. In particular, we introduce a novel
neural network architecture that leverages both contextual information and
morphological word similarity to learn word embeddings. Experiments on an
analogical reasoning task demonstrates that the proposed method can greatly
enhance the effectiveness of word embeddings.

1 Introduction

Deep learning techniques have been widely applied to solve text mining and natural
language processing (NLP) tasks, the basis of which yields obtaining high-quality
distributed representations of words, i.e., word embeddings. In recent years, efficient
methods, such as the continuous bag-of-word (CBOW) model and the continuous Skip-
gram (Skip-gram) model, have been proposed to leverage the surrounding context of
a word in documents to transform words into vectors (i.e., word embeddings) in a
continuous space, which surprisingly captures both semantic and syntactic relationships
between words. The underlying principle in these works lies in that words that are
syntactically or semantically similar should have similar surrounding contexts.

While these works have demonstrated their effectiveness in various tasks, they also
suffer from a couple of limitations. (i) It is difficult to obtain word embeddings for new
words since they are not included in the previous vocabulary. Some previous studies
[15] used a default index to represent all unknown words, but such a solution will
inevitably lose information for emerging words. (ii) The embeddings for rare words are
unreliable due to the insufficient surrounding contexts. Since the aforementioned works
adopt statistical methods, when a word has only a few occurrences in the training data,



161

they will fail in extracting statistical clues to correctly map the word into the embedding
space.

In sharp contrast, according to the studies on word recognition in cognitive
psychology [9,8], when a human looks at a word, no matter new or rare, he/she
can figure out effective ways to understand it. For instance, one sometimes conducts
phonological recoding through blending graphemes into phonemes and blend syllabic
units into recognizable words; one may also analyze the root/affix of the new word
so as to build its connections with his/her known words. Suppose the new word is
inconveniently. Given its root/affix, i.e., in-convenient-ly, it is natural to guess that
it is the adverb form of inconvenient and the latter is probably the antonym of
convenient. Henceforth, morphological word similarity can act as an effective bridge
for understanding new or rare words based on known words in the vocabulary. Inspired
by this word recognition process, we propose using morphological information to
enhance the deep learning framework for word embedding. In particular, beyond the
contextual information already used in CBOW and Skip-gram, we take advantage of
morphological similarity between words in the learning process so as to handle new or
rare words.

Although the morphological knowledge contains invaluable information, it might
be risky to blindly rely on it. The reason is that the prediction based on morphological
similarity is somehow only a kind of guess, and there exist many counter examples
inconsistent with it. For example, if only looking at the morphological similarity, one
may link convention to convenient since they share a long substring. However, it is clear
that these two words are neither syntactically nor semantically similar. In this case, if we
stick to the morphological knowledge, the effectiveness of the learned word embeddings
could be even worse. To tackle this issue, we once again leverage the findings regarding
word recognition in cognitive psychology [9,8]. It has been revealed that humans can
take advantage of the contextual information (both the context at the reading time and
the context in his/her memory) to correct the unreliable morphological word similarity.
By comparing their respective contexts, one can distinguish between convenient and
convention and weaken the morphological connection between these two words in
his/her mind. Inspired by this, we also propose updating the morphological knowledge
during our learning process. Specifically, we will not fully trust the morphological
knowledge, and will change it so as to maximize the consistency between contextual
information and morphological word similarity.

To sum up the discussions above, we actually develop a novel neural network
architecture that can leverage morphological word similarity for word embedding.
Our proposed model consists of a contextual information branch and a morphological
knowledge branch. On one hand, we adopt the state-of-the-art Skip-gram model [17]
as our contextual information branch for its efficiency and effectiveness. On the
other hand, we explore edit distance, longest common substring similarity, morpheme
similarity, and syllable similarity as morphological knowledge to build a relation matrix
between words, and put the relation matrix into the morphological knowledge branch.
These two branches share the same word embedding space, and they are combined
together using tradeoff coefficients in order to feed forward to the output layer to predict
the target word. The back propagation stage will modify the tradeoff coefficients,
word embeddings, and the weights in the relation matrix layer by layer. We have
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conducted experiments on a publicly available dataset, and the results demonstrate that
our proposed approach can help produce improved word representations as compared
with the state-of-the-art methods on an analogical reasoning task.

2 Related Work

Word embedding as continuous vectors has been studied for a long time [12].
Recently, deep learning methods have been applied to obtain continuous word em-
beddings to solve a variety of text mining and natural language processing tasks
[4,10,16,17,23,25,26,7,5,18,24]. 4For example, Collobert et al [4,5] proposed a unified
neural network architecture that learns word representations based on large amounts
of unlabeled training data, to deal with several different natural language processing
tasks. Mikolov et al [16,17] proposed the continuous bag-of-words model (CBOW) and
the continuous skip-gram model (Skip-gram) for learning distributed representations
of words also from large amount of unlabeled text data; these models can map the
semantically or syntactically similar words to close positions in the word embedding
space, based on the intuition that the contexts of the similar words are similar. All the
above work does not leverage rich extra knowledge when learning word embeddings.

There are some knowledge related word embedding works in the literature, but most
of them were targeted at the problems of knowledge base completion and enhancement
[3,22,27] rather than producing high-quality word embeddings, which is different with
our work. Besides, Luong et al [14] proposed a morphological Recursive Neural
Network (morphoRNN) that combines recursive neural networks and neural language
models to learn better word representations, in which they regarded each morpheme as
a basic unit and leveraged neural language models to consider contextual information
in learning morphologically-aware word representations.

However, it only focused on the morphological structure inside a word, but did
not consider the morphological similarity between words. Hence, some morphological
knowledge like the edit distance and the longest common substring cannot be used in
its framework. In this paper, we propose a novel neural network architecture that can
leverage any kind of pairwise word similarity.

3 Word Embedding Powered by Morphological Knowledge

3.1 New Neural Network Architecture

In this subsection, we describe our proposed new neural network architecture that
leverages both contextual information and morphological knowledge to learn word
embedding. We use Skip-gram [17] as a baseline model to illustrate how our framework
works.

4 The deep learning methods significantly outperforms traditional methods such as Latent
Semantic Analysis (LSA) [16,19], so we focus on comparison with deep learning methods
in this paper.
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Skip-gram The Skip-gram model aims to learn the latent word representations that are
good at predicting the surrounding words in the training text stream. Given a sequence
of training words w1, w2, . . . , wT , the objective of the Skip-gram model is to maximize
the following average log probability,

1

T

T∑
t=1

∑
−N≤j≤N,j 6=0

log p(wt+j |wt),

where N is the size of context window. By using wO to denote the output word,
i.e., wt+j , and using wI to denote the input word, i.e., wt, the conditional probability
p(wt+j |wt) is defined using the softmax function,

p(wO|wI) =
exp(v

′
wO

T
vwI )∑

w exp(v′
w

T
vwI )

,

where vw and v
′

w are the input and output representation vectors of w, and the sum
in the denominator is over all words in the vocabulary. It is difficult and impractical to
directly optimize this objective because computing the derivative is proportional to the
vocabulary size, which is often very large.

Several approaches [21,1,2] have been employed to tackle this problem. The
state-of-the-art method is noise-contrastive estimation (NCE) [11], which aims at
fitting unnormalized probabilistic models. NCE can approximate the log probability
of softmax by performing logistic regression to discriminate between the observed data
and some artificially generated noise. It was first adapted in the neural language model
in [20], and was then applied to the inverse vector log-bilinear model [19]. Another
(simpler) method is negative sampling (NEG), which generates k noise samples for
each input word to estimate the objective.

By using NEG, the softmax conditional probability p(wt+j |wt) will be replaced by

J(θ) = log σ(v
′
wO

T
vwI ) +

k∑
i=1

Ewi∼Pn(w)

[
log σ(−v

′
wi

T
vwI ))

]
where θ is the model parameter including the word embeddings; σ denotes the logistic
function; and Pn(w) represents the noise distribution which is set as the 3/4 power of
the unigram distribution U(w), i.e., Pn(w) = U(w)3/4/Z. Then, we can estimate the
gradient of J(θ) by computing

∂J(θ)

∂θ
= (1− σ(v

′
wO

T
vwI ))

∂v
′
wO

T
vwI

∂θ
−

k∑
i=1

[
σ(v

′
wi

T
vwI )

∂v
′
wi

T
vwI

∂θ

]

By summing over k noise samples instead of a sum over the entire vocabulary,
the training time yields linear scale to the number of noise samples and becomes
independent of the vocabulary size.

Our Model To incorporate morphological knowledge into the learning process, we
propose a new neural network architecture. Beyond the basic Skip-gram model that
predicts a target word based on its context, the proposed new method introduces a
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parallel branch that leverages morphological knowledge to assist predicting target word,
as shown in Figure 1. Intuitively, when a word wt is the center word in the context
window, we predict the surrounding words by leveraging not only the representation
of word wt as contextual information (referred as contextual information branch) but
also the representations of the words that are morphologically similar to wt (referred as
morphological knowledge branch).

1-of-V representation

𝑐1

𝑐2

𝑀
𝑤𝑡

𝑤𝑡+𝑗Vocabulary Space
(V-dimension)

Vocabulary Space
(V-dimension)

𝑅 (relation matrix)

𝑀

𝑀’

Embedding Space
(D-dimension)

Embedding Space
(D-dimension)

Vocabulary Space
(V-dimension)

Fig. 1. The proposed neural network architecture

According to Figure 1, to obtain the representation of a center word wt from the
morphological knowledge branch, it is necessary to find the set of words morpholog-
ically similar to wt, which is denoted as Rt. Then, we can extract the embedding of
each word in Rt from the embedding matrix M shared with the contextual information
branch. After that, a corresponding knowledge representation of Rt can be computed
by feeding forward the relationship layer, which is written as

vRt =
∑

w∈Rt

s(wt, w)vw,

where s(wt, w) is the similarity score, the methods of computing which will be
introduced in Section 3.2. Actually vw is the i-th row of matrix M where i is the
index of the word w in the vocabulary, and s(w1, w2) is the element of relation matrix
R at (i, j) which are the indices of words w1, w2 in the vocabulary respectively. To
ensure the quality of morphological knowledge and control the number of parameters,
we only leverage the top words with highest morphological similarity scores as Rt. In
our model, an input word can only connect to at most five words in the relationship
layer. This sparse structure will not change during training, and only the weights of
these connections will be updated. Therefore, we will not suffer from a huge number of
parameters even if R is learned.

