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The analysis of complex data represents the new frontier in data mining and
knowledge discovery. There are several emerging technologies and applications
where complex patterns can be extracted: examples are blogs, event or log data,
medical data, spatio-temporal data, social networks, mobility data, sensor data
and streams. The abundance, variety and velocity of data poses new challenges
which can be hardly coped with traditional data mining techniques. This asks
for new contributions which allow for efficiently identifying patterns and enable
effective decision making.

The Fourth International Workshop on New Frontiers in Mining Complex
Patterns (NFMCP 2015) was held in Porto in conjunction with the European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases (ECML-PKDD 2015) on September 7, 2015. It was aimed
at bringing together researchers and practitioners of data mining and knowledge
discovery, interested in the advances and latest developments in mining complex
data. The workshop is establishing a premiere event with this goal.

This book features a collection of revised and significantly extended versions
of papers accepted for presentation at the workshop. These papers went through
a rigorous review process and each paper has bee reviewed by at least three
reviewers. The individual contributions of this book illustrate advanced data
mining techniques which preserve the informative richness of complex data and
allow for efficient and effective identification of complex information units present
in such data.

The book is composed of four parts and a total of 16 chapters.

Part I focuses on Mining Data Stream Streams and it consists of 5 chap-
ters. Chapter 1 explores how different local and global tree-based approaches for
multi-target regression compare in the streaming setting. Chapter 2 proposes a
hardware-based parallel algorithm for frequent itemset mining on data streams
which exploits the notions of systolic trees and Landmark window. Chapter 3
focuses on the analysis of event logs, in order to discover (overlapping) commu-
nities of resources and track the evolution of these communities over consecutive
time windows. Chapter 4 proposes a technique for adapting the generation of a
bagging classifier on a data stream to memory requirement. Finally, Chapter 5
investigates the task of determining changes which are regularly repeated over
time.

Part II analyses issues posed by Classification in presence of complex data.
It consists of three chapters. Chapter 6 is an experimental study of the properties
that influence the performance Roughly Balanced Bagging on complex data. In
Chapter 7, the authors address the problem of classifying log traces describing
business process executions, with regards to potential security breaches. Chapter
8 presents a novel algorithm for mining redescriptions (i.e., different descriptions
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of subsets of elements in the data) based on multi-label Predictive Clustering
Trees.

Part III presents algorithms and applications where complex patterns are dis-
covered from heterogeneous data. It contains four chapters. Chapter 9 focuses
on inductive reasoning and studies the problem of detecting analogical patterns
(i.e., the matching characteristics of two different items) and to enhance them
through generalization techniques. Chapter 10 addresses the problem of auto-
matic vehicle identification based on audio information. Chapter 11 focuses on
graph mining and proposes a new technique for defining a graph kernel which em-
beds the underlying graphs by a random sample of their spanning trees. Chapter
12 presents an approach to mining heterogeneous information networks applied
to a task of categorizing customers linked in a heterogeneous network of prod-
ucts, categories and customers.

Finally, Part IV focuses on Time Series and Sequences. Again, it con-
tains four chapters. Chapter 13 proposes an application of sequential pattern
mining to predict future occurrences of some pre-specified queries, thus enabling
the maintenance of their indices on-demand. Chapter 14 presents a transductive
learning framework for classifying multivariate sequences. The framework ex-
ploits PCA to build a graph of the correlations between multivariate sequences,
and exploits both labeled and unlabeled sequences. Chapter 15 presents a string
representation for hourly foreign exchange data and evaluates the performance
of a trading strategy derived from it. Finally, chapter 16 focuses on recurrence
plots, and studies the effect of a video compression algorithm on the classification
performance of recurrence plots and the related time series.

We would like to thank all the authors who submitted papers for publication
in this book and all the workshop participants and speakers. We are also grateful
to the members of the program committee and external referees for their excel-
lent work in reviewing submitted and revised contributions with expertise and
patience. We would like to thank Jerzy Stefanowski for his invited talk on “Adap-
tive ensembles for evolving data streams - combining block-based and on-line
solutions”. A special thank is due to both the ECML PKDD Workshop Chairs
and to the ECML PKDD organizers who made the event possible. We would like
to acknowledge the support of the European Commission through the project
MAESTRA - Learning from Massive, Incompletely annotated, and Structured
Data (Grant number ICT-2013-612944) and of the Italian ministry of the educa-
tion and research through the project Cybersecurity (Grants PON03PE 00032 1,
PON03PE 00032 2 and PON03PE 00032 3).
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Aljaž Osojnik, Pance Panov and Saso Dzeroski

A Hardware-Based Approach for Frequent Itemset Mining in Data Streams 14
Lazaro Bustio, Raudel Hernandez Leon, René Cumplido, Claudia Fer-
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Adaptive ensembles for evolving data streams -
combining block-based and on-line solutions

Jerzy Stefanowski

Institute of Computing Science, Poznań University of Technology,
60-965 Poznań, Poland

Abstract. The rapid development of the information technology facili-
ties collecting big data sets which cause challenges for their storage and
processing. In particular, one faces the difficulties with massive volumes
of data in the form of data streams. Compared to the static environ-
ments mining data streams implies new requirements for algorithms,
such as constraints on memory usage, restricted processing time, and
one scan of incoming examples. The other critical issue is reacting to
concept drifts. These requirements make mining evolving data streams
a complex problem which asks for new dedicated solutions. As standard
approaches are not appropriate for learning classifiers from changing data
streams, several new algorithms have been introduced in the last years.
Ensembles are among the most often studied classifiers. Due to their
modularity, they provide a natural way of adapting to changes by mod-
ifying their structure, either by retraining ensemble members, replacing
old component classifiers with new ones, or updating rules for aggregat-
ing component predictions. Most of current ensembles do not contain a
drift detector and react to changes in the adaptive way. They can be
further divided into block-based and online approaches.
This talk starts with a general overview of the current data stream en-
sembles. Then, we study differences between block-based and on-line en-
sembles with respect to: different reaction to various types of drifts, time
and memory requirements and strategies to learn component classifiers.
We hypothesize that it is still possible to develop new types of hybrid en-
sembles that combine the most beneficial properties of these both types
of approaches. In the next part of this talk we present experiences from
using such two algorithms, recently developed in our group.
The first algorithm, called Accuracy Updated Ensemble (AUE), is a more
block-based oriented proposal. It includes elements of incremental updat-
ing of component ensembles and a new aggregation rule. Its experimental
evaluation shows that it provides the better classification accuracy than
other state-of-the-art algorithms, also with acceptable time and memory
usage.
The AUE ensemble is, then, generalized into its completely incremental
version, called the On-line Accuracy Updated Ensemble. Its experimen-
tal evaluation shows advantages with respect to the faster reaction to
several types of drifts. Finally, we discuss open research directions for
constructing ensembles from complex data streams.
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Tree-based Approaches for Multi-target
Regression on Data Streams

Aljaž Osojnik1,2, Panče Panov1, and Sašo Džeroski1,2,3

1 Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
2 Jožef Stefan IPS, Jamova cesta 39, Ljubljana, Slovenia

3 CIPKeBiP, Jamova cesta 39, Ljubljana, Slovenia
e-mail: {aljaz.osojnik, pance.panov, saso.dzeroski}@ijs.si

Abstract. Single-target regression is a classical data mining task that
is popular both in the batch and in the streaming setting. Multi-target
regression is an extension of the single-target regression task, in which
multiple continuous targets have to be predicted together. Recent studies
in the batch setting have shown that, global approaches that predict all
of the targets at once tend to outperform local approaches that predict
each target separately. In this paper, we explore how different local and
global tree-based approaches for multi-target regression compare in the
streaming setting. Specifically, we apply a local method based on the
FIMT-DD algorithm and propose a novel global method, named iSOUP-
Tree-MTR. Furthermore, we present an experimental evaluation that is
mainly oriented towards exploring the differences between the local and
global approaches. Finally, the results confirm the findings from the batch
setting that the global approaches generally outperform the local ones.

1 Introduction

A common approach to complex data mining tasks is to transform them into sim-
pler tasks, which have known solutions. This problem transformation approach
has been used to address predictive tasks, such as the multi-label classification
and multi-target regression tasks. A multi-label classification task can thus be
transformed into a collection of binary classification tasks, while a multi-target
regression task can be decomposed into several single-target regression problems.

There are, however, methods that forego the reduction to simpler tasks and
tackle the complexity head-on. Specifically, in the case of multi-target regres-
sion, methods that consider and predict all of the continuous targets at once
have received considerable coverage in the literature [17,12]. Almost exclusively,
though, these methods have been introduced in the batch setting.

Recently, however, the streaming setting is becoming more and more promi-
nent, in large part due to the ever increasing presence of Big Data problems
and applications. The constraints of the streaming setting lend themselves con-
veniently towards addressing several of the characteristics of Big Data, i.e., the
”V”s of Big Data. Specifically, streaming methods are generally exposed to Veloc-
ity – the high speed of arrival of data, Volume – potentially unbounded number
of data instances and Variability – potential changes in the data itself.
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Methods that address multi-target regression in the streaming setting are
few and far between, especially those that predict all of the targets at once. In
this paper, we present a new tree-based approach, named iSOUP-Tree-MTR,
capable of addressing multi-target regression in this manner. We compare it to
the simple problem transformation approach of using streaming single-target
tree-based methods and show that the iSOUP-Tree.MTR method has superior
performance. Additionally, we explore the performance of ensembles, e.g., online
bagging [14], when using the iSOUP-Tree-MTR method as a base learner.

The structure of the paper is as follows. First, we present the background
and related work (Sec. 2). Next, we present several tree-based approaches for
multi-target regression on data streams (Sec. 3). Furthermore, we present the
research questions and the experimental design (Sec. 4). Finally, we conclude
with a discussion of the results (Sec. 5), conclusions, and further work (Sec. 6).

2 Background and Related Work

In this section, we define the multi-target regression task and present the con-
straints of the streaming context. Additionally, we briefly review the state-of-the
art in multi-target regression, both in the batch and in the streaming setting.

Multi-target Regression. In essence, we can look at the multi-target regres-
sion task as an extension of the single-target regression task. In the later, only one
continuous variable needs to be predicted. The multi-target regression (MTR)
task deals with predicting multiple numeric variables simultaneously, or, for-
mally, with making a prediction ŷ from Rn, where n is the number of targets for
a given instance x from an input space X. To categorize the different approaches
to MTR we use the nomenclature introduced by Silla and Freitas [11] for the
task of hierarchical multi-label classification. The task of simultaneous predic-
tion of all targets at the same time (the global approach) has been considered in
the batch setting by Struyf and Džeroski [17]. In addition, Appice and Džeroski
[1] proposed a method for stepwise induction of multi-target model trees.

Data Streams. Unlike the batch context, where a fixed and complete dataset
is given as an input to a learning method, the streaming context presents several
constraints that a stream learning method must consider. The most relevant are
[2]: (1) the examples arrive sequentially; (2) there can potentially be arbitrarily
many examples; (3) the distribution of examples need not be stationary; and
(4) after an example is processed it is discarded or archived. The fact that the
distribution of examples is not presumed to be stationary means that methods
should be able to detect and adapt to changes in the distribution (concept drift).

Multi-target Regression on Data Streams. In the streaming context, some
recent work has already addressed the single- and multi-target regression task.
Ikonomovska et al. [10] introduced an instance-incremental streaming tree-based
single-target regressor (FIMT-DD), which utilizes the Hoeffding bound. This
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work was later extended to for multi-target regression (FIMT-MT) [9]. However,
both of these methods had the drawback of ignoring nominal input attributes.
There has been some theoretical debate whether the use of the Hoeffding bound
is appropriate [15], however, a recent study by Ikonomovska et al. [8] has shown
that in practice the use of the Hoeffding bound produces good results. Addi-
tionally, Shaker et al. [16] introduced an instance-based system for classification
and regression (IBLStreams), which can be, in principle, used for multi-target
regression.

3 Tree-based Methods for Multi-target Regression on
Data Streams

Generally, the quickest way of solving a complex task, such as multi-target re-
gression, is to transform it into simpler tasks that have known solutions. In the
case of multi-target regression, specifically, this is achieved by training a regressor
for each of the targets separately, essentially resulting in a collection/ensemble
of regressors. The other option for addressing the multi-target regression task is
to produce a regressor which gives predictions for all of the targets at once.

To differentiate these approaches we refer to them as local and global, respec-
tively [11]. Specifically, a method that uses one regressor per target is using the
local approach, while a method that uses one regressor to predict all of the tar-
gets at once is using the global approach. Recent studies show, that in the batch
case, the global approaches outperform the local ones [12]. Global methods tend
to (implicitly) exploit dependencies between the targets.

In this section, we present several tree-based methods for multi-target regres-
sion, which utilize the local approach, as well as the global approach. Tree-based
methods are often used, as they generally provide good results in terms of predic-
tive performance, while also yielding interpretable models. Finally, we present
a baseline method that can be viewed as both local and global and is highly
relevant to the methods introduced below.

3.1 A Local Approach to MTR

One of the best known single-target tree-based regressors in the stream setting
is the FIMT-DD method [10]. It is based on the Hoeffding bound, which allows
for the generalization of observations from small samples to the underlying dis-
tribution. Similarly to Hoeffding trees used for classification [4], FIMT-DD uses
the Hoeffding bound to determine the best splits of the resulting decision tree.

We have re-implemented the FIMT-DD method in the Java-based MOA
stream-mining framework [3] and extended it to use adaptive models in the
leaves, similarly to Duarte et. al [5]. Specifically, each leaf of the tree contains
a perceptron. The perceptron is a linear function of the values of the input at-
tributes x that produces the prediction, i.e., ŷ = w ·x+ b, where w and b are a
learned weight vector and a constant, respectively.
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In the original implementation, the perceptron was always used to make the
prediction. However, the adaptive model records the errors of the perceptrons
and compares them to the errors of the mean target predictors, which predict
the value of the target by computing the average value of the target over the
examples observed in a given leaf. In essence, each leaf has two learners, the
perceptron and the target mean predictor. The prediction of the learner that (at
any given point in time) has the lower error is then used as the final prediction.

To monitor the errors, we use the faded absolute error which is calculated

as fMAE learner (m) =
∑m

j=1 0.95m−j |ŷ(j)−y(j)|∑m
j=1 0.95m−j , where m is the number of observed

examples in a leaf, ŷ(j) and y(j) are the predicted and real value for the j-th
example, respectively, and learner ∈ {perceptron, targetMean}. In essence, the
faded error is weighted towards more recent examples. Intuitively, the numerator
of the fraction is the faded sum of absolute errors, while the denominator is
the faded count of examples. For example, the most recent (m-th) example
contributes with a weight of 1, the previous example with weight 0.95, and
the first example with weight 0.95m−1. This places an emphasis on the more
recent examples and generally benefits the perceptron, as we expect its errors to
decrease as it learns the weight vector.

We have implemented a meta-learning method in MOA that creates a ho-
mogeneous ensemble of single-target regressors and combines their single-target
predictions into a multi-target prediction in real-time to facilitate the use of
FIMT-DD as a multi-target regressor. This combination of methods is referred
to as the Local FIMT-DD method.

3.2 A Global Approach to MTR

As noted earlier, the global approach has been shown to yield better predictive
performance in the case of tree-based methods in the batch setting. This has
motivated the introduction of global tree-based methods for data streams, i.e.,
the FIMT-MT method introduced by Ikonomovska et al. [9]. FIMT-MT extends
FIMT-DD by replacing the use of the variance reduction heuristic with the intr-
acluster variance reduction heuristic, which captures some of the dependencies
of the targets. One of the major downsides of the FIMT-MT method, however,
is the fact that it completely ignores nominal input attributes.

We have extended FIMT-MT by adding the support for nominal input at-
tributes. We gave also proposed the use of this extension to address other
structured output prediction tasks, e.g., multi-label classification [13]. This new
method is named incremental Structured Output Prediction Tree for MTR
(iSOUP-Tree-MTR). As before, iSOUP-Tree-MTR is implemented in MOA.

In each leaf, the iSOUP-Tree method uses an adaptive multi-target model,
which consists of a multi-target perceptron and a multi-target target mean pre-
dictor. Similarly to the single-target case, the multi-target perceptron produces
the prediction vector as ŷ = Wx+b, where W is the weight matrix and b is the
additive vector of constants. On the other hand, the multi-target target mean
predictor computes the prediction as the mean value of each of the targets ob-
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served at a given leaf. Individually, these learners can be seen as local, however,
in conjunction with the tree building method, they constitute a global method.

For each target yi the errors fMAE i
perceptron and fMAE i

targetMean are recorded
and the decision which of the predictions to use is made for each variable sep-
arately. Formally, for each i ∈ {1, . . . , n} the prediction ŷiperceptron is used when

fMAE i
perceptron < fMAE i

targetMean , otherwise we use ŷitargetMean . This means that

a final prediction ŷ = (ŷ1, . . . , ŷn) can be composed of some predictions made
by the perceptron and some made by the target mean predictor.

Furthermore, we consider an ensemble of iSOUP-Tree base learners. Specifi-
cally, we use the bagging method for introducing diversity among the ensemble
members. The bagging method for data streams was introduced by Oza et al.
[14] and incorporates a probabilistic variation of how many times each given
example is “seen” by each of the base learners. This combination of methods is
referred in this paper as iSOUP-Tree-MTR bagging.

3.3 Baseline

An adaptive multi-target model is also used as a baseline regressor for the com-
parison of tree-based methods for multi-target regression on data streams, as it
conveniently corresponds to both an ensemble of leaves using the local approach,
as well as to a single leaf in the global iSOUP-Tree approach. In essence, the
adaptive model corresponds to a tree-based model that is not allowed to grow,
i.e., with leaves that are never split. The baseline is specifically implemented as
a stripped down version of a single leaf node of an iSOUP-Tree-MTR.

4 Experimental Setup

In this section, we first present the experimental questions that we want to
answer in this paper. Next, we discuss the evaluation measures used in the
experiments and present the experimental methodology. Finally, we describe the
datasets and conclude with the methods used in the experiments.

4.1 Experimental Questions

The first experimental question, that we wish to address in this paper, is the ex-
perimental comparison of local and global approaches. As the streaming context
imposes several constraints on the learning process, it is not immediately clear
whether the findings from the batch setting will be replicated in the streaming
setting. While we are specifically using tree-based methods for multi-target re-
gression on data streams, showing that the global approach increases predictive
performance could also suggest that this may be generally true, i.e., applicable
for other types of methods and structured outputs in the streaming setting.

When the number of targets is low, we expect the local approach to be com-
petitive with the global approach in terms of time. However, when the number of
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targets increases, we expect that the training of several distinct, even if simpler,
models could take more time than the training of a single, more complex, model.

In a single-target study, Ikonomovska et al. [8] have shown no particular
differences in the predictive performance of the basic method and the bagging
method (therein referred to as FIMT-DD and OBag, respectively). In this work,
we wish to investigate whether similar conclusions can be drawn in the multi-
target case. To that end, we explore the differences in predictive performance
between the iSOUP-Tree-MTR and iSOUP-Tree-MTR bagging methods. The
time consumption of the bagging method will, naturally, be considerably higher,
so any potential benefits must be evaluated through the lens of the additional
use of resources.

4.2 Evaluation Measures and Experimental Methodology

From the experimental questions it is clear that we will need to observe several
measures: two measures will be used to assess the predictive performance and
another one to track the use of time. To assess the predictive performance, we
will use the mean absolute error of a data sample D for each of the targets,

MAE i = 1
|D|

∑|D|
j=1 |ŷi(j) − yi(j)|, where i ∈ {1, . . . , n} indexes the targets.

When applicable and for brevity we will, generally, consider the average mean
absolute error, MAE = 1

n

∑n
i=1 MAE i. It should be stressed that the average

mean absolute error can only be considered when all of the targets are in the
same approximate range, as targets with larger values would be over-represented
in the average mean absolute error.

To evaluate the time consumption, we will consider the running time of the
methods. Both the time consumption and the predictive performance measures
are reported at intervals of 1000 examples. Specifically, we are using the hold-
out approach to evaluating methods for mining data streams. This means that
a holdout set (or a window) of fixed size is collected as enough examples ac-
cumulate, after which the predictions on the holdout set are used to calculate
and report the evaluation measures. Following that, the model is updated with
the collected examples and the process is repeated until all of the examples have
been used. Each window, in essence, first takes the role of testing and then train-
ing set from the batch experimental setup, allowing for continuous monitoring
of evaluation measures. In our case, the size of the window corresponds to the
length of the measure reporting interval, i.e., 1000 examples.

4.3 Datasets

We have selected three datasets for our experiments, based on their size, increas-
ing number of input and target attributes and the assumption of no concept drift,
i.e., these datasets are generally considered as batch datasets.

The Bicycles dataset [6] is concerned with the prediction of demand for rental
bicycles on an hour-by-hour basis. The 3 targets represent the predicted number
of casual (non-registered) users, the predicted number of registered users and
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Table 1: Datasets used in the experiments and their properties. N – number of
instances, T – number of targets.

Dataset Domain N Attributes T

Bicycles [6] service prediction 17379 12 numeric 3
EUNITE03 quality prediction 8064 29 numeric 5
SCM1d [18] price prediction 9803 280 numeric 16

the total number of users for a given hour, respectively. In this case, the targets
do not operate on the same range. Specifically, the third target is the sum of the
previous two, so, naturally, it’s range is different. For this dataset we report the
mean absolute error for each target separately.

The EUNITE03 4 dataset was used for the competition at the 3rd European
Symposium on Intelligent Technologies, Hybrid Systems and their implementa-
tion on Smart Adaptive Systems in 2003. The data describes a complex process
of continuously manufactured glass products, i.e., the input attributes describe
various influences which can or can not be changed by an operator, while the
target attributes describe the glass quality. The targets are all reported on the
same scale, so the use of the average mean absolute error is justified.

SCM1d is a dataset derived form the Trading Agent Competition in Sup-
ply Chain Management (TAC SCM) competition conducted in July 2010. The
preparation (preprocessing) of the dataset is described by Xioufis et al. [18]. The
data instances correspond to daily updates in a tournament – there are 220 days
in each game and 18 games per tournament. The 16 targets are the predictions
of the next day mean price for each of the 16 products in the simulation. The
ranges of the targets are comparable among themselves, therefore, we will also
use the average mean absolute errors on the SCM1d dataset.

The Bicycles dataset is available at the UCI Machine Learning Repository5

and the SCM1d dataset is available at the Mulan multi-target regression dataset
repository6. A summary of the datasets and their properties is shown in Tab. 1.

Notably, the Bicycle dataset exhibits strong seasonal effects, i.e., different
parts of the concept are oversampled in different time periods. Since the datasets
consist of measurements at different time points, the data instances are tempo-
rally ordered. This means that if we observe the data stream as is, the initial
part of the dataset will contain examples which are severely oversampled from
only one part of the input space. As data stream mining methods have no con-
trol over the arrival of data instances, the methods would, in the initial parts of
the data stream, learn only part of the concept, i.e., the input attributes which
exhibit seasonality would not be considered as relevant to the model building
process, even though the seasonal concepts are different.

To avoid the overlearning of the potential seasonal concepts, we shuffled all
of the datasets, i.e., we randomized the order of the data instances presented to

4 http://www.eunite.org/eunite/news/Summary%20Competition.pdf
5 https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
6 http://mulan.sourceforge.net/datasets-mtr.html

http://www.eunite.org/eunite/news/Summary%20Competition.pdf
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://mulan.sourceforge.net/datasets-mtr.html
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(a) Casual count target (b) Registered count target

(c) Total count target

Fig. 1: The evolution of the mean absolute errors on the Bicycles dataset.

the learning method. If we used the datasets in their original representation, the
results on the datasets with seasonality would show an increase in performance,
while the learner is processing one of the seasons and then the performance
would deteriorate, at the change of season.

4.4 Compared Methods

For our experiments we consider the local and global tree-based methods de-
scribed in Sec. 3. Specifically, we consider the multi-target perceptron as the
baseline, the local FIMT-DD-based approach to MTR, and the global iSOUP-
Tree-MTR and iSOUP-Tree-MTR bagging (with 10 trees) approaches.

The FIMT-DD method is capable of detecting changes in the concept and
adapting to them. However, this study is oriented towards comparing the local
and global tree-based approaches on equal grounds, thus the change detection
and adaptation mechanisms in FIMT-DD have been disabled for this study.

5 Results

In this, section we present and discuss the results of our experiments and provide
insights into several of the observed phenomena.
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(b) SCM1d dataset

Fig. 2: The evolution of MAE on the EUNITE03 and SCM1d datasets.

Bicycles dataset performance. In Fig. 1, we show the mean absolute errors
for the three targets of the Bicycles dataset. While the local approach is better
than the iSOUP-Tree-MTR method on the registered count target (Fig. 1a), it
is outperformed by iSOUP-Tree-MTR on both of the casual count (Fig. 1b) and
the total count (Fig. 1c) variables.

Arguably, registered users are much more consistent in their behaviour and
their numbers are more independent of the other variables, so the benefit of using
a global method for this variable is diminished. The number of casual users and,
consequently, the number of the total users, on the other hand, are much less
consistent, therefore, the availability of additional information from all of the
targets greatly improves the performance in the global approach.

For all three targets, the iSOUP-Tree-MTR bagging method outperformed
all of the other methods, including the basic iSOUP-Tree-MTR method.

EUNITE03 dataset performance. With regard to the first experimental
question, the results on the EUNITE03 are a clear-cut triumph of the global
iSOUP-Tree-MTR method, as its mean absolute error is consistently lower than
that of the local FIMT-DD approach (see Fig. 2a). Notably, the baseline also has
comparably good predictive performance. This possibly implies that the baseline
has a bias towards the type of dependencies present in the EUNITE03 dataset.

In contrast to the Bicycles dataset, bagging performs worse than the base
iSOUP-Tree method, and is, surprisingly, comparable to the baseline. However,
these results (excluding the results above, from the local versus global discus-
sion) are much less consistent than on the Bicycles dataset.

SCM1d dataset performance. At first glance, the results on the SCM1d data-
set (see Fig. 2b) appear similar to those on the EUNITE03 dataset. The global
iSOUP-Tree-MTR outperforms the local FIMT-DD method and the bagging
iSOUP-Tree-MTR method outperforms the base iSOUP-Tree-MTR method.

However, none of the tree-based approaches beat the baseline. For global
methods, this occurs due to the splitting mechanism of the iSOUP-Tree-MTR
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(a) Bicycles dataset (b) EUNITE03 dataset

(c) SCM1d dataset

Fig. 3: The time consumption of tree-based methods.

method. Since the SCM1d dataset has a high number of input attributes, many
of them provide similar contribution to the heuristic, so the splitting mechanism
cannot determine the best candidate among the attributes. As the examples
accumulate, a tie threshold is reached and a split is made with lower confidence.
In this case, apparently, an inappropriate split is selected and the performance
suffers. For details on the tie breaking mechanism, see Ikonomovska et al. [7].

6 Conclusions and Further Work

Obviously, this does not affect the baseline, so its performance continues to
improve. Additionally, this also does not affect the local FIMT-DD method,
as discriminating candidate attributes is much easier when considering only one
target. However, FIMT-DD still performs much worse than all other approaches.

Time consumption. The results from the time consumption (see Fig. 3) do not
provide any surprises. When the number of targets is low, i.e., on the Bicycles
and EUNITE03 datasets, the local FIMT-DD and global iSOUP-Tree-MTR ap-
proaches use comparable amounts of time, with iSOUP-Tree-MTR using slightly
more. While the local method has to produce more trees, the global method has
to use more complex data structures to encode and store information about the
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multiple targets. Further experiments will however be needed to determine what
are the differences in the time consumption when the number of targets grows,
as the results in Fig. 3c are not representative for models of similar sizes, due to
the splitting problem described above. The fact that the local FIMT-DD method
uses approximately the same amount of time as the bagging method, which pro-
duces 10 trees, is highly indicative that, were it not for the splitting problem,
iSOUP-Tree-MTR would still use considerably less time.

From our experiments, we can conclude that the global method iSOUP-
Tree-MTR generally outperforms the local FIMT-DD method, or, at least, does
not have a significantly worse performance. The iSOUP-Tree-MTR method is,
however, sensitive to the situation in which a large number of attributes have a
similar potential contribution, which severely stifles the growth of the trees.

While we intuitively expect that the global approach takes less time than the
local approach, when the number of targets is high, we do not have the sufficiently
extensive results required to confirm this. The splitting problem encountered on
the SCM1d dataset distorts the results with respect to time, as the local models
grow in complexity, while the global model practically did not grow at all. Further
analysis on datasets where both approaches grow models is required.

Our results also warrant further exploration of the difference between the ba-
sic iSOUP-Tree-MTR method and it’s bagging counterpart, as the results on the
three datasets are inconclusive. It appears that bagging does offer some advan-
tages over the basic method, however, it is unclear weather these will manifest
themselves through increased predictive performance. Also, unlike the single-
target study, we have, in two of the datasets, shown significant improvement
when using bagging.

Overall, the global approach does have merit in the streaming context and
can produce significant improvements in predictive performance for tree-based
methods. These improvements are, however, reliant on the potential dependen-
cies or independencies of the targets. The more independent the targets, the
better we would expect the local method to perform, and vice versa, the more
dependent the targets, the better the expected performance of the global method.

In our future work, we plan to perform an extended experimental evaluation
on additional datasets. We will also consider additional performance evaluation
measures, e.g., relative error, which would enable the observation of average
errors even on datasets where the targets do not fall in the same range. Further-
more, we plan to evaluate the memory consumption of the compared methods.
We also intend to implement option trees [8] within the global iSOUP-Tree-MTR
approach: these have not only been show to grow faster with fewer available ex-
amples, but which consider multiple attributes for splits. This should help curtail
the problem of many input attributes observed on the SCM1d dataset.
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Abstract. Data streams are unbounded and infinite flows of data arriv-
ing at high rates which cannot be stored for offline processing. Because
of this, classical approaches for Data Mining cannot be used straight-
forwardly in data stream scenario. This paper introduces the first re-
ported single-pass hardware-based algorithm for frequent itemset mining
on data streams. Experimental results of the hardware implementation
of the proposed algorithm are also presented and discussed.
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configurable Hardware, Parallel Algorithms

1 Introduction

Data Mining is a research area that investigates the tools and techniques needed
to efficiently extract information from large volumes of data. One particularly
important technique in Data Mining is Frequent Itemset Mining aimed at discov-
ering those sets of items that can be found together more than a given number
of occurrences in a data set(named frequent itemset) [1].

One scenario that is gaining attention is Data Streams Mining. Frequent
itemset mining on data streams is incipient and the majority of the developed
algorithms for this task cannot deal with data streams in an exhaustive fashion
because of high incoming rates of data, short processing times needed, and the
impossibility of storing the incoming stream. Data streams mining can be found
in video and audio streams, network traffic, commercial transactions, among
others [11], but such applications need to operate at high speed so hardware-
based approaches have been proposed to achieve that goal. In such approaches,
custom hardware architectures can be used as processing platforms due to their
capacity to exploit parallelism.

In this paper, a parallel algorithm for frequent itemset mining on data streams
(which was designed to be implemented and executed in hardware) that uses a
Landmark Window Model [8] is proposed. This algorithm is based on a systolic
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tree which is well suited for data streams handling. To prove the feasibility of
this algorithm, several experiments were conducted showing that it outperforms
some well known algorithms of the state-of-the-art selected as baseline.

This paper is structured as follows: in section 2 the theoretical basis that
support this research is presented. A review of state-of-the-art is addressed in
Section 3 while Section 4 introduces the proposed algorithm. Results are shown
in Section 5 and finally, conclusions are given in Section 6.

2 Theoretical basis

Let I = {i1, i2, .., in} be a set of n items and T be a transactional dataset3:

Definition 1 (Itemset). An itemset X is a set of items over I such that X ⊆ I.

Definition 2 (Transaction). A transaction t ∈ T over I is a couple t =
(tid,X) where tid is the transaction identifier, and X ⊆ I.

Definition 3 (Support). The support of an itemset X is the fraction of trans-

actions in T containing X.

An itemset is called frequent if its support is greater than a given minimal
support threshold minsup.

Definition 4 (Data stream). A data stream is a continuous, unbounded and

not necessarily ordered, real-time sequence of data items.

In data stream three main characteristics are presented[2, 11, 16]:

– Continuity. Items in stream arrive continuously at a high rate.
– Expiration. Items can be accessed and processed just once.
– Infinity. The total number of data is unbounded and potentially infinite.

Definition 5 (Window). A window in a data stream is an excerpt of transac-

tions.

Windows can be constructed using one of following approaches [13, 8]:

– Landmark window model. This model employs some point (called landmark)
to start recording where a window begins. The support count of an itemset
i is the number of transactions containing i between the landmark and the
current time (see Figure 1a).

– Sliding window model. This model uses the latest W transactions in the
mining process. As newest transactions arrive, oldest in the sliding windows
are excluded. This model can be compared with a FIFO queue. The use of
this model imposes a restriction: as some transactions will be included in the
mining process, methods for finding expired transactions and discounting the
frequency counting of the itemsets involved are required (see Figure 1b).
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Fig. 1: Different windows model.

In this paper, Landmark Window Model was selected because it can be seen
as a general case (and starting point) of others complex windows model such as
Sliding. Also, there are applications which Landmark Window is better suited
than others methods [18] (to detect buyers’ behavioral patterns in a supermarket
during a season, for instance).