Finally, an aggregated representation of the input word, denoted as vwI
, can be

calculated as the weighted sum of the representations from the contextual information
branch and the morphological knowledge branch, i.e.,

vwI = c1(wt)vwt + c2(wt)vRt ,

where c1(·) and c2(·) are the functions of wt and yield much dependency on the word
frequency. Intuitively, frequent words are associated with much more training samples
than rare words, such that it is easy to collect rich contextual information for frequent
words, while the contextual information for rare words might be insufficient. In contrast,
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the volume of morphological knowledge of a word usually has little correlation to the
word frequency, thus, rare words can still rely more on the morphological knowledge
even though the contextual information is not reliable. Therefore, the balancing function
c1(·) and c2(·) should be related to word frequency. Specifically, we divide the words
into a number of buckets according to their frequencies, and all the words in the same
bucket will share the same values of c1(·) and c2(·).

A more explicitly intuitive way to interpret the above model is as follows. For
each word wt, we use one row in the embedding matrix M to encode its contextual
embedding. In addition, by using matrixR, we can identify a couple of morphologically
similar words to wt. Then we can also extract the contextual embeddings of these
similar words from M and take the weighted average of these embedding vectors
as the morphological embedding for the original word wt. Then finally the overall
embedding of wt is computed as the weighted combination of its contextual embedding
and morphological embedding. MatrixM ′ is used to predict the surrounding wordwt+j

based on the overall embedding of wt. In our model, the parameters to train include M ,
R, M

′
, and multiple pairs of c1 and c2 (corresponding to different frequency buckets).

In our implementation, we learn these parameters with negative sampling, standard back
propagation and gradient descent.

3.2 Morphological Knowledge

As compared to Skip-gram, the uniqueness of our model lies in the introduction of the
morphological knowledge branch. In this subsection, we will make discussions on how
to realize this new branch. In particular, we propose four types of naturally defined
morphological knowledge. Note that this is not a complete study on morphological
knowledge, but we can use these four specific types as examples to show the
effectiveness of the proposed framework. Any other types of morphological knowledge
can be used under our proposed framework.

Edit Distance Similarity (Edit). Edit distance is a way of quantifying how
dissimilar two strings (e.g., words) are by counting the minimum number of operations
required to transform one string into the other. The operations might be letter insertion,
letter deletion, or letter substitution. We calculate the edit distance similarity score
for two words w1 and w2 as sEdit(w1, w2) = 1 − d(w1,w2)

max(l(w1),l(w2))
, where d(w1, w2)

represents the edit distance of the two words and l(w1), l(w2) are the corresponding
word lengths.

Longest Common Substring Similarity (LCS). Longest common substring simi-
larity is defined as the ratio of the length of the longest shared substring of two words
(denoted by g(w1, w2) ) and the length of the longer word, i.e., sLCS(w1, w2) =

g(w1,w2)
max(l(w1),l(w2))

.
Morpheme Similarity (Morpheme). Morpheme similarity is calculated based on

the shared root (or stem) and affix (prefix and suffix) of two words. Suppose each
word of w1 and w2 can be split into a set of morphemes (denoted by F (w1) and
F (w2)), then the morpheme similarity of the two words is calculated as sMorpheme =
|F (w1)

⋂
F (w2)|

max(|F (w1)|,|F (w2)|) , where | · | outputs the size of the set.
Syllable Similarity (Syllable). Syllable similarity is calculated based on the shared

syllables of two words. Suppose both w1 and w2 can be split into a set of syllables
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(denoted by G(w1) and G(w2)), then the syllable similarity of the two words is
calculated as sSyllable =

|G(w1)
⋂

G(w2)|
max(|G(w1)|,|G(w2)|) .

In addition to using these four types of morphological word similarity separately,
one can also combine them together. In the next section, we will conduct experimental
study on all these different choices.

4 Experiments

4.1 Experimental Setup

Datasets The training set used in our experiments is the enwik9 data5, which is built
from the first billion characters from Wikipedia. This corpus contains totally 123.4
million words. We used Matt Mahoney’s text pre-processing script6 to process the
corpus. After pre-processing, all digits were replaced with English words (e.g., 3 was
replaced with three), and the metadata and hyperlinks were removed. Furthermore, all
words that occurred less than 5 times in the training data were discarded from the
vocabulary, resulting in a vocabulary of 220 thousand words. The out-of-vocabulary
words were ignored in training.

Compared Methods and Experimental Settings In our experiments, we compare our
proposed methods with two baselines:
• Skip-gram (baseline): is a popular model as introduced by [17].
• Skip-gram + Edit/LCS/Morpheme/Combination Input Feature (baseline): An-
other baseline uses the morphological features as additional inputs during training of
the Skip-gram model. Specifically, the input is no longer a 1-of-V representation but
will append the morphological feature which is the corresponding row of the relation
matrix R. Thus the input is a vector of length 2V and the projection matrix have the
size of 2V × D where D is the dimension of word embeddings. In our experiments,
we employed four types of morphological knowledge. Edit and LCS can be computed
directly from the definitions. For Morpheme, we used a public tool called Morfessor [6],
which can split a word into morphological segments with prefix, stem, and suffix tags.
For Syllable, we implemented the hyphenation tool proposed by Liang [13], which has
been used in many editing softwares like LATEXto break words by syllables. Moreover,
we also test the performance by combining these three types of knowledge features into
a union feature set.
• Skip-gram + Edit/LCS/Morpheme/Combination Relation Matrix: In our model,
we employ the same types of morphological knowledge. For each of them, given a word
w, we calculated its similarities to all the other words and selected the top 5 words with
highest similarity to build the relation edges in the weight matrix R.7 We tested the R
matrix built based on each single type of knowledge, and we also tested the R matrix
built based on several types of knowledge through combination. Specifically, given the

5 http://mattmahoney.net/dc/enwik9.zip
6 http://mattmahoney.net/dc/textdata.html
7 In our experiments, the performance varies little when the number of similar words varies from

3 to 50.
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four ranked lists of words from the morphological knowledge, we combined them into
a union set, and selected the top 5 words that got more votes by the four knowledge
types. Note that, our model can be degraded to the second baseline by fixing c1, c2, M
and not sharing M .

In all these three methods, we set the dimension of word embeddings to 100 and the
context windows size to 5; we employed the negative sampling technique to train both
models and the number of negative samples was set to 3.

As discussed in Section 3.1, the balancing parameters in our proposed model might
be related to word frequency. For simplicity, we used a greedy algorithm to divide the
words into a certain number of buckets. Specifically, suppose we want to have b buckets,
then we rank the words in the vocabulary by their frequencies in the descending order,
and put the words into the first bucket one by one until the summed frequency of the first
bucket reaches the 1/b of the total frequency; then we feed the rest buckets in the similar
way, and eventually the summed frequency of each of the b buckets is approximately
equal to 1/b of the total frequency. We let all words in one bucket share the same balance
coefficients. In our experiments, we set the bucket number to 1000.

With the above settings, the training time of the proposed model was only about 1.5
times of the original Skip-gram model, showing that our neural network framework is
very efficient. It can finish less than 15 minutes on a single machine with four cores.

4.2 Evaluation Tasks

Analogical Reasoning Task The analogical reasoning task was introduced by Mikolov
et al [16]. The task consists of 19,544 questions of the form “a is to b is as c is to ”,
denoted as a : b→ c : ?. Suppose −→w is the learned word representation vector of word
w normalized to unit norm. Following [16], we answer this question by finding the
word d∗ whose representation vector is the closest to vector −→b −−→a +−→c according to
cosine similarity excluding b and c, i.e., d∗ = argmaxx∈V,x6=b,x6=c(

−→
b −−→a +−→c )T−→x .

The question is regarded as answered correctly only when d∗ is exactly the answer
word in the evaluation set. There are two categories in the task, with 8,869 semantic
analogies (e.g., England : London → China : Beijing) and 10,675 syntactic analogies
(e.g., amazing : amazingly→ unfortunate : unfortunately).

4.3 Experimental Results

Comparison between the Two Baselines Table 1 compares the performance of two
baselines. From the table, we can observe that the Skip-gram model is the best of the
six models which implies that simply adding morphological knowledge as additional
input features doesn’t work. The reason may be that the morphological knowledge is
very noisy and we can barely benefit from it by blindly rely on it. This conclusion
can be confirmed by the more careful comparison between different knowledge. While
Edit and LCS are stricter than Morpheme and Syllable especially when we only pick
the top 5 most similar words, the performance of Edit and LCS are always better than
Morpheme and Syllable. In the following experiments, we only compare our proposed
model with the Skip-gram model.



168

Table 1. Comparison between the baselines on analogical reasoning task. We report the
semantic/syntactic/total accuracy in analogical reasoning task.

Analogical Reasoning Task
Model Semantic Syntactic Total

Skip-gram 21.85% 36.64% 28.84%
+ Edit Input Feature 13.67% 27.85% 21.41%
+ LCS Input Feature 13.65% 28.30% 21.65%

+ Morpheme Input Feature 13.55% 23.66% 19.07%
+ Syllable Input Feature 11.94% 25.30% 19.24%

+ Combination Input Feature 13.67% 28.52% 21.78%

Table 2. Performance of leveraging morphological knowledge on the analogical reasoning task.

Model Semantic Gain Syntactic Gain Total Gain
Accuracy Accuracy Accuracy

Skip-gram 21.85% - 34.64% - 28.84% -
+ Edit Relation Matrix 23.59% +7.96% 43.49% +25.55% 34.46% +19.49%
+ LCS Relation Matrix 23.70% +8.47% 44.50% +28.46% 35.06% +21.57%

+ Morpheme Relation Matrix 24.86% +13.78% 43.68% +26.10% 35.14% +21.84%
+ Syllable Relation Matrix 24.53% +12.27% 41.88% +20.90% 34.01% +17.93%

+ Combination Relation Matrix 23.58% +7.92% 46.90% +35.39% 36.32% +25.94%

Results on Analogical Reasoning Task Table 2 demonstrates the performance
of Skip-gram + Edit/LCS/Morphene/Syllable/Combination Relation Matrix on the
analogical reasoning task. From this table, we can observe that:
(i) Adding morphological knowledge, either single type or combined knowledge, to
the Skip-gram model can consistently increase all types of accuracies in the analogical
reasoning task. This shows that morphological knowledge can improve the quality of
the learned word embeddings.
(ii) Morpheme performs the best among the four types of knowledge in terms of total
accuracy. We hypothesize the reason as that morphemes (like root and affix) are basic
units in word composition, and it implies accurate syntactic and semantic correlation if
two words share the same root. LCS achieves the second highest accuracy. The possible
reason is that more than half of the test examples belong to syntactic word groups (like
the pairs of adjective and adverb) where it is common to have long shared substrings
between words. Edit performs a little worse, since letters themselves barely carry on
syntactic and semantic information such that many words with different meanings
can yield short edit distances. Syllables focus more on the pronunciation. While some
syllables are overlapped with morphemes (like re, im), many others (like ti, ta) do not
yield specific meanings and are likely to introduce much noise into the relation matrix
so as to hurt the performance.
(iii) The combination of the four types of morphological knowledge can further improve
the total accuracy, which indicates that every single type of morphological knowledge
has its own limitations, and combining them together will significantly increase the
recall of truly similar words.
(iv) The average gain on syntactic similarity (27.28%) is much higher than that on
the semantic accuracy (10.08%), because morphological knowledge is more likely to
Table 3. Performance of leveraging morphological knowledge on the analogical reasoning task
if we do not update the weights in the relation matrix in the learning process.