2.1 Reconfigurable Computing

Reconfigurable Hardware Computing is referred to the use of hardware devices in
which the functionality of the logic gates is customizable at run-time, and FPGAs
are the main exponent of this approach. The architecture of FPGAs is based on a
large number of logic blocks which perform basic logic functions. Because of this,
FPGAs can implement from a simple logical gate, to a complex mathematical
function. FPGAs can be reprogrammed; that is, the circuit can be “erased”
and then, a new architecture that implements a brand new algorithm can be
placed. This capability of the FPGAs allows the creation of fully customized
architectures, reducing cost and technological risks that are present in traditional
circuits designs [9].

3 Related works

A state-of-the-art of frequent itemsets mining in hardware can be organized
as it is shown in Table 1. Analyzing the revised literature, it can be noticed
that there are three preferred approaches: algorithms that use Apriori [1] as the
starting point, algorithms that use FP-Growth [12] and those that use Eclat [24].
Algorithms that mimic the Apriori[3, 4, 23, 22] in hardware require loading the
candidates itemsets and the dataset into the hardware. This strategy is limited
by the capacity of the chosen platform: if the number of transactions to manage
is larger than the hardware capacity, transactions must be loaded separately

3 Dataset is referred to databases, unstructured data file, relational databases or any
other data source. In this paper, dataset is used to refer data streams.
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in many consecutive times degrading overall performance (the acceleration ob-
tained by the use of FPGA is lost in communication). These issues are forbidden
in data streams mining. One valid option for frequent itemsets mining on data
streams is to develop a tree-based approaches where transactions flow inside the
tree.

Table 1: Main architectures for Frequent Itemsets Mining.

Title Year

Apriori-based

Efficient Hardware Data Mining with the Apriori Algorithm on FP-
GAs.[3]

2005

An Architecture for Efficient Hardware Data Mining Using Reconfig-
urable Computing Systems.[4]

2006

Hardware-Enhanced Association Rules Mining With Hashing and
Pipelining.[23]

2008

Novel Strategies for Hardware Acceleration of Frequent Itemset Mining
With the Apriori Algorithm.[22]

2009

Eclat-based

An FPGA-based Accelerator For Frequent Itemset Mining.[25] 2013
Accelerating intersection Computation In Frequent Itemset Mining
With FPGAs.[17]

2013

FP-Growth-based

Mining Association Rules with Systolic Trees.[20] 2008
A Reconfigurable Platform for Frequent Pattern Mining.[19] 2008
A Highly Parallel Algorithm for Frequent Itemset Mining.[15] 2010
Design and Analysis of a Reconfigurable Platform for Frequent Pattern
Mining.[21]

2011

Similarly to Apriori-based algorithms, the FP-Growth-based algorithms [20,
19, 15, 21] need to copy the mining dataset to the processing platform. They
also require two passes over the dataset, except Mesa et al. [15], however it
still needs to download the dataset to the hardware device. This is impractical
in data streams mining scenario due to the Expiration restriction. Like other
reviewed algorithms, authors focused their attention in better data structures
that allow the efficient counting of frequent itemsets. However, algorithms based
on FP-Growth use the FP-Tree data structure [12] that is based on prefix-trees
which are well suited for data streams mining applications.

Eclat-based algorithms [25, 17] use the vertical dataset representation in or-
der to save memory and processing time. In [25, 17], authors use the intersection
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of items to compute the support showing that it is more efficient than hash-
trees. All the Eclat-based implementations propose an hybrid approach, where
the most time and/or memory consuming functions were downloaded to custom
hardware while the software controls the execution flow and data structures. Al-
though the vertical dataset representation allows to save memory and processing
time, it is not compatible with the Expiration restriction of data streams.

4 Proposed method

The basic idea of the proposed method is to develop a tree structure of processing
units where transactions on data streams flow from the root node to the leaf
nodes. The tree structure can be seen as a systolic tree where each of its nodes
has one bottom node (child) and one right node.

Fig. 2: Systolic tree data structure used in data stream mining. Remarked section
shows a sub-tree with nodes that have the itemset ab of a transaction t as root.

Figure 2 shows the systolic tree where vertically-arranged nodes represent a
prefix path and parent nodes contain the prefix itemset (that represent transac-
tions of data streams) for their children. Taking a random node r, the sub-tree
who had the node r as root is formed by all possible combinations of items with
the itemset stored in r as their prefix, this leads to recursive mining strategies.
The systolic tree data structure implements a distributed control scheme where
processing and control logic are distributed among the nodes. A schematic of
the systolic tree is shown in figure 3 and starting from it, the algorithm 1 is
proposed.

Algorithm 1 is executed simultaneously in each node of the systolic tree. For
each transaction t in Landmark Window when a new itemset X arrives to a node
occupied by an item ij ∈ I, one of following decisions must be taken:

1. If {ij} ⊆ X then the frequency counter of the node is incremented and the
itemset X − {ij} is flowed to child and right node.



19

Fig. 3: Schematic of the processing node and structure of the systolic tree.

2. If {ij} 6⊆ X then X is flowed to right node.

Algorithm 1 simultaneously uses Depth First Search (DFS) and Breadth First
Search (BFS) traversals (from lines 20 to 25) allowing a high parallelism: two
dimensional search is performed concurrently. These DFS and BFS traversal
strategies are also employed to determine which itemsets can be regarded as
frequent once the frequency counting of each itemset was computed and stored
in nodes of the systolic tree.

After the frequency of each itemset is computed, a backtracking strategy
using the Apriori [1] property which states that:

– All subsets of a frequent itemset are frequent.
– Any super-set of an infrequent itemset is also infrequent.

is employed to obtain the frequent itemsets from the systolic tree. This strat-
egy is implemented in algorithm 2. Once again, a simultaneous BFS and DFS
strategy is implemented lines 7 to 10.

Theoretically, the size (in number of nodes) of the systolic tree is determined
by |I|, where I is a super-set of items in the incoming data stream (see section
2). Since |I| cannot be established a priori (due the Infinity property of data
streams), the size of the systolic tree will be determined by the capacity of the
development platform. Assuming that the development platform contains enough
computational resources (ideal case), the size of the systolic tree (in number of
nodes) that can hold any streams formed by items of I will be:

nodes = 2|I| − 1 (1)

In a real case, the available resources of a FPGAs are limited. Suppose 100%
of area occupation in selected hardware device, a number k will be the maximum
number of processing nodes that can be supported by the selected device. Then
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Algorithm 1: Parallel algorithm for finding the frequency counting of
flushed transactions in a Landmark Window.
Input: Landmark Window landmark window

Output: Systolic tree with the counting frequency of each itemset.

ni ← systolyc tree.RootNode;1

foreach transaction t in landmark window do2

Traverse(t, ni);3

Procedure Traverse(t, ni);4

if ni.IsOccupied == false then5

ni.IsOccupied = true;6

ni.Item = t.ItemAt(0);7

FlushInParallel(t, ni);8

else9

if t.Contain(ni.Item) == true then10

FlushInParallel(t, ni);11

else12

ñi ← ni.RightNode;13

Traverse(t, ñi);14

EndProcedure;15

Procedure FlushInParallel(t, ni);16

ni.Counter ++;17

t̃ = t.Exclude(ni.Item);18

if t̃.IsEmpty == false then19

StartParallalelBlock::20

ñi ←− ni.ChildNode;21

Traverse(t̃, ñi);22

ñi ←− ni.RightNode;23

Traverse(t̃, ñi);24

EndParallelBlock;;25

EndProcedure;26

return systolic tree;27

the maximum number maxitems of items in I in the incoming data stream that
can be handled by the chosen device will be:

maxitems = log
2
(k + 1) (2)

For example, if the selected hardware device can hold 1024 nodes (k) in
systolic tree, then the maximum number of items of I that can be handled will
be 10 (|I|).

It is important to notice that for a certain number n of items in set I, if

2n − 1 > k (3)
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Algorithm 2: Parallel algorithm for finding frequent itemsets.

Input: Flushing flag flush, Minimum support value min sup.
Output: Frequent itemsets and their frequency counting

< itemset, frequency >.

ni ← systolyc tree.RootNode;1

if (flush == true) then2

FlushMethod(ni,min sup);3

Procedure FlushMethod(ni,min sup)4

if (ni.counter ≥ min sup) then5

if (ni.ChildNode! = null)and(ni.RightNode! = null) then6

StartParallalelBlock:7

FlushMethod(ni.ChildNode,min sup);8

FlushMethod(ni.RightNode,min sup);9

EndParallelBlock;10

ni.GatewayMode = true;11

else12

FlushResult.Add(ni, ni.Counter);13

else14

FlushResult.Add(ni, ni.Counter);15

return FlushResult;16

the systolic tree cannot hold all possible combinations of itemsets and there-
fore some itemsets will not be taken into account during the mining process.
In other words, the number of processing nodes needed to handle all possible
combinations of itemsets generated from I exceeds the maximum number of pro-
cessing nodes that can be mapped into the selected FPGA. Here, mining will be
approximate with no false positives produced. On the contrary, if

2n − 1 ≤ k (4)

the systolic tree can hold all the possible combinations of itemsets, therefore
the mining process will be exact. At this point, a conclusion arises: the pro-
posed algorithm is exact in its theoretical basis, but in practice its accuracy is
determined by the available area in the chosen development platform.

To obtain frequent items, a recursive strategy that uses the Apriori [1] prop-
erty stated before is used. In this strategy, if a node is declared as frequent, then
its child and right nodes must be processed recursively to determine whether
they are frequent or not. On the contrary, if a node is regarded as infrequent, its
descendants will be infrequent and process can be stopped (consequence of the
Apriori property). This optimizes the traverse strategy to obtain the frequent
itemsets in the systolic tree.
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5 Results

The proposed method was modeled in VHDL using Xilinx ISE Suite 14.2 and
targeted for Virtex 5 XC5VLX330T device. After the architecture was synthe-
sized and implemented, the occupied area is 90.3 %, holding 1161216 processing
nodes. This allows to handle a maximum of 20 different items, while the largest
itemsets handled by FPGA-accelerated architecture reported is about 11 items.
The maximum operation frequency obtained for this architecture is 238 Mhz.
This means that the proposed architecture can process 5.07x106 transactions
(containing at most 20 items) per second (worst case), this derives in a through-
put of 1.19 Gbps. Besides, as far as we know, this is the first FPGA-accelerated
architecture for frequent itemset mining over data streams reported.

To validate the performance of the proposed systolic tree architecture, some
experiments were conducted simulating data streams with 4 different datasets.
MSNBC and Chess datasets were taken from UCI repository [14] and the other
two were created with the Almaden IBM Synthetic Dataset Generator [10]. Em-
ployed datasets are described in Table 2.

Table 2: Dataset specifications.

Dataset Size (Mb) #Trans #Items Ave.IT

MSNBC 4.219 989 818 17 2.82
Chess 0.340 3 196 75 37
T10I20D100K 1.468 100 000 20 10
T20I20D1M 27.123 1 000 000 20 20

Since there are no hardware architectures reported for frequent itemset min-
ing on data streams, the best software implementations (concerning of perfor-
mance and resources consumption) of the Apriori [5], FP-Growth [6] and Eclat
[5] algorithms that were reported in the state-of-the-art, were used as base-
line. These implementations were downloaded from Borgelt’s website [7] and
several experiments were conducted using MSNBC, Chess, T10I20D100K and
T20I20D1M datasets on an Intel Core i3 at 1.8GHz and 4Gb of RAM. Experi-
ments using all datasets were conducted in software using several minsup values
and timing results were compared versus the same experiments conducted in
hardware. Timing results are shown in fig. 4. These results are shown to give
an idea of the performance of the proposed method compared against some well
established state-of-art algorithms. Window size were set to 100 000 transac-
tions. This allow to handle in one window the MSNBC, Chess and T10I10D100K
datasets, while T20I20D1M were separated in 10 windows.

As it is shown in fig. 4, the proposed architecture outperforms all the base-
line algorithms in all datasets. Note that, for the sake of clarity, processing
times that exceeds 3 minutes are not shown. All datasets, except Chess, con-
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(a) Execution time for the proposed architec-
ture with Chess dataset.

(b) Execution time for the proposed architec-
ture with MSNBC dataset.

(c) Execution time for the proposed architec-
ture with T20I20D100K synthetic dataset.

(d) Execution time for the proposed archi-
tecture with T10I20D1M synthetic dataset.
Here, timing results that exceeds 300s were
dropped from chart.

Fig. 4: Performance evaluation of the proposed algorithm and architecture for
different datasets. X axis represent the variation of the support threshold ex-
pressed in %.

tain 20 or less single items, so they can be mapped directly into the hardware
architecture. Chess dataset contains 75 items so the systolic tree architecture
only takes into account for the mining process the first 20 items that arrive.
In this case, the mining process is approximate, discovering a subset of total
frequent itemsets. Itemsets regarded as frequent in this case have the same fre-
quency counting as if they had been calculated with any baseline algorithm. For
MSNBC, T10I20D100K and T20I20D1M, the mining process is exact and it was
performed one order of magnitude times faster than baseline algorithms.

Experiments demonstrate that the proposed architecture is insensitive to
variations in support threshold: this is explained because of all hardware needed
for mining incoming data stream is available and it is the same whether the
minimum support threshold is 1%or 99%. Restrictive support threshold conduce
to less frequent itemsets while relaxed support threshold conduce to more fre-
quent itemsets. Performance of software implementations of Apriori, Eclat and
FP-Growth are quite sensitive in its performance to changes on minsup value.
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6 Conclusions.

This paper introduces a new parallel algorithm for frequent itemset mining in
data streams which is designed to be implemented in a custom hardware archi-
tecture. The proposed algorithm is based on a tree data structure that allows
to increase the mining performance. The corresponding hardware architecture is
based on a systolic tree approach where the control logic is distributed among all
processing nodes. Experimental results showed that the hardware architecture is
able to extract correctly all itemsets from data streams with a significant speed
up when compared against software-based implementations.
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Abstract. The goal of process mining is to extract process-related in-
formation by observing events recorded in event logs. An event is an
activity initiated or completed by a resource at a certain time point.
Organizational mining is a subfield of process mining that focuses on
the organizational perspective of a business process. It considers the re-
source attribute and derives a profile that characterizes the behavior of
a resource in a specific business process. By relating resources associated
with correlated profiles, it is possible to define a social network. This
paper focuses on the idea of performing organizational mining of event
logs via social network mining. It presents a framework that resorts to a
stream representation of an event log. It adapts the time-based window
model to process this stream, so that window-based social resource net-
works can be constructed, in order to represent interactions between re-
sources operating at the data window level. Finally, it integrates specific
algorithms, in order to discover (overlapping) communities of resources
and track the evolution of these communities over consecutive windows.
This paper applies the defined framework to a real event log.

1 Introduction

Event logs are data sets currently produced by several information systems (e.g.
workflow management systems). They contain the executions (called traces) of
a business process. A trace is defined as an ordered list of activities invoked
by a resource from the beginning of its execution to the end. Process mining
refers to the discovery, conformance and enhancement of process models from
event logs. By tightly coupling event logs and process models, process mining
makes possible to detect deviations, predict delays, support decision making and
recommend process redesigns.

Thus far, the majority of the focus of process mining research has been
on control flow, i.e. the ordering of activities. However, as discussed in [12],
process mining can go beyond the control flow perspective. In particular, the
organizational perspective can be considered by focusing on the resources, i.e.
which performers are involved in the process model and the way they are related.

Organizational mining focuses on the organization perspective by learning
more about people, machines, organizational roles, work distribution and work
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patterns [10]. Song and van der Aalst [10], seminally, introduced the social net-
work analysis as a comprehensive approach towards organizational mining. The
nodes in a social resource network correspond to organizational entities which
are, in general, one-to-one associated with resources. The arcs in a social re-
source network correspond to relationships between such organizational entities.
Various ways have been developed in [13], in order to construct social resource
networks from event logs. Quantifying the similarity of two resources is just one
of many ways of constructing a social network. Every resource can be associated
with a profile, i.e. a vector that describes the relevant features of a resource,
while the distance between two profiles can be quantified by using well-known
distance measures. A few studies [14, 13] investigated how social networks anal-
ysis can be tailored for organizational mining. They mainly base on converting
an event log into a social network of resources and generating social network
metrics, in order to determine relevant organizational patterns. For example,
between (a ratio based on the number of geodesic paths visiting a given node)
can be used to find possible bottlenecks.

On the other hand, the discovery of organizational patterns cannot neglect
that one of the most relevant features of social networks is the community struc-
ture of the network [8], i.e. the organization of nodes in communities, with many
arcs joining nodes of the same cluster and comparatively few arcs joining nodes of
different communities. Such communities can be considered as fairly independent
compartments (namely organizational structure) of a network, playing a similar
role. Based upon the idea that identifying communities in a network technically
is finding node clusters in graphs, Song and van der Aalst [10] applied vari-
ous clustering algorithms, in order to discover similar resources grouped in the
same organizational structure. However, network data pose specific challenges to
classical clustering algorithms [5] that we cannot neglect when looking for organi-
zational patterns in process mining. Traditional clustering works on the distance
or similarity matrix, but network data structure leads to specific algorithms
using the graph property directly (k-clique, quasi-clique, vertex-betweenness,
edge-betweeness etc).

Several community detection algorithms, exploiting graph information, have
been investigated in social network analysis (see [8, 4] for recent surveys). How-
ever, to the best of our knowledge, performances of these algorithms are still
unexplored in the organization perspective of the process mining scenario. A
further limit of the seminal research of Song and van der Aalst [10] is that they
used clustering to detect communities of resources in an event log, which was
processed as a static, finite dataset. However, this static view can be restrictive,
as it neglects the real case of an event log that is continuously fed with new events
generated from (new) running traces. On the other hand, a dynamic event log
is expected to feed a dynamic social resource network, which may change over
time (new resources are active, old resources are inactive). This poses the process
mining problem of discovering and tracking changes in resource communities (or-
ganization structures) of a business process. This problem is also consistent with
a recent trend of research [11, 3, 7] in social network analysis, which has started
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to consider the problem of tracking the progress of communities over time in a
dynamic social network.

In this paper, we formalize an event-based model of the log that is handled
as a stream of events. We address the task of discovering and tracking time
evolving resource communities in process mining. The stream is produced by
several running traces of a specific business process. Every event in the stream is
time stamped, belongs to one running trace, is performed by a specific resource
and executes a certain activity. A time-based window model is used to decom-
pose the stream into consecutive windows. We formulate a two-stepped stream
learning framework, named TOSTracker (Time-evolving Organizational Struc-
ture Tracker), in order to perform organizational mining of streamed resources of
a business process. In the on-line phase, event data produced by running traces
are queried, in order to extract a social resource network, while a community
detection algorithm (i.e. Louvain algorithm [1]) is applied, in order to determine
communities covering specific organizational roles. It is noteworthy that, in or-
der to detect “overlapping” communities, we investigate the idea representing
the arcs of the social resource network as nodes of a linear network and apply
Louvain algorithm to this linear network. In the off-line phase, the evolution
(e.g. birth, death, merge, split, contraction and expansion) of discovered time-
evolving communities is tracked over time.

The paper is organized as follows. In Section 2, we report basic concepts of
this study, while in Section 3 we describe the organizational mining framework.
In Section 4, we analyze the performances of this framework in a case study with
real data. Finally, conclusions are drawn and future works are sketched.

2 Basics

The premise is that an event log L is a set of events concerning a certain business
process type P. An event ε(tid, a, r, t) is characterized by a set of mandatory
characteristics, that is, the event corresponds to an activity a, is triggered by a
resource r and has a timestamp t that represents date and time of occurrence. In
addition, each event in the log is linked to a particular trace tid and is globally
unique. A trace T represents the execution of a business process instance. It is
a finite sequence of distinct events, that is,

T = ε(tid, a1, r1, t1), ε(tid, a2, r2, t2), . . . , ε(tid, an, rn, tn), (1)

such that all events of ε(tid, ai, ri, ti) ∈ T are linked to a specific trace tid, while
time is non-decreasing in the trace (i.e. for 1 ≤ i < j ≤ n : ti ≤ tj ). According
to this definition of trace, an event log is traditionally dealt as a static bag of
full traces of a specific business process [12]. An example showing a fragment of
an event log, organized around the concept of trace, is reported in Table 1.

In this paper, we move from a static perspective to a dynamic perspective
when handling event logs. We consider an event log as a dynamic dataset that
is continuously fed with new events generated by traces, which are still running.
This allows us to handle an event log according to an event stream model. In
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Table 1. A fragment of an example event log. Each event is linked to a specific trace.
It corresponds to an activity, has a timestamp and is triggered by a resource.

TraceId Activity Timestamp Resource
1 Register request (R) 2010-12-30:11:02 Pete
1 Examine throughly (ET) 2010-12-31:10:06 Sue
1 Check ticket (CT) 2011-01-05:15:12 Mike
1 Decide (D) 2011-01-06:11:18 Sara
1 Reject request (RR) 2011-01-07:14:24 Pete
2 Register request (R) 2010-12-30:11:32 Mike
2 Check ticket (CT) 2010-12-30:12:12 Mike
2 Examine causally (EC) 2010-12-30:14:16 Pete
2 Check ticket (CT) 2010-12-31:15:31 Pete
2 Decide (D) 2011-01-05:11:22 Sara
2 Pay compensation (PC) 2011-01-08:12:05 Ellen
3 Register request (R) 2010-12-30:14:32 Pete
3 . . . . . . . . .
. . . . . . . . . . . .

particular, an event stream S is an ordered, unbounded sequence of time stamped
events:

S = ε(tid1, a1, r1, t1), ε(tid2, a2, r2, t2), . . . , ε(tidi, ai, ri, ti), . . . (2)

where events of the stream arrive sequentially, at consecutive time points (i.e.
ti ≤ ti+1), from the bag of running traces of business process P . The bag of
running traces may change over time, since old executions can be completed,
while new executions can be started at a certain time point. The event stream
associated with the fragment of event log reported in Table 1 is shown in Table
2.

An event stream, like any data stream, is unbounded in length. It is imprac-
tical to query all the data of a stream. Windows are commonly used stream
approaches to query open-ended data. Instead of computing an answer over the
whole data stream, the query (or operator) is computed, maybe several times,
over a finite subset of events. Several window models are defined in the literature.
In this study, we consider the time-based window model [2], which decomposes
an event stream into consecutive (non overlapping) windows of fixed temporal
size. When a window is completed, it is queried. The answer is stored in a data
synopsis for the mining phase, while the windowed data are discarded. Formally,
let ∆(T ) be the window temporal size of the model, a time-based window model
decomposes a stream S into non overlapping windows,

S(∆(T )) = t→ t+∆(T ), t+∆(T )→ t+2∆(T ), . . . , t+(j−1)∆(T )→ t+j∆(T ), . . .
(3)

so that every window t + (j − 1)∆(T ) → t + j∆(T ) selects stream events
ε(tidi, ai, ti, ri) ∈ S acquired at each time point t ∈ [t+ (j− 1)∆(T ), t+ j∆(T )[.

As a query operator, we consider a social resource network constructor. Con-
sequently, as a data synopsis for the data storage, we use a weighted graph. The
nodes of this social network (or equivalently graph data synopsis) correspond
to resources triggering one or more events in the data window. Each resource is
associated with a resource-activity profile that represents the number of times a
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Table 2. The stream model of the event log reported in Table 1. The event stream is
divided into consecutive windows, which are 24 hours long according to the time-based
window model with ∆(t) = 24h.

TraceId Activity Timestamp Resource
1 Register request (R) 2010-12-30:11:02 Pete
2 Register request (R) 2010-12-30:11:32 Mike
2 Check ticket (CT) 2010-12-30:12:12 Mike
2 Examine causally (EC) 2010-12-30:14:16 Pete
3 Register request (R) 2010-12-30:14:32 Pete
2 Check ticket (CT) 2010-12-31:15:31 Pete
1 Examine throughly (ET) 2010-12-31:10:06 Sue
2 Decide (D) 2011-01-05:11:22 Sara
1 Check ticket (CT) 2011-01-05:15:12 Mike
1 Decide (D) 2011-01-06:11:18 Sara
1 Reject request (RR) 2011-01-07:14:24 Pete
2 Pay compensation (PC) 2011-01-08:12:05 Ellen
. . . . . . . . . . . .

Fig. 1. The activity resource profile of Pete and Mike (left side). Both are resources
active in the data window [2010-12-30:0:00, 2010-12-30:24:00] of the stream reported
in Table 2. The social resource network extracted from this data window (right side)
contains two nodes associated to resources Pete and Mike, as well as an arc connecting
these resources. The weight associated to the arc is the Pearson correlation coefficient
computed between the activity resource profiles of the edged nodes.

Resource Register Request Check ticket Examine Causally
Mike 1 1 0
Pete 2 1 1

resource performs an activity in the data window. Arcs between nodes are asso-
ciated with weights that express the importance of the relations. As in [10], for
each pair of resources ri and rj , we compute the Pearson correlation coefficient of
the resource-activity profiles, which are associated with ri and rj , respectively.

Formally, w(ri, rj) =

∑
A

ri(A)rj(A)− nrirj
√√√√∑

A

ri(A)2 − nri2
√√√√∑

A

rj(A)2 − nrj2
where A denotes

an activity associated with the resource profiles, ri(A) (rj(A)) is the number of

times A is performed by ri (rj) in the data window, ri(A) (rj(A)) is the average

ri(A) = 1
n

∑
A

ri(A) (rj(A) = 1
n

∑
A

rj(A)) and n is the number of activities in

the resource profile. We rank potential arcs according to the Pearson correlation
values associated with. Arcs associated with the top p ranked Pearson correlation
are, finally, added to the graph data synopsis. An example of a social resource
network is reported in Figure 1. Alternative metrics, which can be computed to
estimate the weight of an arc, can monitor handover of work or subcontracting
[10].



31

3 Time-evolving Organization Structure Tracker

The organizational mining framework, called TOSTracker, operates in two phases.
The on-line phase consumes events as they arrive from the event stream and an-
alyzes the buffered events, window-by-window, in order to determine a social
resource network, which is stored in a graph data synopsis. For each window,
(overlapping) communities are detected from the social resource network stored
in the graph-based data synopsis (see details in Section 2). The set of resource
communities is then discovered from this data synopsis as a model of the orga-
nization structure of the business process along the time horizon associated to
the processed event window. Since this resource community model is stored in a
database, while windowed events are definitely discarded, resource communities
represent the organizational knowledge for the future off-line query phase. The
off-line phase, which is repeatable, tracks the evolution of resource communities
discovered along a query time horizon and retrieved from the database.

3.1 Resource community detection

Resource community detection is performed by resorting to Louvain algorithm
[1]. This is a greedy optimization that attempts to optimize the “modularity” of
a partition of the network.

The modularity is a measure of the structure of a network. It is designed
to measure the strength of division of a network into communities (or clusters).
Formally, modularity is the fraction of the arcs that fall within the given com-
munities minus the expected such fraction if edges were distributed at random.
So, for a given division of the network’s nodes into some communities, modu-
larity reflects the concentration of arcs within modules compared with random
distribution of arcs between all nodes regardless of communities. Networks with
high modularity have dense connections between the nodes within communities,
but sparse connections between nodes in different communities. In this study,
the randomization of the arcs is done according to the Configuration model pre-
sented in [6], as it allows us to generate a randomization preserving the node
degrees of the original network. The modularity is computed according to the
measure of Reichardt-Bornholdt [9].

Let G(N ,A) be a network, N be the set of nodes and A be the set of arcs. The
optimization of modularity is performed in two steps. In the first step, Louvain
algorithm looks for “small” communities by optimizing modularity locally. So
it, initially, assigns a different community to each node u ∈ N . Hence, in this
initial partition, there are as many communities as there are nodes. Then, for
each node u ∈ N , Louvain algorithm considers neighbors v of u (i.e. each v is
edged to u in A) and evaluates the gain of modularity that would take place
in the network by transferring u from its community to the the community
of v. The node u is, finally, transferred to the community for which this gain
is positive and maximum. If no positive gain is possible, it stays in its original
community. This process is applied repeatedly and sequentially for all nodes until
no further improvement can be achieved and the first phase is then complete.
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(a) social resource network (b) Linear network

(c) social resource network (d) Linear network

Fig. 2. Overlapping resource community discovery: the social resource network (see
Figure 2(a)) is transformed into the linear network (see Figure 2(b)). Disjoint com-
munities discovered by Louvain algorithm in the linear network (see Figure 2(c)) are
mapped into overlapping communities of resources (see Figure 2(d)). We note that
node c of the social resource network belongs to the red community with degree 0.75
and to the blue community with the degree 0.25.

In the second step, Louvain algorithm aggregates nodes belonging to the same
community and builds a new network whose nodes are the communities. This
step of the algorithm consists in building a new network whose nodes are now
the communities found during the first phase. The weights of the arc edging two
community nodes is given by the sum of the weight of the arcs between nodes
in the corresponding two communities. Once this new network is computed, the
first step of the algorithm is applied to the resulting weighted network. In this
way, the two steps are repeated iteratively until a maximum of modularity is
attained and a hierarchy of communities is produced.

We note that Louvain algorithm is an efficient and easy-to-implement algo-
rithm for identifying communities in networks. However, it allows us to detect
only “disjoint” communities. In contrast, organizational structures of a business
process may be overlapping in a social resource network (i.e. a resource may
place two roles in the same business process). In order to discover overlapping
resource communities, we have applied Louvain algorithm to the linear network
that is constructed from the social resource network. This linear network is con-
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structed by representing the arcs of the social resource network as nodes of the
linear network. Let u and v be two nodes of the linear network, so that u de-
notes the arc (ui, uj , wu) of the social resource network, while v denotes the
arc (vi, vj , wv) of the social resource network. There is an arc (u, v, w) in the
linear network iff arcs (ui, uj , wu) and (vi, vj , wv) share one vertex in the social
resource network (i.e. ui = vi or ui = vj or uj = vi or uj = vj). Let x be the
vertex shared between (ui, uj , wu) and (vi, vj , wv), weight w = wu/(deg(x)−wv)
where the deg(x) is the sum of weights associated to arcs incoming/outcoming
x in the social resource network (see Figures 2(a)-2(b)).

Disjoint communities discovered in the linear network are then mapped into
possibly overlapping communities discovered in the social resource network. A
node ui of the social resource network belongs to every community discovered
in the linear network, which groups at least one node u of the linear network,
so that u is associated it an arc of the social resource network with a vertex
in ui (see Figures 2(c)-2(d)). Let ui a node of the social resource network, the
degree according to the resource ui belongs to a community C can be computed
as follows:

degree(ui, C) =
|{C ′ ∈ Cui

|C ′ = C}|
|{Cui}|

(4)

where Cui
is the set of communities assigned to arcs of Iui

in the linear network,
while Iui

is the set of arcs of the social resource network incoming/outcoming
ui (see Figure 2(d)).

3.2 Tracking evolutions of resource communities

A dynamic resource community is represented as a time line, that is, a sequence
of (evolving) resource communities, ordered by time, with at least one resource
community for each time point t. The evolutions of dynamic resource commu-
nities along their time line is expressed in terms of birth, death, merge, split,
expansion and contraction [3] (see Figure 3). Intuitively, the birth event describes
a new resource community observed at time t with no corresponding resource
community in the set of communities already tracked. A new community is cre-
ated with time line starting at the birth time. The death event describes the
dissolution of a resource community that does not appear for several consecu-
tive time points. The timeline of this community ends when it disappears. The
merge event occurs when two or more distinct resource communities observed at
time t− 1 can be similar to a single community at time t. A branch is added to
connect the single communities at time t− 1 to the merged community created
at time t . The single communities, subsequently, share the same time line. The
split event occurs when a single resource community present at time t − 1 can
be similar to two or more distinct resource communities at time t. A branching
occurs from the starting community to the split ones with the creation of an ad-
ditional resource community that shares the timeline of up to time t−1, but has
a distinct timeline from time t onwards. The expansion of a resource community
occurs when its cardinality grows at time t. The contraction of a resource com-
munity occurs when its cardinality decreases at time t. The Jaccard coefficient
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Fig. 3. The time line of the evolutions of dynamic resource communities

can be computed, in order to estimate the similarity between communities and
detect these events.

The evolution is tracked according to the algorithm described in [3]. This
algorithm is independent on the algorithm selected, in order to discover online
the resource communities. It is based on the analysis of the degree of similarity
between pairs of communities discovered at consecutive time points. The input is
a time series T of resource community sets (i.e. C1, C2, . . . , Ct, . . . , Cn), where each
set Ct represents the organizational structure (i.e. set of resource communities)
extracted over a specific time horizon and time stamped with t in T .

The tracking algorithm is two stepped. In the initialization phase, the algo-
rithm constructs a dynamic resource community for each resource community
C ∈ C1. The same community is also added to the set of frontier communities F .
In the mining step, the algorithm iteratively analyzes each organization struc-
ture Ct (with t = 2, 3, n) by computing the similarity between communities of Ct
and frontier communities of F .

Formally, for every C ∈ Ct and CF ∈ F , jaccard(C,CF ) is computed with
jaccard(·, ·) the Jaccard coefficient. The compared communities are similar if
and only if their Jaccard coefficient exceeds a user-defined threshold σ. We note
that the output of the similarity computation may reveal series of community
evolution events. These events are detected, in order to update accordingly the
time lines of the dynamic resource communities, as well as the set of frontier
communities. Let us consider C ∈ Ct. If there is no frontier resource commu-
nity CF ∈ F so that jaccard(C,CF ) ≥ σ then a birth event is happened. A
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new dynamic community containing C is created. If there is one and only one
frontier resource community CF ∈ F so that jaccard(C,CF ) ≥ σ, this indicates
the continuation of C. If there are two or more frontier resource community
CF1 , . . . , CFk

∈ F so that jaccard(C,CFi) ≥ σ (i = 1, 2, . . . , k), then a merge
event is happened. The new merged community is connected to the time lines of
the frontier communities contributing to the merge. On the other hand, let us
consider CF ∈ F . If there are two or more resource community C1, . . . , Ck ∈ Ct
so that jaccard(Ci, CF ) ≥ σ (i = 1, 2, . . . , k), then a split event is happened. Ev-
ery new split community is connected to the time line of the frontier community
that has originated the split. Finally let us consider the pair (C,CF ) ∈ Ct × F
so that jaccard(C,CF ) ≥ σ then if cardinality(C − CF ) > 0, then an expan-
sion event is happened; if cardinality(CF − C) > 0, then a contraction event is
manifested.

(a) Number of (overlapping) communities (b) Modularity

Fig. 4. Organizational structure discovery by varying the resolution parameter RB of
Reichardt-Bornholdt measure between 0.5, 1, 1.5 and 2.

4 Case study

We have evaluated performances of the proposed framework by considering real
traces of a business process taken from a Dutch Financial Institute and pro-
vided in the Business Processing Intelligence Challenge 2012. 1 The log contains
262.200 events from September 27, 2011 to March 10, 2012, 69 resources, in
13.087 traces. The business process is an application process for a personal loan
or overdraft within a global financing organization. The event stream has been
processed with time-based window model with ∆(T ) = 15 days. The resource
social network of every window is buffered into a graph data synopsis, where

1 http://www.win.tue.nl/bpi/2012/challenge
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Fig. 5. A fragment of the time line of the time-evolving organizational structures.

nodes are associated with resources triggering an event in the window, arcs be-
tween nodes are materialized if the weight associated with the arc is in the
top p = 75% Pearson correlation coefficients computed between acivity-resource
profiles of nodes (see details in Section 2). The overlapping resource commu-
nities of the organizational structure are discovered in the data synopsis where
event data are buffered, according to the algorithm described in Section 3.1. The
evolution of the time-evolving organizational structure of a process is tracked ac-
cording to the algorithm described in Section 3.2. As Lovain algorithm is run
with Reichardt-Bornholdt measure [9] that requires a resolution parameter RB,
we perform the community discovery by varying RB between 0.5, 1, 1.5 and
2. The number of discovered (overlapping) communities of resources is shown
in Figure 4(a), while the modularity of the discovered organization structure is
shown in Figure 4(b). We note that the highest modularity is achieved when
the lowest number of communities is detected per window in correspondence
of RB = 0.5. Finally, we track the evolution of the organizational structure
discovered with RB = 0.5. An example of evolutions tracked in the discovered
time-evolving organization structure is shown in Figure 5.

5 Conclusions

In this paper, we have described a framework to perform organizational mining
of streamed resources of a business process. The stream is processed according to
a time-based window model. Events batched in a window are queried, in order to
extract a social resource network. A community detection algorithm is applied,
in order to determine (overlapping) communities of resources covering specific
organizational roles. The evolution (e.g. birth, death, merge, split, contraction
and expansion) of the discovered communities is tracked over time. In this study,
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social resource network is represented as undirected graph. As future work, we
plan to extend this framework to process directed social resource networks.
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Abstract. Online ensemble methods have been very successful to cre-
ate accurate models against data streams that are susceptible to concept
drift. The success of data stream mining has allowed diverse users to
analyse their data in multiple domains, ranging from monitoring stock
markets to analysing network traffic and exploring ATM transactions.
Increasingly, data stream mining applications are running on mobile de-
vices, utilizing the variety of data generated by sensors and network
technologies. Subsequently, there has been a surge in interest in mobile
(or so-called pocket) data stream mining, aiming to construct near real-
time models. However, it follows that the computational resources are
limited and that there is a need to adapt analytics to map the resource
usage requirements. In this context, the resultant models produced by
such algorithms should thus not only be highly accurate and be able to
swiftly adapt to changes. Rather, the data mining techniques should also
be fast, scalable, and efficient in terms of resource allocation. It then be-
comes important to consider Return on Investment (ROI) issues such as
storage space needs and memory utilization. This paper introduces the
Adaptive Ensemble Size (AES) algorithm, an extension of the Online
Bagging method, to address this issue. Our AES method dynamically
adapts the sizes of ensembles, based on the most recent memory usage
requirements. Our results when comparing our AES algorithm with the
state-of-the-art indicate that we are able to obtain a high Return on
Investment (ROI) without compromising on the accuracy of the results.

Keywords: data streams, metalearning, adaptive ensemble size, return
on investment, OzaBag

1 Introduction

In this era of the Internet of Things and Big Data, a proliferation of connected
devices continuously produce massive amounts of fast evolving streaming data.
A number of online learning methods have been highly successful in constructing
accurate models against massive data streams. Success stories include retail store
sales streamlining, chemical plant shutdown time prediction, and stock market
monitoring, amongst others [8, 17]. Currently, the development of techniques to
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facilitate mobile (or pocket) data stream mining is an emerging area of research
with applications in the areas of business, telemedicine and security, amongst
others. In this setting, the resultant models produced by data stream mining
algorithms should not only be highly accurate and be able to swiftly adapt
to changes. Rather, the learning techniques should also be efficient in terms of
resource allocation. It then becomes important to consider issues such as storage
space needs and memory utilization. This is especially relevant when we aim to
build personalized, near-instant models for Big Data on small devices [8, 10].

This research addresses this emerging need for accurate, yet efficient, model
construction [1,15]. Our aim is to take an adaptive approach to resource alloca-
tion during the mining process. Consideration is given to the memory available
to the algorithm and the speed at which data is processed. To this end, we in-
troduce the Adaptive Ensemble Size (AES) technique that extends the Online
Bagging (OzaBag) online ensemble learning algorithm. Our AES method takes
advantage of the memory utilization cost, in order to vary the ensemble size
during the data mining process. We aim to minimize the memory usage, while
maintaining highly accurate models with a high utility. The reasoning behind
our approach is based on the following observation. Intuitively, a higher change
in memory utilization during stream classification potentially indicates a shift
in the data at that particular stream window, which may occur as a result of
concept drift. In this case, our AES algorithm increases the ensemble size in an
attempt to maintain higher accuracies. The inverse is also true, in that we may
be able to reduce the ensemble size, with no or little cost in terms of accuracies,
when the properties of the data remain stable.

This paper is organized as follows. Section 2 introduces background work.
In Section 3, we detail the Adaptive Ensemble Size (AES) algorithm. Section
4 discusses our experimental evaluation and results. Finally, Section 5 presents
our conclusion and highlights future work.

2 Background

Online learners are well suited for data streams because of their ability to pro-
cess chunks of data sequentially and to produce models from partial datasets. In
online learning, an algorithm learns one instance at a time. This characteristic
makes it an ideal learner for a streaming environment in which the instances
arrive one after the other. Oza and Russell’s Online Bootstrap Aggregating (Oz-
aBag) is an online version of the well-known Bagging ensemble learning algo-
rithm [5,13,14]. For a datasetN , while the Bagging algorithm assumes a binomial
distribution because of the finite size of the dataset in memory, OzaBag assumes
a Poisson distribution because of the continuous nature (N →∞) of the stream.
Similar to Bagging algorithm, the most predicted class amongst the models is
assigned to a new instance of the classification problem. OzaBag with ADWIN
was presented as an extension of the OzaBag algorithm, in order to facilitate
concept drift by increasing the rate of resampling [2]. Thus, ADWIN is in essence
a change detector and estimator that keeps a variable-length window of recently
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seen items. The maximal length of the window must be statistically consistent
with the following hypothesis: there has been no change in the average value
inside the window [7]. The two variants of the OzaBag algorithm is available in
the Massive On-line Analysis (MOA) data stream mining framework [4]. In our
research, we used the Hoeffding Tree method as base learner [7].

We studied the cost of building and applying data mining models while taking
the memory usage of the ensemble, as well as the ensemble size, into considera-
tion. To this end, we performed a series of preliminary experiments in order to
observe the effects of concept drift on memory utilization. We also investigated
the influence of ensemble sizes on the accuracy.

2.1 Size of Ensemble Object in Memory

In our work, we start from the observation that the size of an ensemble object
in memory tends to be proportional to changes in characteristics of the learning
instances. In this section, we present some preliminary experimentation in order
to further ascertain this claim. To this end, we simulated two artificial data
streams with MOA, using the LED data stream generator [4]. In our experiment,
one stream is simulated with concept drift while the other is not. We conducted
further experiments where we induced, and removed, concept drift at regular
intervals as shown in Figure 2.
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Fig. 1: Memory Increase in the Data Stream

Figure 1, shows the memory usage and memory change as more instances are
evaluated. The graphs indicate the memory usage while the learning process is
being completed. As we can observe from Figure 1a, in a steady stream with no
randomness or drift, the memory usage rapidly stagnates and becomes stable, as
every new ensemble presents exactly the same size than the previous one. On the
other hand, in Figure 1b, there is an increase in memory consumption in a stream
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Fig. 2: Memory Change with Concept Drift induced at regular intervals

with concept drift. Also, generally speaking, both OzaBag and OzaBagADWIN
have a similar memory usage, for this dataset. Finally, Figure 2 shows that there
is a relationship between the induction of concept drift and memory utilization.

2.2 Ensemble Size versus Utility

Recall that our goal is to find a trade-off between accuracy and resource alloca-
tion, in a data stream setting. That is, our aim is follow a ’waste not, want not’
approach to online learning. To that end, our algorithm is designed to maintain
high accuracies while utilizing only the amount of resources that is required.
The question of finding a trade-off between ensemble size and accuracy has been
studied in [9] and [12]. It follows that the most appropriate answer is domain
dependent and is influenced by numerous factors. Following [9] and [12], we
performed experiments against the KDD CUP 1999 dataset, which is based on
the DARPA98 network capture. The original raw training dataset represents
7 weeks of network traffic, containing 4,898,431 connection records. The test
dataset comprises 2 weeks of data, corresponding to 311,029 connection records.
Both contains 42 features, including the label. We used the OzaBag and OzaBa-
gADWIN algorithms, varying the ensemble sizes from 10 to 100, by intervals of
10, with Hoeffding Trees as base learners. Figure 3a, shows the error (100%−
accuracy) plotted against the ensemble size. As shown in the figure, the error
rates are comparable against all ensemble sizes. That is, there is little gain in em-
ploying more base learners against this dataset. Figure 3b further shows that the
computational cost of the algorithms dramatically increases when the ensemble
size exceeds 20.

From Table 1, we further confirm that the computational cost of the algo-
rithms considerably increases when the ensemble size exceeds 20. For instance, if
we consider the lower cost OzaBag algorithm as an example, we notice from the
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Fig. 3: Error and RAM-Hour With Increase in Ensemble Size

Table 1: Error, Time and RAM-Hour for Different Ensemble Sizes
OzaBag Classifier OzaBagADWIN Classifier

Size % Error Time RAM-Hr % Error Time RAM-Hr

10 11.6899 258.1505 3.7057 11.1555 289.2415 4.0624

20 11.1423 545.5511 15.8006 10.7695 630.9148 19.4642

30 11.2444 828.5681 35.5382 10.7632 931.4664 39.7808

40 11.1055 1093.4734 62.5377 10.5776 1229.6467 70.7882

50 10.8791 1420.5763 102.2533 10.5187 1588.2306 114.2099

60 10.9803 1920.8247 175.1958 10.9398 2154.3582 188.7208

70 10.8465 2474.9559 252.9820 10.3325 2755.5237 288.2580

80 10.9129 3098.9755 354.4388 10.7108 3414.0819 375.2574

90 10.7657 2675.1987 348.0295 10.3227 3033.8762 413.6293

100 10.9787 3006.8569 435.9619 10.6252 3333.2110 477.4898

? Time is measured in CPU Seconds

table that a variation of the ensemble size from 10 to 20 yields a small accuracy
(k+) improvement of 0.5474% but at the expense of a four folds increase in terms
of cost. When the ensemble size is increased to 40, the accuracy increases by a
meager 0.0364% but at the expense of a four folds increase in terms of cost as
compared to an ensemble of size 20 and a seventeen folds increase as opposed to
an ensemble size of 10. Based on these observations, we conclude that increasing
the number of base learners often do not benefit the learning process, while it
has a detrimental effect on the allocation of computational resources.

3 Adaptive Ensemble Size Algorithm

This section details or AES algorithm, as depicted in Algorithm 1. Our method
adapts the size of the ensemble, depending on the memory cost of the current
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window. By varying the ensemble size, our aim is to maintain the accuracy of
the learning algorithm while guaranteeing high ROI [16].

Algorithm 1 AES Algorithm

Input: N is an evolving data stream (N →∞);
T is the training set drawn from N with examples x;
Y is the finite set of target class values y;
HT is the base learning algorithm (Hoeffding trees);
M is the number of models in the ensemble, with examples drawn from T ;
min and max ensemble size values (set to 10 and 25, respectively);

δ is the generalized Kronecker function: δ(a, b) :=

{
1 if a = b

0 if a 6= b

1: initialize A = 0
2: for all T drawn from N do
3: for all m = 1 to M do
4: Sm = random sample of size d drawn from T , with replacement
5: hm = model induced by HT from Sm

6: Compute average size of ensemble (bytes) → B
7: Set k = Poisson(1)
8: for all n = 1, 2, ..., k do
9: Update hm with current examples Sm ∈ T

10: if (B > A) & (M < max) then
11: M ←M + 1

12: if (B < A) & (M > min) then
13: M ←M − 1

14: A← B
Output: hypothesis: hfin(x) = argmaxy∈Y

∑M
m=1 δ(y, hm(x))

The AES algorithm begins by drawing a training window, T , from a stream
of evolving data, N . A total of M models (hm) are induced independently from
T . That is, we utilize an ensemble of models, hm, from a number of random
sample, Sm ∈ T , where m range from 1 to M . Recall that we use Hoeffding
Trees as base learners. For a new classification instance, the predicted class with
the highest number of votes is assigned to the new instance. The process samples
bootstrap replicates from the data in the stream, using the Poisson probability
distribution, and the models are continuously updated for each T .

At each classification instance, two variables, A and B, are maintained in
order to records the average size (in bytes) of the ensemble in memory. These
two parameters (A and B) are the previous and the current memory sizes of the
ensemble respectively, with A initially set to zero. After each update of T , a total
of M models (hm) are induced, and the average memory size of hm is stored in
B. For every iteration of the algorithm, the values of A and B are compared.
The size of the ensemble, M , is increased by 1 if B > A, since this implies that
more memory is being utilized in the current window, compared to the previous
window. On the other hand, the size of M is decreased by 1 if the value of B
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is smaller than the value of A, since it indicates that the memory utilization is
lower in the current window. This process continues as the data stream evolves.

We also implemented a variant of the AES algorithm called AES-ADWIN.
The main differences between AES and AES-ADWIN is that the rate of re-
sampling of AES-ADWIN is increased and that the windows A and B are of
variable-length. That is, the AES algorithm is modified so that it utilizes the
ADWIN change detection algorithm [3]. Subsequently, if ADWIN detects change
in the error rate of one of the models hi then we replace the model with the high-
est error with a new model.

In summary, our AES and AES-ADWIN methods are based on the obser-
vation that the increase in average memory usage points towards a potential
change in the data distribution, which may occur due to some form of concept
drift. When this happens, we increase the ensemble size in a bid to be pro-active
and to obtain a better classification result. The converse is also true. That is, a
decrease in memory usage of the ensemble indicates less difficulty in model con-
struction, so the ensemble size may potentially be reduced. The size of M is kept
between the allocated maximum and minimum values, i.e. min ≤ M ≤ max.
By varying the size of M as we have done in the AES algorithm, we are able
to conserve resources, without having to compromise on the accuracy of the
classification results, as will be shown in the next section.

4 Experimentation

We used six real life datasets from the UCI1 Machine Learning Repository in
our experimentation, namely KDD, IMDb, Forest Cover Type, Electricity and
Airline. All of these datasets are subject to concept drift.

Table 2: Summary of Datasets Used
Name # of Records # of Attributes Characteristics

KDD’99 (10%) 494,021 42 Numeric, Nominal

Poker Hand 829,201 11 Numeric, Nominal

IMDb 120,919 1002 Numeric

Forest Covertype 581,012 55 Numeric, Nominal

Electricity 45,312 9 Numeric, Nominal

Airline 539,383 8 Numeric, Nominal

All experiments were performed using MOA [4], with the prequential eval-
uation (or the so-called ’test then train’) method. The Kappa Statistics (k+)
was used as an accuracy measure since it has been shown to be particularly well
adapted to streams with concept drift [4]. Recall that we are interested in mea-
suring the Return on Investment (ROI) of the learning process. Recently, [16]
introduced a ROI measure, where the emphasis is on comparing adaptation

1 http://archive.ics.uci.edu/ml/
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strategies, rather than contrasting ensemble approaches. We adapted this mea-
sure to derive the mean ROI of the evaluation steps. This allows us to make direct
comparison between adapting and non-adapting algorithms and to measure the
ROI in between steps of processed instances:

ROI =
1

T ×N

T∑
i=1

N
γi
ψi

=
1

T

T∑
i=1

γi
ψi

(1)

where γi is the change in prediction accuracy (k+); ψi is the cost (RAM-Hr);
and T is the total number of windows.

4.1 Results

In this section, we present our experimental results against the six datasets
introduced in the previous section. Firstly, we turn our attention to memory
utilization, as shown in Figures 4 and 5. The top parts of the subfigures show how
the sizes of the AES and AES-ADWIN ensemble grow and shrink throughout
the learning process. The bottom sections indicate the memory usage of the
six classifiers we are employing, namely AES and AES-ADWIN (indicated in
red and blue), as well as two variations of OzaBag and OzaBagADWIN. The
first variation (Ozabag (10) and OzabagADWIN (10)) refer the default MOA
settings, while the second variation refers to the ensembles with sizes equal to the
number of base learners used by the AES and AES-ADWIN methods. Figures 4
and 5 clearly depicts that the sizes of the AES and AES-ADWIN ensembles vary
considerably throughout the learning process, as based on the memory utilization
within each window. The figures further show that the AES and AES-ADWIN
algorithms compare favourably, in terms of memory utilization, to their OzaBag
counterparts. This is the case even when the ensemble sizes increase to higher
than the average values.
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(b) Memory Plot for Forest Dataset
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(c) Memory Plot for Electricity Dataset
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(d) Memory Plot for Airline Dataset

Fig. 5: Change in Ensemble Size and Memory Utilization (B)

We further compare the methods in terms of accuracy and ROI values. In
these results, we show the average ensemble sizes we obtained, rounded to the
nearest whole number. We also present the values for OzaBag and OzaBagAD-
WIN for these average ensemble sizes. (Recall that OzaBag and OzaBagADWIN
contains a fixed, static number of base learners.) The default numbers of base
learners (10) for OzaBag and OzaBagADWIN also appear. A comparison of the
k+ accuracy results using the algorithms on the different datasets is shown in
Table 3.

As clearly shown by the table, all four algorithms present highly similar levels
of accuracy. The situation is quite different when the ROI is taken into account.
Indeed, as shown by Table 4, our AES algorithm presents by far the best results
in terms of ROI for all six (6) real life datasets. Our AES-ADWIN algorithm
appears in second place.

Finally, Figures 6 and 7 shows a graphical representation of the ROI at each
step of the mining process. One first notices that, for each dataset, there is ini-
tially a surge of the ROI. Such a behavior can be traced back to the initialization
of the evaluation process, when the accuracy is building up. Recall that we are
using the prequential evaluation method. This indicates that there is a rapid
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Table 3: Kappa Plus Statistics Median for the datasets
KDD’99 Poker IMDb Forest Electricity Airline

e.s k+ r e.s k+ r e.s k+ r e.s k+ r e.s k+ r e.s k+ r

OzaBag 10 88.0362 6 10 88.7212 4 10 87.8519 5 10 88.3543 6 10 88.4178 2 10 88.2179 4

AES 14 88.6391 2 15 89.0466 2 12 88.4434 3 14 88.8211 3 14 88.2528 4 12 88.2114 5

OzaBag 14 88.5790 3 15 88.9772 3 12 88.8997 1 14 89.0140 1 14 88.1120 5 12 88.2061 6

OzaBagADWIN 10 88.5542 4 10 88.7212 4 10 88.3559 4 10 88.3910 5 10 88.4178 2 10 88.3647 3

AES-ADWIN 12 88.0736 5 14 88.4064 5 14 87.7557 6 12 88.4043 4 15 88.3007 3 13 88.3848 2

OzaBagADWIN 12 89.1392 1 14 89.2080 1 14 88.4804 2 12 88.8891 2 15 88.9806 1 13 88.4034 1

? e.s = ensemble size; r = ranking (lower is better)

Table 4: ROI Comparison between the Algorithms
KDD’99 Poker IMDb Forest Electricity Airline

e.s ROI r e.s ROI r e.s ROI r e.s ROI r e.s ROI r e.s ROI r

AES 14 1.7207 1 15 4.0195 1 12 1.3558 1 14 0.6184 1 14 1.2899 1 12 0.3871 1

OzaBag 14 0.6557 3 15 2.2341 3 12 0.7991 3 14 0.4436 3 14 0.6790 3 12 0.1988 4

AES-ADWIN 12 0.7526 2 14 3.4481 2 14 0.8425 2 12 0.3732 4 15 1.1231 2 13 0.2344 3

OzaBagADWIN 12 0.3103 4 14 1.9285 4 14 0.5285 4 12 0.4511 2 15 0.5813 4 13 0.2477 2

? e.s = ensemble size; r = ranking (lower is better)

buildup in accuracy at this point, before the latter peaks. Then, the ROI rapidly
decreases, and remains essentially constant.

−30

−10

10

30

50

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Instance

R
O

I

AES

OzaBag (14)

AES−ADWIN

OzaBagADWIN (12)

(a) ROI Plot for KDD Dataset

−10

40

90

140

190

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Instance

R
O

I

AES

OzaBag (15)

AES−ADWIN

OzaBagADWIN (14)

(b) ROI Plot for Poker Dataset

0

20

40

60

80

100

100k 200k 300k 400k 500k 600k
Instance

R
O

I

AES

OzaBag (12)

AES−ADWIN

OzaBagADWIN (14)

(c) ROI Plot for IMDb Dataset

−40

−10

20

50

80

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Instance

R
O

I

AES

OzaBag (14)

AES−ADWIN

OzaBagADWIn (12)

(d) ROI Plot for Forest Dataset

Fig. 6: ROI Plots for KDD, Poker, IMDb and Forest Datasets



48

0

20

40

60

80

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Instance

R
O

I

AES

OzaBag (14)

AES−ADWIN

OzaBagADWIN (15)

(a) ROI Plot for Electricity Dataset

0

5

10

15

20

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Instance

R
O

I

AES

OzaBag (12)

AES−ADWIN

OzaBagADWIN (13)

(b) ROI Plot for Airline Datasets

Fig. 7: ROI Plots for Electricity and Airline Datasets

In summary, our results indicate that varying the ensemble size during on-
line learning is beneficial, in that the amount of resources employed does not
have a detrimental effect on the error rates. That is, the AES approach yields
comparable results, in terms of accuracies, while the overall resource utiliza-
tion, measured in terms of model construction time and memory utilization, is
lowered. We believe that this initial result is worth exploring further. We are
especially interested in extending our work to the area of mobile data mining,
where there is a need for real-time data analytics on small devices that are
susceptible to varying degrees and types of concept drift [6].

5 Conclusion

In a data stream setting, where we are potentially dealing with massive, fast
evolving data, it is important to consider the overall utility of the learning pro-
cess. This is especially relevant in a scenario where the resources are limited,
for instance mobile data mining applications. This paper presented an online
ensemble-based approach that adapts the size of an Online Bagging ensemble
during learning from data streams. This property allows for flexibility in terms
of resource usage and yields a high Return on Investment.

While our initial results are promising, a number of research avenues remain.
Specifically, our next step would be to extend our work to specific case studies
within the mobile data mining scenario. We are interested in exploring how the
AES algorithm would perform when the types and degrees of concept drifts
vary. More intelligent update rules, exploring different parameters will also be
explored.

In this research, we did not discuss other factors that may also affect cost-
sensitive adaptation, such as data labeling costs and economic utility consider-
ations. We would also be interested in utilizing other base learners and online
ensemble approaches such as Boosting and Random Subspace methods. Further
experimentation will also be done with artificial datasets, with different kinds of
concept drift induced at varying intervals.
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Abstract. The empowerment of the information technologies in many
real-world applications has opened to the possibility of tracking complex
and evolving phenomena and gather information able to describe such
phenomena. For instance, in bio-medical applications, we can monitor
a patient and collect data that range from his clinical picture to the
laboratory studies on biological products. In this scenario, studying the
possible alterations manifested over time becomes thus relevant and, in
life sciences, even determinant. In this paper, we investigate the task
of determining changes which are regularly repeated over time and we
propose a method based on two notions of patterns, emerging patterns
and periodic changes. The method works on a time-window model to the
end of i) capturing statistically evident changes and ii) detecting their
periodicity. We tested the method on real-world complex dynamic data
collected from the phenotypes of virus of the influenza A/H1N1.

1 Introduction

The advances in the development of hardware devices and information tech-
nologies has augmented the complexity of the applications in fields such as life
sciences, engineering and social sciences. The most prominent result lies in the
possibility of following and dealing with complex phenomena, whose investiga-
tion passes through the analysis of the data that being generated and collected.
Such data are high heterogeneous, characterized by different properties and com-
posed of several entities. Another degree of complexity is represented by the fact
that these applications often work in evolving scenarios, which leads to generate
data dynamic in nature. The analysis of complex and time-changing data can
provide us with tools able to deal with unexpected behaviors and understanding
the underlying dynamics. As proof of that, we can mention an extensive list of
techniques of data mining focused on complex dynamic data.

Mining changes in complex data is not a problem of immediate solution and
we could not directly apply traditional methods to such data because the exist-
ing approaches would tend to oversimplify the different sources of information of
the complex data. Indeed, changes in complex data can be originated from mul-
tiple and different factors, such as the structure, descriptive properties, entities
constituting the main complex objects. This seems to be the same considera-
tion which has stimulated recent works of change mining on structured evolving



51

data. For instance, the method proposed in [13] analyzes dynamic networks in
order to detect changes occurred at the level the labels of the edges, while in
[12], the same authors consider again dynamic networks but with the different
task of identifying changes in the number of the occurrences of sub-networks.
Changes can be searched also as variations of the global and local properties [7]
of evolving graphs.

In many applications, changes can be unpredictable, they can reveal unex-
pected variations or can be even evolutions already observed in past which are
newly repeated. The analysis of repetitive behaviors exhibited over time is not
a novel problem and the literature on the periodicity detection contributes to
it. The blueprint for most algorithms follows a frequent pattern-based frame-
work according which repetitive behaviors can be identified as regularly (peri-
odically) repeated sub-sequences in a lengthy sequence [9]. A common aspect
to these works is that the periodic repetitions concerns stationary data (e.g.,
sub-sequences) that are replicated over time, while no attempt has been done
for detecting periodic changes, that is, dynamic behaviors which regularly recur.

The identification of periodic changes cannot be trivially faced by resorting
to any algorithm of discovery of periodic patterns due to several reasons. First,
the periodic patterns describe repeated behaviors which are static, thus their
periods would not refer to changes. Second, searching changes among the periodic
patterns could lead to work on a restricted search space. Third, different periodic
patterns could depict changes but their periods could be not aligned, therefore
the problem would require further computation to determine the periodicity of
the changes from the periodicity of the patterns. Fourth, the existing algorithms
work on a sequence-based representation, which, in the case of complex data,
tends to over-simplify the multiple and different aspects of the data with the risk
of omitting periodic behaviors and changes originating from the inner entities.

In this paper, we investigate the task of capturing statistically evident changes
emerged over time and tracking their repeatability. The proposed method adopts
a model of analysis based on time-windows and uses a frequent pattern mining
framework as mean for abstracting and summarizing the data. This enables us to
search changes as differences between frequent patterns. Since frequency denotes
regularity, patterns can provide empirical evidence about real changes. Frequent
patterns are discovered from the complex data collected by time-windows and
thus they reflect co-occurrences in terms of structure, properties and inner en-
tities of the complex objects that are frequent in specific intervals of time. The
changes which can emerge in this setting regard differences between the frequent
patterns of two time-windows. In particular, we are interested in changes which
are manifested as significant variations of the frequency of the patterns from a
time-window to the next one. Not all the changes are considered, but only those
which are replicated over time. We extend the concept of Emerging Patterns in
order to depict changes between two time-windows and introduce the notion of
Periodic Changes in order to characterize changes regularly repeated over time.

The paper is organized as follows. In Section 2 we report necessary notions,
while the method is described in Section 3. An application to the phenotype data



52

in Virology is described in Section 4. Then, we overview the related literature
(Section 5) and finally conclusions close the paper (Section 6).

2 Basics and Definitions

Most of the methods reported in the literature overcome the difficulty of ac-
counting for the multiple and different aspects of the complex data objects with
formalisms based on vectors or attribute-value sets, which model only global
properties of the data. These solutions could be too limiting because they ne-
glect the intrinsic structure of the complex data, entities that constitute the
main complex object and the inner relationships existing among the entities.
To overcome this drawback, we use the (multi-) relational setting [6], which has
been argued to be the most suitable formalism for representing complex data.

In the relational setting, complex data and the constituting entities can play
different roles in the analysis. We can distinguish them between target objects
(TOs) and non-target objects (NTOs). The former are the main subjects of
the analysis, while the latter are objects relevant for the current problem and
associated with the former.

Let {t1 . . . tn} be a a sequence of time-points. At each time-point ti, a set of
instances (TOs) is collected. A time-window τ is a sequence of consecutive time-
points {ti, . . . , tj} (t1 ≤ ti, tj ≤ tn) which we denote as [ti; ti+w]. The width w of
a time-window τ = {ti, . . . , ti+w} is the number of time-points in τ , i.e. w = j−
i+1. Two time-windows τ and τ ′ are consecutive if τ = {ti, . . . , ti+w−1} and τ ′ =
{ti+w . . . ti+2w−1}. Two pairs of consecutive time-windows (τ ,τ ′) and (τ ′′,τ ′′′) are
δ-separated if (j + w) − (i + w) ≤ δ (δ >0, δ ≥ w,) with τ = {ti, . . . , ti+w−1},
τ ′ = {ti+w . . . ti+2w−1}, τ ′′ = {tj . . . tj+w−1}, and τ ′′′ = {tj+w . . . tj+2w−1}).
Two pairs of consecutive time-windows (τ ,τ ′) and (τ ′′,τ ′′′) are chronologically
ordered if (j+w) > (i+w). We assume that all the time-windows have the same
width w and we use the notation τhk

to refer to a time-window and the notation
(τh1 , τh2) to indicate a pair of consecutive time-windows.

Both TOs and NTOs can be represented in Datalog language as sets of
ground atoms [3]. A ground atom is an n-ary logic predicate symbol applied to
n constants. We consider three categories of logic predicates: 1)key predicate,
which identifies the TOs, 2)property predicates, which define the value taken by
a property of a TO or of a NTOs, and 3)structural predicates, which relate TOs
with their NTOs or relate the NTOs each other.

In the following, we report an example of target object in the domain of
virology. Virology is one of the fields in which rich sets of complex dynamic data
can be collected.

virus(p1). epidemiological condition(p1,enhanced Trasmission to Human). epidemiolog-

ical condition(p1,severity). epidemiological condition(p1,increased Virulence)).

clinical condition(p1,adamantane resistance). clinical condition(p1,oseltamivir resistance).

clinical condition(p1,polybasic HA Cleavage). dependent by(adamantane resistance,mutation).

variation of(mutation,protein M2). is a(mutation,v26F).
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where

– virus() is the key predicate which identifies the TO named as p1 ;
– epidemiological condition(,), clinical condition(,) are structural predicates

which relates the TO with theNTOs identified as enhanced Trasmission to Human,
severity, increased Virulence, adamantane resistance, oseltamivir resistance,
polybasic HA Cleavage;

– dependent by(,) is a structural predicate which relates the NTO adaman-
tane resistance with the NTO identified as mutation;

– variation of(,) is a structural predicate which relates the NTO mutation to
the NTO identified as protein M2

– is a(,) is a property predicate which relates the NTO mutation to the value
v26F

The following definitions are crucial for this work:

Definition 1. Relational pattern
A conjunction of atoms P = p0(t

1
0), p1(t

1
1, t

2
1), p2(t

1
2, t

2
2), . . . , pm(t1m, t

2
m), is a

relational pattern if p0 is the key predicate, pi, i = 1, . . . ,m is either a structural
predicate or a property predicate.

Terms tji are either constants, which correspond to values of property pred-
icates, or variables, which identify TOs or NTOs. Moreover, all variables are
linked to the variable used in the key predicate (according to the linkedness
property [14]).

A relational pattern P is characterized by a statistical parameter, namely
the support (denoted as supτhk

(P )), which denotes the relative frequency of P
in the time-window τhk

. It is computed as the number of TOs of τhk
in which

P occurs divided the total number of TOs of τhk
. When the support exceeds a

minimum user-defined threshold minSUP , P is said to be frequent.

Definition 2. Emerging pattern-EP

Let (τh1 ,τh2) be a pair of consecutive time-windows; P be a frequent relational
pattern in τh1 and in τh2 ; supτh1

(P ) and supτh2
(P ) be the support of the pattern

P in τh1
and in τh2

. P is an emerging pattern in (τh1
, τh2

) iff
supτh1

(P )

supτh2
(P ) ≥

minGR ∨ supτ2 (P )

supτ1 (P ) ≥ minGR

where, minGR (> 1) is a user-defined minimum threshold. The ratio
supτh1

(P )/supτh2
(P ) is denoted withGRτh1

,τh2
(P ) and it is called growth-rate of

P from τh1 to τh2 . WhenGRτh1
,τh2

(P ) exceedsminGR, we have that the support
of P decreases from τh1 to τh2 by a factor equal to the ratio supτh1

(P )/supτh2
(P ),

while when GRτh2
,τh1

(P ) exceedsminGR, the support of P increases by a factor
equal to supτh2

(P )/supτh1
(P ).