Model Semantic Gain Syntactic Gain Total Gain
Accuracy Accuracy Accuracy

Skip-gram 21.85% - 34.64% - 28.84% -
+ Edit Relation Matrix 21.42% -1.97% 40.62% +17.26% 31.91% +10.64%
+ LCS Relation Matrix 23.48% +7.46% 41.24% +19.05% 33.18% +15.05%

+ Morpheme Relation Matrix 23.94% +9.57% 41.04% +18.48% 33.28% +15.40%
+ Syllable Relation Matrix 22.48% +2.88% 40.61% +17.23% 32.38% +12.27%

+ Combination Relation Matrix 21.17% -3.11% 43.60% +25.87% 33.42% +15.88%



169

capture syntactic information rather than semantic information between words, and
many semantically similar words in this task (like England and London) might not
appear similar in their morphological shapes.

Note that in our proposed model the morphological knowledge is just used to
initialize the relationship matrix, and the non-zero values in the matrix will be updated
during the learning process. This is coherent with the human cognitive psychology that
blindly sticking to the morphological knowledge may even hurt in some cases. To verify
this, we conducted some additional experiments where the relationship matrix is fixed
during the learning process. The results are shown in Table 3. From this table, we can
see that without updating the relationship matrix, the average improvements against the
baseline method for any of methods are much smaller than those reported in Table 2.
This clearly verifies our hypothesis and indicates the necessity to update the relation
weights to maximize its consistency with the contextual information.

Table 4. Top five similar words in the embedding spaces powered by all 4 combination of
morphological knowledge.

Example Word Skip-gram Combined Knowledge Skip-gram + All 4 Combination

uninformative

monotherapy informative problematic
lcg inchoative fallacious

electrodeposition inoperative inaccurate
astrophotography interrogative uninteresting

ultrafilters formative precisely

stepdaughter

grandaughter daughters grandaughter
swynford daughter daughter
caesaris grandaughter daughters
theling steptoe wife
stepson slaughter stepfather

uncompetitive

overvalued competitively competitive
monopsony competitive noncompetitive
skyrocketing noncompetitive profitable

dampened competitiveness competetive
undervalued competetive lucrative

4.4 Case Study

To further understand our proposed framework, we sampled some rare words and
checked the closest words to them in different word embedding spaces. Specifically, for
a given word, we extracted its representation vector in the 100-dimension embedding
space, and calculated its cosine similarity with the representation vectors of all the
other words. Then we show the five most similar words generated by the methods
under investigation in Table 4. According to Table 2, the combination of four types
of knowledge achieved the best performance, therefore we only show the results for
the baseline method (Skip-gram) and the combination method (Skip-gram + All 4
Combination). Beside, we also show the most similar words directly given by the four
types of knowledge without going through the learning process (denoted as Combined
Knowledge), which can give us an overview of how the original morphological
knowledge looks like. Note that actually the baseline does a good job on frequent
words and the results of our model on those words are similar to the baseline, so we
only sampled some rare words to demonstrate the power of our model.

From Table 4, we have the following observations: (i) We can see that the Skip-gram
method often fails in finding reasonable semantically or syntactically related words for
rare words. For example, uninformative only appears 18 times in the training corpus,
and thus its nearest neighbors are almost random. According to the morphological
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knowledge (see the column of Combined Knowledge), this word may have relation with
informative and formative. By leveraging these relatively frequent words to enhance the
embedding for uninformative, our model eventually generate very effective embedding
for this rare word, and its similar words in the learned embedding space become much
more reasonable. (ii) We can also see that the morphological knowledge could be noisy
in some cases. For example, it suggests inchoative and interrogative to uninformative,
because these words share a substring ative with uninformative. However, they are
neither syntactically similar nor semantically similar. The power of our proposed
framework lies in that it can distinguish useful knowledge and noise by seeking help
from the contextual information, and refine the tradeoff coefficients and the relationship
matrix to ensure the generation of a more reliable embedding. We can see that the
most similar words to uninformative in the final embedding space, such as problematic
and inaccurate are more semantically correlated to uninformative than inchoative and
interrogative.

To sum up, the examples in Table 4 indicate that for rare words, (1) it is unreliable to
learn their embeddings only from contexts; (2) morphological knowledge can do a great
favor if we can successfully deal with the noise it brings in; (3) contextual information
can help in distinguishing useful knowledge and noise. In this sense, our proposed
framework achieves the goal of co-learning context and morphological knowledge to
obtain high quality word embeddings.

5 Conclusions

We proposed a novel neural network framework to leverage morphological word
similarity to learn high-quality word embeddings. The framework contains a contextual
information branch to leverage word co-occurrence information and a morphological
knowledge branch to leverage morphological relationship between words. We tested
the framework on several tasks and the results show it can produce enhanced word
representations compared with the state-of-the-art models.

For the future work, we plan to leverage other types of relationships (e.g., the
relationships in the knowledge bases like WordNet and Freebase) in the proposed neural
network framework to check whether we can obtain even better word representations.
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Abstract. Side effects result from the application of treatments to pa-
tients. They are commonly negative and therefore undesirable. Side ef-
fects are one of the major causes of readmissions in hospitals and gen-
erate additional expenses and poor healthcare quality. One of the main
challenges in side effects study is their unexpectedness and the lack of
predictability in a multi-factor environment. In this paper, we strive to
extract negative side effects patterns from multivalued features. We also
present a patients clustering scheme based on similar negative side ef-
fects (negative action sets). We evaluated our approach using the Florida
State Inpatient Databases (SID), which is a part of the Healthcare Cost
and Utilization Project (HCUP) [1]. Our results show that we are highly
effective in extracting negative side effects.

Keywords: Side effects, Meta-actions, Action rules, Action sets, Action
terms, Actionable knowledge

1 Introduction

Treatments’ negative side effects discovery is a very challenging problem that has
not been given a lot of attention from knowledge discovery researchers in the
healthcare domain. Side effects are often resulting from the application of treat-
ments modeled as Meta-actions [2]. Meta-actions represent actions triggering
certain changes in objects’ states that will execute action rules [3]. These changes
are commonly referred to as meta-action effects that affect certain properties of
the examined objects and are used for better personalization [4]. Meta-actions
effects can be positive or neutral [5], and in some cases negative. Positive effects
help objects positively to transition them into a more desired state. Neutral
meaning does not introduce any effects on the overall state of the objects. Neg-
ative effects that may possibly harm or move the object into an undesired state.
These effects can be seen as side effects when they are not intended by users.

There has been several work for treatment patterns recognition. Kolibaba et.
al. [6] and Ramey et. al. [7] explored treatment patterns and outcomes. Lori-
gan et. al. [8] also explored treatment patterns and outcomes for patients with
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metastatic melanoma in the U.K. In [9], the authors mine medical articles for
the disease and treatments as well as underlying side effects. However, they did
not extract treatment negative side effects patterns in terms of results.

Treatment effects are not only related to the applied meta-actions, but also to
the patient’s initial state. In our previous work on extracting treatment effects,
we extracted only positive and neutral side effects because we can analyze them
based on the patient initial state. In fact, the union of the neutral and positive
effects constitute the patient’s initial state. However, treatment’s side effects
are unknown before applying the treatments. For this reason, it is important to
study the objects in hand and anticipate the possible side effects when applying
specific meta-actions. In this paper, we focus on the extraction and evaluation of
potential negative side effects given an object and the applicable meta-actions.
We also cluster patients based on the negative action sets extracted and evaluate
them for the Florida State Inpatient Databases (SID) [1]. Our results show that
action sets extracted are effectively the negative side effects for the treatments.

2 Background

In this section, we define the concepts used in actionable knowledge discovery
that will help extract patterns of treatment effects. These concepts are used to
extract any type of effects; however, we are interested in negative side effects.

Definition 1 (Information System) By information system [10] we mean a
triple of the form S = (X,F, V ) where:

1. X is a nonempty, finite set of objects.
2. F is a nonempty, finite set of features of the form f : X → 2Vf , which is a

function for any f ∈ F , where Vf is called the domain of f .
3. V is a finite set of feature values such as: V =

⋃
{Vf : f ∈ F}.

Definition 2 (Stable and Flexible features) Stable features are object prop-
erties that we do not have control over in the context of an information system.
For example, a birth date is a stable feature. On the other hand, flexible features
are object properties that can transition from one value to another triggering a
change in the object state. For instance, blood pressure is a flexible features.

In the following, we will define the Atomic Action Terms that are the foun-
dational expressions in actionable knowledge.

Definition 3 (Atomic action term in S) also called elementary action term
in S, is an expression that defines a change of state for a distinct feature in S.

For example, (f, v1 → v2) is an atomic action term which defines a change of
value for feature f in S from v1 to v2, where v1, v2 ∈ Vf . In the case when there
is no change, we omit the right arrow sign; so for example, (f, v1) means that
the value of feature f in S remains v1, where v1 ∈ Vf .
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Atomic action terms model value transition patterns for a single feature, but
they do not model the association between feature values transition patterns.
We augment the definition of atomic action terms to action terms by associating
several transitions of feature values.

Definition 4 (Action terms) are defined as the smallest collection of expres-
sions for an information system S, such that:

– If t is an atomic action term in S, then t is an action term in S.
– If t1, t2 are action terms in S and ∧ is a 2-argument functor called compo-

sition, then t1 ∧ t2 is a candidate action term in S.
– If t is a candidate action term in S and for any two atomic action terms

(f, v1 → v2), (g, w1 → w2) contained in t we have f 6= g, then t is an action
term in S.

Action terms provide an actionable knowledge; however, we still need the
actions to perform in order to trigger these action terms. To do so, we use meta-
actions which, when executed, trigger changes in values of some flexible features
in S [2].

More formally, let us define M(S) as a set of meta-actions associated with
an information system S. Let f ∈ F , x ∈ X, and M ⊂ M(S), then, applying
the meta-actions in the set M on an object x will result in M(f(x)) = f(y),
where object x is converted to object y by applying all meta-actions in M to x.
Similarly, M(F (x)) = F (y), where F (y) = {f(y) : f ∈ F} for y ∈ X, and object
x is converted to object y by applying all meta-actions in M to x for all f ∈ F .