The concept of emerging patterns is not novel in the literature [5]. In its
classical formulation, it refers to the values of support of the same pattern which
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has been discovered in two different classes of data, while, in this work, we extend
it to represent the differences between the data collected in two intervals of time,
and therefore, we refer to the values of support of the same pattern which has
been discovered in two time-windows.
In the following, we report an example of emerging pattern.

P: phenotype(H),clinical condition(H,C),dependent by(C,M),variation of(M,N).

with τh1=[1991;1995], τh2=[1996;2000], sup[1991;1995](P ) = 0.8 and sup[1996;2000](P ) =
0.5. Here, the support of the pattern P decreases, whereby of the growth-rate
GR[1991;1995],[1996;2000](P ) is 1.6 (0.8/0.5). By supposing that minGR=1.5, the
pattern P is considered emerging in ([1991;1995],[1996;2000]).

Definition 3. Periodic change-PC

Let T : ⟨(τi1 , τi2), . . . , (τm1 , τm2)⟩ be a set of chronologically ordered pairs
of time-windows; P be an emerging pattern in all the pairs (τh1 , τh2) with h =
i, . . . ,m; ⟨GRτi1 ,τi2 , . . . , GRτm1 ,τm2

⟩ be the values of growth-rate of P in the
pairs ⟨(τi1 , τi2), . . . , (τm1 , τm2)⟩ respectively; ΘP : ℜ → Ψ be a function which
maps GRτh1

,τh2
(P ) into a discrete value ψτh1

,τh2
∈ Ψ with h = i, . . . ,m. P is a

periodic change iff:

1. |T | ≥ minREP
2. (τh1 , τh2) and (τk1 , τk2) are δ-separated for all h = i, . . . ,m− 1, k=h+1 and

there is no pair (τl1 , τl2), h < l, s.t. (τh1 , τh2) and (τl1 , τl2) are δ-separated
3. ψ = ψτi1 ,τi2 = . . . = ψτm1 ,τm2

where minREP is a user-defined threshold. A PC is a frequent pattern whose
support increases (decreases) at leastminREP times with an order of magnitude
greater than minGR. Each change (increase/decrease) occurs within δ time-
points and it is characterized by the value ψ. Intuitively, a PC represents a
variation, manifested with a particular periodicity, of the frequency of the same
pattern.

Note that Definition 3 uses the value δ as maximum threshold of periodicity.
This leads to a two-fold result. On one hand, the changes could not be perfectly
periodic, that is, the EP associated with a PC could be repeated even with a
distance less than δ time-points. On the other hand, this allows us to discover
a larger set of periodic changes that includes also those asynchronous [10], that
is, changes with some disturbances between the repetitions.

An example of PC is reported here. Consider the following EPs

P: phenotype(H),clinical condition(H,C),dependent by(C,M), variation of(M,N)
emerging in ([1991;1992],[1993,1994])

P: phenotype(H),clinical condition(H,C),dependent by(C,M), variation of(M,N)
emerging in ([1996;1997],[1998;1999])

P: phenotype(H),clinical condition(H,C),dependent by(C,M), variation of(M,N)
emerging in ([1999;2000],[2001;2002])
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P: phenotype(H),clinical condition(H,C),dependent by(C,M), variation of(M,N)
emerging in ([2004;2005],[2006,2007])

Here, ψ[1991;1992],[1993;1994] = ψ[1996;1997],[1998;1999] = ψ[2004;2005],[2006:2007],
ψ[1991;1992],[1993;1994] ̸= ψ[1999;2000],[2001;2002]. By supposing minREP=2 and δ =
6, P is a periodic change . Indeed, T : ⟨([1991; 1992], [1993; 1994]),
([1996; 1997], [1998, 1999])⟩ meets the conditions (1) and (2) because |T | = 2 and
(1998-1993)<6; the discrete values of the growth-rate in ([1991;1992],[1993;1994])
and ([1996;1997],[1998;1999]) meet the condition (3). The pair of time-windows
([1999; 2000], [2001; 2002]) is not considered because ψ[1999;2000],[2001;2002] does
meet the condition (3), while the pair of time-windows ([2004; 2005],[2006; 2007])
does not meet the condition (3) because (2006-1998)>6.

3 The Algorithm

We propose an algorithm which discovers PCs incrementally as time goes by. It
works on the succession ⟨(τ11 , τ12), . . . , (τh1 , τh2), . . .⟩ of pairs of time-windows
obtained from {t1, . . . , tn}. Each time-window τuv (except that for the first and
last one) is present in two pairs, that is, the pair (τh1 , τh2) where τuv = τh2 , and
the pair (τ(h+1)1 , τ(h+1)2) with τuv = τ(h+1)1 . This is done with the intent to
capture the changes of support of the patterns from τh1 to τuv and from τuv to
τ(h+1)2 . For each pair of time-windows (τh1 , τh2), the algorithm performs three
steps: 1) Discovery of frequent patterns on the time-windows τh1 and τh2 sepa-
rately; 2) Extraction of EPs by matching the frequent patterns discovered from
τh1 against the frequent patterns discovered from τh2 . These EPs are stored in a
pattern base, which is incrementally updated as the time-windows are processed;
3) Detection of PCs by testing the conditions of Definition 3 on the EPs stored
in the base. Note that, when the algorithm processes the pair (τ(h+1)1 , τ(h+1)2),
it uses the frequent patterns of the time-window τh2 , which had been discovered
when the algorithm had processed the pair (τh1 , τh2). This avoids of performing
the step 1) twice on the same time-window. Details on these three steps are
reported in the following.

3.1 Relational frequent pattern discovery

Frequent patterns are discovered from each time-window by following the method
proposed in [1], which enables the discovery of relational patterns whose support
exceeds minSUP . It explores level-by-level the lattice of the patterns, from the
most general to the more specific ones, starting from the most general pattern
(which contains only the key predicate). The lattice is organized according to a
generality ordering based on the notion of θ-subsumption [14]. Formally, given
two relational patterns P1 and P2, P1 (P2) is more general (specific) than P2
(P1) under θ-subsumption, denoted as P1 >θ P2, if and only if P2 θ-subsumes
P1, where P2 θ-subsumes P1 if and only if a substitution θ exists such that
P2 θ ⊆ P1. The method implements a two-stepped procedure: i) generation of
candidate patterns with k atoms (k -th level) by considering the frequent patterns
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with k − 1 atoms ( (k-1 )-th level); ii) evaluation of the support of the patterns
with k atoms.

The monotonicity property of the support value (i.e., a super-set of an non-
frequent pattern cannot be frequent) is exploited to avoid the generation of
non-frequent relational patterns. In fact, in accordance with the Definition 2,
non-frequent patterns are not used for detecting changes and thus we can prune
portions of the space containing non-frequent patterns. Thus, given two rela-
tional patterns P1 and P2 with P1 >θ P2, if P1 is non-frequent in a time-
window, then the support of P2 is less than the threshold minSUP and it is
non-frequent too in the same time-window. Therefore, we do not refine the pat-
terns which are non-frequent.

3.2 Emerging pattern extraction

Once the frequent patterns have been discovered from the time-windows τh1 and
τh2 , they are evaluated in order to check if the growth-rate exceeds the threshold
minGR. Unfortunately, the monotonicity property does not hold for the growth-
rate. In fact, given two frequent patterns P1 and P2 with P1 >θ P2, if P1 is
not emerging, namely GRτh1

,τh2
(P1) < minGR (GRτh2

,τh1
(P1) < minGR),

then the pattern P2 may or may not be an EP, namely its growth-rate could
exceed the threshold minGR. However, we can equally optimize this step by
avoiding the evaluation of the refinements of a pattern P discovered from the
time-window τh1 (τh2) in the case P is non-frequent in the time-window τh2 (τh1).
Note that this operation could exclude EPs with very high values of growth-rate
(i.e., the strongest changes), but here we are interested in the changes exhibited
by co-occurrences which are statistically evident in both intervals of time.

The EPs extracted on the pairs of time-windows are stored in the pattern
base, which hence contains the frequent patterns that satisfy the constraint set
by minGR on at least one pair of time-windows. Each EP is associated with
two lists, named as TWlist and GRlist. TWlist is used to store the pairs of
time-windows in which the growth-rate of the pattern exceeds minGR, while
GRlist is used to store the corresponding values of growth-rate. To distinguish
the changes due to the decrease of the support from those due to the increase, we
store the values of growth-rate as negative (that is, with the minus sign) when
it decreases.

The base is maintained with two operations, namely insertion of the EPs
and update of the lists TWlist and GRlist associated with the EPs. A pattern
is inserted if it has not been recognized as emerging in the previous pairs of
time-windows, while, if it has been previously inserted, we update the two lists.

3.3 Periodic change detection

The step 3) works on the pattern base and filters out the EPs that do not
meet the conditions of Definition 3. The function ΘP implements an equal-width
discretization technique, which is applied to two sets of values obtained from the
lists GRlist of all the stored EPs, the first set consists of all the positive values
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of growth-rate, the second one consists of all the negative values. Note that we
have not infinite values of growth-rate because all the patterns considered are
frequent, i.e., there are no values of support equal to zero. The ranges returned
by the discretization technique correspond to the discrete values ψτh,τh+1

. Thus,
we have two sets of ranges Ψ+ and Ψ−: Ψ+ refers to the discrete values obtained
from the positive values of growth-rate, while Ψ− refers to the discrete values
obtained from the negative values. We replace the numeric values contained in
the lists GRlist with the corresponding ranges in Ψ+ and Ψ−. This allows us to
obtain two separate sets of discrete values and capture the increases/decreases of
the support of the patterns by representing them with a finite number of cases.

This new representation of the growth-rate could suggest to prune the EPs
that are more general and conserve the EPs that are more specific when they have
the same discrete values. But, this cannot be done because it is not guaranteed
that there is equality between the discrete values over all the time-windows.

In this step, the algorithm performs two preliminary operations: i) removal of
the EPs when their lists TWlist and GRlist have length less than the threshold
minREP ; ii) sorting the remaining lists TWlist by chronological order. The
lists GRlist will be re-arranged accordingly.

The algorithm discovers PCs by working on the EP separately and it can
identify more than one PC from a single EP. For each EP, it scans the TWlist
once and incrementally builds the set T of each candidate PC. A candidate PC
is characterized by one discrete value. During the scan, it evaluates the current
pair of time-windows (τh, τh+1) of TWlist and the relative discrete value ψτh,τh+1

against with the latest pair of time-windows (τk, τk+1) inserted in the set T of
the candidate PC that has the same discrete value: if the pairs of time-windows
are δ-separated, then the pair (τh, τh+1) in inserted in the set T of the candidate
PC, otherwise it can be considered to start the construction of the set T of a
new candidate PC having the same discrete value. Finally, the algorithm filters
our the PCs with |T | less than the threshold minREP .

In order to clarify how the step 3) works, we report an explanatory example.
Consider Ψ+ = {ψ′, ψ′′}, minREP=3, δ=13 and the lists TWlist and GRlist
built as follows:

TWlist : ⟨([1970; 1972], [1973; 1975]) , ([1976; 1978], [1979; 1981]) , ([1982; 1984], [1985, 1987]) ,
([1988; 1990], [1991; 1993]) , ([1994; 1996], [1997; 1999]) , ([2010; 2012], [2013; 2015])⟩

GRlist : ⟨ ψ′, ψ′, ψ′′,
ψ′, ψ′′, ψ′⟩

By scanning the list TWlist, we can initialize the set T of a candidate PC’
by using the pairs ([1970;1972],[1973;1975]) and ([1976;1978],[1979;1981]) since
they are δ-separated (1979-1973< δ) and they have the same discrete value ψ′.
The pair ([1982;1984],[1985;1987]) instead refers to a different discrete value (ψ′′)
and therefore it cannot be inserted into T of PC’. We use it to initialize the set
T of a new candidate PC”, which thus will include the time-windows referred
to ψ′′. Subsequently, the pair ([1988;1990],[1991;1993]) is inserted into T of PC’
since its distance from the latest pair is less than δ (1991-1979< δ). Then, T
of PC” is updated with ([1994;1996],[1997;1999]) since 1997-1985 is less than
δ, while the pair ([2010;2012],[2013;2015]) cannot be inserted into T because
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the distance between 2013 and 1997 is greater than δ. Thus, we use the pair
([2010;2012],[2013;2015]) to initialize the set T of a new candidate PC”’. The set
T of PC’ cannot be further updated, but, since its size exceeds minREP , we
consider the candidate PC’ as valid periodic change. Finally, the candidate PC”
cannot be considered as valid since its size is less than minREP . The candidate
PC”’ is not even considered since |Tψ′ | < minREP .

4 Experiments

We prove the viability of the proposed method on the data concerning the phe-
notypes of the influenza A/H1N1 virus in Virology. Studying the alterations of
the phenotypes on a temporal basis is relevant and even determinant whether
considering the biological re-assortment between the involved organisms and the
cyclic nature of the pandemic outbreaks. The influenza A virus can infect sev-
eral species. The sources of complexity of such data are several. In particular,
the virus contains eight segments gene of negative single-stranded RNA, namely
PB2, PB1, PA, HA, NP , NA,M , and NS encoding for 11 proteins. Moreover,
the subtype of influenza A virus is determined by the antigenicity (the capacity
to induce an immune response) of the two surface glycoproteins, haemagglutinin
(HA) and neuraminidase (NA). Distinct subtypes determining different clinical
and epidemiological conditions [8].

The datasets we use comprise phenotype data describing isolate strains of
viruses of three different species, i.e., human, avian and swine. These isolate
strains have been registered from 1958 to September 2009, while the datasets
have been generated as a view on Influence Research Database hosted at the
NIAID BioHealthBase BRC1 and contain 3221 isolate strains for human, 1119
isolate strains for swine, and 757 isolate strains for avian.

Experiments are performed to study the effect of the thresholds w, δ,minGR
and minREP on the discovered periodic changes and emerging patterns. The
parameterminSUP is fixed to 0.1. In this case study, the time-points correspond
to years, while the number of the ranges produced by the discretization function
is fixed to 5. Statistics on the results are collected in Table 1.

In Table 1(a), we have the number of PCs and EPs when tuning w (δ=20,
minGR = 2, minREP = 3). By increasing the width of the time-windows,
the overall number of the time-windows decreases, which results in a shorter
succession of pairs of time-windows where finding EPs and PCs. This explains
the decrease of the number of EPs and PCs for swine and human. We have a
different behavior for the phenotypes of avian, where the number of EPs and PCs
increases. Indeed, the use of wider time-windows (w=10 and 15 against w=5 and
7) leads to collect greater sets phenotypes having likely higher changeability. In
this case, it seems that phenotype change concerns longer periods.

In Table 1(b), we have the results when tuning δ (w=5, minGR = 2,
minREP = 3). As expected, higher values of δ allow us to detect a more numer-
ous set of PCs, which comprises both the replications of EPs which are closer

1 http://www.fludb.org/brc/home.do?decorator=influenza
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and the replications of EPs that are distant. Whilst, when δ is 10, we capture
only the PCs that cover at most ten years. The threshold δ does not affect the
number of EPs since it operates after the extraction of the EPs. In Table 1(c),
we have the results when tuning minGR (w=5, δ=20, minREP = 3). We ob-
serve that minGR has great effect on the number of PCs and on the number of
EPs. Indeed, at high values of minGR, the algorithm is required to detect the
strongest changes of support of the patterns, which leads to extract only the EPs
with the higher values of growth-rate. This explains the decrease of the number
of PCs. The threshold minREP has no effect on the EPs since it acts on the
PCs only (Table 1(d), w=5, δ=20, minGR = 2). As expected, higher values of
minREP lead to exclude the EPs that have a low number of replications. This
means that the algorithm works on a smaller set of EPs, with the result to have
a lower number of PCs. In particular, when minREP is 6, we have no PC that
includes EPs repeated six times and distant at most 20 years.

In the following, we report an example of periodic change discovered by the
proposed algorithm from the human dataset with w=10, δ=20, minGR = 2,
minREP=3:

phenotype(P), epidemiological condition(P,E), is a(E,enhanced Transmission to Human),

dependent by(E,M1), is a(M1,mutation A199S), mutation of(M1,T), is a(T,protein PB2),

dependent by(E,M2), is a(M2,mutation A661T), mutation of(M2,T), dependent by(E,M3),

is a(M3,mutation K702R), mutation of(M3,T).

Here, T : ⟨([1958; 1967], [1968; 1977]), ([1968; 1977], [1978; 1987]),
([1988; 1997], [1998; 2009])⟩, ψ=[2;3,5]. The periodic change concerns the epi-
demiological condition ’enhanced Transmission to Human’ with the mutations
’A199S’ on the protein ’PB2’ and the mutations ’A661T’ and ’K702R’. In-
deed, the frequency of this pattern increases three times by a factor included
in the range [2;3,5]. This happens between the time-windows [1958;1967] and
[1968;1977], [1968;1977] and [1978;1987], [1988;1997] and [1998;2009].

w(years)
5 7 10 15

swine 11–126 11–126 8–63 2–18
human 20–176 20–176 10–69 2–44
avian 1–4 1–4 2–10 2–10

δ(years)
10 15 20 25

swine 0–126 6–126 11–126 15–126
human 14–176 18–176 20–176 22–176
avian 0–4 0–4 1–4 1–4

(a) (b)

minGR
2 4 6 8

swine 11–126 7–68 0–2 0–0
human 20–176 6–61 0–4 0–0
avian 1–4 0–2 0–2 0–0

minREP
3 4 5 6

swine 11–126 6–126 2–126 0–126
human 20–176 7–176 3–176 0–176
avian 0–6 0–2 0–2 0–2

(c) (d)

Table 1. Total number of the periodic changes and emerging patterns discovered on
the three species when tuning the width of the time-window w (a), the maximum ad-
missible distance between consecutive pairs of time-windows δ (b), minimum threshold
of growth-rate minGR (c) and minimum threshold of repetitions minREP (d). In each
cell, we have reported the statistics as number of PCs–number of the EPs.
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5 Related Works

The studies on the periodicity have been concentrated on the identification of the
occurrences of static behaviors over data sequence. Most of proposed methods
follow the frequent pattern mining framework and can be categorized mainly
on the basis of the notion of periodicity. The periodicity is asynchronous when
the occurrences are not always regular [10], while, we have a partial periodicity
[4] when the repetitions do not exhibit always the same elements. Other works
have been focused on the periodicity in complex data. For instance, in [11], the
authors report an algorithm to find a minimal set of periodically recurring sub-
graphs that capture all periodic behavior in a dynamic network. They rely on
the concepts of closed subgraphs and Occam’s razor.

However, at our knowledge, we cannot enumerate attempts on the study of
the periodicity of changing behaviors, despite to the recent interest in change
mining problems. In this sense, two main research lines can be distinguished.
In the first line, we find methods to identify changes in the global properties
of the complex data. For instance, in [2] the authors describe a hierarchical
clustering technique to identify eras of evolution of a dynamic network. An era
is associated to a cluster and it is produced as a sequence of structurally similar
temporal snapshots of the network, thus a new cluster represents a structural
change with respect to previously generated clusters and denotes the beginning
of a new era. In the second line, we find methods to characterize evolutions of
local properties. For instance, in [13], we proposed an algorithm for capturing
variations exhibited from the patterns discovered from data network over time.
Two different notions of changes were formalized, namely change patterns and
change chains, the first one denotes the evolution of the network from a time-
period to the next one, the second one denotes the whole evolution over the
temporal axis.

6 Conclusions

In this paper we investigated two different aspects of the analysis of complex
dynamic data, namely the discovery of changes manifested over time and iden-
tification of those changes that repeat over time with a certain periodicity. The
proposed method relies on a frequent pattern mining framework which enable us
to i) capture the changes with variations of the frequency of frequent patterns
and ii) determine the periodicity of the changes with regularly recurring varia-
tions of the frequency. At this end, we extended the classical notion of emerging
patterns and formalized the new notion of periodic change. A periodic change
is an emerging pattern that meets the constraint of periodicity set as input pa-
rameter, that is, the maximum period with which the emerging pattern recurs
is known. However, often changes can repeat with unexpected periods, hence
using a known value of periodicity could miss some patterns. This is the main
future direction we intend to upgrade the method. The experiments highlights
the viability of the proposed method to real-world problems in Virology. We are
confident that the method could be used for similar problems in other scenarios.
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Abstract. Roughly Balanced Bagging is based on under-sampling and
classifies imbalanced data much better than other ensembles. In this
paper, we experimentally study its properties that may influence its good
performance. Results of experiments show that it can be constructed
with a small number of component classifiers, which are quite accurate,
however, of low diversity. Moreover, its good performance comes from
its ability to recognize unsafe type of minority examples better than
other ensembles. We also present how to improve its performance by
integrating bootstrap sampling with random selection of attributes.

Keywords: class imbalance, ensembles, Roughly Balanced Bagging, types
of minority examples

1 Introduction

Learning classifiers from imbalanced data still reveals research challenges. How-
ever, difficulties are not caused by the unbalanced class cardinalities only. De-
terioration of classification performance arises when other data difficulty factors
occur together with the class imbalance ratio, such as decomposition of the mi-
nority class into rare sub-concepts, too extensive overlapping of decision classes
or presence of minority examples inside the majority class regions [9, 13].

Several methods have been introduced to deal with imbalanced data; for
their review see, e.g., [5]. New specialized ensembles are able to handle complex
imbalanced distributions better than simpler approaches; see their review in [4,
12]. They are usually modifications of bagging or boosting and either employ
pre-processing methods before learning component classifiers or embed the cost-
sensitive framework in the learning process. However, the comparative studies
of new ensembles are still too limited. Studies [1, 4, 10] have showed that exten-
sions of bagging work better than generalizations of boosting and more complex
solutions. The recent study [2] demonstrated that Roughly Balanced Bagging [6]
has achieved the best results and is significantly better than other over-sampling
extensions of bagging.

The key idea behind Roughly Balanced Bagging is a specific random under-
sampling before generating component classifiers, which reduces the presence of
the majority class examples inside each bootstrap sample. Although this ensem-
ble has been successfully used in several papers, there are not enough attempts
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to check which of its characteristics are the most crucial for improving classi-
fication of complex imbalanced data. In our opinion, its properties should be
examined more precisely.

The aim of this paper is to experimentally study the following issues: (1) the
most influential aspects of constructing Roughly Balanced Bagging and its main
properties (with respect to bootstrap construction, deciding on the number of
component classifiers, their diversity, methods for aggregating predictions); (2)
abilities of this ensemble to deal with different types of difficult distributions of
the minority class; (3) directions for its further extension and improvements.

2 Related Works

For the reviews of ensembles dedicated for class imbalance consult [4, 5, 12].
Galar et al. in [4] distinguish mainly cost-sensitive approaches vs. integrations
with data pre-processing. Below we briefly present under-bagging proposals only,
which are most relevant to our study.

Breiman’s algorithm for learning bagging samples a number of subsets from
the training set, builds multiple base classifiers and aggregates their predictions
to make a final decision. Bootstraps are generated by uniform random sampling
with replacement of instances from the original training set (usually keeping the
size of the original set). However, as this sampling is performed on all data ele-
ments, regardless their class labels (majority or minority), the imbalanced class
distribution will be hold in each bootstrap and the ensemble will fail to suffi-
ciently classify minority class. Most of current proposals overcome this drawback
by applying pre-processing techniques to each bootstrap sample, which change
the balance between classes – usually leading to the same, or similar, cardinality
of the minority and majority classes. For instance, the over-sampling methods
typically replicate the minority class data (either by random sampling or gener-
ating synthetic examples) to balance bootstraps.

In under-bagging the number of the majority class examples in each bootstrap
is randomly reduced to the cardinality of the minority class (Nmin). In the
simplest proposals, as Exactly Balanced Bagging, the entire minority class is just
copied to the bootstrap sample and then combined with the randomly chosen
subset of the majority class to exactly balance cardinality between classes.

While such under-bagging strategies seem to be intuitive and work efficiently
in some studies, Hido et al. [6] have claimed that they do not truly reflect the phi-
losophy of bagging and could be still improved. In the original bagging the class
distribution of each sampled subset varies according to the binomial distribution
while in the above under-bagging each subset has the same class distribution as
the desired balanced distribution. In Roughly Balanced Bagging (RBBag) the
numbers of instances for both classes are determined in a different way by equal-
izing the sampling probability of each class. The number of minority examples
(Smin) in each bootstrap is set to the size of the minority class Nmin in the
original data. In contrast, the number of majority examples is decided prob-
abilistically according to the negative binomial distribution, whose parameters
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are the number of minority examples (Nmin) and the probability of success equal
to 0.5. In this approach only the size of the majority examples (Smaj) varies,
and the number of examples in the minority class is kept constant since it is
small. Finally, component classifiers are induced by the same learning algorithm
from each i bootstrap sample (Si

min ∪Si
maj) and their predictions form the final

decision with the equal weight majority voting.
Hido et al. compared Roughly Balanced Bagging with several algorithms

showing that it was better on G-mean and AUC measures [6]. The study [10]
demonstrated that under-bagging, including RBBag, significantly outperformed
best extensions of boosting and the difference was more significant when data
were more noisy. The results of [2] showed that Roughly Balanced Bagging was
significantly better than best oversampling extensions of bagging and usually
better than Exactly Balanced Bagging. These experiments also supported us-
ing sampling with replacement in RBBag – so, we will also use it in further
experiments. However, there are not so many attempts to either to experimen-
tally examine properties of this ensemble or to more theoretically explain why
and when it should outperform other methods. Only the work [16] provides a
probabilistic theory of imbalance and its reference to under-sampling classifiers.

3 Studying the Role of Components in Roughly Balanced
Bagging

The first part of experiments aims at studying the following basic properties
of constructing Roughly Balanced Bagging, which have not been studied in the
literature yet: (1) Using different learning algorithms to built component clas-
sifiers; (2) The influence of the number of component classifiers on the final
performance; (3) The role of diversity of component classifiers.

We extend the previous implementation of RBBag done by L. Idkowiak for
the WEKA framework [2]. We choose 24 UCI datasets which have been used
in the most related experimental studies [3, 10, 13, 14]. They represent different
imbalance ratios and other data difficulty factors - so they constitute various
difficulty levels for ensembles [3, 14]. Moreover, we consider binary class versions
of these data as it is done in the related studies [4, 6, 10]. For their detailed
characteristics the reader is referred to [3].

The performance of ensembles is measured using: sensitivity of the minority
class (the minority class accuracy), its specificity (the majority classes accu-
racy), their aggregation to the geometric mean (G-mean) and F-measure. For
their definitions see, e.g., [5]. We have chosen these point measures, instead of
AUC as the most of considered learning algorithms produce deterministic out-
puts. These measures are estimated with the stratified 10-fold cross-validation
repeated several times to reduce the variance.

3.1 Choosing Algorithms to Learn Component Classifiers

The related works show that Roughly Balanced Bagging as well as other under-
sampling extensions of bagging are usually constructed with decision trees. In
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this study we check whether classification performance of this ensemble may
depend on using other learning algorithms. Besides J48 unpruned tree we con-
sidered Naive Bayes tree, rule algorithms – Ripper and PART, Naive Bayes clas-
sifiers and SVM – all available in WEKA. The RBBag ensemble was constructed
with different numbers (30, 50 and 70) of component classifiers.

Here, we summarize the Friedman test only. For all considered evaluation
measures we were unable to reject the null hypothesis on equal performance of
all versions of RBBag. For instance, average ranks in the Friedman test for G-
mean (the smaller, the better) were the following: SVM 4.1; Ripper 4.12; NBTree
4.4; J48tree/PART 4.5; NB 4.8. Quite similar rankings were obtained for other
measures. All these results did not show significant differences of using any of
this algorithm inside RBBag.

Furthermore, for each single algorithm RBBag was significantly better than
its standard bagging equivalent (according to the paired Wilcoxon test).

3.2 The Influence of the Number of Component Classifiers

Related works showed that Roughly Balanced Bagging was used with rather a
high number of component classifiers. Hido et al. [6] tested it with 100 C4.5
trees. In the study [10] authors applied a dozen of components. Then, the study
[2] showed that it also performed well with 30, 50 or 70 classifiers. Thus, we have
decided to examine more systemically other (also smaller) sizes of this ensemble
and its influence on the final performance. We stayed with learning components
with J48 unpruned trees, and for each dataset we constructed a series of Roughly
Balanced Bagging ensembles increasing its size one by one - so the number of
component classifiers changed from 2 trees up to 100 ones.

For all considered datasets increasing the number of component classifiers
improves the evaluation measures up to the certain size of the ensemble. Then,
values of measures stay at a stable level or slightly vary around the certain
level. Due to page limits, in Fig. 1 we present the most representative changes
of G-mean values. Figures for few other datasets present similar trends.

What is even more surprised the RBBag ensemble achieves this good perfor-
mance for a relatively small number of component classifiers. For most datasets,
the stable highest value of G-mean is observed approximately between 10 and
15 trees. In case of the sensitivity or F-measure we noticed similar tendencies.

Moreover, we decided to examine confidence of the final decision of RBBag.
We refer to a margin of the ensemble prediction. For standard ensembles, it
is usually defined as a difference between the number of votes of component
classifiers for the most often predicted class label and the number of votes for the
second predicted label. Here, we modified it as: marg = (ncor −nincor)/ncptclas,
where ncor is the number of votes for the correct class, nincor is the number of
votes for the incorrect class and ncptclas is the number of component classifiers in
the ensemble. The higher absolute value of marg is interpreted as high confidence
while values closer to 0 indicate uncertainty in making a final decision for a
classified instance. In Fig 2 we present a representative trend of changes of the
relative margin with the size of RBBag for ecoli and cmc data. For many other
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Fig. 1. G-mean vs. a number of component classifiers in RBBag for selected datasets.

datasets the trend line of the margin also stabilizes after a certain size (Note the
resolution of the margin scale is more detailed than G-mean, so margin values
achieve a satisfactory level also quite fast). We can conclude that the good
performance of Roughly Balanced Bagging comes from rather a small number
of component classifiers.
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Fig. 2. G-mean and margin vs. a number of component classifiers in RBBag for cmc

(left) and ecoli (right) datasets.

3.3 Diversity of Component Classifiers

The final accuracy of ensembles may be also related to their diversity - which is
usually understood as the degree to which component classifiers make different
decisions on one problem (in particular, if they do not make the same wrong
decisions). Although, such an intuition behind constructing diverse component
classifiers is present in many solutions, research concerns the total accuracy per-
spective [11]. It is still not clear how diversity affects classification performance
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especially on minority classes. The only work on ensembles dedicated for im-
balance data [17] does not provide a clear conclusion. Its authors empirically
studied diversity of specialized over-sampling ensembles and noticed that larger
diversity improved recognition of the minority class, but at the cost of deterio-
rating the majority classes. However, nobody has analysed diversity of Roughly
Balanced Bagging.

To evaluate diversity we calculated the disagreement measure [11]. For a pair
of classifiers it is defined as a ratio of the number of examples on which both
classifiers make different predictions to the number of all classified examples.
This measure is calculated for each pair of component classifiers. Then the global,
averaged disagreement D of an ensemble is averaged over all pairs of classifiers.
The larger its value is, the more diverse classifiers are [11]. We calculated the
global average disagreement D for predictions in both classes and also for the
minority class only (denoted as Dmin). These values are presented in Table 2 -
two first columns for RBBag ensemble and next columns refer to its extension
discussed in Sec. 5 – both ensembles were constructed with 30 component J48
trees. As this table concerns further extension of RBBag for a higher number of
attributes, the list of datasets is reduced.

Notice that values of disagreement measures are relatively low. For nearly
all datasets they are between 0.1 and 0.3. The small diversity concerns both
class predictions (D) and minority class (Dmin), although Dmin is usually lower
than D. Similar low values occurred for the remaining datasets, not included in
Table 2. We also checked that changing the number of component classifiers in
RBBag did not influence values of the disagreement measures.

To sum up, the high accuracy of Roughly Balanced Bagging is not directly
related to its higher diversity. We have also analysed predictions of particular
pairs of classifiers and noticed that they quite often make the same decisions
(most often correct ones).

4 Influence of the Type of Examples

According to Napierala and Stefanowski [13, 14] the data difficulty factors con-
cerning distributions of imbalanced classes can be modeled by the following types
of examples: safe examples (located in the homogeneous regions populated by
examples from one class only); borderline (placed close to the decision boundary
between classes); rare examples (isolated groups of few examples located deeper
inside the opposite class), or outliers. Following the method introduced in [13]
the type of example can be identified by analysing class labels of the k-nearest
neighbours of this example. For instance, if k = 5, the type of the example is
assigned in the following way [13, 14]: 5:0 or 4:1 – an example is labelled as safe
example; 3:2 or 2:3 – borderline example; 1:4 – labelled as rare example; 0:5 –
example is labelled as an outlier. This rule can be generalized for higher k val-
ues, however, results of recent experiments [14] show that they lead to a similar
categorization of considered datasets. Therefore, in the following study we stay
with k = 5.
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Repeating conclusions from experimental studies [13, 14] the most of datasets
considered in this paper contain rather a small number of safe examples from the
minority class. The exceptions are two datasets composed of many safe examples:
new-thyroid, and car. Many datasets such as cleveland, balance-scale or
solar-flare do not contain any safe examples but many outliers and rare cases.

In the current experiments we identified a type of the testing example and
recorded whether it was correctly classified or not. Additionally, we refer types
of examples in both (minority and majority) classes to the relative margins of
the RBBag predictions (these are presented as histograms of numbers of testing
examples with a given value of the margins). In Fig 3 and 4 we present a rep-
resentative results of RBBag and the standard bagging for cleveland dataset.
Histograms for other datasets present similar observations.
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Fig. 3. Histogram of RBBag margins for cleveland dataset with respect to a class and
a type of example. Blue vertical line shows the value of the margin’s median.

Notice that RBBag quite well recognizes the borderline examples from the
minority class. Rare minority examples are more difficult, however, on average
RBBag can still recognize many of them. It classifies them much better than the
standard bagging. Outliers are the most difficult, but RBBag classifies correctly
some of them and again this is the main difference to standard bagging and other
its over-sampling extensions evaluated in [3]. The similar tendency is observed
for other unsafe datasets which are not visualized due to page limits. If the
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Fig. 4. Histogram of standard bagging margins for cleveland dataset with respect to a
class and a type of example. Blue vertical line shows the value of the margin’s median.

dataset contains some safe minority examples, nearly all of them are correctly
classified with high margins.

On the other hand, for the majority class, one can notice that RBBag cor-
rectly classifies most of safe examples while facing difficulties with borderline
ones. It also holds for other non-visualized datasests (where the margin’s me-
dian for borderline majority examples is always worse than the median for bor-
derline minority examples). The majority class does not contain any rare or
outlying examples for nearly all considered datasets. For few exceptions, pima.
breast-cancer or cmc, these rare majority examples are misclassified with the
high negative margin.

In conclusion, we can hypothesize that Roughly Balanced Bagging improves
recognition of unsafe minority examples, but at the cost of worse dealing with
unsafe majority examples. However, as the number of unsafe examples is rela-
tively small in the majority class, the final performance of RBBag (e.g., averaged
by G-mean) is improved.

5 Applying Random Selection of Attributes

Although Roughly Balanced Bagging performs quite well, it can still be im-
proved. Here, we have focused on modifications of constructing bootstrap sam-
ples. Observations of rather limited diversity of RBBag components have led us
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to considering inspirations from earlier research on applying random attribute
selection while constructing component classifiers. Recall that Ho introduced in
[7] Random Subspace method (RSM) for highly dimensional data, where in each
iteration of constructing the ensemble a subset of all available attributes is ran-
domly drawn and a component classifier is built using only this subset. Then,
Breiman combined bootstrap sampling with random selection of attributes in
nodes of trees inside the Random Forest ensemble. Recent experiments of [12]
also demonstrated that combing re-sampling with Random Forests helps for class
imbalance. However, we are more interested in adapting Random Subspace into
the context of Roughly Balanced Bagging as it is a classifier independent strat-
egy. To best of our knowledge it has not been considered for RBBag yet. In the
only related work [8] authors successfully applied this method to SMOTE based
oversampling ensemble.

In our extension of RBBag, after sampling each bootstrap we randomly select
f attributes from the set of all attributes. Subsequently, we train base classifier
on a sample from which we removed not selected ones. We denote this extension
as RBBag+RSM.

Since RSM is a method designed for high-dimensional data, we have chosen
to our experiments only these datasets from earlier phases of experiments, which
contain more then 11 attributes. As this condition holds for 9 datasets only, we
added 4 new, high-dimensional imbalanced datasets from UCI repository. Fi-
nally, in this experiment we examine 13 following datasets: abdominal-pain (13
attributes), cleveland (13), credit-g (20), dermatology (35), hepatitis (19),
ionosphere (34), satimage (37), scrotal-pain (13), segment (20), seismic-
bumps (19), solar-flare (12), vehicle (18) and vowel (14).

We tested with J48 decision tree (without pruning) and SVM as base classi-
fiers. Following the literature review, we considered setting f parameter to d√F e,
dlog2 F +1e and d1/2F e, where F is the total number of attributes in the dataset.
Due to space limit we present results only for J48 decision trees and f = d√F e,
since this parameter setting gives, on average, the highest increments.

We consider RBBag ensemble containing 30 component classifiers to be con-
sistent with earlier experiments, in particular on diversity. However, following
earlier observations, as e.g. [7], that randomization of attributes should increase
the variance of bootstrap samples, we compare RBBag against the new pro-
posed RBBag+RSM ensemble having also larger sizes (besides 30, also 50 and
70 components).

The values of G-mean and sensitivity are presented in Table 1. One can notice
increases of both measures, in particular RBBag+RSM with more trees. For
instance, the increase on sensitivity (abdominal-pain, hepatitis – above 6%)
and G-mean (abdominal-pain, hepatitis, scrotal-pain, seismic- bumps –
above 3%). We performed the paired Wilcoxon test to compare RBBag+RSM
against RBBag. With the confidence α = 0.05, RBBag+RSM is better on G-
mean for 50 (p = 0.007) and 70 (p = 0.003) trees and nearly for 30 trees (p =
0.054). Similar results of this text hold for the sensitivity measure. Thus, it is
better to construct RBBag+RSM with more trees than its RBBag equivalent.
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Sensitivity G-mean
RBBag RBBag+RSM RBBag RBBag+RSM

Dataset 30 30 50 70 30 30 50 70
abdominal-pain 0.7955 0.8523 0.8623 0.8563 0.8077 0.8336 0.8411 0.8358
cleveland 0.7067 0.6800 0.7117 0.7567 0.7161 0.6938 0.7197 0.7410
credit-g 0.6610 0.6493 0.6407 0.6540 0.6735 0.6930 0.6923 0.7007
dermatology 0.9900 1.0000 1.0000 1.0000 0.9868 0.9986 1.0000 1.0000
hepatitis 0.7500 0.8200 0.8267 0.8267 0.7663 0.8131 0.8113 0.8029
ionosphere 0.8553 0.8660 0.8737 0.8796 0.9063 0.9068 0.9104 0.9152
satimage 0.8690 0.8738 0.8720 0.8777 0.8727 0.8677 0.8678 0.8698
scrotal-pain 0.7400 0.7467 0.7560 0.7453 0.7484 0.7869 0.7846 0.7884
segment 0.9863 0.9918 0.9933 0.9930 0.9892 0.9945 0.9955 0.9953
seismic-bumps 0.6312 0.6624 0.6629 0.6612 0.6824 0.7103 0.7153 0.7124
solar-flare 0.8690 0.8450 0.8670 0.8670 0.8499 0.8351 0.8437 0.8458
vehicle 0.9688 0.9990 0.9990 0.9990 0.9525 0.9590 0.9588 0.9599
vowel 0.9667 0.9911 0.9911 0.9900 0.9623 0.9751 0.9766 0.9789

Table 1. Sensitivity and G-mean for Roughly Balanced Bagging (RBBag) and its
modification by random attribute selection (RBBag+RSM).

Additionally we calculated the disagreement measure for all examples (D)
and also the minority class (Dmin). The values presented in Table 2 are calcu-
lated for 30 trees. For reader convenience we present our results together with
difference of disagreement between RBBag+RSM and original RBBag.

One can notice that Random Subspace method resulted in an increase of dis-
agreement on almost all data sets (except seismic-bumps). Interestingly, despite
a decline of the disagreement measure on this dataset we observed improvement
on both G-mean and sensitivity.

RBBag RBBag+RSM Difference
Dataset D Dmin D Dmin D Dmin

abdominal-pain 0.1564 0.1310 0.2995 0.2580 0.1431 0.1269
cleveland 0.2807 0.2470 0.3506 0.3050 0.0700 0.0581
dermatology 0.0211 0.0162 0.1815 0.1384 0.1604 0.1222
credit-g 0.2648 0.2279 0.4075 0.3951 0.1427 0.1672
hepatitis 0.2476 0.2127 0.3156 0.2915 0.0680 0.0788
ionosphere 0.0733 0.0909 0.1158 0.1650 0.0424 0.0741
satimage 0.1549 0.1160 0.1782 0.1448 0.0233 0.0288
scrotal-pain 0.1871 0.1670 0.3522 0.3139 0.1651 0.1469
semgent 0.0168 0.0106 0.0659 0.0293 0.0491 0.0187
seismic-bumps 0.2891 0.2373 0.2470 0.2383 −0.0421 0.0010
solar-flare 0.1062 0.0999 0.2362 0.2395 0.1300 0.1396
vehicle 0.0592 0.0509 0.1461 0.0972 0.0869 0.0463
vowel 0.0461 0.0251 0.2126 0.0825 0.1665 0.0574

Table 2. Disagreement measures, calculated for examples from both classes (D) and
from the minority class only (Dmin), for Roughly Balanced Bagging (RBBag) and its
modification by random attribute selection (RBBag+RSM).

6 Discussion and Final Remarks

This study attempts to extend knowledge on properties of Roughly Balanced
Bagging, which is one of the most accurate ensemble dedicated for class imbal-
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ances. Our experiments show that it can be constructed with a relatively small
number of component classifiers (approx. 15 ones). It is an interesting observa-
tion, as this ensemble may require a heavy under-sampling. One could expect
that due to such strong changes inside distributions in bootstrap samples, their
variance will be high, and the ensemble should reduce it by applying many com-
ponents. However, the experimental results have showed that it is not a case.
Moreover, this can be a promising indication for mining complex, larger data and
for constructing this ensemble in an iterative way (starting from a smallest size
and stepwise adding a new component while testing it with the extra validation
set). According to other experiments the choice of the considered algorithms for
learning component classifiers does not influence the final performance of RBBag

Another discovery is quite low diversity of RBBag. We have also confirmed
it by calculating Q statistics diversity measure [11, 17]. Comparing it to ear-
lier results [2] we argue that RBBag is less diversified than over-bagging or
SMOTE-based bagging. On the other hand, RBBag is more accurate than these
more diversified ensembles. We have also checked that its components are quite
accurate and pairs of classifiers often make the same correct decisions. It may
open another research on studying the trade off between accuracy and diversity
of ensembles for imbalanced data.

Studying the local recognition of types of classified examples shows that
RBBag improves classification of unsafe minority examples. Its power for deal-
ing with borderline, rare and outlying examples distinguishes it from other en-
sembles. Here, we recall experiments from [3], which were focused on analysing
distributions of example types in bootstraps. Their results revealed that several
unsafe minority examples from the original data were changed by RBBag boot-
strap sampling into safer ones which was not a case for other bagging extensions.

In this study we advocate for further modifications of bootstrap sampling.
Our experiments have demonstrated that an integration of random selection of
attributes improves the classification performance. However, other modifications
could be still considered. In [3] we have already introduced Nearest Balanced
Bagging which exploits information on types of minority examples and directs
sampling towards the more unsafe examples. Although its experimental results
are encouraging (for some datasets even better than RBBag) it generates boot-
strap samples containing more minority examples than majority ones. Thus, it
may be still shifted too much to improving sensitivity at the cost of removing
too many majority examples. Recall that experiments from Sec. 4 have shown
that RBBag also improves recognition of unsafe minority examples while wors-
ening classification of borderline majority examples. Considering different types
of examples from both classes while modifying bootstrap sampling in Roughly
Balanced Bagging is still an open challenge.

Furthermore, a decomposition of classes into sub-concepts [9] could be con-
sidered. In [15] authors applied k-means clustering to stratify sampling majority
examples inside their modifications of standard bagging. Looking for another
semi-supervised clustering to better handle complex boundaries of data distri-
butions could be yet another direction for future research.
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Abstract. In the context of security risk analysis, we address the problem of
classifying log traces describing business process executions. Specifically, on the
basis of some (possibly incomplete) knowledge of the process structures and of
the patterns representing unsecure behaviors, we classify each traceas instance of
some process and/or as potential security breach. This classification is addressed
in the challenging setting where each event has not a unique interpretation in
terms of the activity that has generated it, but it can correspond to more activities.
In our framework, the event/activity mapping is encoded probabilistically,and
the models describing the processes and the security breaches are expressed in
terms of precedence/causality rules over the activities. Each trace is classified on
the basis of the conformance of its possible interpretations, generated bya Monte
Carlo mechanism, to the security-breach models and/or the process models. The
framework has been experimentally proved to be efficient and effective.

1 Introduction

Despite the adoption of automated control, monitoring, andtracing infrastructures, and
of and access/usage control mechanisms, business processes are continuously exposed
to security threats (e.g., financial frauds, data leakage, system faults, regulatory non-
compliance). In fact, security breaches tend to emerge frequently in real-world pro-
cesses, and this may severely undermine the achievement of business goals, or severely
damage the organization, as witnessed by recent scandals like the2011 UBS rogue
trader scandal. This clearly calls for analyzing the actualbehavior of process instances,
exploiting the execution traces that are typically registered by process enactment sys-
tems. However, as discussed in [5], due the lack of tools tailored at business process
logs, current auditing practices often rely on manual inspections and/or on sampling.

This explains the recent interest [4, 5, 9, 13] towards exploiting process mining tech-
niques (such as workflow induction [1], compliance [3] and conformance [15] check-
ing) for carrying out security-oriented analyses over business process logs. However,
these techniques found on the assumption that each step in a log trace unambiguously
refers to one of the activities that compose the “high-level” process models that security
analysts and business users have in mind. Unfortunately, many enactment and tracing
systems work at a lower abstraction level: each event in a trace represents the execution
of a fine-grain operation, with no clear mapping to a unique “high-level” activity.

In this work, we face the problem of classifying business process traces in the context
of security risk analysis: based on some knowledge on the structures of the processes
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and of the patterns representing undesired/risky behaviors (encoded intoprocess
models andsecurity-breach models, respectively), we aim at classifying each trace as
instance of some process and/or as potential security breach. In particular, the problem
is addressed in the above-introduced challenging setting:the models feature high-level
activities (and encode precedence/causality constraintsover the activities, like in
declarative process modeling frameworks [2, 16]); conversely, each trace is a sequence
of low-level events, and can be regarded as the execution of one among many possible
activities. Consequently, multiple interpretation may exist for each traceτ , in terms of
sequences of activities that might have generated (the sequence of events composing)τ .

This means that performing a security analysis in the considered setting requires
addressing the uncertainty inherent to interpreting traces as sequences of activity
executions. In order to deal with this uncertainty, we encode the mapping from
events to activities by way of probability distributions, and address the problem of
classifying each trace based on the conformance of its possible interpretations to
the security-breach models and/or to the process models. Inthis regard, we address
two possible scenarios: theopen world scenario, where the set of models in input is
possibly incomplete (i.e., some traces might have been produced by unknown process
models, and may follow unknown kinds of breaches); and theclosed world scenario,
where a model is given for every possible business processesand security breaches. In
the latter scenario, each trace is known to be aligned with atleast one of the process
models, and it can be (probabilistically) assigned to two classes only (“breaches” vs.
“non-breaches”). Two similar further classes are to be considered in the open world
scenario, in order to encompass the event that the trace doesnot comply with none of
the given process models. Due to the one-to-many mapping from events to activities,
estimating the probability that a traceτ belongs to one of these classes would require
exploring a possibly very large (combinatorial) number of possible interpretations ofτ .
Since this may be unfeasible in many real-world scenarios (as shown in the experimen-
tation section), we propose to adopt an ad-hoc Monte Carlo sampling method, allowing
to efficiently obtain good estimates of the class-membership probabilities (based on a
reduced number of interpretations). The proposed framework has been experimentally
validated, and proved to be efficient and effective.

Related work.Our model-driven detection of security breaches shares some connec-
tion with the activity detection and situation awareness [10] problems, and with some
intrusion/threat detection approaches relying on event-based attack models (e.g., attack
tree/graphs [14]. Notably, the system presented in [10] allows the analyst to monitor
multiple FSMs modeling malicious/undesired behavior, by maintaining multiple “inter-
pretation” hypotheses concurrently. However, all of the above approaches are process-
unaware, as they do not take into account background information on process structure.

Process-awareness is a central issue instead in the areas ofBusiness Process Man-
agement (BPM) and Business Process Intelligence (BPI). Several efforts were done in
the last decade in order to integrate risk-oriented analysis mechanisms into the design,
monitoring and ex-post analysis of business processes (see[18] for a recent survey on
this topic). As to security-oriented risks, several log-centered approaches were proposed
recently [13, 9, 5, 4] that leverage different kinds of techniques developed in the Process
Mining community. In particular, the usage of workflow induction [1] (resp., of com-
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pliance checking [3] and conformance checking [15]) techniques was proposed in [5]
(resp., in [4]) as a way to carry out security-oriented analyses over large amounts of log
data. The recognition of high-risk process instances was also faced by using a model of
forbidden/undesired behavior [17], and evaluating whether a trace is an instance of it.
However, to the best of our knowledge, there is no solution for the detection of security
breaches that can apply to low-level logs.

Notably our idea of exploiting constraint-based process models as a form of back-
ground knowledge (especially in the “closed-world assumption” setting) is novel in the
context of security-breach detection. The usage of a-priori inter-activity (precedence)
constraints in a BPI setting has only been considered in the discovery of workflow mod-
els, in order to prune the search space [12] and obtain higherquality models.

Finally, the problem of mapping log events to pre-defined process activities was faced
in [7, 8], where semi-automated approaches are devised for converting each original
log trace into a sequence of the given activities. However, none of these approaches can
hence solve the specific problem stated in this work, where a log trace is to be contrasted
to multiple models (representing process behaviors and security breach patterns), in
order to possibly interpret it as an instance of each of them.

2 Preliminaries

Logs, traces, processes, activities and events.A log is a set oftraces. Each traceΦ
describes a process instance at the abstraction level of basic events, each generated
by the execution of an activity. That is, an instancew of a process W consists of a
sequencea1, . . . , an of activity instances; in turn, each activity instanceai generates an
eventei; hence, the traceΦ describingw consists in the sequencee1, . . . , en. For any
eventei occurring in a trace, we assume that the starting time point of its execution is
represented in the log, and denote it asei.ts. We also assume that any activity instance
ai “inherits” the starting time point from the generated eventei, and denote it asai.ts.

In the following, we assume given the setsW, A of (types of) processes and
activities, respectively, and the setE of the events that can occur in the log. We denote
the elements ofW and A with upper-case alphabetical symbols (such asW , A).
The instances of processes and activities, as well as the events, will be denoted with
lower-case symbols (such asw, a, e).

Mapping events onto activities.Typically, the correspondence between activities and
events isone to many, that is:1) for every activityA ∈ A, all the executions ofA
generate the same evente; 2) conversely, an occurrence ofe in some trace of the log
cannot be univocally interpreted as the result of an execution ofA, since there can be
another activityB ∈ A whose execution may have generatede. We assume that the
mapping of each evente ∈ E onto the activities is probabilistically modeled by a pdf
pe(A), whereA is a random variable ranging overA. Basically,pe(A) encodes the
probability that a generic occurrence of the evente has been caused by an execution of
activity A. It is worth noting thatpe(A) can be obtained by encoding the knowledge
of domain experts, or (as done in our experiments) using a training set of traces from
which statistics can be evaluated on how frequently the event e is generated by an
instance ofA, for eache ∈ E andA ∈ A.
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Interpretations and their probabilities.An activity instancea of A is said to be an
interpretation of e (or, equivalently,compatible with e) if pe(A) > 0 (meaning thate
can be reasonably viewed as the result of executingA). Given a traceΦ = e1 . . . en, we
call interpretation of Φ a sequence of activity instancesa1 . . . an such that,∀i ∈ [1..n],
ai is an interpretation ofei. The set of interpretations ofΦ will be denoted asI(Φ).

pe(A) can be used as the core of a naive mechanism for defining a pdf over I(Φ):
assuming independence between the events, eachI = a1 . . . an in I(Φ) can be assigned
p(I) = Πn

1 pei(Ai) as the probability of being the sequence of events that generatedΦ.

Example 1. Let A = {A,B,C}, E = {e1, e2}, and consider the logL = {Φ}, where
Φ = e1e2. Assume thatpe1(A) = pe1(B) = 0.5 (meaning that the executions of
activitiesA andB are equi-probable causes of evente1), and thatpe2(C) = 1 (meaning
that every occurrence of evente2 can be generated only by an execution ofC). We
denote asa, b, c the generic instances ofA, B andC, respectively. Given this, traceΦ
can be interpreted as either the sequence of activity instancesI1 = a c (with probability
pe1(A) · pe2(C) = 0.5) or I2 = b c (with probabilitype1(B) · pe2(C) = 0.5). ✷

Process models and security-breach models.We assume that some knowledge of the
structure of every processW ∈ W can be encoded in terms of a setW.IC of composi-
tion rules, restricting the sequences of activity instances that are allowed to be executed
within W . Basically, a composition rule has one of the following forms: 1) A ⇒T B;
2) A ⇒T ¬B; 3) A ⇐T B; 4) ¬A ⇐T B; whereA, B ∈ A, while T is of the form
‘≤ c’, wherec is a constant. Herein,A ⇒T B (resp.,A ⇒T ¬B) imposes that, within
every instance ofW , the execution of any instancea of A must (resp., must not) befol-
lowed by the execution of an instanceb of B such that the width of the interval between
a.ts andb.ts satisfiesT . The semantics of the formsA ⇐T B and¬A ⇐T B is analo-
gous: they have to be read from the right to the left, replacing the word “followed” with
“preceded” in the above definition. OmittingT is the same as specifyingT =‘≤ ∞’.
Special cases of the rules of the formA ⇒ B andA ⇒ ¬B are the rulestrue ⇒ B
and true ⇒ ¬B meaning that the activityB must (resp., must not) occur within the
executions of the process, respectively.

Example 2. Let W be a process withW.IC = {A ⇒ ¬B;C ⇐ A}. Then, the se-
quencea b c, whose elements are instances of the activitiesA,B,C, cannot be an in-
stance ofW , since it violates both the composition rules. On the contrary, the sequence
c a conforms toW.IC, thus it can be viewed as an instance ofW . ✷

We also assume that some knowledge of security risks is encoded in terms of
security-breach models. A security-breach model is a set of composition rules describ-
ing causality and precedence relationships between activity executions that describe
risky situations. The composition rules have the same syntax as those used for the pro-
cess models. In the following, we denote asSBM the set of security-breach models,
and, for each security-breach modelSBM ∈ SBM, we denote the set of composition
rules associated withSBM asSBM.IC.

Example 3. LetSBM be a security breach model withSBM.IC = {¬A ⇐<12hr B},
whereA is the activity “Detection of critical trouble” andB is “Communication with
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the customer via private channel”. The composition rule ofSBM means that the case
of a customer who has been contacted via a private channel without the existence of a
recently detected critical trouble is a security breach that should be looked into. ✷

Open world and closed world assumptions.We consider two scenarios, corresponding
to different levels of completeness of the knowledge on the structure of the processes
and of the patterns describing security breaches. The open world scenario is the case
that this knowledge is incomplete:W (resp.,SBM) is a (possibly strict) subset of
the set of models describing the structure of all the possible processes (resp., security
breaches) that can occur in the log. On the contrary, the closed world scenario is the
case that all the possible processes and security breaches conform to some model inW
andSBM, respectively. For instance, under the open world assumption, the meaning
of W = {W1} andSBM = {SBM1, SBM2} is: the only processes and security
risks for which a model is known are W1 and SBM1, SBM2, respectively; however,
the occurrence of process instances and security breaches conforming to none of these
models cannot be excluded. Under the closed world assumption, there cannot be process
instances that do not conform toW1, and there are no patterns characterizing security
breaches that do not conform to eitherSBM1 or SBM2.

3 The classification problem and our approach for solving it

The problem addressed in this paper is that of classifying the log traces on the basis of
the knowledge of the process and security-breach models. Wedefine the classification
problem considering the open and closed world scenarios separately.

Classifying traces under the open world assumption.In this scenario, any sequence
of activity instances belongs to exactly one of the following classes (the set of these
classes will be denoted asC(ow)):

– Aligned: sequences conforming to at least one process modelW ∈ W , but to no
security breach modelSBM ∈ SBM;

– Breach: sequences conforming to at least oneSBM ∈ SBM, but to noW ∈ W;
– Aligned&Breach: sequences conforming to at least oneW ∈ W and at least one

SBM ∈ SBM;
– Unknown: sequences conforming to noW ∈ W and noSBM ∈ SBM.

Classifying a traceΦ = e1 . . . en means marking it with the name of the class con-
taining the interpretationa1 . . . an that generatede1 . . . en. SinceΦ has many possible
interpretations, where eachI ∈ I(Φ) has probabilityp(I) of being the actual “origin”
of Φ, this problem can be re-written under a probabilistic standpoint: for each class
C ∈ C(ow), evaluate the probabilitypow(Φ,C) that the sequence of activities that ac-
tually generatedΦ is inC. This means evaluating, for eachC ∈ C(ow), the probability:

pow(Φ,C) =
∑

I∈(I(Φ)∩C)

p(I). (1)

Observe that, in the open world scenario, the independence assumption on which the
definitions ofp(I) andpow(Φ,C) are based is reasonable, since no structure for the



79

processes can be excluded: this backs assuming no correlation between the activities.

Classifying traces under the closed world assumption.The closed world assumption
describes the case that the possible structures of the processes and security breaches
are exhaustively described by the models inW andSBM. Hence, only the classes
Aligned andAligned&Breach must be considered to mark every traceΦ in the log. The
set consisting of these two classes will be denoted asC(cw). As regards the proba-
bility pcw(Φ,C) that, under the closed world assumption, the actual interpretation of
Φ belongs to the classC (whereC ∈ C(cw)), its definition is more complex than its
“open-world” counterpartpow(Φ,C). We cannot definepcw(Φ,C) = pow(Φ,C) =∑

I∈I(Φ)∩C p(I) since the definition ofp(I) relies on the independence assumption,
that is no longer valid in this scenario. Indeed, the fact that only the interpretations sat-
isfying some process model must be considered for the classification purposes means
that there are correlations between the activity executions: hence, the events cannot
be considered independent from one another. A reasonable way to definep(Φ,C) is
that of applying the probabilistic conditioning paradigm,that is a way to revise the pdf
that would hold under independence assumption by a-posteriori enforcing some cor-
relations. In our case, this means definingpcw(Φ,C) = pow(Φ,C|W .IC), where the
right-hand side of this expression is the result of conditioning the probabilitypow(Φ,C)
to the event that the constraints expressed by the composition rules of at least one pro-
cess model inW are satisfied. This means that, for eachC ∈ C(cw):

pcw(Φ,C) =
pow(Φ,C)

pow(Φ, Aligned) + pow(Φ, Aligned&Breach)
. (2)

An example of classification.The following example shows an example of computation
of the probabilitiespow(Φ,C) (for eachC ∈ C(ow)) andpcw(Φ,C) (for eachC ∈
C(cw)), and discusses the meaning of the classification.

Example 4. Consider the case described in Example 1 of the traceΦ = e1e2, having
two interpretations:I1 = a c andI2 = b c, with p(I1) = p(I2) = 0.5. Assume thatW =
{W} andSBM = {SBM}, whereW.IC = {A ⇐ C;B ⇒ C} andSBM.IC =
{B ⇐ C}. It is easy to see thatI1 conforms toW.IC, but not toSBM.IC. Moreover,
I2 does not conform toW.IC, but conforms toSBM.IC.

Under the open world assumption, the classes to be considered are: C(ow) =
{Aligned, Breach, Aligned&Breach, Unknown }. Then, the classification ofΦ con-
sists in the following probability assignment:pow(Φ, Aligned) = p(I1) = 0.5; pow(Φ,
Breach) = p(I2) = 0.5; pow(Φ, Aligned&Breach) = pow(Φ, Unknown) = 0.

On the contrary, under the closed world assumption, the classes to be considered are:
C(cw) = {Aligned, Aligned&Breach }, and the classification ofΦ is as follows:pcw(Φ,
Aligned) = p(I1)/p(I1) = 1; pcw(Φ, Aligned&Breach) = 0.

The classification under the closed world assumption can be read as follows: with
probability 1, Φ is consistent with the model of the process, and contains no security
breach. Analogously, the classification under the open world assumption can be read as
follows: with probability0.5, the traceΦ is consistent with a known process model and
does not contain any known security breach; with probability 0.5, Φ does not conform
to any known process model but conforms to a security breach model. ✷
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3.1 The challenges of evaluating a classification and our solution

Efficiently providing the classification of the traces in a log is a hard problem, indepen-
dently from the fact that the open world (ow) or the closed world (cw) assumption is
made. A naive approach for classifying a traceΦ is the following:1) generate the set
I(Φ) of all of the interpretations ofΦ; 2) for eachI ∈ I(Φ), check whetherI conforms
to some model inW ∪ SBM; 3) depending on the models to whichI conforms and
on the assumption, markI with the proper class inC(assumption); 4) for every class
C ∈ C(assumption), computepassumption(Φ,C) using equations (1) and (2).

Unfortunately, this naive approach is infeasible, as the interpretations to be consid-
ered may be too many. For instance, consider a traceΦ of length40. If, on average, each
event has two interpretations, then|I(Φ)| = 240 = 1012 interpretations forΦ must be
considered. As we will show experimentally (see Section 5),deciding the class of all
these interpretations typically requires very long waits.

In this paper, we investigate the possibility of using a Monte Carlo approach for eval-
uating the classification of each log traceΦ. Basically, we use a Monte Carlo sampler
overI(Φ), that randomly generates a new interpretation inI(Φ) until the probabilities
of the classes (evaluated only on the basis of the sample set generated so far, instead of
the wholeI(Φ)) converge to the actual probability values (the convergence is checked
according to a given confidence level). We show that our approach is efficient under
both the open and closed world assumptions, and feasible even in the cases where the
exhaustive approach requires too much time.

4 The Monte Carlo classification algorithm

In this section, we describe our Monte-Carlo simulation approach and its implemen-
tation (Algorithm 1). Algorithm 1 takes as input the traceΦ, the sets of process and
security breach modelsW andSBM, the setP of pdfspe(A), the assumption under
which the classification must be evaluated (that is, eitherow or cw), and two parame-
ters defining the desired guarantee on the accuracy of the Monte Carlo estimation: an
error levelǫ and a confidence level1 − α. The output of Algorithm 1 is an estimate
of the classification ofΦ under the specified assumption: that is, Algorithm 1 returns
an estimatẽpassumption(Φ,C) of passumption(Φ,C) for eachC ∈ C(assumption). In par-
ticular, it is guaranteed that the actual probabilitypassumption(Φ,C) is in the interval
p̃assumption(Φ,C)± ǫ with confidence level1− α.

In brief, Algorithm 1 samples the setI(Φ) of interpretations and determines the
class in{Aligned, Breach, Aligned&Breach, Unknown} into which each sampleI
falls. At the end of the sampling process, for eachc ∈ C(assumption), it returns as
p̃assumption(Φ,C) the fraction of the samples belonging to classC. In more detail, Algo-
rithm 1 works as follows. At line 1, it initializes the four variablesnA, nB , nAB andnU

used to store the number of sampled interpretations fallingin the classAligned, Breach,
Aligned&Breach, andUnknown, respectively. The loop from line 2 to line 13 represents
the core of the sampling process. At each iteration of this loop, an interpretationI is
generated (lines 3-4), by randomly choosing one of the candidates activities for each
event of the trace (line 4). The loop from line 6 to line 8 scansthe process models inW:



81

Algorithm 1 The interpretation algorithm
Input: A traceΦ, a setW of process models, a setSBM of security breach models, a setP

containing a pdfpe(A) for every evente ∈ E , a parameterassumption ∈ {ow, cw}, an error
level ǫ, a confidence level1− α.

Output: p̃ow(Φ,C) for eachC in {Aligned, Breach, Aligned&Breach, Unknown}, in the case
assumption=ow; p̃cw(Φ,C) for eachC in {Aligned, Aligned&Breach}, otherwise.

1: nA = 0, nB , nAB = 0, nU = 0, I = ⊥
2: repeat
3: for all ei ∈ Φ do
4: I[i] =chooseActivity(ei)
5: foundAlignment=false, foundBreach=false
6: for all W ∈ W do
7: if checkModel(I,W.IC, P ) then
8: foundAlignment=true; break
9: for all SBM ∈ SBM do

10: if checkModel(I, SBM.IC, P ) then
11: foundBreach=true; break
12: Update nA, nB , nAB , nU according to foundAlignment and foundBreach
13: until errorGuarantee(nA, nB , nAB , nU , assumption, ǫ, 1− α)
14: if assumption=ow then
15: n = nA + nB + nAB + nU

16: p̃ow(Φ, Aligned) = nA
n

, p̃ow(Φ, Breach) = nB
n

, p̃ow(Φ, Aligned&Breach) = nAB
n

,
p̃ow(Φ, Unknown) = nU

n

17: return p̃ow(Φ, Aligned), p̃ow(Φ, Breach), p̃ow(Φ, Aligned&Breach), p̃ow(Φ, Un-
known)

18: n = nA + nAB

19: p̃cw(Φ, Aligned) = nA
n

, p̃cw(Φ, Aligned&Breach) = nAB
n

20: return p̃cw(Φ, Aligned), p̃cw(Φ, Aligned&Breach)

if one of the process model ofW is found such thatI satisfies all the constraints in it, a
boolean variablefoundAlignment becomestrue and the loop terminates. Analogously,
the loop from line 9 to line 11 scans the security breach models inSBM and early ter-
minates if a model is found such thatI satisfies all the constraints in it. In that case,
a boolean variablefoundBreach becomestrue. After the execution of the two loops
scanning the process and the security breach models, respectively, foundAlignment and
foundBreach are used to determine the class containingI and updatenA, nB , nAB

andnU accordingly (lines 12): if both (resp., none of the) variables foundAlignment
andfoundBreach aretrue, I falls into Aligned&Breach (resp.,Unknown), thusnAB

(resp.,nU ) is incremented. In the case that onlyfoundAlignment (resp.,foundBreach)
is true, I falls into Aligned (resp.,Breach), thusnA (resp.,nB) is incremented.