2.1 Side Effects Based on Action Terms

As stated before, the main goal of meta-actions is to trigger action rules. How-
ever, it is often the case that when applying meta-actions for the purpose of
executing a specific action rule, a set of additional unrelated and potentially
harmful atomic action terms is triggered. The additional action terms resulting
from the meta-action application are called side effects. Meta-actions might move
the values of some object’s features from negative to positive (desirable positive
side effects), and values of some object’s features from positive to negative values
(undesirable negative side effects). Even though the features transitioning from
positive to negative values might result in catastrophic situations, they were not
fully investigated in previous work involving action rules discovery [4]. In the
following, we depict two types of side effects based on action terms and we give
a brief description for each type.

Meta-actions Side Effects. Side-effects based on action terms in the context
of meta-actions alone are the effects that occur for specific small clusters of
objects. This type of side effects is discovered in the meta-action extraction
process. It is represented by the action terms that exhibit very low or unusual
likelihood of occurrence. In fact, this type of action term is very rare in our
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dataset, and it was extracted from a very small number of objects. We can think
of this type of effects as minor effects of a meta-action that do not represent
the core goal of applying this meta-action. Detecting this type of side effects is
done by setting a minimum number of occurrence for the action terms (cardinal
of support), or setting a minimum jump in values of cardinal of supporting set
between the action terms.

Action Rules Side Effects. Side-effects based on action terms in the context
of action rules are the unintended changes in the values of some flexible features
that meta-actions trigger on objects. In other words, those effects are triggered
by meta-actions but are outside of the intended action rule scope. To discover
those side effects, we can perform two set operations. We start by performing a
set difference operation between the antecedent side of the action rule and the
meta-actions’ action terms reported in the influence matrix. The result is then
intersected with the object’s precondition to get the final set of side effects.

2.2 Action Sets

The changes in flexible features, triggered by meta-actions, are commonly repre-
sented by action terms for the respective features, and reported by an influence
matrix presented in [2]. However, when an information system contains multi-
valued features where the same feature takes a set of values at any given object
state and transitions to another set of values in a different object state, it is best
to represent the transitions between the feature initial set of values and another
set of values by action sets [5] that are defined as:

Definition 5 (Action Set) An action set in an information system S is an
expression that defines a change of state for a distinct feature that takes several
values (multivalued feature) at any object state.

For example, {f1, f2, f3} → {f1, f4} is an action set that defines a change of
values for feature f ∈ F from the set {f1, f2, f3} to the set {f1, f4} where
{f1, f2, f3, f4} ⊆ Vf . Action sets are used to model meta-action effects for in-
formation systems with multivalued features. In addition, the usefulness of ac-
tion sets is best captured by the set intersection, between the two states in-
volved, that models neutral action sets, and set difference, between the two
states involved, that models positive action sets. In the previous example, neu-
tral and positive action sets are respectively computed as follow: {f1, f2, f3} →
[{f1, f2, f3} ∩ {f1, f4}] and {f1, f2, f3} → [{f1, f2, f3} \ {f1, f4}].

Positive and neutral action sets were previously studied in [5]. In this paper,
we are mainly interested in the study of negative action sets extracted from
information systems with multivalued features. These negative action sets rep-
resent negative side effects when medical meta-actions are applied, and they are
best captured by the reverse set difference between the two states involved. In
the previous example, negative action sets are captured as follows: {f1, f2, f3} →
[{f1, f4} \ {f1, f2, f3}]
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3 Negative Side Effects

In healthcare, the study of side effects is mainly related to treatments and pa-
tients’ conditions. In this section, we study the mining and representation of
negative action sets (negative side effects) resulting from the application of meta-
actions. We also show how to cluster patients based on these negative action sets
and analyze the clusters.

3.1 Negative Action Sets Representation and Mining

Negative side effects are represented by action sets which model the appearance
of certain diagnoses when applying a meta-action on specific patients. These
diagnoses were not intended by the physician and can be harmful to the patient.
The negative action sets are part of the meta-action effects, and they are best
captured by the reverse set difference between the prior and posterior state of
the patient. For instance, applying meta-action treatment m to patient x who
is diagnosed with F (x)t = {Dx1, Dx2, Dx3} at the prior state time t might
transition the patient to a new state with the following diagnoses F (x)t+1 =
{Dx1, Dx4} at the posterior time t+1. This transition introduces a new diagnosis
condition Dx4 that was not present before applying m. The action set resulting
is described by: {Dx1, Dx2, Dx3} → [{Dx1, Dx4} \ {Dx1, Dx2, Dx3}], where
[{Dx1, Dx4} \ {Dx1, Dx2, Dx3}] = Dx4 represents the reverse set difference
between the left hand side of the action set and its right hand side. In this
example Dx4 is seen as a negative side effect that appeared as a result of applying
m to x.

Meta-actions effects extracted from information systems with multivalued
features are commonly represented by an ontology that include neutral As, and
positive As action sets. We augment this representation by including negative
action sets labeled As and represented in red in Figure 1.
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Fig. 1. Ontology representation of a meta-action with negative effects.
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Once we define the format of negative action sets, we use the same action
set mining technique described in [5]. In fact, we order patients by visit date,
and create pairs containing two consecutive visits for each patient. The negative
action sets are then extracted from those pairs for each patient and a power set
is then generated to extract all possible combinations.

3.2 Patients’ Clustering Based on Side Effects

Patients react similarly to some treatments that result in the same negative side
effects. Therefore, it is important to keep track of the meta-actions side effects
and cluster the patients who experience similar negative side effects. Cluster-
ing the patients based on the negative side-effects is done using the negative
action sets. The negative action sets are supported by patients that reacted neg-
atively to the treatments (meta-actions) applied with the respective side effects.
The supporting patients for a specific negative action set constitute a cluster of
patients; hence, the clustering is done by grouping those patients.

By the supporting set for a negative action set As = [F (x)t+1 \F (x)t] of the
form F (x)t → [F (x)t+1 \ F (x)t] in an information system S = (X,F, V ), where
F (x)t = {f(x)t : f ∈ F}, we mean the set of patients x ∈ X represented by
the expression sup(As) = {x ∈ X : (∀f(x) ∈ As) [(f(x) ∈ F (x)t+1) ∧ (f(x) /∈
F (x)t)] }. Now, sup(As) represents the set of the objects affected by the negative
action set. This way each supporting set of patients represents a different cluster
sup(Asi) labeled by Asi.

4 Negative Side Effects Evaluation

The negative actions sets are evaluated and analyzed using the confidence and
the cardinal of supporting set -CardSup- that are similar to the evaluation of
neutral and positive action sets. In fact, for each negative action set As, we can
compute the cardinal of the support CardSup(As) as follows:

CardSup(As) = card(sup(As)) (1)

The CardSup(As) is a good measure of the spread or dominance of this negative
side effect for a specific meta-action.

Of course, we can also compute the negative action set confidence ActionConf(As)
as follows:

ActionConf(As) =
CardSup(As)

card({xi ∈ X : [As ⊆ F (xi)t+1]})
(2)

where F (xi)t represents the initial state of the object or patient xi. Note here
that the ActionConf(As) does not model the confidence of predicting that pa-
tients with the initial state F (xi)t will react with negative side effects to the
meta-action; it rather models the confidence of the action set being a negative
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action set As and not a neutral one. In other words, it does not model correlation
between F (xi)t and As.

In previous work [5], we computed the meta-action confidence MetaConf(m)
for m to acquire a general idea on its stability with regards to patients initial
states and the positive and neutral action sets. However, we did not include the
negative side effects because the purpose of the meta-action is to cure the initial
diagnoses of the patients. On the other hand, the negative side effects may have
originated from the correlation between the applied meta-action and some stable
or unknown features and not necessarily from the initial state of the patient.

NegMetaConf(m) =

n∑
i=1

[CardSup(Asi) ·ActionConf(Asi)]

n∑
i=1

CardSup(Asi)
(3)

where n is the number of extracted negative action sets. The negative meta-
action confidence informs us about how the initial state of the patient is corre-
lated with the negative action sets.

5 Evaluation

5.1 HCUP Dataset Description

In this paper, we used the Florida State Inpatient Databases (SID) that is part of
the Healthcare Cost and Utilization Project (HCUP). The Florida SID dataset
contains records from several hospitals in the Florida State. It contains over 2.5
million visit discharges from over 1.5 million patients. The dataset is composed
of five tables, namely: AHAL, CHGH, GRPS, SEVERITY, and CORE. The
main table used in this work is the Core table. The Core table contains over
280 features; however, many of those features are repeated with different codifi-
cation schemes. In the following experiments, we used the Clinical Classifications
Software (CCS) that consists of 262 diagnosis categories, and 234 procedure cat-
egories. This system is based on ICD-9-CM codes. In our experiments, we used
fewer features that are described in this section. Each record in the Core ta-
ble represents a visit discharge. A patient may have several visits in the table.
One of the most important features of this table is the V isitLink feature, which
describes the patient’s ID. Another important feature is the Key, which is the
primary key of the table that identifies unique visits for the patients and links
to the other tables. As mentioned earlier, a V isitLink might map to multiple
Key in the database. This table reports up to 31 diagnoses per discharge as it
has 31 diagnosis columns. However, patients’ diagnoses are stored in a random
order in this table. For example, if a particular patient visits the hospital twice
with heart failure, the first visit discharge may report a heart failure diagnosis
at diagnosis column number 10, and the second visit discharge may report a
heart failure diagnosis at diagnosis column number 22. Furthermore, it is worth
mentioning that it is often the case that patients examination returns less than
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Table 1. Mapping between features and concepts features.

features Concepts

VisitLink Patient Identifier

DaysToEvent Temporal visit ordering

DXCCSn nth Diagnosis, flexible feature

PRCCSn nth Procedure, meta-action

Race, Age Range, Sex,.. Stable features

DIED Decision Atribute

31 diagnoses. The Core table also contains 31 columns describing up to 31 pro-
cedures that the patient went through. Even though a patient might have gone
through several procedure in a given visit, the primary procedure that occurred
at the visit discharge is assumed to be the first procedure column. The Core ta-
ble also contains an feature called DaysToEvent, which describes the number of
days that passed between the admission to the hospital and the procedure day.
This field is anonymized in order to hide the patients’ identity. Furthermore,
the Core table also contains a feature called DIED, that informs us on whether
the patient died or survived in the hospital for a particular discharge. There are
several demographic data that are reported in this table as well, such as: Race,
Age Range, Sex, living area, . . . etc. Table 1 maps the features from the Core
table to the concepts and notations used in this paper.

5.2 Experiments

We performed several experiments regarding mining negative action sets and
analyzing patients’ clusters based on negative side effects. We used four meta-
actions to extract and analyze side effects. The four meta-actions used are ref-
erenced by the following procedure CCS codes [1]: 34, 43, 44, and 45.

We started by mining the negative action sets and evaluated them. We also
give a few examples of the negative action sets mined in Table 2. For instance,
coronary artery bypass graft (CCS:44) results in bacterial infection (CCS:3, Ac-
tionConf=98%). Patients were then grouped and analyzed based on side effects.