The generation of samples is halted by functionerrorGuarantee, that exploits the
Agresti-Coull interval [6] to detect if, for eachC ∈ C(assumption) the estimate
p̃assumption(Φ,C) of passumption(Φ,C) obtained with the samples collected so far lies in the
intervalp̃assumption(Φ,C)±ǫ with confidence level1−α. We recall that, according to [6],
the error of the estimatẽp of the target probabilityp obtained aftern samples is guar-

anteed to be at mostǫ with confidence level1−α if n > n =
z2

1−α/2·p·(1−p)

ǫ2 − z21−α/2,
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wherez1−α/2 is the1−α/2 quantile of the normal distribution, andp =
nx+(z2

1−α/2)/2

n+z2

1−α/2

,

wherenx is the number of successes in then samples. Hence, since the error guarantee
must be provided for every estimate returned by Algorithm 1,function errorGuaran-
tee computes|C(assumption)| values ofn, one for each estimatẽpassumption(Φ,C) that
has to be returned. Correspondingly, Algorithm 1 halts onlyif the number of generated
samples is equal to or greater than all these values ofn (line 13).

5 Experimental Validation

Hardware settings and dataset features.All the experiments were done on an Intel i7
CPU with12GB RAM running Windows 8.1. We tested our framework over synthetic
real-like data, generated according to the guidelines of the administrative units of a
service agency (SA). In this scenario, a process instance is a collection of activities
performed by the staff of the units in response to customers’requests. Examples of
activities are the creation of a new folder, the preparationof new documents and their
insertion into a folder, the updating of existing documents, contacting the customer, etc..
Folders are of different categories, and folders of the samecategory follow the same
execution scheme, that describes a process. We were given a setW of 6 processes and
their models in terms of precedence relationships (betweenactivities), that were easily
encoded into composition rules of the form used in our framework. The scenario is
complex enough that the same activities were shared by different processes (on average,
an activity occurs in one half of the processes), and the sameevent could be generated
by different activities (on average, the same event occurs in 2.3 different activities).

We were also given the models of8 different types of security breaches, and each
model was translated into a set of composition rules. On average, each process was
described by10 composition rules, and each security breach by5 composition rules.

Besides the composition rules, the service agency gave us a set of 100 real traces
describing different process instances at the abstractionlevel of events, along with their
actual interpretations (that is, the corresponding sequences of activities). We used these
traces and their interpretations for generating both the set P of pdfs of the formpe(A)
and the larger dataset used in the experiments. As regardsP , it was obtained by ex-
tracting statistics on the actual correspondences events/activities occurring in the pairs
trace/interpretation given by the service agency. As regards the dataset, starting from
each interpretationI, we generated a setperturb(I) of 100 sequences of activity in-
stances, by suitably perturbingI. Specifically,perturb(I) was initially assigned the set
consisting of onlyI, and then the(i+ 1)-th sequence inperturb(I) was obtained from
thei-th one by applying one perturbation, randomly chosen among: (a) replacing a ran-
domly chosen interpretation step with a new instance of a randomly chosen activity
having the same starting time; (b) switching a randomly chosen interpretation step with
the subsequent one; (c) removing a randomly chosen interpretation step; (d) inserting a
new instance of a randomly chosen activity into the sequenceat a random position (the
starting time of the new activity is randomly generated in the interval between the start-
ing times of the previous and the subsequent activities). Before adding the perturbed
sequence of activity instances toperturb(I) as the(i + 1)-th element, we checked its
consistency with the models of the processes inW, and we discarded it in the case of
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inconsistency with every model (in this case, a new perturbation was tried over thei-th
interpretation). Finally, once the generation of everyperturb(I) was finished, eachI ′

in perturb(I) was translated into the corresponding trace (i.e., sequence of events), and
this was put in the dataset. This way, we obtained a dataset consisting of104 traces.

Term of comparison, and open and closed world scenarios.We compared our ap-
proach with the naive exhaustive approach described in section 3.1, denoted asEX in
the following. The experiments under the open world assumption were performed by
makingW andSBM consist of one half of the process and security breach models
provided by the service agency, thus simulating the case that W andSBM do not en-
code a complete knowledge of the possible processes and security breaches. Obviously,
for the closed world assumption, we put intoW andSBM all the process and security
breach models provided by the service agency, respectively.

Results.We start with comparing our Monte Carlo based approach withEX in terms of
efficiency. In what follows, the two variants of Algorithm 1,corresponding to adopting
either the open or the closed world assumption, are referredto asMC-OW andMC-CW,
respectively. We make no distinction between the behaviorsof the exhaustive approach
under the two assumptions since there is no difference in terms of efficiency: under both
the open and closed world assumptions,EX performs the same number of iterations (as
all the interpretations must be generated and classified according to the models). All the
results presented in what follows were obtained by settingǫ = 0.001 and1−α = 95%.

Fig. 1(a) shows the average execution times of the considered approaches vs. the
trace length. Even if our dataset contains longer traces, this diagram reports only the
results for the traces whose length is less than30, sinceEX required too much time
(≥ 20min) to complete the classification over longer traces. The results forEX are rep-
resented by3 distinct curves, obtained as follows. First, the set of traces was partitioned
into3 sets, denoted as(2.0−2.2), (2.2−2.4), (2.4−2.6): a traceΦ of the dataset belongs
to the set(X − Y ) if the average numberActPerEv(Φ) of activities that are possible
interpretations for a step ofΦ belongs to the interval(X−Y ). Then, for each(X−Y ),
the curveEX(X − Y ) represents the average execution time ofEX over the traces in
(X − Y ). This distinction was not made forMC-OW andMC-CW, since, as expected,
their execution times turned out to be insensitive toActPerEv(Φ). From this diagram, it
turns out that execution times forEX grow exponentially with the trace length (in fact,
the shape of the curves ofEX are linear in the presence of a logarithmic scale on the
y-axis), and that also increasingActPerEv(Φ) results in slowing downEX.

Fig. 1(b) considers also traces longer than30 steps, and depicts the average running
time of MC-OW and MC-CW vs. trace length (for what explained before,EX is not
considered in this diagram). The diagram shows that averageexecution times grow with
the trace length (this sensitiveness was hidden in Fig. 1(a) by the use of a log scale).

We also analyzed the effectiveness of our Monte Carlo approach in terms of
accuracy of the estimated classification. For each traceΦ, we measured the error of the
estimate returned by Algorithm 1 as the maximum difference between the probability
associated with a classC in the actual classification (that is, the classification returned
by EX) and that associated withC in the estimate returned by Algorithm 1. For the
same reasons discussed above, only traces shorter than30 steps were considered.
The diagrams in Fig. 2(a, b) report this error under the open and closed world
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Fig. 1: (a): Execution times ofEX, MC-OW andMC-CW vs. trace length over “short” traces;(b):
Execution times ofMC-OW andMC-CW vs. trace length over all the traces
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Fig. 2: Average accuracy of Algorithm 1 vs. trace length under the(a) open and the(b) closed
world assumption (short traces only)

assumption, respectively. In each of these diagrams, threecurves are reported, one
for each set of traces(X − Y ) introduced above. These diagrams show that the
average error is, for all the considered trace lengths, lower than the error threshold
given as input to Algorithm 1 (we recall that we setǫ = 0.001, with confidence level
1−α = 95%), and that the error is insensitive to bothActPerEv(Φ) and the trace length.

Discussion. The results show that our Monte-Carlo classification algorithm is generally
faster than the exhaustive approach, and that, differentlyfrom the exhaustive approach,
it is feasible even over “long” traces. Furthermore, the price to be paid is negligible, as
the accuracy of our algorithm is very high. Note that we considered traces even longer
than the standard business process traces: in fact, in the service agency dataset traces
are rarely longer than60 (this characteristics is shared with other real datasets, such as
[11]). Interestingly, we point out that the low execution times of our algorithm make our
approach useful both in offline and interactive analysis. The execution times of the order
of seconds allow the possibility of using our algorithm for supporting the detection of
security-breaches during the process monitoring in real time: in fact, the execution of
any activity in a business process typically takes more thana few seconds.
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6 Conclusions and future work

We have proposed a probabilistic approach exploiting the knowledge of process and
security-breach models for classifying business log traces as process instances and/or
potential security breaches. The framework can be straightforwardly extended to deal
with different languages/mechanisms for defining the process and security-breach mod-
els: allowing more expressive composition rules or automata or Petri nets to specify
these models simply requires to adapt functioncheckModel, that is orthogonal to the
core of our technique. However, the impact of this modifications on the efficiency is
worth investigating.
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Abstract. Redescription mining is a field of knowledge discovery which
aims to simultaneously find different descriptions of subsets of elements
in the data. One of its useful properties is the ability to find connections
between different sets of descriptive attributes and provide researchers
with a more comprehensive set of rules allowing them to better under-
stand the underlying problem. In this work, we present a novel algo-
rithm for mining redescriptions based on multi-label Predictive Cluster-
ing Trees. This approach uses information about element membership in
different generated rules to search for new redescriptions and is able to
produce highly accurate, statistically significant redescriptions described
by boolean, nominal or numeric attributes. As opposed to current tree-
based approaches that use multi class classification, we use multi target
classification or regression to create redescriptions. This allows us to cre-
ate accurate cluster hierarchy from which we create multiple redescrip-
tions that can contain overlapping elements. We discuss and illustrate
the properties of the algorithm by extracting redescriptions from data
describing 199 world countries based on their trading patterns and gen-
eral information.

Keywords: knowledge discovery, redescription mining, predictive clus-
tering trees, world trade

1 Introduction

Pattern mining [1, 11] aims at discovering relevant pieces of knowledge from a
database. Researchers in this field have devoted a lot of effort to two very im-
portant problems: finding relevant patterns and generating relevant associations
that will be presented to the user. Redescription mining shares these goals, but
in addition tries to find different descriptions of the same patterns that will be
presented to the user. It is an unsupervised, descriptive, knowledge discovery
task with the goal of finding subsets of data that can be characterized with
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multiple descriptions. The goal of such analysis is to find similarities between
different elements and connections between different descriptive attribute sets
(views) which ultimately lead to better understanding of the underlying data.
The field of redescription mining was introduced by Ramakrishnan et al. [14].
In the same paper, they present a novel algorithm to mine redescriptions based
on decision trees, called the CARTwheels. The algorithm works by building two
decision trees (one for each view) that are joined in the leaves. Redescriptions
are found by examining the paths from the root node of the first tree to the
root node of the second and the algorithm uses multi class classification to guide
the search between two views. Other approaches to mine redescriptions include
the Zaki et al. [18] approach that uses a lattice of closed descriptor sets to find
redescriptions. Further, Parida et al. [13] introduce algorithms for mining exact
and approximate redescriptions, Gallo et al. [9] present the greedy and the MID
algorithm based on frequent itemset mining, Galbrun et al. [6] present a novel
greedy algorithm for mining redescriptions based on the greedy approach by
Gallo et al. [9]. Finally, redescription mining is extended by Galbrun et al. to a
relational [5] and an interactive setting [7].

Redescription mining is highly applicable in biology, economy, pharmacy,
ecology and many other fields, where it is important to understand connections
between different descriptors and to find regularities that are valid for different
element subsets. Redescriptions are represented in the form of rules and the aim
is to make these rules understandable and interpretable.

In this work, we present a novel algorithm for mining redescriptions based
on multi-label predictive clustering trees [3, 12]. Our approach uses multi-label
classification or regression to find highly accurate, statistically significant re-
descriptions, which differentiates it from other tree based approaches, especially
the CARTwheels. With this approach, we are able to construct a cluster hier-
archy from which it is possible to get different overlapping redescriptions. The
approach is related to multi-view [2] and multilayer [10] clustering, though the
main goal here is to find accurate redescriptions of interesting subsets of data,
while clustering tends to find clusters that are not always easy to interpret. After
introducing the necessary notation (Section 2), we present the algorithm, deter-
mine its computational complexity (Section 3) and use it to find descriptions of
199 different world countries based on their trading behaviour [16] and general
country information [17] for the year 2012 (Section 4). The main focus is on
rules containing only logical conjuntion operators, since these rules are the most
interpretable and the knowledge represented is necessarily valid for all described
elements. Finally, we conclude and outline directions for future work in Section
5.

2 Notation and definitions

Redescription mining in general considers redescriptions constructed on a set of
views {W1,W2, . . . ,Wn}, however in this paper we use only two views {W1,W2}.
The corresponding attribute (variable) sets are denoted by V1 and V2. Each
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view contains |E| rows and |V1|, |V2| columns. Value W1(i, j) is the value of
element ei for the attribute aj . The data D = (V1, V2, E,W1,W2) is a quintuple
of the attribute sets, element set, and the appropriate view mappings. A query
(denoted q) is a logical formula F , where q1 contains literals from V1. The set of
elements described by a query is called its support. A redescription R = (q1, q2)
is defined as a pair of queries, one for each view in the data. The support of a
redescription is the set of elements supported by both queries that constitute
this redescription supp(R) = supp(q1) ∩ supp(q2). We use attr(R) to denote all
the attributes contained in the redescription R. The accuracy of a redescription
R = (q1, q2) is measured using the Jaccard similarity coefficient.

JS(R) =
|supp(q1) ∩ supp(q2))|
|supp(q1) ∪ supp(q2)|

The Jaccard similarity coefficient is not the only measure used in the field be-
cause it is possible to obtain redescriptions covering huge element subsets, that
necessarily have very good overlap of their queries. In this cases it is preferred
to have redescriptions that reveal some more specific knowledge about the stud-
ied problem that is harder to obtain by random sampling from the underlying
data distribution. This is why we compute the statistical significance (p-value) of
each obtained redescription. We denote the marginal probability of a query q1,
q2 with p1 = supp(q1)

|E| , p2 = supp(q2)
|E| respectively. We define the set of elements in

the intersection of the queries with o = supp(q1) ∩ supp(q2). The corresponding
p-value ([8]) is defined as

pV (q1, q2) =

|E|∑
n=|o|

(
|E|
n

)
(p1 · p2)n · (1− p1 · p2)|E|−n

The p-value tells us if we can dismiss the null hypothesis that assumes that we
obtained a given subset of elements by joining two random rules with marginal
probabilities equal to the fraction of covered elements. If the obtained p-value
is lower than some predefined threshold, called significance level, then this null
hypothesis should be rejected. It is a somewhat optimistic criterion, since the
assumption that all elements can be sampled with equal probability need not
hold for all datasets. In addition, we perform multiple iterations of the algorithm
and generate many rules at each iteration.

3 Constrained CLUS-RM algorithm

In this section, we describe a variant of the CLUS-RM algorithm for mining
redescriptions that at each step improves redescription set of size constrained
by the user. The algorithm uses multi-label predictive clustering trees (PCT) [3,
12] to create a cluster hierarchy that is later transformed into redescriptions. We
start by providing and explaining the high level pseudo code of the algorithm
(Algorithm 1) and then go into the details of each procedure in the algorithm.
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Algorithm 1 The CLUS-RM algorithm
Input: First view data (W1), Second view data (W2), Settings file
Output: A set of redescriptions R
1: procedure CLUS-RM
2: DW1init ← prepareTargetsForInitialPCT(W1)
3: DW2init ← prepareTargetsForInitialPCT(W2)
4: PCTW1 ← createW1SideInitialPCT(DW1init)
5: PCTW2 ← createW2SideInitialPCT(DW2init)
6: RW1 ← extractRules(PCTW1)
7: RW2 ← extractRules(PCTW2)
8: initializeArrays(elFreq, attrFreq, redScoreEl, redScoreAt, numEx, numAttr,

numRetRed)
9: while RunInd<maxIter do

10: TmpRW1 ← emptyRuleSet()
11: TmpRW2 ← emptyRuleSet()
12: DW1Targ ← prepareTargets(RW2)
13: DW2Targ ← prepareTargets(RW1)
14: PCTW1 ← createPCT(DW1Targ)
15: PCTW2 ← createPCT(DW2Targ)
16: TmpRW1 ← TmpRW1 ∪∗ extractRules(PCTW1)
17: TmpRW2 ← TmpRW2 ∪∗ extractRules(PCTW2)
18: RW1 ← RW1 ∪ TmpRW1
19: RW2 ← RW2 ∪ TmpRW2
20: R← MineRed(RW1, RW2, expansionType,

ConstSet, iteration, opSet, elFreq, attrFreq, redScoreEl, redScoreAt)
21: return R

The algorithm starts by creating initial clusters for both views (line 2 and
3 in Algorithm 1). Initial clusters are obtained by constructing one additional
synthetic example for each example in the original view (see Figure 1). The
artificial examples for the selected view are created from the original data by
random shuffling attribute values between the examples. The shuffling step is
repeated for each example min(500,min(0.7∗ |E|, |V1|+ |V2|)) times and exactly
max(1, 0.08 ∗ (|V1|+ |V2|)) randomly selected attribute values from a randomly
chosen element are copied to the constructed artificial example. The shuffling pa-
rameters where chosen so that we make enough changes to the artificial examples
to brake the correlations between attribute values, but still do not introduce to
many attribute values from each individual randomly chosen example. Original
examples are assigned a target label of 1.0, while artificial examples are assigned
a target label of 0.0. This procedure creates artificial examples for which it breaks
the correlations among the attributes. Since we start from unlabelled data, we
transform the originally unsupervised problem to a supervised one. The divi-
sion between artificial and the original examples allows us to construct a cluster
hierarchy, simultaneously creating descriptions of the original examples. The
described procedure is one possible way to construct the initial clusters; other
approaches include assigning a random target attribute or using clusters com-
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puted by some other single or multi-view clustering algorithm. However, the
initialization procedure used in our algorithm should preserve any strong (spe-
cific) connections and correlations that exist in the original data which might be
broken by using an approach that assigns random target labels.

Entity W1A1 W1A2 W1A3
E1 1.1 2.5 3.4
E2 1.5 2.2 4.0
E3 5.5 -0.6 -0.2
E4 4.4 -0.2 2.0
E5 3.2 1.7 2.9

(a) Original dataset for view 1

Entity W2A1 W2A2 W2A3
E1 TRUE FALSE FALSE
E2 TRUE TRUE FALSE
E3 FALSE FALSE TRUE
E4 TRUE TRUE TRUE
E5 TRUE FALSE TRUE

(b) Original dataset for view 2

Entity W1A1 W1A2 W1A3 Target
E1 1.1 2.5 3.4 1.0
E2 1.5 2.2 4.0 1.0
E3 5.5 -0.6 -0.2 1.0
E4 4.4 -0.2 2.0 1.0
E5 3.2 1.7 2.9 1.0
E1’ 4.4 2.5 2.9 0.0
E2’ 3.2 -0.6 4.0 0.0
E3’ 3.2 -0.6 2.9 0.0
E4’ 4.4 -0.2 4.0 0.0
E5’ 5.5 1.7 2.9 0.0

(c) Initial dataset for view 1

Entity W2A1 W2A2 W2A3 Target
E1 TRUE FALSE FALSE 1.0
E2 TRUE TRUE FALSE 1.0
E3 FALSE FALSE TRUE 1.0
E4 TRUE TRUE TRUE 1.0
E5 TRUE FALSE TRUE 1.0
E1’ TRUE FALSE TRUE 0.0
E2’ FALSE FALSE TRUE 0.0
E3’ TRUE TRUE TRUE 0.0
E4’ FALSE TRUE FALSE 0.0
E5’ FALSE FALSE TRUE 0.0

(d) Initial dataset for view 2

Fig. 1: Example tables describing the creation of artificial examples.

After creating the initial dataset, we build predictive clustering trees on both
views by performing regression on the target label and using other attributes as
descriptive. The use of regression trees is purely technical, since it generates more
rules because of the additional threshold, associated with the target variable.
These trees are converted to rules that describe element sets and are necessary
for the next step of the algorithm. The rule lists RW1 and RW2 contain generated
rules, and a new rule is added to the list if it differs from all other rules in a
predefined number of attributes or if it describes a new unique element subset
(the ∪∗ operator in Algorithm 1). The iterative process of the algorithm begins
right after rule creation. Here, we create targets based on the rules obtained in the
previous step or in the initialization step. Rules obtained by predictive clustering
on W1 are used to build targets for clustering on W2 (denoted W1T1, W1T2),
and vice versa. For each example in the dataset we assign label 1.0 if the example
is described by some specific rule, otherwise 0.0 (see Figure 2). For example, the
attribute W2T1 from dataset for view 1 represents the rule IF W2A1 = TRUE
(constructed on dataset for view 2), which describes elements E1, E2, E4, E5. By
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placing this target attribute in the view 1 dataset, we guide the PCT construction
to create a cluster containing and describing the same set of elements with view
1 descriptive variables (one choice that satisfies this condition is IF W1A3 > 0).

E W1A1 W1A2 W1A3 W2T1 W2T2
E1 1.1 2.5 3.4 1.0 0.0
E2 1.5 2.2 4.0 1.0 0.0
E3 5.5 -0.6 -0.2 0.0 0.0
E4 4.4 -0.2 2.0 1.0 0.0
E5 3.2 1.7 2.9 1.0 1.0

(a) Dataset for view 1

E W2A1 W2A2 W2A3 W1T1 W1T2
E1 TRUE FALSE FALSE 0.0 1.0
E2 TRUE TRUE FALSE 0.0 1.0
E3 FALSE FALSE TRUE 1.0 0.0
E4 TRUE TRUE TRUE 1.0 0.0
E5 TRUE FALSE TRUE 1.0 1.0

(b) Dataset for view 2

Fig. 2: Example tables describing target creation.

Rules obtained in the previous step are combined into redescriptions, which
are considered, if they satisfy a given set of constraints ConstSet. The set of con-
straints consists of minimal Jaccard similarity index needed to add a redescrip-
tion to the redescription set (minJS), maximum allowed p-value (maxPval) and
minimum and maximum support (minSupp, maxSupp).

3.1 The procedure for creating redescriptions

Here, we introduce the algorithm for mining redescriptions (Algorithm 2). The
procedure matches rules into redescriptions by joining a view 1 rules (or its
negation, if allowed by the user) with a rules (or its negation) from view 2 (see
Figure 3). We distinguish three cases of creating redescriptions from rules:

1. Unguided initial: UInit← (RW1×opSet\{∨}
ConstSet RW2)

2. Unguided: U ← (RW1newRuleIt ×opSet\{∨}
ConstSet RW2newRuleIt)

3. Guided: G← (RW1newRuleIt ×opSet\{∨}
ConstSet RW2oldRuleIt)∪

(RW1oldRuleIt ×opSet\{∨}
ConstSet RW2newRuleIt)

The ×opSet
ConstSet operator denotes a Cartesian product of two sets, allowing the

use of logical operators from opSet and leaving only those redescriptions that
satisfy a given set of constraints ConstSet. The unguided expansion allows ob-
taining redescriptions with more diverse subsets of elements that can later be
improved through the iteration process. The disjunction operator can be used
to increase redescription accuracy and support by finding a complementing rule
or its negation. For a redescription R = (q1, q2), we find rules r that maximize:

1. JS(supp(q1 ∨ r)\supp(R), supp(q2)\supp(R))
2. JS(supp(q1 ∨ ¬r)\supp(R), supp(q2)\supp(R))
3. JS(supp(q1)\supp(R), supp(q2 ∨ r)\supp(R))
4. JS(supp(q1)\supp(R), supp(q2 ∨ ¬r)\supp(R))
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Algorithm 2 MineRed
Input: Rule sets for view 1 and view 2, expansion type, ConstSet, iteration number,

logical operator set, elFreq, attrFreq, redScoreEl, redScoreAt
Output: A set of redescriptions R
1: procedure MineRed
2: expansionSet ← ()
3: if expansionType==unguidedExpansion AND iteration==0 then
4: expansionSet ← UInit
5: else if expansionType==unguidedExpansion AND iteration ̸= 0 then
6: expansionSet ← U
7: else if expansionType==guidedExpansion then
8: expansionSet ← G
9: for R′ ∈ expansionSet do

10: if |R|<ConstSet.MaxRed then
11: updateFrequencies(elFreq, attrFreq)
12: R← R∪R′

13: if |R| == ConstSet.MaxRed then
14: for R ∈ R do
15: computeScores(elFreq,attrFreq, redScoreEl, redScoreAt, R)
16: else if |R| == ConstSet.MaxRed then
17: compScore(elFreq,attrFreq, redScoreEl, redScoreAt, R’)
18: Rb ← argmaxR∈R| R.pval≥R′.pval(

(1.0−R′.elSc+1.0−R′.atrSc+R′.JS)
3

− (1.0−R.elSc+1.0−R.attrSc+R.JS)
3

)
19: updateFrequencies(elFreq, attrFreq, R’, R)
20: updateScores(elFreq,attrFreq, redScoreEl, redScoreAt, R’, R)
21: R← R\Rb ∪R′

22: for R∈ R do
23: if expansionType==unguidedExpansion AND iteration==0 then
24: r′W1 ← argmax(R.maxRef(r), R.maxRef(¬r), r ∈ RW1)
25: Rref ← (r′W1 ∨R.rW1×R.rW2)
26: r′W2 ← argmax(Rref .maxRef(r), Rref .maxRef(¬r), r ∈ RW2)
27: Rref ← (Rref .rW1× r′W2 ∨R.rW2)
28: updateFrequencies(elFreq, attrFreq, R, Rref )
29: updateScores(elFreq,attrFreq, redScoreEl, redScoreAt, R, Rref )
30: R← R\R ∪Rref

31: else
32: r′W1 ← argmax(R.maxRef(r), R.maxRef(¬r), r ∈ RW1newRuleIt)
33: Rref ← (r′W1 ∨R.rW1×R.rW2)
34: r′W2 ← argmax(Rref .maxRef(r), Rref .maxRef(¬r),

r ∈ RW2newRuleIt)
35: Rref ← (Rref .rW1× r′W2 ∨R.rW2)
36: updateFrequencies(elFreq, attrFreq, R, Rref )
37: updateScores(elFreq,attrFreq, redScoreEl, redScoreAt, R, Rref )
38: R← R\R ∪Rref

39: return R
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Fig. 3: Illustration of the iterative rule guidance through the exchange of targets
between views (single-headed arrows). The two- headed arrows denote possible
unguided rule matching.

Rule r is found so that it complements elements that are supported by q2 but
not by q1 and vice versa. This process is denoted in the code with maxRef(r,R).
In effect, the algorithm finds first numRed redescriptions and then iteratively
enriches this set by exchanging the redescription with the worst comparative
score with the newly created redescription. The algorithm uses 4 arrays (elFreq,
attrFreq, redScoreEl, redScoreAt) to incrementally add and improve redescrip-
tions in the redescription set. The element/attribute frequency arrays contain the
number of times each element/attribute from the dataset occurs in redescriptions
from a redescription set. Redescription scores are computed as redScoreEl(R) =∑

e∈supp(R) elFreq[e], and redScoreAt(R) =
∑

a∈atr(R) attrFreq[a]. The score
of a new redescription is computed in the same way by using existing frequen-
cies from the set. If the algorithm finds a redescription R′ that is better than
some redescription Ri from the redescription set, all arrays are updated in the
following way: ∀e ∈ supp(R), elFreq[e] − −, ∀a ∈ attr(R), attrFreq[a] − −,
∀e ∈ supp(R′), elFreq[e]++, ∀a ∈ attr(R′), attrFreq[a]++. For each redescrip-
tion R′′ ∈ R\Ri, its score is recomputed as ∀e ∈ supp(Ri), redScoreEl[R′′]−−,
∀e ∈ supp(R′), redScoreEl[R′′] + + and ∀a ∈ attr(Ri), redScoreAt[R′′] − −,
∀a ∈ attr(R′), redScoreAt[R′′] − −. This score favours redescriptions that de-
scribe elements with low frequency by using non frequent attributes. At the same
time it tries to find accurate and significant redescriptions.

3.2 Algorithm time complexity

In this subsection we analyse the algorithm’s time complexity. We start from the
known results [15] that predictive clustering tree has the worst time complexity
O(z · m · |E|2) to completely induce the tree, where m denotes the number of
descriptive variables in a selected view and z the total number of internal nodes
in the tree. The initialization step has complexity O(|E| · (|V1|+ |V2|)). Further,
we use an algorithm of worst time complexity O(z) to transform PCT to rules.
Next, we compute the Cartesian product of two rule sets and extract those that
satisfy the ConstraintSet defined by the user. The worst time complexity of cre-
ating a redescription is O(n · log(n′)), where n equals the number of elements
covered by the rule created on W1 and n′ denotes the number of elements cov-
ered by the rule created on W2. In this step, we make

∑
i∈RL

∑
j∈RR

ni · log(nj)
element comparisons. Since it is true that n ≤ |E| and n′ ≤ |E|, the worst
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time complexity of this step is O(z2 · (|E| · log(|E|))). However, this is a very
conservative estimate. If we have a balanced tree, the complexity is closer to
O(z ·d · |E| · log(|E|)), where d equals the tree depth. For each created redescrip-
tion, we need to update the attribute, element frequency tables and if added
the total redescription scores. In the worst case, the complexity of this step
is O(|R| · (|E| + |V1| + |V2|)), however |R| is a predefined constant, since it is
the number of redescriptions that should be returned to the user. We should
also note here, that O(|E| + |V1| + |V2|) is a very pessimistic boundary, since
it claims that each redescription supports all elements in the dataset and con-
tains all attributes (descriptive variables) from both views. In reality, it is not
interesting to consider redescriptions that support all elements, this number is
constrained by user defined variables minSupport, maxSupport, in addition it
is crucial to have redescriptions that contain the smallest possible number of
attributes. This number is less or equal to the tree depth for rules containing
only conjunction operators. The computation of rules containing negation and
disjunction operators has a complexity of O(z · |E| · log(|E|)). The total algo-
rithm time complexity is: O(|E · (|V1|+ |V2|)|+ z · |V1| · |E|2 + z · |V2| · |E|2 + 2 ·
z + z2 · |E| · log(|E|) · (|E| + |V1| + |V2|) + 2 · z · |E| · log(|E|)) which is in fact
O(z · (|V1|+ |V2|) · |E|2 + z2 · |E| · log(|E|) · (|E|+ |V1|+ |V2|)). The procedure is
repeated numIter times, but this number is a user defined constant that does
not change the overall complexity. There are a number of optimizations that can
be employed to reduce the complexity of computing redescriptions. One is to
use rule indexing to combine only those rules that are certain to cross the user
defined threshold, the other one is to use Local Sensitive Hashing [4]. There are
advantages of using these framework, especially in the cases where we allow for
soft constraints that can be changed adaptively depending on the underlying
data.

4 Mining redescriptions on data describing countries

We present the experimental results of mining redescriptions with our algorithm
on data describing 199 world countries. The dataset contains two views, both
containing numerical attributes with possible missing values. One view contains
312 attributes representing the percentage of import and export of commodities
for countries in the year 2012, while the second view contains 51 attribute con-
taining general country information obtained from the World Bank for the same
year. The algorithm was tested with various number of iterations (100, 200, 300).
For each fixed number of iterations, we performed 10 runs of the algorithm, com-
puted redescription sets containing 50 redescriptions and measured the average
Jaccard similarity index and average redescription supports. Allowed redescrip-
tion supports were in the range [5, 120], the maximum allowed p-value was equal
to 0.01 and the minimum Jaccard similarity index was equal to 0.6. As we can
see from Figure 4, with an increased number of iterations, the algorithm finds
redescriptions with higher accuracy, but describing smaller subsets of countries.
The mean value of the total overall coverage of elements in the redescription set
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varies between 45% and 52%. This indicates that the algorithm managed to find
highly accurate redescriptions describing a significant number of total elements
from the dataset.

Fig. 4: A summary of the results for different numbers of algorithm runs (top to
bottom: 300, 200, 100): average redescription support size a), average Jaccard
similarity index b), fraction of all elements described by a redescription c).

Next, we analyse one of the obtained redescription and present several other
examples (Table 1). This table demonstrates the complex relations between re-
description support size, rule complexity, JS and p-value.