You can note from Table 3 that the MetaConf is smaller than the average
confidence since it reflects a better global confidence of the meta-actions with
regard to CardSup. However, Figure 2 shows that more than 73% of action sets
have over 90% confidence for all meta-acions. This shows that a threshold on
the ActionConf can be used to eliminate some negative action sets. The total
number of clusters, the average CardSup, and the average cluster’s negative
action set size are also reported in Table 3 for descriptive reasons.

Table 4 shows that the number of clusters follows a Gaussian distribution [11]
behavior with regard to their negative action sets sizes. In addition, the average
CardSup decreases when the size of the cluster’s action sets increases. The action
set cluster with size 0 indicates no side effects; in other words, patients in this
cluster did not have any side effects as a result of applying the meta-action.
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Fig. 2. Negative action sets confidence proportion.

Those tables show that increasing the size of the cluster action sets, in most of
the cases, increases the average of ActionConf . This is due to introducing more
constraints in the action sets.
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Fig. 3. Negative action sets confidence by size of clusters.

Figure 3 summarizes the trend of the action sets average confidence in a
better way. This figure shows that the average action set confidence is low for
action sets’ clusters with sizes ranging from 1 to 4. This is due to the small
number of supporting patients for these clusters.
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Table 2. Examples of negative action sets for all meta-actions.

Meta-action Negative action set Size CardSup ActionConf

[1] 1 404 0.99
[238] 1 308 0.83
[134] 1 719 0.88
[155] 1 932 0.84

34 [1 , 155] 2 187 0.89
[134 , 155] 2 366 0.77
[134 , 1 , 155] 3 54 0.87
[134 , 59 , 155] 3 55 0.58

[257] 1 429 0.93
[254] 1 399 1.00
[155] 1 238 0.91
[159] 1 227 0.81

43 [259 , 254] 2 102 0.89
[257 , 254] 2 72 0.96
[113 , 159 , 254] 3 10 1.00
[105 , 254 , 155] 3 8 1.00

[254] 1 403 1.00
[102] 1 276 0.99
[197] 1 272 0.93
[3] 1 214 0.98

44 [2 , 244] 2 111 0.86
[197 , 238] 2 121 0.68
[134 , 2 , 244 , 249 , 157] 5 3 1.00
[2 , 52 , 249] 3 12 1.00

[102] 1 1532 0.97
[130] 1 495 0.91
[153] 1 456 0.91
[60] 1 452 0.96

45 [2 , 244] 2 252 0.90
[153 , 60] 2 127 0.95
[146 , 120] 2 68 0.96
[2 , 244 , 249] 3 58 0.85

Table 3. Negative clusters analysis for all meta-actions.

Meta-action Average
clusters size

Total number of
clusters

Average
CardSup

Average
ActionConf

MetaConf

45 4.84 405931 1.69 0.84 0.53

44 4.46 178446 1.49 0.83 0.55

43 4.70 194957 1.37 0.85 0.62

34 4.63 180372 1.44 0.83 0.58
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Table 4. Negative clusters analysis for meta-action 43.

Meta-action Action set clusters
size

Number of
clusters

Average CardSup Average Action-
Conf

0 1 2645 1
1 213 64.12 0.78
2 6277 5.46 0.67
3 33158 1.64 0.68
4 54737 1.10 0.80
5 48576 1.01 0.92

43 6 30447 1.00 0.97
7 14476 1.00 0.99
8 5275 1.00 0.99
9 1457 1.00 0.99
10 296 1.00 1
11 41 1.00 1
12 3 1.00 1

0 1 12076.0000 1
1 225 225.2400 0.77
2 8230 13.2682 0.63
3 59864 2.4103 0.62
4 111169 1.2360 0.77
5 104193 1.0493 0.91

45 6 70782 1.0130 0.97
7 35255 1.0034 0.99
8 12466 1.0006 0.99
9 3143 1.0000 0.99
10 542 1.0000 1
11 58 1.0000 1
12 3 1.0000 1

0 1 2264 1
1 213 60.11 0.73
2 5803 5.86 0.65
3 29814 1.86 0.67
4 52691 1.17 0.78
5 47620 1.02 0.89

34 6 28146 1.00 0.96
7 11794 1.00 0.99
8 3495 1.00 0.99
9 703 1.00 1
10 87 1.00 1
11 5 1.00 1

0 1 3905 1
1 219 82.39 0.80
2 6912 5.99 0.67
3 36008 1.67 0.67
4 54893 1.11 0.79
5 43770 1.01 0.91

44 6 23878 1.00 0.97
7 9463 1.00 0.99
8 2700 1.00 0.99
9 532 1.00 0.99
10 66 1.00 1
11 4 1.00 1
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6 Conclusion

Mining negative side-effects allows us to cluster patients with similar negative
action sets. This work is very helpful for the predictability of negative side effects,
and personalized action rules extraction. We have shown in this paper how neg-
ative side effects based on action terms are represented, and demonstrated how
negative action sets are structured and extracted. We then presented negative
action sets evaluations metrics, and analyzed patients’ clusters based on these
metrics for the Florida State Inpatient Databases (SID)[1]. Our results show
a high confidence for the negative action sets extracted and a high negative
meta-action confidence for the meta-actions examined.
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Abstract. Identification of particular voices in polyphonic and polytim-
bral music is a task often performed by musicians in their everyday life.
However, the automation of this task is very challenging, because of high
complexity of audio data. Usually additional information is supplied, and
the results are far from satisfactory. In this paper, we focus on classical
music recordings, without requiring the user to submit additional in-
formation. Our goal is to identify musical instruments playing in short
audio frames of polyphonic recordings of classical music. Additionally, we
extract pitches (or pitch ranges) which combined with instrument infor-
mation can be used in score-following and audio alignment, see e.g. [8],
[17], or in works towards automatic score extraction, which are a motiva-
tion behind this work. Also, since instrument timbre changes with pitch,
separate classifiers are trained for very narrow pitch ranges for each in-
strument. Four instruments are investigated, representing stringed and
wind instruments. Random forests are applied as a classification tool,
and the results are presented and discussed in the paper.

1 Introduction

Music Information Retrieval (MIR) is an area of interest not only for musicians,
but for virtually everybody who listens to music and has access to any music
collection. For example, one can look for a piece of music on the basis of a tune
hummed or sung, through so called query-by-humming [16], or through query
by example, i.e. audio query, even using mobile devices [23], [26]. Musicians may
have more sophisticated needs, including identification of played notes in audio
files, and assigning these notes to particular voices (instruments). The goal of
our research is to extract information about instruments playing in polyphonic
recordings of classical music, and combine it with pitch information (pitch de-
scribes the degree of highness or lowness of a tone [21], i.e. how high or low the
tone is).

Both instrument identification and multi-pitch tracking are research targets
in MIR community. Multi-pitch estimation has been performed through non-
negative matrix factorization [1], or Bayesian non-negative harmonic-temporal
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factorization [22]; it can also be performed using Gaussian Mixture Models
(GMM) originating from the speech domain [9], and other methods. The fi-
nal goal is identification of as much of the score as possible, towards automatic
music transcription [10], [27] but usually additional information must be sup-
plied together with the input audio data. Research on automatic instrument
identification has also been performed, using various approaches [6], [5], [12],
[14].

In our paper, we focus on identification of musical instruments in music
recordings, which is continuation of our previous research [12]. However, pre-
viously we did not extract pitch information. This time we extract information
about pitch or pitches played in a given audio segment, and use it for instrument
recognition. Random forests are applied as a classification tool, and classical mu-
sic recordings are used as audio data, with 4 target instruments investigated in
their full scale.

2 Audio Data

Classical music is usually played with typical instrument sets, and therefore these
instruments were investigated in our research. Since preparing ground-truth data
for testing is a tedious task, we decided to perform our tests on two pieces of
music, taken from RWC Classical Music collection [3], and use the first minutes
of the selected recordings. These pieces of music are:

– No. 18 (C18), J. Brahms, Horn Trio in Eb major, op.40. 2nd mvmt.; instru-
ments playing in the first minute: piano, French horn, violin;

– No. 44 (C44), N. Rimsky-Korsakov, The Flight of the Bumble Bee; flute and
piano.

The target instruments we want to identify in these recordings are flute,
piano, French horn, and violin.

The sounds for training classifiers were taken from RWC [4], MUMS [20],
and IOWA [25] audio data. The data were basically in stereo format, and the
mix of both channels was used in our experiments.

2.1 Parametrization

The audio data were parameterized as a preprocessing, which means that a se-
quence of samples representing amplitude changes in time was replaced with
a much shorter sequence of numbers, i.e. parameters describing various sound
properties. A feature vector of 58 features was extracted for each analyzed frame,
as we did in our previous research [12]; most of them represent MPEG-7 low-
level audio descriptors, often used in audio research [7]. These features are ex-
tracted for 120-ms audio frames, analyzed using Fourier transform with Ham-
ming windowing. Our audio data were recorded with 16-bit resolution and 44.1
kHz sampling rate, so 120 ms corresponds to 5292 samples; these samples were
zeropadded (i.e. with added zeros) to 8192 samples, in order to apply FFT (Fast
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Fourier Transform), which requires the number of samples being the power of
two. The features used in our work are listed below [12]):

– Audio Spectrum Flatness, flat1, . . . , flat25 — 25 parameters representing the
flatness of the power spectrum within a frequency bin for selected bins; 25
out of 32 frequency bands were used;

– Audio Spectrum Centroid — the power weighted average of the frequency
bins in the power spectrum. Coefficients were scaled to an octave scale an-
chored at 1 kHz [7];

– Audio Spectrum Spread — RMS (root mean square) of the deviation of the
log frequency power spectrum wrt. Audio Spectrum Centroid [7];

– Energy — energy (in log scale) of the spectrum;
– MFCC — 13 mel frequency cepstral coefficients. The cepstrum was calcu-

lated as the logarithm of the magnitude of the spectral coefficients, and then
transformed to the mel scale, reflecting properties of the human perception
of frequency. 24 mel filters were applied, and the results were transformed
to 12 coefficients. The 13th parameter is the 0-order coefficient of MFCC,
corresponding to the logarithm of the energy [19];

– Zero Crossing Rate of the time-domain representation of the sound wave; a
zero-crossing is a point where the sign of the function changes;

– Roll Off — the frequency below which 85% (experimentally chosen thresh-
old) of the accumulated magnitudes of the spectrum is concentrated;

– NonMPEG7 - Audio Spectrum Centroid — the linear scale version of Audio
Spectrum Centroid ;

– NonMPEG7 - Audio Spectrum Spread — the linear scale version of Audio
Spectrum Spread ;

– Flux – the sum of squared differences between the magnitudes of the DFT
(Discrete Fourier Transform) points calculated for the current frame and the
previous one. In the case of the first frame, flux is equal to zero by definition.

– Chroma - 12-element chroma vector [18] of summed energy of pitch classes,
corresponding to the equal-tempered scale, i.e. C, C#, D, D#, E, F, F#,
G, G#, A, A#, and B. A pitch class consists of pitches of the same name
through all octaves. Chroma vector was calculated using Chroma Toolbox
[15]; the sampling rate was converted to 22.05 kHz to apply this toolbox.

3 Classification with Random Forests

Random forest (RF) classifiers have been applied as classification tool, since
their proved successful in our previous research [12]. RF is a set of decision trees,
constructed using procedure minimizing bias and correlations between individual
trees. Each tree is built using a different N -element bootstrap sample of the
N -element training set, i.e. obtained through drawing with replacement from
the original N -element set. About 1/3 of the training data are not used in the
bootstrap sample for any given tree. For a K-element feature vector representing
objects, k attributes (features) are randomly selected (k � K, often k =

√
K)
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at each stage of tree building, i.e. for each node of any particular tree in RF.
The best split on these k attributes is used to split the data in the tree node,
and Gini impurity criterion is applied (minimized) to choose the split. The Gini
criterion is the measure of how often an element would be incorrectly labeled
if labeled randomly, according to the distribution of labels in the subset. Each
tree is grown without pruning to the largest possible extent. A set of M trees is
obtained through repeating this randomized procedure M times. Classification
of each object is made by simple voting of all trees in such a random forest [2].

In the described research we decided to train a separate RF for instrument
and a narrow pitch range (the main pitch and the two neighboring semitones)
combination. The analyzed frame is 120-ms long, so the obtained spectral resolu-
tion allows determining even the lowest sounds of the investigated instruments.
A general scheme of building the classification model in the described work is
shown in Figure 1.
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Fig. 1. Building the classification model in the described work

3.1 Instrument and Pitch Identification

At the preprocessing stage, the average RMS of the whole analyzed audio piece
was calculated. Frames of RMS below 1/4 of this level were considered to rep-
resent silence and ignored in the next stages; namely, pitch information is not
extracted for these frames, and for each instrument the probability of this instru-
ment playing in this frame is set as equal to zero (classifiers are not applied).
DFT was calculated for the remaining frames, and spectral peaks were found
in 4096-point halves of log-amplitude 8192-point spectrums. The investigated
music pieces were analyzed frame by frame, with 40 ms hop size.

Firstly, a global maximum of the amplitude spectrum was found. Secondly,
8-point subsegments were analyzed (with 2-point hop size) in order to find a
maximum in each subsegment, being also a local maximum (i.e. surrounded by
values lower than the maximal value) [28]. If the maximal value was at the border
of the subsegment, the neighboring segment was also used, to find maximums
at the borders as well. Next, the extracted maximum was put in the candidate
list, if it was not added to the list before, and only if its value exceeded the
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minimum spectrum value extended by 3/4 of the difference between the maxi-
mum and minimum value. Weights were assigned to each peak as follows: for a
candidate peak, log amplitudes of 10 consequent multiples of its frequency (i.e.
10 potential harmonics) are summed up. Additionally, neighboring spectral bins
are also included in searching of potential harmonics. After the list of weights
for candidate peaks is completed, it is sorted with descending order of weights,
and the biggest gap between weights is found. Finally, peaks with weights above
this cut-off threshold are kept, and they represent pitches found for the analyzed
audio frame. If the neighboring frames contain a given pitch, it is also added.
Also, if this pitch is present in a given frame and is not in the neighboring ones,
then the next neighboring frame to the right is also checked, and if this pitch is
indicated here, it remains on the pitch list, otherwise it is removed.

Instrument timbre changes with pitch [11], and spectral peaks corresponding
to the pitch may spread through neighboring spectral bins, where a spectral bin
represents the frequency range equal to 1/frame length of the sampling rate. The
lowest analyzed pitches, i.e. from A0 to G#1 (in MIDI notation) represent piano
sounds; pitches from A1 to F#3 may represent piano or French horn. Therefore, if
pitch A1 or lower is recognized, then piano is indicated as an instrument playing
this sound, without using classifiers. For sounds between A1 and F#3, classifiers
for piano and French horn are applied. For higher pitches, classifiers for other
target instruments are applied, too. Additionally, these classifiers are separately
build for pitch ranges corresponding to the recognized pitch, but comprising
both neighboring semitones, i.e. below and above the recognized pitch. Since
the lowest pitch for the investigated instruments is A0, spectral peaks below A0
were ignored in the described work.

Our classifiers are trained to recognize an instrument sound of a given pitch
range. A separate binary random forest is calculated for each instrument-pitch
range pair. Altogether 208 RF classifiers were trained, each one aiming at the
recognition of whether the target instrument is playing the pitch labeling this
RF. For every spectral peak listed on the pitch list found in the spectrum, the
classifiers for instruments encompassing this frequency are applied. In the case
of the lowest and highest frequencies, piano is automatically given as output,
because no other instruments produce these sounds. For every detected pitch,
we indicate all instruments that play in the given frame, according to probabil-
ities yielded by RFs (each RF gives as the output the probability of a target
instrument playing the sound of a given pitch in the frame). We take maximum
of these probabilities through all pitches detected in a given frame to obtain
the probability of each instrument playing in this frame. If all probabilities are
below 20%, no instrument is indicated at the output; if all exceed 80%, all are
indicated at the output. Otherwise, the biggest differences between neighboring
probabilities is found and it constitutes cut-off threshold on the instrument list.

3.2 Cleaning

The output of the classifiers is frame-based. The obtained results are then
cleaned. Namely, if the neighboring frames contain a given instrument, it is
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also added, with the probability being the average of its neighbors. Also, if an
instrument is present in a given frame and is not in the neighboring ones, then
the next neighboring frame to the right is also checked, and if the instrument is
indicated here, it remains on the list, otherwise it is removed.

The final output is given for 0.5-second segments, with ground-truth care-
fully manually labeled. Again, average probability for each instrument through
all frames in this segment is calculated. If all probabilities are below 10%, no
instrument is indicated at the output; if all exceed 90%, all are indicated at
the output. The instrument list is cut off where the biggest probability drop is.
A general scheme of predicting instrument for test audio samples is shown in
Figure 2.
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Fig. 2. Predicting instruments for test samples in the described work

3.3 Training of Random Forests

Training of RFs was performed on 120 ms sound frames, taken from audio record-
ings with 40 ms overlap between the frames. The training set of no more than
40,000 frames was based on single sounds of musical instruments, taken from
RWC [4], MUMS [20], and IOWA [25] sets of single sounds of musical instru-
ments, and on mixes of three instrument sounds. Positive examples for a target
instrument were represented by single sounds and mixes containing the target
instrument, and negative examples were represented by single sounds of other
instruments or mixes without the target instrument. The set of instruments in
mixes was always typical for classical music, with the probability of instruments
playing together in the mix reflecting the probability of these instruments playing
together in the RWC Classical Music Database.

4 Results

The outcomes of our experiments are presented using true positives (TP - the
number of instrument correctly identified by the classification system for a given
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sound segment), true negatives (TN - the number of instruments with correct
negative answer of the classification system), false positives (FP - the number
of instruments with positive answer of the classification system, but actually
not playing) and false negatives (FN - the number of instruments with negative
answer of the classification system, but actually playing). The following measures
are used [13]:

– precision pr calculated as [24]:

pr =
TP + 1

TP + FP + 1
,

– recall rec calculated as [24]:

rec =
TP + 1

TP + FN + 1
,

– f-measure fmeas calculated as:

fmeas =
2 · pr · rec
pr + rec

,

– accuracy acc calculated as:

acc =
TP + TN

TP + TN + FP + FN
.

As mentioned before, we decided to use RFs because they outperformed other
classifiers in research on musical instrument sounds. For illustration purposes,
the results of instrument identification using a set of binary RFs and a set of
binary k-Nearest Neighbor (k-NN) classifiers are shown in Table 1; each binary
classifier was trained to identify whether a target instrument is playing or not,
without pitch identification. The results show superiority of RFs over k-NN.
Additional drawback of k-NN classifier is that it is very slow in this case, i.e. for
4 classes (instruments).

Table 1. Results of the recognition of musical instruments for C18 from RWC Classical
recordings for RFs and k-NN

Result RFs k-NN

precision 95% 85%
recall 68% 49%

f-measure 77% 61%
accuracy 66% 46%

The results of identification of instruments based on pitch extraction for
pieces no. 18 and 44 from RWC Classical Music are shown in Table 2 and Table 3
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respectively. As we can see, precision for C18 is high, and in the case of C44 it
is low. Also, the recall in C18 for French horn is very low.

The details of identification for 0.5-second segments of each piece are shown
in Figures 3 and 4. These figures illustrate instruments only, without identi-
fying pitches, as this would require very tedious labeling of ground truth data,
which was already an arduous task. As we can see, flute was only once indicated
(falsely) in C18, whereas French horn was hardly ever indicated in this piece
(numerous false negatives). In the case of C44, violin was often incorrectly indi-
cated (numerous false positives). However, we have to mention here that this is
an extremely difficult piece to analyze, as it is very fast, and it would probably
require a shorter analyzing frame.

Table 2. Results of the pitch&instrument-based recognition of musical instruments for
C18 from RWC Classical recordings. Instruments playing in this piece: French horn,
piano, and violin

Result flute French horn piano violin Average

TP 0 2 81 81
FP 1 0 0 18
FN 0 97 38 9
TN 119 21 1 12

precision 50% 100% 100% 82% 83%
recall 100% 3% 68% 90% 65%

f-measure 67% 6% 81% 86% 60%
accuracy 99% 19% 68% 78% 66%

Table 3. Results of the pitch&instrument-based recognition of musical instruments for
C44 from RWC Classical recordings. Instruments playing in this piece: flute and piano

Result flute French horn piano violin Average

TP 47 0 17 0
FP 13 1 42 116
FN 54 0 30 0
TN 6 119 31 4

precision 79% 50% 30% 1% 40%
recall 47% 100% 38% 100% 71%

f-measure 59% 67% 33% 2% 40%
accuracy 44% 99% 40% 3% 47%

We also performed tests on mixes, in order to analyze the quality of pitch
recognition, as in the case of mixes we have immediate access to ground truth
labeling. The polyphony level tested was 2-4 sounds. The precision of pitch
identification was 83%. The recall decreased with the polyphony level, and for
2 sounds it was equal to 55%, for 3 sounds – 43%, and for 4 sounds – 35%.
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Fig. 3. Ground truth vs. identified data for RWC Classic piece no. 18. Ground truth
is marked in gray, and the identified instruments are marked in black. Horizontal axis
represents time (time unit equal to 0.5 s) for the first minute of C18

Fig. 4. Ground truth vs. identified data for RWC Classic piece no. 44. Ground truth
is marked in gray, and the identified instruments are marked in black. Horizontal axis
represents time (time unit equal to 0.5) for the first minute of C44
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However, 9% of the errors were actually octave errors (correct pitch name, one
octave higher), which are quite a common mistake in pitch tracking, but such
errors are considered to be less significant than other errors – for instance, in
solfeggio, it is allowed to read pitches in a different octave, more convenient for
a reader.