W1R: MON_GROWTH >= -4.7851 <= 12.791 AND POP_64 >= 14.0491 <= 20.8229

AND UNEM_M >= 4.3 <= 15.0

W2R: I_MEAT_PROD >= 1.0 <= 2.0 AND E/I_IND_MACH >= 0.654 <= 3.146 AND

E/I_MAN_GOODS >= 0.739 <= 1.455 AND E/I_CER >= 0.604 <= 15.845

AND E_HSTI_MAN >= 8.0 <= 29.0

This redescription describes 19 world countries (Austria, Belgium, Czech Repub-
lic, Denmark, Finland, France, Germany, Italy, Netherlands, Slovenia, Spain,
Sweden, Switzerland and United Kingdom) with Jaccard similarity 1.0. We
found that the annual money and quasi money growth of these countries ranges
from [−4.8, 12.8]%, the percentage of population with age 65 or above is in
[14.0, 20.8]%, and the male unemployment rate is in [4.3, 15]%. At the same
time, these countries share the following trade properties: the import of meat
and meat preparations constitutes [1, 2]% of the total country import, the ratio
of export and import of other industrial machinery and parts is in the interval
[0.7, 3.1], this ratio for manufactured goods is in [0.7, 1.5], the ratio for cereals
and cereal preparations is in [0.6, 15.8] and the export of high skill and technol-
ogy intensive manufactures forms [8, 29]% of the total export of these countries.
This is a statistically highly significant redescription with a p-value of 4.8 ·10−15,
it contains 3 descriptive variables for view 1 and 5 variables for view 2. It is a
medium size redescription, based on its rule size.
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Table 1: Redescription examples of different support sizes.
POP_GROWTH >= 0.0939 <= 1.0655

AND POP_64 >= 16.2121 <= 21.1009

I_CER >= 0.0 <= 2.0 AND

E/I_SPEC_MACH >= 1.051 <= 4.308 AND

I_CHEM_PROD >= 11.0 <= 23.0

Jaccard coefficient: 1.0

Redescription support: 14

Redescription p-value: 1.5 ·10−13

UNEMPL_LONG >= 0.0 <= 9.8

I_LIVE_AN >= 0.0 <= 0.0 AND

E/I_IND_MACH >= 0.394 <= 3.146 AND

I_APCL_ACC >= 1.0 <= 7.0

Jaccard coefficient: 0.75

Redescription support: 40

Redescription p-value: 1.9 ·10−13

MON_GROWTH >= -0.3463 <= 57.8338 AND

POP_64 >= 0.3573 <= 8.7588 AND

LABOR_PARTICIP_RATE >= 43.7 <= 86.7 AND

CRED_COVER >= 0.0 <= 46.0 AND

M2 >= 11.9206 <= 113.8993

E/I_MEDPH_PROD >= 0.0 <= 0.248 AND

E/I_METW_MACH >= 0.0 <= 0.151 AND

E_NMMIN_MAN >= 0.0 <= 34.0 AND

E/I_FOOD_BASIC >= 0.001 <= 2.429 AND

E_ALLOC_PROD >= 94.0 <= 100.0 AND

E/I_LSTI_MAN >= 0.009 <= 3.469

Jaccard coefficient: 0.82

Redescription support: 68

Redescription p-value: 7.0 ·10−13

5 Conclusion

We have presented a novel algorithm for redescription mining, based on multi-
label predictive clustering trees. This approach uses information about element
membership in generated rules to construct redescriptions that are further used
to incrementally improve the redescription set of a user defined size. We analysed
the algorithm time complexity and evaluated its performance on data describing
world countries. The results show that there are benefits of using more iterations.
The generated redescriptions were statistically relevant with very low p-values
(less than 10−5). Many generated rules contained the maximum number of 6
attributes per rule in a redescription. In future work, we plan to extend the
framework by deploying RF of PCTs which should allow the creation of a much
larger number of different, diverse and at the end higher quality redescriptions.
Further, we will focus on obtaining more accurate conjunctive rules, evaluate the
algorithm on several datasets and compare it with other algorithms in the field.
Finally, we intend to perform a more comprehensive evaluation of redescription
sets, which should help users in evaluating results of various redescription mining
algorithms.
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Abstract. Analogy is the cognitive process of matching the character-
izing features of two different items. This may enable reuse of knowl-
edge across domains, which can be helpful to solve problems. Analogy
is strongly related to semantics, because the mappings are based on the
role and meaning of the features, which goes beyond simple syntactic as-
sociation. The analogical mappings found between pairs of descriptions
can be used to obtain more general analogical patterns. Such patterns
may be stored in the long term memory, allowing self-improvement and
growth. This paper proposes generalizations of patterns obtained by anal-
ogy, carried out through two main steps: (1) isolating analogous roles of
two descriptions coming from different domains, and (2) abstracting from
portions of knowledge that have no analogical relationships. The result
is a multi-strategy approach in which the analogy brings to a generaliza-
tion, that is, in turn, a novel description to reason over and over again.
An example is provided to show the behavior and effect of the proposed
generalization approach.

1 Introduction

Analogy is the cognitive process of matching the characterizing features of two
different items (subjects, objects, situations, etc.). While it is often confused
with similarity, there is a significant difference between them. Similarity maps
exactly the same features in the two items. In analogy, a feature in one item can
be mapped onto a completely different feature in the other, provided that they
both play in some sense ‘the same role’ in the respective items. So, analogy is
much related to abstraction, while similarity is more related to generalization.
Indeed, abstracting the ‘role’ of the features away from their specific embodiment
in the single items is fundamental to recognize the possibility of an analogical
mapping between them. In some sense, similarity is a (simpler) kind of analogy. It
is clear that analogy has a tight relationship to semantics, because the mappings
are based on the role and meaning of the features in the two items, which goes
beyond simple syntactic association (as for similarity). It allows one to reuse
knowledge from a known domain to an unknown one, without having to learn
from scratch. In fact, after finding the analogy on some (fundamental) features,
the association can be extended to further features, for which experience has not
yet discovered the association of roles.
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In everyday life people often face problems about which they have no expe-
rience. Sometimes they call a friend for help, or call an expert that is able to
solve the problem. However, sometimes they are able to identify an analogous
experience (or any other type of reliable knowledge), from which inferring an hy-
pothetical solution. The inferred solution is not always applicable (e.g., it might
seem unreasonable), nevertheless it may provide an unexpected escape or the
opportunity to learn something. Anyway, reasoning by analogy is essential for
producing new conclusions that are helpful to solve a problem [3]. Several per-
spectives make this type of inference a primary issue: (1) in the study of learning,
analogies are important in the transfer of knowledge and inferences across dif-
ferent concepts, situations, or domains; (2) analogies are often used in problem
solving and reasoning; (3) analogies can serve as mental models to understand
new domains; (4) analogy is important in creativity (e.g., it was a frequent mode
of thought for such great scientists as Faraday, Maxwell, and Kepler); (5) analogy
is used in communication and persuasion; (6) analogy and its cousin, similarity,
underlie many other cognitive processes. [3] defined analogy as a partial similar-
ity between different situations that supports further inferences. More precisely,
it is a kind of similarity in which the same system of relations holds across dif-
ferent objects. Thus, analogies capture parallelisms across different descriptions
(typically, one referring to a past experience and one referring to the situation
under consideration). For short, we will call the description coming from prior
knowledge, or the domain it is referred to, the base, and the description of the
current problem, or the domain is referred to, as the target.

Typical analogies happen between pairs of specific situations. While this is
already a very powerful way of immediately reusing knowledge to solve a problem
in a new domain, it may happen that some abstract patterns can be reused
across many domains. Since these represent solution schemes whose usefulness
has been thoroughly tested, they may be quite promising also in future situations.
Albeit not very frequent, these patterns are really valuable and it would be very
important to recognize and store them when one comes across them. In practice,
this means finding some kind of relevant generalization among different specific
analogies. Of course, if one analogy is already a quite complex inference to make,
generalization among analogies is much more difficult, because several similar
parallelisms must be detected.

This paper proposes the generalization of patterns obtained by analogy, car-
ried out through two main steps: (1) isolating analogous roles of two descriptions
coming from different domains, and (2) abstracting from portions of knowledge
that have no analogical relationships. The result is a meta-pattern for anal-
ogy that generalizes experiences coming from different domains. We propose a
multi-strategy approach in which the analogy brings to a generalization, that is,
in turn, a novel description to reason over and over again.

The remainder of this paper is organized as follows. In Section 2 related works
are reviewed and criticized, and preliminary information is provided. Section 3
recalls our procedure to make analogy and subsequent inference. The general-
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ization approach, along with a sample case, is provided in Section 4. Finally,
Section 5 concludes the paper.

2 Preliminaries

According to [14], analogical reasoning involves an inductive step, that hypothe-
sizes the presence of an analogy between two contexts, and a deductive step, that
performs truth-preserving reasoning based on the inductively inferred knowledge.
However, induction, defined as the process of inferring general knowledge from
specific observations, does not fit reasoning by analogy. It would be better de-
scribed as an intuition, since it generates a set of possible mappings that provide
analogies with respect to one or more points of view.

Given a point of view, a set of analogical mappings can be used to identify
a recurring meta-pattern (i.e. a common network of roles). When accomplishing
a task, this allows to use the knowledge present in a more familiar base domain
to enrich the knowledge of the target domain. The recurring meta-pattern can
be seen as an abstract description of the schema shared by the domains under
consideration. Unfortunately, the identification of an abstract theory describing
several domains is quite complex, since abstractions based on syntactic transfor-
mations only might generate an inconsistent set of abstract clauses, even if the
ground set is consistent [5].

Most research on analogy operators used formal (Propositional or First-
Order) Logic as the most suitable representation for describing high-level cogni-
tive and reasoning processes.

The Structure Mapping Engine (SME) [2] uses a local-to-global strategy to
structurally align the base and the target, guided by a set of ‘programmable’
rules. This ensures great flexibility (e.g., allowing to encode similarity or meta-
phors [2, 4]), but requires additional knowledge (e.g., about commutativity). Its
formalism [4] involves typed entities that must be declared, and can be translated
into ground Horn clauses. It can process ‘second order’ relations (i.e., relations
among relations).

ACME [9] implements a ‘cooperative’ procedure for parallel satisfaction of
a set of interacting constraints1 represented as a network of supporting and
competing hypotheses about what elements to map. The constraints may be of
three types: structural, satisfied when an exact isomorphism is detected between
the analogues; semantic similarity supports possible correspondences between
elements to the degree that they have similar meaning; pragmatic centrality
favors correspondences that are pragmatically important to the analogist, either
because a particular correspondence between two elements is presumed to hold,
or because an element is judged to be sufficiently central that some mapping for
it should be found.

LISA [8] builds symbolic representations in neurally inspired computing ar-
chitectures, an approach named ‘symbolic connectionism’ [10, 7]. Such represen-

1 This connectionist approach to constraint satisfaction was investigated in [15].
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tations are claimed to give LISA the ability to bind roles to their fillers dynami-
cally (i.e., at need), and to represent the resulting bindings independently of the
roles and fillers themselves. LISA provides a natural account of the neural pro-
cesses, also regarding working memory and long term memory. The mappings in
LISA are sequential, so each one will influence the next; this helps to keep the
soundness of the analogies.

DORA [1] performs four basic operations: retrieval of propositions from long-
term memory, analogical mapping of propositions currently in working memory,
intersection discovery for predication and refinement, and linking of role-filler
sets into higher arity structures via self-supervised learning. Just like other
works, it assumes that objects and relational roles have a shared pool of ba-
sic representational features.

STAR-2 [17] finds analogies by sequentially focusing on parts of the domain.
The best mapping for the arguments of the propositions is obtained using par-
allel computation in a constraint satisfaction network, in order to cope with the
explosion of the number of units needed for tensor product representation.

BART [13] performs learning and inference through a Bayesian model. It
takes as input vectors representing objects, so that all of a model’s relational
knowledge must be acquired from non-relational inputs. In this work, the authors
focus on learning from positive example only, justifying such a choice as a good
approximation of learning in children. Furthermore, since children’s learning
of relations is often guided by linguistic input from adults, BART focuses on
supervised learning using labeled examples.

Finally, Copycat [6] discovers analogies trying to operate in a psychologically
realistic way, in a more general framework that simulates fluid concepts and
cognitive fluidity. It works on character strings of the form EFG : MNO =
EFH : ?. The main idea is that high-level cognition-like features emerge from the
independent activity of many parallel processes. It is composed by: the Snippet,
a kind of archive containing the types of concepts with which the system can
work; the Workspace, in which several components cooperate like in a multi-
agent system; the Coderack, that provides other agents waiting to be invoked
stochastically to carry out sub-tasks into the Workspace, simulating fluidity and
creativity.

Only a few works (e.g. DORA) proposed a learning strategy. This is a fun-
damental issue, since the analogy power resides in the special way in which the
cross-domain generalization carries out the inductive step, that represents the
quick fix to the lack of experience in the target domain that allows to learn.

3 Analogy and Inference

Our analogical engine can work both in a free setting, trying to find any kind of
parallelism between two descriptions, or in a focused setting, where the experi-
menter can express an initial association between objects in the descriptions and
the system must find relevant parallelism involving that association. We refer the
interested reader to [11] for details about the underlying algorithms. Here, since
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we are interested in developing a subsequent phase of processing, we will just
briefly recall its main features and general behavior using a running example.

3.1 Representation Formalism

In our approach, each piece of knowledge is formally represented as a Horn
clause [12], i.e. a disjunction of literals involving at most one positive literal,
where a literal is a (possibly negated) atom. An atom is a predicate applied
to its arguments, that are terms (in our case, only constants). A predicate p
requiring n arguments is denoted as p/n. Implicitly assuming the inclusive dis-
junction operator, a clause can also be seen as a set of literals {l0,¬l1, . . . ,¬ln}.
The ProLog representation of a clause is l0 :– l1, . . . , ln; where, in the usual in-
terpretation, l0 is the head (i.e., the conclusion of an implication) and l1, . . . , ln
is the body (i.e., the conjunction of premises of the implication). We may ex-
tract the predicate on which an atom l = p(t1, . . . , tn) is built using function
predicate(l) = p/n, and the terms of l using function terms(l) = {t1, . . . , tn}.
These functions may be straightforwardly extended to literals, while for a clause
C we define predicates(C) = ∪l∈C{predicate(l)} and terms(C) = ∪l∈Cterms(l).

For our purposes, clauses are not interpreted in the usual way, but they just
provide a suitable formalism for expressing the data. The li’s express properties
of, or relationships among, (the objects denoted by) their arguments. Analogi-
cal mappings are to be found in the body; the predicate in the head labels the
situation that is being described in the body. The heads may be used to provide
a preferred focus, i.e. a specific perspective for which the analogical mapping is
sought. If exploited, this feature allows us to reduce the search space and direct
the operations toward a particular goal of interest. The ‘preferred perspective’
is enabled when the arity of the predicates in the heads is the same, in which
case the system is bound to establish an analogy between corresponding argu-
ments. Using 0-ary predicates in the heads disables this feature. Let us show the
formalism with a running example that will be used throughout the paper to
illustrate the various steps of the procedure.

Example 1 (Fairy tale and life context). Let us consider the fairy tale The fox
and the grapes (Walter Crane’s version, in Baby’s Own Aesop, 1887) “This fox
has a longing for grapes: he jumps, but the bunch still escapes. So he goes away
sour; and, ’tis said, to this hour declares that he’s no taste for grapes.” would
be formalized as:

fairy tale(fox, grape) :– cannot reach(fox, grape, fox does not reach grape),
wants(fox, grape), is(fox, sour), has(fox, bad opinion),
cause(fox does not reach grape, bad opinion),
says(fox, grape is no taste), says(fox, she is smart),
is(grape, not ripe, grape is no taste).

It means that people tends to belittle things that they would like to obtain but
that they cannot, e.g., as in a situation where “John loves Carla but cannot have
her, so he spreads a bad opinion about her”:
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situation(john, carla) :– cannot have(john, carla, john cannot have carla),
loves(john, carla), says(john, carla is bad),
says(john, he is a charming man),
is(carla, bad, carla is bad), feels(john, sad).

The heads in these descriptions suggest that we want to establish an analogy
between the fairy tale and the given situation, in which John plays the role
of the fox, and Carla plays the role of the grape. Note that literals says(fox,
she is smart) and says(john, he is a charming man) are useless for the analogy.

Note also that this case needs to represent that the fox has a bad opinion
about the grapes because he cannot reach them. But such causal relation, in
turn, involves the relation between the fox and the grape (because the former
cannot reach the latter), relating it to the bad opinion that the fox has got. Such
a situation requires the use of a third argument representing the name of the
whole concept for which the fox cannot reach the grape.

The two domains may cross-fertilize each other, providing each other pieces
of knowledge that allow to better understand the described situation and help
to accomplish tasks (e.g., making comparisons, solving problems, etc.) in them.
To build an analogy, an analysis of the relationships in which the objects in the
description are involved is fundamental.

3.2 Analogy

In a nutshell, our analogical reasoner initializes the analogy mapping and then
progressively expands it, guided by linkedness (i.e., term sharing) among literals.
New term or predicate associations are added, as long as they ensure overall
consistency of the mapping. The outcome of an analogy is a pair of mappings,
one concerning predicates (θP ) and the other concerning terms (θT ). Initially,
the global predicate mapping is empty (θP = ∅). Then, if a preferred perspective
is expressed by the heads, the mapping of the heads’ arguments is taken as a
starting point. Suppose that the two clauses C ′ and C ′′ input to the procedure
have heads l′0 and l′′0 , respectively. If a consistent one-to-one mapping between
the arguments of l′0 and l′′0 exists, then the global term mapping θT is initialized
to such a mapping. Otherwise, an empty global term mapping θT = ∅ is initially
set, and candidate starting points must be identified by evaluating the shared
knowledge between the two descriptions, that provides potential points of contact
between them.

Following with the Fairy tale and life context, since the heads have the same
arity, their terms are mapped, yielding the starting point

θT = {(fox,john), (grape,carla)} θP = ∅

Then, the expansion phase starts, resulting in the final overall mapping re-
ported in Table 1.
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Table 1. Analogy between fairy tale and life context.

Mapped Predicates Mapped Terms
Base clause Target clause Base clause Target clause
(fairy tale) (life context) (fairy tale) (life context)

says/2 says/2 fox john
is/3 is/3 grape carla
wants/2 loves/2 grape is no taste carla is bad
cannot reach/3 cannot have/3 not ripe bad
is/2 uses/2 fox does not reach grape john cannot have carla

sour sad
she is smart he is a charming man

3.3 Inference and Re-representation

One-to-one alignment of analogous roles for entities and relationships across do-
mains is of primary importance, because it ensures that part of the structural
consistency is verified [2]. For this reason, it is taken as the basis for the in-
ference step, aimed at transferring missing knowledge across the domains. The
literals that are completely mapped (i.e., having their predicate and all of their
arguments mapped by the analogy), but whose counterpart is not present in
the other description, can be immediately projected onto the other domain by
taking their analogous counterparts. Moreover, the inference can be extended
to partially mapped literals, introducing new names for the missing elements
(that represent new knowledge that can be hypothesized in the other domain).
We identify these names with the ‘skolem ’ prefix. Of course, the more Skolem
elements in a projection, the less reliable that projection.

In the Fairy tale and life context running example, the expected explanation
of the phenomenon is: “John has a bad opinion about Carla because he cannot
have her love”. The inference hypotheses from the fairy tale to the life context
are:

1: skolem cause(john cannot have carla, skolem bad opinion)
2: skolem has(john, skolem bad opinion)

that fully satisfy the expected interpretation.

4 Analogical Pattern Generalization

The analogical mappings found between pairs of descriptions representing ex-
periences, contexts or concepts can be used to obtain more general analogical
schemes. Specifically, each analogy can be ‘condensed’ in a pattern, that in turn
can be used for searching further analogies with other experiences. Such a pat-
tern is stored in the long term memory, allowing self-improvement and growth.
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Table 2. Literal mappings between fairy tale and life context.

Fairy tale Life context

fairy tale(fox, grape) situation(john, carla)
says(fox, grape is no taste) says(john, carla is bad)

says(fox, she is smart) says(john, he is a charming man)
is(grape, not ripe, grape is no taste) is(carla, bad, carla is bad)

wants(fox, grape) loves(john, carla)
cannot reach(fox, grape, cannot have(john, carla,

fox does not reach grape) john cannot have carla)
is(fox,sour) feels(john,sad)

4.1 Formal Definition

Formally, let us consider two atoms having the same arity n > 0, l′ = p′(t′1, . . . , t
′
n)

and l′′ = p′′(t′′1 , . . . , t
′′
n). We define their atomic analogy as the pair a(l′, l′′) =

⟨aP(l′, l′′), aT(l′, l′′)⟩ where: (1) aP(l′, l′′) = {(p′/n, p′′/n)} is the predicate anal-
ogy between l′ and l′′, (2) aT(l

′, l′′) = {(t′1, t′′1), . . . , (t′n, t′′n)} is the term analogy
between l′ and l′′; if aT(l

′, l′′) is a one-to-one term mapping. In all other cases
it is undefined.

Then, given an analogy Θ = ⟨θT , θP ⟩ between two clauses C ′ and C ′′, a
generalized pattern C with |C| ≤ min(|C ′|, |C ′′|) is outlined as follows. ∀(l′, l′′) ∈
C ′ × C ′′, l′ = p′(t′1, ..., t

′
n), l

′′ = p′′(t′′1 , ..., t
′′
n), for which ∃a(l′, l′′) s.t. aP(l′, l′′) ⊆

θP ∧ aT(l
′, l′′) ⊆ θT : l = p(t1, ..., tn) ∈ C, where: if p′ = p′′, then p = p′ =

p′′, otherwise p is a new predicate (p ̸∈ predicates(C ′) ∪ predicates(C ′′)); ∀i =
1, . . . , n : if t′i = t′′i , then ti = t′i = t′′i , otherwise ti is a new term (ti ̸∈ terms(C ′)∪
terms(C ′′)).

In our running example, the mapping in Table 1 yields the alignment of
literals shown in Table 2, from which the following pattern is obtained:

pattern(fairy tale(fox, grape), situation(john, carla)) :–
wants OR loves(fox OR john, grape OR carla),
cannot reach OR cannot have(fox OR john, grape OR carla,

fox does not reach grape OR john cannot have carla),
says(fox OR john, grape is no taste OR carla is bad),
says(fox OR john, she is smart OR he is a charming man),
is(grape OR carla, not ripe OR bad, grape is no taste OR carla is bad).

where the new predicates and terms have been named by chaining the names of
the predicates and terms they generalize, just to let the reader trace back their
meaning and role in the original analogy.

As in usual generalization, patterns can be used to find analogies with other
descriptions (or even with other patterns). If such analogies do not fully map the
pattern components, new (and more general) patterns (actually, meta-patterns)
can be generated. Differently from usual generalization, new patterns do not re-
place the patterns from which they originated, because each analogy is motivated
by a specific perspective, and so the corresponding pattern must be preserved as
a representative of that perspective. So, the same (meta-)pattern may give rise to
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several meta-patterns, based on different combinations of specific domains. This
reflects the fact that different aspects of a given situation may have different
analogies with other experience according to different perspectives. Note that,
as long as (meta-)patterns are progressively generalized (or used with full analo-
gies) with new domains, the surviving elements in the resulting meta-pattern
are more and more supported and confirmed, and so they are likely to repre-
sent common sense knowledge. In particular, if specific predicate or term names
survive many refinements, they are likely to represent fundamental concepts.

The history of a pattern can be traced by recording the origin of each pred-
icate/term in the pattern using 4-tuples of the form:

(head, type, pattern name, original name)

where head stands for the head of the original clause, type indicates if the record
concerns a predicate or a term, pattern name represents the name reported in
the pattern and original name reports the name in the original clause.

4.2 Evaluation

Traditionally, the evaluation of analogy-related algorithms has been qualitative
rather than quantitative. This is mainly because the most interesting thing is
whether and how a proposed algorithm can catch relevant parallelisms between
descriptions and propose interesting associations. Counting how many success-
ful analogies an algorithm can return can be also quite tricky, since different
analogies may be considered as successful depending on the perspective, and
thus there is no definite notion of accuracy. As a consequence, no benchmark
datasets have been developed on which running experiments. The literature has
focused on showing the performance of algorithms on specific relevant cases. We
will follow this stream of evaluation.

Solar System vs. Rutherford’s Atom The analogy between Solar system
and Rutherford atom has been widely used in the literature (e.g., in [2, 16]).
Expressed in our formalism, we have the following descriptions:

solar system(sun, planet) :– inanimate(sun), inanimate(planet), mass(sun, mass sun),
mass(planet, mass planet), greater(mass sun, mass planet, major mass),
attraction(sun, planet, attracts), revolve around(planet, sun, revolve),
attraction mass(major mass, attracts, major mass attracts),
cause(major mass attracts, revolve, cause revolve), temperature(sun, temp sun),
temperature(planet, temp planet), greater(temp sun, temp planet, major temp),
gravity(mass sun, mass planet, force gravity),
cause(force gravity, attracts, why attracts).

rutherford atom(nucleus, electron) :– inanimate(nucleus), inanimate(electron),
mass(nucleus, mass n), mass(electron, mass e),
greater(mass n, mass e, major mass), attraction(nucleus, electron, attracts),
revolve around(electron, nucleus, revolve), charge(electron, q electron),
charge(nucleus, q nucleus), opposite sign(q nucleus, q electron, major charge),
cause(major charge, attracts, why attracts).
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Table 3. Solar system and Rutherford atom mapping provided by RAM.

Mapped predicates Mapped terms
Base clause Target clause Base clause Target clause

cause/3 cause/3 why attracts why attracts
gravity/3 opposite sign/3 force gravity opposite charge
greater/3 greater/3 major temp major mass
attraction/3 attraction/3 attracts attracts
revolve around/3 revolve around/3 temp planet mass e
inanimate/1 inanimate/1 temp sun mass n
mass/2 charge/2 revolve revolve

planet electron
mass planet q electron
mass sun q nucleus
sun nucleus

Applying the mapping engine presented above, we obtained the results in
Table 3. [17] shows that temperature difference between sun and planets and
mass difference between electrons and nucleus are noise, giving evidence that
the mapping (mass/2, mass/2 ), as presented in [2], is wrong. Our mapping
strategy is able to avoid the traps due to relations having the same name but
that are not analogous in the considered context. Indeed, the only relation that
has not been mapped compared to the outcome of STAR-2 is the noisy one. This
analogy reveals that the reason why the electron revolves around the nucleus is
already expressed in the atom description, since the cause of the attraction is
the opposite charge, recognized as being analogous to the difference in masses
between the sun and the planets in the Solar system.

Based on the analogy just seen, our cross-domain generalization (the meta-
pattern) is:

pattern(solar system(sun,planet), rutherford atom(nucleus,electron)) :–
inanimate(sun OR nucleus), inanimate(planet OR electron),
mass OR charge(sun OR nucleus,mass sun OR q nucleus),
mass OR charge(planet OR electron,mass planet OR q electron),
attracts(sun OR nucleus,planet OR electron,attracts),
revolve around(planet OR electron,sun OR nucleus,revolve),
greater(temp sun OR mass n,temp planet OR mass e,

major temp OR major mass),
gravity OR opposite sign(mass sun OR q nucleus,

mass planet OR q electron,force gravity OR opposite charge),
cause(force gravity OR opposite charge,attracts,why attracts).

The expected explanation of the physical phenomenon is, more or less, that
“the difference in masses, together with the mutual attraction of the nucleus and
the election, causes the electron to revolve around the nucleus”. The inference
hypotheses from Solar system to Rutherford atom are:
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1: greater(q nucleus, q electron, skolem major temp)
2: skolem attraction mass(major mass, attracts, skolem major mass attracts)
3: cause(skolem major mass attracts, revolve, skolem cause revolve)
4: skolem gravity(mass n, mass e, major charge)

where 1, 2 and 3 fully satisfy this interpretation. Additionally, hypothesis 4,
obtained by transposing the gravity to the electromagnetic force, explains that
there is a force based on the charge of the particles.

5 Conclusions

Analogy is a fundamental inference mechanism to transpose knowledge from
known to unknown domains, producing new conclusions that are helpful to solve
a problem. In addition to using equal descriptors, as in the mainstream litera-
ture, our approach can map also different descriptors that play the same role in
the two domains. This paper has shown an approach by which the found analo-
gies can be generalized into meta-patterns, that represent core knowledge and
allow further reasoning. This enables more complex reasoning, since by finding
an analogy between a meta-pattern and a novel description one may recognize
analogies across several different stories, each having a different domain. This
can be viewed more in general as a multi-strategy reasoning approach, in which
analogies yield generalizations, that in turn are used as novel descriptions to
reason over and over again.

Compared to the current literature, our approach allows to learn patterns
representing the intuition that leads to a potential solution to the problem, and
provides a computational trick that allows to reuse analogies computed in the
past. Moreover, it can capture non-syntactic alignments without using meta-
descriptions. The challenge to which this approach aims at contributing is the
integration of the learned generalizations in the general knowledge network that
an agent builds over its lifetime. Such an objective, aimed at overcoming a limit
in the current landscape, is not trivial, since integration means defining strate-
gies for knowledge addition and retrieval. Even harder difficulties are present
in knowledge modification and deletion, since these tasks refer to incremental
learning, which is still an open issue.

Future improvements will regard the recognition and mapping of relations
with opposite sense. Another interesting direction will be the use of a prob-
abilistic approach to assess the reliability of the mappings. In a multi-strategy
perspective, we will study the use of an abductive procedure to check whether the
inferred knowledge (mapped or projected) is consistent with the constraints of
the target domain, and of an abstraction operator that shifts the representation
when needed. Moreover, it will be interesting to allow the analogical reasoner
to take advantage of available common sense knowledge, in order to check the
soundness of the final result.
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Abstract. In this paper we address automatic vehicle identification
based on audio information. Such data are complicated, as they depend
on vehicle type, tires, speed and its change. In our previous research we
designed a feature set for selected vehicle classes, discriminating pairs of
classes. Now, we decided to expand the feature vector and find the best
feature set (mainly based on spectral descriptors), possibly representative
for each investigated vehicle category, which can be applied to a bigger
data set, with more classes. The paper also shows problems related to
vehicles classification, which is detailed in official documents by national
authority for issues related to the national road system, but simplified
for automatic identification purposes. Experiments on audio-based vehi-
cle type identification are presented and conclusions are shown.

Keywords: Intelligent Transport System, Vehicle classification, Audio
Signal Analysis

1 Introduction

The traffic we experience every day in the roads generates a lot of noise. Many
countries measure this traffic and monitor its density. Such monitoring generates
data that can be later analyzed, in order to estimate how the roads are used,
introduce noise prevention etc. The audio data from the traffic monitoring are
the subject of research presented in this paper. The reason is that audio data
require less storage space, are cheaper to obtain, and can be recorded at night
or at other low visibility conditions, for instance during bad weather, etc. They
are easier to install, also in a way that is not visible for the drivers, so they are
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less distractive. In the case of video cameras, the drivers are expecting a radar
device, and change their behavior, so audio only recording can be even preferred.
Still, extracting information from the audio data is not simple.

Audio data representing vehicles passing by are very complex, as they depend
on many factors. The noise generated by vehicles depends on the vehicle type,
speed, traffic intensity, how old the vehicles are, technical parameters, engine
type, tires, exhaust system, air intake system, and other factors [12]. If different
vehicles have the same type of engine, they sound very similar. On the other
hand, the same vehicle sounds different when traveling upwards, downwards,
with uniform speed or accelerating/decelerating. Also, the noise generated by
old vehicles in very bad condition will be raised by few dB. Diesel engine is up
to 5 dB louder than gasoline engine, whereas electric motor produces very little
noise. At very low speed, below 30 km/h, electric motors are hardly audible.
This actually is dangerous for pedestrians, as in this case they do not hear the
vehicle approaching. At higher speed, tire friction makes these vehicles audible.
Also, the road surface is an important factor of vehicle noise, and the difference
can be about 5 dB or more.

In order to assess the road traffic in Poland, measurements are performed
on various designated roads, at specified dates through the observed year, in
day time (6am - 10pm), at night (10pm - 6am), and additionally between 8am
and 4pm for trucks. The measurements are taken through week days, on Sat-
urdays, Sundays and holidays [8]. Measurements can be done automatically,
semi-automatically, or manually. In other countries, data about traffic are also
collected. European Union also issued a directive on the framework for the de-
ployment of Intelligent Transport Systems [5], with the purpose (among others)
of the facilitation of the electronic data exchange between urban control centers
for public or private transport. The United States also prepared a strategic plan
for Intelligent Transport Systems (ITS) [11].

1.1 Related Work

The research on audio-based automatic classification of vehicles has already been
performed, for varying number of classes. Such a research is usually performed
for low sampling rate, 8-11.025 kHz, or downsampled for faster processing, and
the analyzing window is usually short, 10-50ms. In our research, we decided to
use 48 kHz/24 bit recordings, as this is the standard in modern audio recorders.
Also, we decided to use longer analyzing frame, 330ms, to have high resolution
spectrum, and longer frames yielded better results in our previous research [14].

Various classifiers have already been applied for audio-based vehicle classifi-
cation, often with feature selection; extensive literature review on this subject
is presented in [7]. In [9], artificial neural network was applied for 3 car classes
(and horn as 4th class). Erb himself applied SVM (support vector machines)
and feature selection with linear prediction for 3 classes: car, truck, and van. He
obtained 87% correctness for vehicles traveling at low speed, and 83% for higher
vehicle speeds. For traffic without given probabilities, the best result reached
80%, and increased to 83% if class probabilities matched those from the training
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data [7]. Alexandre et al. in [1] applied multi-layer perceptrons combined with
feature selection based on a genetic algorithm, for another 3 classes: car, motor-
cycle, and truck. Features included mel-frequency cepstral coefficients (MFCC),
and zero crossing rate, yielding 93% correctness for 22 features and 75% for 66
features [1]. Four target classes were investigated in [15]: bus, car, motor, and
truck. The authors used quadratic and linear discriminant analysis, and also
k-nearest neighbors method (k-NN) and support vector machines (SVM). Fea-
ture vector included, among others, short time energy, average zero cross rate,
and pitch frequency of periodic segments of signals, yielding 80% correctness
for SVM with 12 Mel coefficients [15]. Generally, such research usually aims at
recognizing 3-4 classes, for various vehicles, including military ones (see [6]).

1.2 Vehicle Classes

The vehicles can be classified in various ways. In Poland, according to the Gen-
eral Directorate for National Roads and Motorways, the vehicles are classified
into the following classes: bicycles, motorcycles (including scooters), cars (in-
cluding minibuses), vans (light trucks, up to 3.5t), small trucks (above 3.5t), big
trucks (above 3.5t with trailers or semitrailers), buses, and tractors (including
rollers, excavators etc.) [8]. Detailed specification is also prepared for tax and
customs purposes [13]. Modern vehicle classification techniques that can be used
for vehicle type recognition are based on data sets of vehicle outlines. However,
similar vehicles can vary in the noise they generate.

All these categories include various types vehicles, differing in the noise pro-
duced. For instance, scooters differ from motorcycles with respect to the noise
generated. Also, cars include vehicles for up to 9 passengers, including the driver.
Off-road vehicle fall into this category, and they can produce more noise if all
terrain tires are used. Emergency vehicle also produce different sounds when us-
ing audible warning devices. In order to obtain relatively uniform representation
of each class, we decided to use most typical vehicles for the following 7 classes:

1. bus,

2. small truck (without trailers),

3. big truck - tractor unit with semitrailer,

4. van,

5. motorcycle, excluding scooters,

6. car,

7. tractor.