Since the results for the presented classification methodology are rather mod-
erate, we decided to perform experiments also for classifiers dedicated to instru-
ments only, without constructing separate classifiers for each pitch-instrument
pair, i.e. for 4 classifiers (corresponding to instruments) only, instead of 208, as
it is supposed that such a big number of narrow-target (with little training data)
classifiers may deteriorate the results. The outcome for such 4 RF classifiers are
presented in Table 4 for C18. As we can see, the quality of results is similar,
although differs for particular instrument. For instance, precision for violin is
higher in this case, and recall is lower, but for French horn precision is higher
for pitch&instrument based classification.

Table 4. Results of the instrument-based recognition of musical instruments for C18
from RWC Classical recordings. Instruments playing in this piece: French horn, piano,
and violin

Result flute French horn piano violin Average

TP 0 4 81 75
FP 0 2 1 14
FN 0 95 38 15
TN 120 19 0 16

precision 100% 71% 99% 84% 89%
recall 100% 5% 68% 84% 64%

f-measure 100% 9% 81% 84% 69%
accuracy 100% 19% 68% 76% 66%

5 Summary and Conclusions

In this paper we investigated automatic recognition of instrument for the played
pitch (or pitch range) for selected 4 instruments typical for classical music. All
instruments produced sounds of definite pitch. This paper is an extension to our
previous study, where we recognized musical instruments. In this paper we were
aiming at identifying pitch or pitch range as well, using a combined pitch and in-
strument recognition approach. Two pieces from RWC Classical Music database
were used for testing, namely No. 18 and No. 44. The results are presented with
indicating instrument only, to avoid laborious preparing of ground truth data.
The results show many false positives for violin in the case of No. 44, but correct
indication that flute does not play in No. 18, with exception of one 0.5-second
segment. Also, since we extract pitch information, we can apply harmonic fea-
tures as well, where multiples of the fundamental frequency are analyzed, and
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the enriched feature set may allow more precise classification. This is planned in
our future research. Finally, after improving the results, we would like to identify
as many instruments as possible playing in each analyzed frame, and improve
data cleaning procedures.
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Abstract. We propose a new outer relaxation of the multicut polytope, along
with a dual decomposition approach for correlation clustering and multicut seg-
mentation, for general graphs. Each subproblem is a minimum st-cut problem
and can thus be solved efficiently. An optimal reparameterization is found using
subgradients and affords a new characterization of the trivial LP relaxation of
the multicut problem, as well as informed decoding heuristics. The algorithm we
propose for solving the problem distributes the computation and is amenable to a
parallel implementation.
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1 Introduction

We study the multicut problem (7), an optimization problem over the set of all segmen-
tations of a finite graph. A segmentation of a graph is a partition of the node set into
connected subsets. For complete graphs, the multicut problem specializes to an opti-
mization problem over the set of all partitions of the node set (because every subset of
nodes is connected).

The multicut problem is fundamental to machine learning in the guises of corre-
lation clustering (8; 5) and image segmentation (22; 1; 2; 3; 12). More generally, it
addresses the maximum-a-posteriori (MAP) inference problem for a broad class of
discrete Markov random fields, namely all second-order graphical models which are
invariant under all global permutations of labels (20).

The multicut problem is interesting also from a purely theoretical perspective be-
cause the set of all segmentations of a graph is non-trivial. The geometry of this set (that
is, the geometry of the cut polytope, cf. Section 3) has been examined by (6; 7; 9) and in
great detail by (10). Since optimization over the set of all segmentations is known to be
NP-hard, a complete characterization of the cut polytope in terms of its facets is, how-
ever, unlikely. In practice, one therefore optimizes not explicitly over the cut polytope
but, typically, over an outer relaxation which is tightened recursively by cutting planes
(11). A brief overview of such approaches is given in Section 2.

In this work, starting from the trivial linear programming (LP) relaxation of the
multicut problem in Section 3, we propose the following contributions:
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Firstly, we offer an instance-dependent relaxation of the multicut problem which is
more parsimonious than even the trivial LP relaxation while affording the same bound
(Section 4). We establish the equality of bounds by showing, for a subset of constraints
that depend on the problem instance, that these constraints, despite defining facets of
the cut polytope, cannot become active at solutions. The new relaxation motivates a La-
grangian decomposition of the segmentation problem whose subproblems are induced
neither by small cliques, as in (21), nor by planar graphs, as in (22).

Secondly, we show, for the dual of the Lagrangian decomposition, that subproblems
can be cast as optimization problems over sets of 2-colorable segmentations (Section
5.1). Their solution can be reduced to the minimum st-cut problem, which we do, and
can thus be found more efficiently than the solution of the trivial LP relaxation. As with
any dual decomposition, the computation is split between two tasks: on the one hand,
solving the subproblems, which can be done independently and in parallel; and on the
other hand, optimizing the reparameterization which we achieve using subgradients
(Section 6), and show how to achieve using message passing (appendix).

Thirdly, we suggest a new and efficient rounding heuristic (Section 6.1) for mapping
solutions of the relaxed problem to feasible segmentations.

Combining these contributions, we define the first distributed algorithm for solving
the multicut problem approximately, with guaranteed and well-understood lower and
upper bounds. We compare our algorithm, which we call dual multicut, to existing work
on problem instances from (22) and synthetic problems.

θ

X
M
M*
M**

Fig. 1. Schematic of the multicut polytope and its relaxations studied here. Our outer relaxation
M∗∗(G) is defined by fewer inequalities, but is just as tight as the cycle polytope M∗(G) where
it matters, around the vertex that is optimal for an instance characterized by edge weights θ.

2 Related Work

The state of the art in solving instances of the NP-hard multicut problem in practice is to
first solve a linear programming outer polytope relaxation. Several hierarchies of outer
relaxations of the cut polytope are known, general (16) and specific (10). Of practical
interest, thanks to efficient separation procedures (6; 7), are the trivial LP relaxation,
that is, the intersection of the half-spaces defined by all facet-defining cycle inequalities
(6), as well as the tightening of this relaxation by odd-wheel inequalities (7).
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The second step is to then either map the solution of the relaxed problem to a fea-
sible segmentation using an efficient heuristic (in polynomial time), or further tighten
the relaxation using general branch-and-bound or branch-and-cut techniques, until the
solution of the LP becomes integral and the problem has been solved to optimality (in
exponential time in the worst case).

A different approach has been suggested by (22) for the special case of planar
graphs. Their column generating algorithm affords heuristic feasible solutions at any
time, thus providing approximate solutions early, as can be seen from our experiments
with planar graphs in Section 7. However, it is restricted to planar graphs, unlike the
algorithm we propose, which is general.

3 Segmentations and Multicuts

This section summarizes salient definitions and results, most of which are due to (6, 7,
9).

A segmentation of a weighted graph G = (V,E) is a partition of the node set into
connected subsets (segments). Given edge weights θ ∈ RE , the weight of a segmenta-
tion is defined as the sum of weights of those edges that connect different segments. We
refer to these weights as potentials.

One way of encoding a segmentation is in terms of a node labeling l : V →
{1, . . . , |V |} such that (i) within each segment, all nodes have the same label, and (ii)
the labels of any two adjacent segments are distinct.

A different encoding and, in fact, a characterization of a segmentation is the set of
edges that straddle different segments. Not every subset of edges defines a segmenta-
tion. Those subsets of edges that do define segmentations are known as the multicuts of
the graph. They are characterized by the indicator vectors x ∈ {0, 1}E such that

∀c ∈ C(G) ∀f ∈ c xf ≤
∑

e∈c\{f}

xe . (1)

Here, C(G) denotes the set of all cycles in G. We denote by X(G) the set of indicator
vectors of all multicuts. We refer to an edge e ∈ E as being cut if xe = 1, and uncut if
xe = 0. The famed cycle inequalities (1) guarantee that no cut edge can separate nodes
that are part of the same connected component.

The multicut problem consists in finding a multicut (and thus, a segmentation) with
minimum weight

D := min
x∈X(G)

∑
e∈E

θe xe (2)

This discrete problem is formulated equivalently as a linear program over the multicut
polytope M(G) := conv(X(G)), that is, over the convex hull of X(G), as

D = min
x∈M(G)

∑
e∈E

θe xe (3)

While the system of inequalities defining M(G) is believed to be exponentially large,
several non-trivial outer relaxations of polynomial size are known. One of these is the
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cycle polytope M∗(G) := {x ∈ [0, 1]E | (1)}, that is, the intersection of the half-spaces
defined by all cycle inequalities. The cycle polytope contains vertices that do not cor-
respond to a convex combination of segmentations. However, it contains no additional
integer vertices (7). Therefore, X(G) = M∗(G) ∩ {0, 1}E . The problem

D∗ = min
x∈M∗(G)

∑
e∈E

θe xe (4)

is known as the trivial LP relaxation of the multicut problem. Its solution establishes a
lower bound D∗ ≤ D.

4 Outer Relaxation of the Cycle Polytope

We now define an outer relaxation M∗∗(G) ⊇ M∗(G) of the cycle polytope M∗(G),
by dropping from its definition all cycle inequalities for which the pivot edge f has non-
negative potential, and show that optimization over this less complex polytope affords
the same bound as optimization over the cycle polytope. This statement is formalized
in

Lemma 1. For any graph G = (V,E) and edge weights θ ∈ RE , let M∗∗(G) denote
the set of all x ∈ [0, 1]E such that

∀c ∈ C(G) ∀f ∈ c | θf < 0 xf ≤
∑

e∈c\{f}

xe . (5)

Then,
D∗ = min

x∈M∗∗(G)

∑
e∈E

θe xe . (6)

See Appendix for the proof.

5 Lagrangian Decomposition

We now define a decomposition of problem (6) into subproblems. Each subproblem,
indexed by n ∈ N , is defined with respect to an auxiliary graph Gn that has the same
nodes and edges as the original graph G but, possibly, a different potential vector. For
every edge e ∈ E, the total potential θe is distributed among the subproblems. Specifi-
cally:

Definition 1: For any graph G = (V,E), any potentials θ ∈ RE and any finite
index set N , the elements of

Φ :=

{
φ ∈ RE×N

∣∣∣∣∣ ∀e ∈ E ∑
n∈N

φne = θe

}
(7)

are called reparameterizations. For every n ∈ N ,

min
xn∈M∗∗(G)

∑
e∈E

φnex
n
e (8)
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is called a subproblem.
For any reparametrization φ ∈ Φ, we have

D∗ = min
x∈M∗∗(G)

∑
e∈E

(∑
n∈N

φne

)
xe (9)

= min
x∈M∗∗(G)

∑
n∈N

min
xn∈M∗∗(G)

xn=x

∑
e∈E

φnex
n
e . (10)

Here, xn ∈M∗∗(G) is a solution of subproblem n. The first equality holds by definition
of Φ. The second equality is a mere reformulation of the original optimization problem
in terms of a bilevel optimization problem.

Any reparameterization φ ∈ Φ affords a lower bound

D(φ) :=
∑
n∈N

min
xn∈M∗∗(G)

∑
e∈E

φnex
n
e ≤ D∗ . (11)

We are interested in a reparameterization φ ∈ Φ that maximizes this lower bound.
However, solving

max
φ∈Φ

D(φ) (12)

is NP-hard because it involves solving NP-hard subproblems. Therefore, we proceed as
follows. In Section 5.1, we define a constrained set of reparameterization for which we
show that all subproblems can be solved efficiently. In Section 6, we define an algorithm
for optimizing the reparameterization by means of subgradients and establish, for this
algorithm, that it converges (in polynomial time, up to a fixed precision) to the solution
D∗ of the trivial LP relaxation (4) of the multicut problem. Thus, we arrive at the same
bound, despite constraining the set of reparameterizations.

5.1 Constrained Reparameterization

We now define a more specific decomposition consisting of one subproblem for every
edge that has a negative potential. Moreover, we constrain the set Φ of reparameteriza-
tions such that (i) each subproblem contains precisely one edge with negative potential
and (ii) if, for any edge, the potential in one subproblem is negative, its potential in all
other subproblems is zero. More specifically:

Definition 2: For any graph G = (V,E), any potentials θ ∈ RE and N := {e ∈
E | θe < 0}, the elements of

Ψ :=

ψ ∈ Φ
∣∣∣∣∣∣
∀e ∈ N ψee = θn
∀e, n ∈ N | e 6= n ψne = 0
∀e ∈ E \N ψne ≥ 0

 (13)

are called constrained reparameterizations. For every n ∈ N ,

min
xn∈M∗∗(Gn)

∑
e∈E

ψne x
n
e (14)
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is called a constrained subproblem.
As we constrain the set of reparameterizations, clearly

D∗∗ := max
ψ∈Ψ

D(ψ) ≤ max
φ∈Φ

D(φ) ≤ D∗ . (15)

However, we show in the following that this bound is tight:

Lemma 2. For any weighted graph G = (V,E, θ) and any constrained reparameteri-
zation ψ ∈ Ψ , D∗∗ = D∗.

Proof. The LP relaxation over M∗∗ is exact for problems with one negative-potential
edge because st-cuts correspond to a basic pairwise LP relaxation (14; 18). Moreover,
each sub-problem enforces all cycle inequalities in which the single edge with negative
potential in the subproblem is the pivot edge, and no other cycle inequalities. Finally,
the union of all constraints enforced in any subproblem in a dual decomposition results
in a lower bound whose maximum value is equal to the corresponding LP relaxation
over those constraints (19).

We now show that subproblems can be solved efficiently:

Lemma 3. For any constrained reparameterization ψ ∈ Ψ , each subproblem

min
xn∈M∗∗(G)

∑
e∈E

ψne x
n
e (16)

can be reduced, in linear time and space, to the minimum st-cut problem.

See Appendix for the proof.

6 Bound Maximization along Subgradients

The maximization ofD(ψ) over all ψ ∈ Ψ is a continuous problem with a concave, non-
smooth objective function. We solve this problem by means of a projected subgradient
method (15), which requires two basic steps. First is the calculation of a subgradient
and second is the projection onto the feasible set.

The subgradient of D(ψ) is written below.

(∇D)n ∈ arg minx
∑
e∈E

ψne xe (17)

The projection is defined as the map [·]Ψ : RE×N → Ψ such that, for all ξ ∈ RE×N ,
all e ∈ E and all n ∈ N :

[ξne ]Ψ :=


θe if n = e, θe < 0
0 if n 6= e, θe < 0

[ξne ]ΦP
n′∈N [ξn′e ]Φ

θe else
(18)

with the map [·]Φ : RE×N → Φ such that, for all ξ ∈ RE×N , all e ∈ E and all n ∈ N :

[ξne ]Φ := ξne +
1
N

(
θe −

∑
n′∈N

ξn
′

e

)
(19)

Utente
Text Box



202

7

Lemma 4. For any graph G = (V,E), any potentials θ ∈ RE and any ξ ∈ RE×N ,
D([ξ]Ψ ) ≤ D(ξ).

See Appendix for the proof.
For the subgradient update, we use a decaying step size λk = λ̄

k where k is the
iteration number and λ̄ is the initial step size, a parameter of the algorithm. Overall, we
employ Algorithm 1.

Algorithm 1 Lower Bound Maximization (Subgradient)
Decompose: ψ ← θ
for k = 1, . . . , kmax do

Get Subgradient: (∇D)n ∈ arg minx
P
e∈E ψ

n
e xe

Get Lower Bound: B ←
P
n

P
e∈E ψ

n
e (∇D)ne

Get Upper Bound: V ← See Section ??
Update: ψ ← [ψ + λk · ∇D]Ψ
if V −B < ε then

break
end if

end for

We provide an illustration of sub-gradient optimization in the appendix.
As an alternative, the dual bound can also be maximized using message passing, as

outlined in the appendix.

6.1 Decoding heuristics

If we take the dual of our lower bound we recover the a primal linear program op-
timization that constructs the optimal partition over the basis of optimal solutions to
the sub-problems. This derivation is completed in great detail in the appendix . This
is however computationally very challenging to solve. We now consider four practical
methods (2 of which are in the appendix ) that allow going from the fractional solution
resulting from the dual decomposition LP relaxation to an integer solution representing
a valid graph segmentation. The first three rely on a union operation on two partitions
which we define below

{xα ← xα ∪ xn} : xαe ← max [xαe , x
n
e ] ∀e (20)

Full Construction: An easy mechanism to avoid solving an LP is to take the union of
all partitions in Ω as xα. This sets xα equal to {x0 ∪ x1... ∪ xn...}.

Iterative Construction: An improvement over full construction is to construct xα

iteratively: each negative edge n is selected according to a random order and if xαn = 0
then xα ← xα ∪ xn. Note that choosing different random orderings may produce dif-
ferent partitions xα. At all stages of this procedure we retain the lowest energy partition
that we have generated so far in addition to the current partition. In our experiments we
run this algorithm ten times after each subgradient step over all values in ψ. Note that

Utente
Text Box



203

8

we apply this algorithm even before we have converged to the optimal value of ψ. Since
all negative edges are cut in the solution produced by iterative construction that are cut
in the solution produced by full construction but only a subset of the corresponding
positive edges are cut we can guarantee that iterative construction produces a partition
that does not have higher energy than the solution produced by full construction

7 Experiments

7.1 Berkeley Segmentation Data Set

We demonstrate our dual multicut algorithm on problems from the Berkeley Segmen-
tation Data Set (BSDS) (17) and on synthetic data. The segmentation problems are
defined on a super-pixel graph given by an oriented watershed transform based on the
“generalized probability of boundary” (gPb) classifier (4). Each pair of adjacent super-
pixels is associated with an edge whose potential equals the log odds ratio of the gPb
plus an offset B:

θe = log
(

1− gPbe
gPbe

)
+B (21)

Design parameter B controls the resolution of the resulting segmentation. Extreme val-
ues make all potentials positive (negative), resulting in a single segment (one segment
per supervoxel). Intermediate values yield segmentations that are among the best (1; 22)
that can be achieved on this database.

We report results averaged over 200 images from the BSDS. We use the dual multi-
cuts (DMC) as proposed here with sub-gradient optimization and the iterative construc-
tion for upper bounds. We compare with PlanarCC (22) which has been designed for
and works exclusively on planar graphs. For best comparability, we rely on the same
super-pixels and potentials as (22), kindly provided by the authors.

The first three plots in Fig. 2 show, for various values of B and hence for different
segmentation regimes, how quickly the upper and lower bounds converge to the maxi-
mum lower bound found by any method. We plot the absolute value of this difference
as a function of time, divided by the maximum lower bound found by any method. This
normalization is meaningful given that the absolute energies found for different images
vary widely.

While the present implementation is not as fast as the specialized PlanarCC algo-
rithm, one part of the dual decomposition calculation is embarassingly parallel and can
be distributed.

7.2 Correlation clustering in non-planar graphs

We also compared DMC to the cutting plane integer programming multicut algorithm
of (1) on non-planar graphs where neither (22) nor (3) can be used. The plot shows
an average over 10 instances of the following nature: each synthetic problem consists
of five coupled clusters. Each cluster is a three-dimensional Cartesian lattice with a
width, height and depth of six nodes. Edges inside each cluster have attractive potentials
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uniformly distributed over the interval [0, 50]. There are five negative potential edges
with value −100 connecting each pair of clusters. Each such edge connects a random
node in one cluster with a random node in the other. Finally, there are ten positive
potential edges with value uniformly distributed on the range [0, 1] connecting each
pair of clusters. Again, each such edge connects a random node in one cluster with a
random node in the other.

We use iterative decoding for DMC and obtained an upper bound from the closed
regions produced by multicuts at each step. On such coupled three-dimensional prob-
lems, PlanarCC is not applicable and we outperform the cutting-planes ILP approach.

8 Discussion

In this paper we present a novel approach to solving the multicut problem. We espouse
the power of dual decomposition and st-cut solvers in a principled way to achieve the
same lower bound as the basic LP relaxation.

We envisage multiple ways of speeding up the computations. Firstly, by adding
in sub-problems incrementally. This takes the form of restricting most sub-problems
to have zero valued potentials on all edges except for their particular negative valued
edge; and removing this restriction gradually. Optimization of the lower bound follows
the style of cycle pursuit (21). This has the potential to achieve dramatic speed ups and
decreased memory use.

Secondly, in future work we hope to take advantage of the fact that graph cut prob-
lems produced during subgradient updates are very similar across time. Note that the
nth sub-problem at iteration T is similar to the nth sub-problem at iteration T + 1 for
all n and T after a few iterations of the algorithm. We can thus draw on dynamic graph
cuts (13) that capitalize on previous computation for similar instances.

Thirdly, one can exploit that multiple st-cut instances can be solved independently.
Finally, we intend to apply the dual alternating direction of multipliers in order to

maximize the lower bound in a way akin to message passing but avoiding the type of
poor fixed points exemplified in the appendix.

Summing up, we have presented the first distributed algorithm for solving the mul-
ticut problem approximately that has guaranteed and well-understood lower and upper
bounds. This may prove a good platform for future developments, some of which are
outlined above.
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