Minibuses, scooters, and emergency vehicles using audible warning devices
were excluded from our research. Also bicycles were excluded, as they produce
almost no sound (we recorded several examples). Tractor units without trailers
or semitrailers were also excluded.
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Our data. In this paper, we address automatic identification of vehicle type
based on audio signal for 7 target classes: bus, small truck, big truck, van, motor-
cycle, car, and tractor. The audio and video recordings were made in a suburban
area near Lublin in November 2012 (tractors) and June 2015 (other vehicles).
The position of the audio recorder is shown in Figure 1. The road is approxi-
mately flat and straight here. The video material was used to mark ground truth
data, whereas audio data was used for further investigations. Our goal was to
parameterize the audio data for automatic recognition of vehicle type.

Fig. 1. The position of data acquisition

2 Feature Set

Based on our previous research [14], our features are based on 330ms audio
segments, Hamming windowed for spectrum calculation. Most of the features are
spectral, plus zero crossing rate (temporal feature). The feature vector includes
standard features used in audio classification, plus additional features designed
to discern objects representing our target classes.

The features applied are listed below:

– Audio Spectrum Envelope - 33 features, SE0, ..., SE32 [17],
– SUM SE - sum of the spectrum envelope values,
– MAX SE V, MAX SE IND - value/index of spectrum envelope maximum,
– F0 ACor, F0 MLA - fundamental frequency calculated from the autocorre-

lation function, and through maximum likelihood algorithm [20],
– EnAb4kHz - proportion of the spectral energy above 4kHz to the entire

spectrum energy;
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– Energy - energy of the entire spectrum;
– Audio Spectrum Centroid (SC) - the power weighted average of the frequency

bins in the power spectrum. Coefficients were scaled to an octave scale an-
chored at 1 kHz [17];

– Audio Spectrum Spread (SS) - RMS (root mean square) of the deviation of
the log frequency power spectrum wrt. Audio Spectrum Centroid [17];

– Zero Crossing Rate (ZCR) in the time-domain of the sound wave; a zero-
crossing is a point where the sign of the function changes;

– RollOff - the frequency below which 85% (experimentally chosen threshold)
of the accumulated magnitudes of the spectrum is concentrated,

– A14, A41, A15, A51, A16, A61, A17, A71, A24, A42, A52, A26, A62,
A72, A34, A43, A35, A53, A63, A73, A45, A54, A47, A74, A56, A65, A57,
A75, A67, A76 - normalized (with respect to the spectrum energy) energies
Axy in the spectral ranges determined in such a way that the energy of this
frequency range separates classes x and y, i.e. the class x shows higher energy
values than the class y in this range; detailed ranges are shown in Table 1.
Not for all pairs of classes such discerning ranges were found;

– B14, B15, B16, B17, B24, B26, B34, B35, B45, B47, B56, B57, B67 pro-
portion of energies between the indicated spectral ranges, Bxy=Axy/Ayx;

– BW 10dB, BW 20dB, BW 30dB - bandwidth of the frequency band com-
prising the spectrum maximum (in dB scale) and the level drop by 10, 20
and 20 dB, respectively, towards both lower and upper frequencies,

– f bus, f smallTruck, f bigTruck, f van, f motorcycle, f car, f tractor - features
discerning a particular class from all other classes, obtained through mul-
tiplication of all available Bxy values; the value for the target class should
exceed those for other classes (at least this is the case for the data used to
determine the frequency ranges Axy).

Altogether, the feature set consists of 97 features. Some of these features
were used in our previous research on vehicle classification [14]. New features
added in this paper include Audio Spectrum Envelope, SUM SE, MAX SE V,
MAX SE IND, F0 ACor, F0 MLA, BW 10dB, BW 20dB, BW 30dB, and f bus,
f smallTruck, f bigTruck, f van, f motorcycle, f car, f tractor. Features Axy and
Bxy were calculated in the same way as in [14] but for 7 classes and for different
audio samples (only tractor samples were the same).

The data for experiments were recorded in stereo; the average of both chan-
nels was used for calculating features. For each audio frame, the obtained feature
vector can be used as input to classifiers, to identify vehicle(s) audible in this
frame. Using binary classifiers allows recognition of plural vehicles per segment,
i.e. all recognized target class (for instance, big truck and car).

2.1 Feature Selection

After designing the feature set and performing experiments on this set, we also
applied feature selection, as our feature vector is relatively large, so such a pro-
cedure is recommended in this case [10]. For each of the classifiers investigated,
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Table 1. Spectral ranges Axy: the energy of this frequency range separates classes x
and y, i.e. the class x shows higher energy values than the class y in this range

Axy lower limit [Hz] upper limit [Hz]

A14 790.8203125 723.6328125
A15 17.578125 38.0859375
A16 72.9296875 796.875
A17 26.3671875 46.875
A41 1798.828125 1822.265625
A51 3275.390625 3278.320313
A61 937.5 1054.6875
A71 3369.140625 3418.945313
A24 32.2265625 1116.210938
A26 23.4375 750
A42 1986.328125 2071.289063
A52 117.1875 290.0390625
A62 1001.953125 1297.851563
A72 4209.960938 4212.890625
A34 49.8046875 1183.59375
A35 383.7890625 1127.929688
A43 2554.6875 2589.84375
A53 117.1875 375
A63 4283.203125 4309.570313
A73 3843.75 3849.609375
A45 732.421875 1125
A47 691.40625 1374.023438
A54 117.1875 571.2890625
A74 298.828125 325.1953125
A56 111.328125 541.9921875
A57 87.890625 137.6953125
A65 1069.335938 1397.460938
A75 867.1875 896.484375
A67 770.5078125 1403.320313
A76 316.40625 515.625

3-fold cross validation was applied. We tested 2 versions: with constant number
of features to be selected (10 features; number arbitrarily chosen), and with fea-
ture importance above a selected threshold (0.5 mean decrease of Gini criterion;
threshold arbitrarily chosen, based on the observation of feature importance for
all classes). Since better results were obtained in the second case, we decided to
choose this feature selection scheme.

3 Experiments

In our experiments we applied SVM, random forests (RF, [3]), and deep learning
(DL) architecture (neural network), see Section 3.1, using R and packages: h2o,
randomForest, and e1071 [16], [18]. In each case, we trained a binary classifier
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for each target class, to recognize automatically whether a target vehicle sound
is present in the analyzed audio data (positive answer of the classifier) or not
(negative answer). This is because multiple vehicles can be recorded in the same
audio sample, and such samples represent multi-label data. A set of binary clas-
sifiers can perform multi-label classification, identifying each vehicle present in
the analyzed audio sample.

3.1 Classifiers

SVM looks for a decision surface (hyperplane) that maximizes the margin around
the decision boundary. The decision hyperplane should be maximally away from
the training data points, called support vectors. Data that is not linearly sepa-
rable is projected into a higher dimensional space where it is linearly separable.
This mapping is done by using kernel functions. In our case, we used kernels
in form of radial basis functions (RBF). Such a function has 2 parameters, c
and γ, which require tuning for best performance. We applied automatic tuning
available in R package (tune.svm).

RF is a set of decision trees, constructed with minimizing bias and correla-
tions between the trees. Each tree is built without pruning to the largest possible
extent, using a different N -element bootstrap sample of the N -element training
set, i.e. obtained through drawing with replacement. For a K-element feature
vector, k features are randomly selected (k � K, often k =

√
K) for each node

of any tree. The best split on these k features is used to split the data in the
node, and Gini impurity criterion is minimized to choose the split. The Gini cri-
terion measures of how often an element would be incorrectly labeled if labeled
randomly, according to the distribution of labels in the subset. This procedure
is repeated M times, to obtain M trees; M=500 in our experiments (standard
setting in R). Classification of is performed by simple voting of all trees in RF.

DL architecture is composed of multiple levels of non-linear operations. DL
neural network architecture is a multi-layer neural net, with many hidden lay-
ers. This algorithm is implemented in h2o as feedforward neural net, with au-
tomatic data standardization. Training is performed through back propagation,
with adaptive learning. Weights are iteratively updated in so-called epochs, with
grid-search of the parameter space. H2o parameters include large weight pe-
nalization and drop-out regularization (ignoring a random fraction of neuron
inputs). Standard setting of DL in h2o were used in our experiments.

3.2 Data and Results

The data used in our experiments represented 21 frames of positive examples for
bus class, 26 for small truck, 39 for big truck, 33 for van, 15 for motorcycle, 33
for car, and 18 for tractor. Negative examples outnumbered the positive for each
class, as this reflects the real situation. The data were divided into training and
testing part (approximately 2/3 for training and 1/3 for testing), with different
vehicles data used for training and for testing. No cross validation was applied in
the initial experiments. The audio data represented sound of a single vehicle, or
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multiple vehicles. Positive examples contained sounds of the target class (possibly
accompanied with other sounds), and negative examples represented any other
classes (single or multiple vehicles), or silence.

The error for our data is shown in Figure 2. As we can see, the error is
usually small, with the highest error for small truck classification using RF (but
still much better than random choice). Even though the error in this particular
case was quite dissatisfying, RF are still useful, as we can use them to estimate
the importance of the proposed features. As examples, we present importance
for car, motorcycle and tractor in Figure 3. MeanDecreaseGini used here is a
measure of feature importance based on the Gini impurity index used for the
calculation of splits during RF training. When a split of a node is made, Gini
index for the two descendent nodes G1 and G2 is less than for the parent node,
G0, and the importance I is calculated as I=G0-G1-G2.

As we can see, our proposed features are of high importance in these cases.
Other important features are related to spectral envelope, also in plots not pre-
sented in this paper.

Fig. 2. Classification error

For illustration purposes, the details of true positive (tp) recognition, true
negative (tn), false positive (fp) and false negative (fn) for SVM is shown in Table
2. As we can see, there are fp and fn, but not so many, and we should remember
that video data can be also used together with audio for better classification.

We also performed clustering experiments, in order to check how the pro-
posed feature set is grouping vehicle objects [19]. Clustering into 7 clusters was
performed. Exemplary clustering is presented in Table 3. As we can see, data are
a bit mixed in clusters. For example, tractor samples are together with motor-
cycle data, which can be surprising. Still, usually most of the objects are located
in one cluster. Only cars and vans are together in one cluster, but these vehi-
cles are similar with respect to produced sound anyway. The obtained clustering
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Fig. 3. Importance plot for car, motorcycle, and tractor classes

Table 2. True positive (tp) recognition, true negative (tn), false positive (fp) and false
negative (fn) for SVM classifier

vehicle tp tn fp fn

bus 0 41 0 7
small truck 4 72 3 8
big truck 7 132 1 6

van 6 95 0 5
motorcycle 1 124 0 3

car 3 42 1 7
tractor 1 73 0 5

shows that our feature set describes vehicle sounds quite well, and explains good
results of the classification performed on these data. We should also remember
that audio data depend on many factors, including tires, speed, acceleration etc.,
and these factors can be additionally investigated in further research.

Since our data are imbalanced, we also decided to balance the data. This can
be done through downsampling the negative examples for each binary classi-
fiers, or upsampling the examples of each target class [4]. In our experiments, we
decided to perform upsampling, i.e. replicating the target class frames. After bal-
ancing, equal number of positive and negative examples (audio frames) for each
classifier were obtained, i.e. 48-146. Classification was performed in 3-fold cross-
validation. Next, we performed feature selection, as mentioned before, again in
3-fold cross validation for each classifier. Features of importance exceeding 0.5
threshold of mean decrease of Gini index were kept in the final feature set. The
following features were present in each fold for the target classes:
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Table 3. Hierarchical Ward’s clustering with Euclidean metrics for our data

cluster no.: 1 2 3 4 5 6 7

bus 12 1 0 0 0 0 0
small truck 3 3 1 0 3 0 3
big truck 4 7 2 0 0 0 0

van 0 0 0 0 0 10 0
motorcycle 0 0 0 2 6 0 0

car 0 0 0 0 0 10 0
tractor 0 0 0 10 8 0 0

– bus: SE6-8, SE10-11, SE21-23, SE25, SC, A14, A15, A51, A16, A17, A71,
B17, A24, A26, A34, A35, A73, A54, B45, A74, B47, A56, A57, B67, f bus;

– small truck: SE0, SE4, SE7, SE11, SE14-16, SE30, SUM SE, MAX SE V,
Energy, A14, A16, A61, A24, A52, A26, A34, A35, A53, B35, A45, A54,
B45, A47, A56, A67, A76

– big truck: SE0-1, SE3, SE5, SE9-15, SUM SE, F0 Acor, A14, A16, A61, A24,
B24, A52, A26, A34, A35, A53, A63, A45, A54, A47, A74, B47, A56, A57,
A75, A67, A76;

– van: SE0, SE7-11, SE13, SE16, SE20, SE23, SE26-32, SUM SE, F0 Acor,
EnAb4kHz, SC, SS, ZCR, RollOff, A14, A41, A15, A16, A61, B16, A17,
A24, A52, A26, A62, B26, A34, A43, A53, A54, B45, A74, B47, A56, A65,
B56, A67, A76, f bus, f smallTruck, f bigTruck, f van, f motorcycle, f car;

– motorcycle: SE1, SE4, SE6-7, SE13, SE15, Se22, SE25-32, EnAb4kHz, RollOff,
B15, A61, A52, B35, A45, B45, A47, B47, A75, f bigTruck, f motocycle;

– car: SE19-21, SE29-30, SUM SE, MAX SE V, BW 30dB, F0 Acor, SC, SS,
ZCR, B14, B16, B24, A52, B26, A43, B34, A53, B56, f smallTruck, f bigTruck,
f van, f car;

– tractor: SE1, SE7, SE9, SE22-24, SE28-29, SE31-32, A71, B17, A73, B45,
A74, B47, f bigTruck, f motorcycle, f tractor.

As we can see, the feature designed to identify the target classes, or to discern
between pairs of classes, are of high importance and are kept in the feature set
after the feature selection procedure.

These experiments were performed for the balanced data. Classification error
and F-measure after feature selection are shown in Figures 4 and 5, respectively.
As we can see, classification error decreased after feature selection, and deep
learning classifiers yields best results.

4 Summary and Conclusions

The features proposed in this paper for audio-based classification of vehicle type
yields good results, as the error is below 10-15% in most cases and improves
after feature selection, for 7 classes, which compares favorably with other re-
search, performed for 3-4 classes for similar data. Best results were obtained for
deep learning neural network. Still, our results can be improved, and we hope to
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Fig. 4. Classification error after feature selection

Fig. 5. F-measure after feature selection

get better results when more data are collected. Also, taking Doppler effect into
account may further improve the results, see [2], where the data were compared
with prerecorded sounds. We can also include subclasses not investigated in this
research (scooters, emergency vehicles etc.), and perform hierarchical classifica-
tion, as it usually improves the results [14]. Other factors than vehicle type can
also be taken into account, including vehicle speed, acceleration, tires, etc. Also,
video material can be used together with audio data in the vehicle classification
task.
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Abstract. We propose a new probabilistic graph kernel defined by the
set of frequent subtrees generated from a polynomial size random sample
of spanning trees of the transaction graphs. In contrast to other frequent
pattern graph kernels, it can be computed in polynomial time for any
arbitrary graphs. Due to its probabilistic nature, the embedding function
corresponding to our graph kernel is not always correct. Our empirical
results on chemical graph datasets, however, clearly demonstrate that
the graph kernel we propose is much faster than other frequent pattern
based graph kernels, with only marginal loss in predictive accuracy.

1 Introduction

Over the past decade, graph kernels (see, e.g., [6]) have become a well-established
approach in graph mining for their excellent predictive performance. One of the
early graph kernels, the frequent subgraph kernel, is based on explicitly embed-
ding the graphs into a feature space spanned by the set of all frequent connected
subgraphs in the input graph database [5]. It was empirically demonstrated in
[5] that remarkable predictive accuracies can be obtained with this type of graph
kernels on the molecular graphs of small pharmacological compounds.

One of the main drawbacks of frequent subgraph kernels is that the pre-
processing step of generating all frequent connected subgraphs from the input
database is computationally intractable [8]. Many of the practical approaches ig-
nore this limitation, implying that such systems can be infeasible even for small
datasets. Approaches that do not disregard the computational limitation above
resort either to various heuristics for traversing the search space that result in
incomplete output (see, e.g., [3]), or restrict the class of the input graphs to some
tractable class to guarantee both completeness and efficiency (see, e.g., [9]).

In this work we propose a new approach different from the ones above. On
the one hand, we are interested in a frequent subgraph kernel that is not re-
stricted to any particular graph class. On the other hand, we require the kernel
to be efficiently computable. It follows from the negative complexity result [8]
on mining frequent connected subgraphs from arbitrary graphs that, unless P
= NP, such a frequent subgraph kernel can only be achieved by relaxing the
conditions in some way. For this work, we give up the demand on completeness
and ‘represent’ each input graph by a random sample of spanning trees that is of
polynomial size. Such a random sample is always a forest and can be generated
in polynomial time. Combining these facts with the positive result that frequent
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subtree mining in forests can be solved with polynomial delay (see, e.g., [2,9]),
we arrive at a polynomial delay frequent subgraph mining algorithm.

Our approach is sound, but incomplete in two ways: First, it is only able to
identify frequent subtrees and not arbitrary graph patterns. Second, even if a tree
pattern is frequent, it might not be identified as such by the algorithm. Another
problem is the computational intractability of calculating the embedding for any
(unseen) query graph. This step is based on the NP-complete problem of deciding
for each frequent pattern if it is subgraph isomorphic to the query. Therefore,
to compute the embedding for an unseen graph into the feature space, we follow
the same probabilistic strategy as for the pattern mining step, i.e., generate
a random subset of spanning trees of the graph and decide whether the tree
pattern is subgraph isomorphic to any of the random spanning trees. Needless
to say that subgraph isomorphism is decided with one-sided error in this way.
This, somewhat unusual, idea is justified by the property that any tree found
by our mining algorithm is not only frequent with respect to the database, but
with high probability it has a relatively high frequency also in the set of spanning
trees for each transaction graph containing it. Therefore, there is a high chance
that the pattern will be detected with this method in the query graph as well,
if it is part of it3.

We have empirically evaluated the proposed approach on the NCI-HIV and
on different subsets of the ZINC chemical datasets. The empirical results on these
datasets show that at least 20% of all frequent subtrees can be recovered from a
single random spanning tree per graph. Using one spanning tree per graph, we
have observed a speed-up of at least a factor of three against frequent subgraph
kernels that are defined by all frequent connected subgraphs. A more significant
difference between the two approaches is that in contrast to the ordinary one,
our method is able to process significantly larger datasets. In addition, as it
generates a smaller feature set, it speeds up the subsequent learning step as
well. It is natural to ask whether the feature set obtained by our method is
expressive enough in terms of predictive performance compared to the original
one. Our results on the NCI-HIV dataset show that there is only a marginal
loss in predictive performance. This suggests that a careful composition of our
simple technique with some other fast graph kernel might result in a fast graph
kernel of high predictive performance.

The rest of the paper is organized as follows. In Section 2 we present our
algorithm with some important implementation details. Section 3 describes the
empirical evaluation of our approach and Section 4 concludes with some inter-
esting questions for further work.

2 The Probabilistic Frequent Subtree Kernel

Several graph kernels have been developed over the past decade for predictive
graph mining. A broad range of these graph kernels belong to the class of con-

3 We assume that the query graph has been selected from the same (unknown) prob-
ability distribution as the graphs in the input database.
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volution kernels [7]. That is, the input graphs are first decomposed into certain
sets of substructures determined by some pattern language and the graph ker-
nels are then defined by the intersection kernel over such sets. Depending on the
particular choice of the substructure class (i.e., the pattern language), different
graph kernels can be defined in this way. One of the first such graph kernels
was defined by means of frequent connected subgraphs [5]. That is, the feature
space corresponding to the kernel is spanned by the set of connected graphs that
occur in at least a certain proportion of the graphs in the input database. The
first step of this approach is to generate all frequent connected subgraphs, i.e.,
to solve the following pattern mining problem:

Frequent Connected Subgraph Mining (FCSM) Problem: Given a fini-
te set D ⊆ G for some graph class G and a threshold t ∈ (0, 1], list the set
F ⊆ P of all pairwise non-isomorphic graphs from some graph class P that
are subgraph isomorphic to at least dt · |D|e graphs in D.

In what follows, G and P will be referred to as transaction and pattern classes.
The set F of frequent patterns in D naturally yields a binary vector representa-
tion for any arbitrary graph G: We map G to its characteristic vector vG over
the universe F , i.e., vG is indexed by F and for all H ∈ F , vG[H] = 1 if and only
if H is subgraph isomorphic to G. To avoid redundancies in the characteristic
vectors over F , the patterns in F are required to be pairwise non-isomorphic.

One of the main limitations of graph kernels based on frequent subgraphs is
the computational intractability of the FCSM problem: If there is no restriction
on the transaction graphs in G and P consists of all connected graphs of G
then, unless P = NP, the FCSM problem cannot be solved in output polynomial
time [8]. Unfortunately, this negative complexity result is reflected in practice
even for sparse graphs (see, e.g., [10]), making the frequent subgraph kernel
infeasible for arbitrary graph datasets. One way to avoid this limitation is to
restrict G to some graph class for which the FCSM problem can be solved at least
in incremental polynomial time, preferably, with guaranteed polynomial delay.
Examples of such classes include the class of bounded tree-width graphs [9] and
some of its proper subclasses [10,13]. Our goal is, however, to propose a frequent
pattern based graph kernel that can be calculated in time polynomial in the
cardinality of frequent patterns and in the size of the input graphs G1, G2 for
any arbitrary graphs G1 and G2. Note that other ’tree kernels’ (e.g. [11,12])
do not directly relate to our work, as they (i) use homomorphism instead of
subgraph isomorphism as the embedding operator and (ii) are not frequency
based.

2.1 Probabilistic Frequent Subtrees

For the reason mentioned above, we focus on restrictions of the pattern class P.
Though most state-of-the-art frequent subgraph mining algorithms require the
transaction graph class G and the pattern class P to be equal (up to connectiv-
ity), this constraint is not necessary and can therefore be dropped. In this work
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we allow the pattern and transaction graph classes to differ and focus on mining
frequent subtrees in databases of arbitrary graphs. For the sake of simplicity,
we assume that the transaction graphs are connected by noting that the mining
algorithm presented in this work can naturally be generalized to disconnected
transaction graphs as well.

Restricting the pattern language to trees alone, however, is not sufficient to
get rid of the computational intractability mentioned above; mining frequent
trees in arbitrary graphs is not possible in output polynomial time, as it could
otherwise be used to decide the Hamiltonian path problem in polynomial time [8].
There are some transaction graph classes for which this problem can be solved
in incremental polynomial time, or even with polynomial delay (e.g., for trans-
action graphs of bounded tree-width [9] or for cactus graphs with bounded cycle
degree [13]). Since, however, our goal is a kernel for arbitrary transaction graphs,
we cannot resort to these approaches.

In light of the above mentioned negative results on mining frequent subtrees
in arbitrary graphs, we give up the demand on completeness and consider only
such subsets of the set of all frequent subtrees that can be enumerated with
polynomial delay. A natural candidate towards this direction is to generate first
some random subset of the spanning trees for each transaction graph and, in a
second step, to enumerate the set of frequent subtrees from the forest database
obtained in this way.

With this problem relaxation we arrive at an easy to implement and, as shown
in Section 3, practically effective frequent subgraph mining algorithm (see Algo-
rithm 1). In addition to the transaction database D and the frequency threshold
t given in the definition of the FCSM problem, the input contains an additional
parameter k ∈ N defining an upper bound on the number of spanning trees to
be generated for each transaction graph. The algorithm starts by sampling (no
more than) k spanning trees for each graph in the database. Instead of mining
frequent patterns in the input database D directly, we represent each graph G
by a forest FG formed by the vertex disjoint union of the random spanning trees
generated for G. This effectively reduces the problem of mining frequent subtrees
in arbitrary graph databases D to the problem of mining frequent subtrees in
a database D′ consisting of forest transactions FG for all G ∈ D. A tree T is
said to be t-frequent in such a setting if and only if it is subgraph isomorphic to
at least dt · |D′|e = dt · |D|e forests in D′. As frequent subtree mining in forest
transaction databases can be done with polynomial delay [2,9], we arrive at an
algorithm that runs in time polynomial in the combined size of D and the set of
frequent subtrees in D′.

To distinguish between the output F of the frequent subgraph problem and
the output F ′ of Algorithm 1 on D and t, we will refer to the former set as
frequent patterns and to the later one as probabilistic (subtree) patterns with
respect to a threshold t. Clearly, for any D, t, and k, the output of Algorithm 1
is a subset of the set of frequent trees in D, i.e., Algorithm 1 is sound. However,
it will not necessarily find all frequent patterns, i.e., it is not complete in gen-
eral. Thus, with this technique, on the one hand we obtain a polynomial time
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Given: A graph database D ⊆ G an integer k > 0 and an integer threshold t > 0.
Output: A set of t-frequent subtrees of D.

1: D′ := ∅
2: for all G ∈ D do
3: Sample k spanning trees of G uniformly at random
4: Add the forest of those trees up to isomorphism to D′

5: List all t-frequent subgraphs in D′

Algorithm 1: The Probabilistic Subtree Mining Algorithm

algorithm that is fast for small values of k, on the other hand, however, loose a
number of frequent patterns.

Given a set F ′ of probabilistic tree patterns and an unseen query graph G,
the embedding of G into the feature space spanned by F ′ cannot be computed
in polynomial time (if P 6= NP). This is because deciding subgraph isomorphism
from a tree into an arbitrary graph is NP-complete. We can, however, use the
same probabilistic embedding based on a random sample of spanning trees of G
as for the transaction graphs. Clearly, this embedding is not unique because it
depends on the random sample of the spanning trees generated for G. It can,
however, be shown that with high probability it has a small Hamming distance
to the exact one defined by F ′.

In the application context of graph kernels, the incompleteness of Algorithm 1
raises two important questions:

1. How stable is the output of Algorithm 1 and what is its recall with respect
to all frequent subtrees?

2. How does the incompleteness of our algorithm influence the predictive per-
formance of the graph kernel obtained?

Regarding the first question, we show in the next section on real-world chemical
datasets that (i) the output is very stable even for k = 1 and (ii) more than 75%
of the frequent patterns can be recovered by using only ten random spanning
trees per graph (i.e., for k = 10). Regarding the second question, we show on
the NCI-HIV benchmark dataset that our experimental results are comparable
with those obtained by the FSG algorithm [5]. Before presenting these and other
empirical results in Section 3, we first discuss some implementation issues and
analyse the time complexity of Algorithm 1.

2.2 Implementation Issues and Runtime Analysis

Line 3 of Algorithm 1 can be implemented using Wilson’s algorithm [14], which
has an expected runtime that is linear in the mean hitting time of a graph and
returns each spanning tree of G with the same probability. This is O

(
n3
)

in the
worst case, but conjectured to be much smaller for most graphs [14]. The set of
all sampled spanning trees up to isomorphism (Line 4) can be computed from
the set of sampled spanning trees using some canonical string representation
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for trees and a prefix tree as data structure (see, e.g., [2] for more details on
canonical string representations for labeled graphs). We follow this approach to
practically reduce the runtime of the subsequent frequent subtree mining step,
as isomorphic spanning trees yield the same subtrees and can safely be omitted.
For each tree, this can be done in O (n log n) time by computing first the tree
center and then applying a canonical string algorithm for rooted trees as in [2].
These canonical strings are then stored in and retrieved from a prefix tree in
time linear in their size.

Thus, the sampling step of our algorithm runs in expected O
(
kn3

)
time. If

we do not require the spanning trees to be drawn uniformly, we can improve on
this time and achieve a deterministic O (km log n) runtime, where m denotes the
number of edges. This is achieved by choosing a random permutation of the edge
set of a graph and then applying Kruskal’s minimum spanning tree algorithm
using this edge order. It is not difficult to see that this technique can gener-
ate random spanning trees with non-uniform probability. As our experimential
results on molecular graphs of pharmacological compounds show, this has no
significant impact on the predictive performance of the graph kernel obtained.

Finally we note that for Line 5, we can use almost any one of the existing
algorithms generating frequent connected subgraphs (i.e., subtrees) from forest
databases (see, e.g., [2] for an overview on this topic).

3 Experiments

In this section we empirically evaluate our proposed method on the NCI-HIV
benchmark and on the ZINC molecular graph datasets. We start with the de-
scription of these datasets.

NCI-HIV consists of 42, 687 compounds of which 39, 337 are connected4. The
average number of vertices and edges per graph are 41 and 43, respectively.
The transactions are annotated with their activity against the human im-
munodeficiency virus (HIV). The molecules are labeled by “active” (A),
“moderately active” (M), or “inactive” (I). We consider the following three
usual binary classification problems:

(i) A and M together versus I (AMvsI),

(ii) A versus M and I (AvsMI), and

(iii) A versus I where instances labeled M are removed (AvsI).

ZINC is a subset of 8, 946, 757 (8, 946, 755 connected) so called ’Lead-Like’
molecules from the zinc database of purchasable chemical compounds5. The
molecules in this subset have a molar mass between 250g/mol and 350g/mol
and have an average number of vertices and edges 43 and 44, respectively.

4 http://cactus.nci.nih.gov/
5 http://zinc.docking.org/subsets/lead-like

http://cactus.nci.nih.gov/
http://zinc.docking.org/subsets/lead-like
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k = 1 k = 2 k = 3 k = 10
t = 5% 0.2013± 0.0120 0.3553± 0.0134 0.4648± 0.0051 0.7832± 0.0085

NCI-HIV t = 10% 0.2026± 0.0222 0.3445± 0.0142 0.4540± 0.0159 0.7994± 0.0182
t = 20% 0.2445± 0.0138 0.3976± 0.0168 0.5041± 0.0114 0.8338± 0.0140

t = 5% 0.3680± 0.0087 0.5670± 0.0165 0.6842± 0.0094 0.9250± 0.0045
ZINC t = 10% 0.3277± 0.0189 0.5136± 0.0184 0.6447± 0.0140 0.9249± 0.0118

t = 20% 0.3103± 0.0259 0.4899± 0.0305 0.6141± 0.0341 0.9053± 0.0128

Table 1. Recall with standard deviation of the probabilistic tree patterns on the NCI-
HIV and ZINC datasets for frequency thresholds 5%, 10%, and 20%

For each dataset, we only consider the compounds that have a connected
graph and use the molecular graph representations that include hydrogen atoms.

To generate frequent subgraph patterns, we used FSG [5]. In Line 5 of our
algorithm, we also used FSG to generate frequent subtrees. In this way, we
can consistently compare the runtimes of the two methods, as none of them is
affected by some specific heuristic not used in the other one. However, we expect
a significant improvement of our probabilistic method over the tradidtional one,
once a specialized tree mining algorithm is applied. All our experiments were
conducted on an Intel i7 CPU with 3.40GHz and 16GB of RAM running Ubuntu
14.04. Our algorithms were implemented in C and compiled using gcc.

3.1 Recall of the Probabilistic Subtree Pattern Space

As discussed in Section 2, for any graph database, the pattern set F ′ found by
our algorithm is a subset of all frequent subtrees FT , which in turn is a subset
of all frequent subgraphs F . We now analyze the recall of our method, i.e. the
amount of frequent subtree patterns that are found when applying Algorithm 1

for various k and t. To this end, let R(k, t) :=
|F ′|
|FT | be the fraction of t-frequent

tree patterns that are found if Algorithm 1 selects k random spanning trees.

For each dataset, we sample 10 subsets of 100 graphs each and report the
average value of R(k, t) and its standard deviation. Using the FSG algorithm, on
each subset we first compute all frequent connected patterns, including non-tree
patterns as well, and then filter out all frequent subgraphs that are not trees. We
have found that at least 95% of all frequent subgraphs are trees. In a second step,
we apply Algorithm 1 to the subset and divide the size of its output by the size
of the frequent subtrees computed previously. The results on the two datasets
can be found in Table 1 for different values of k with frequency thresholds 5%,
10%, and 20%. It can be seen that the fraction of the retrieved tree patterns
rapidly grows with the number of sampled spanning trees per graph. Sampling
10 spanning trees per graph already results in around 90% recall for the ZINC
dataset and in a recall of 80% for the NCI-HIV dataset.
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Iteration 1 2 3 4 5 6 7 8 9 10

NCI-HIV 3920 20 5 10 14 7 2 6 7 2
ZINC 9898 18 17 11 10 22 7 7 9 1

Table 2. Repetitions of the experiment with k = 1 sampled trees. The numbers re-
ported are the number of probabilistic patterns that were not in the union of all prob-
abilistic patterns found up to the current iteration.

3.2 Stability of Probabilistic Subtree Patterns

Section 3.1 indicates that, at least on pharmacological molecular graphs, a rela-
tively high recall of the frequent tree patterns can be achieved, even for a very
small number of random spanning trees. In this section we report empirical re-
sults showing that even for k = 1, the output pattern set of Algorithm 1 is quite
stable. To empirically demonstrate this advantageous property, we have run Al-
gorithm 1 10 times for the same values of the parameters k and t and observed
how the union of the probabilistic tree patterns grows.

To this end, we fix two sets of graphs, each of size approximately 40, 000, as
follows: We take all connected graphs in NCI-HIV, as well as a random subset
ZINC40k of ZINC that contains 40, 000 graphs. We run Algorithm 1 ten times for
the datasets obtained with parameters k = 1 and t = 10%. Each execution results
in a set F ′i of probabilistic subtree patterns, from which we define Ui =

⋃i
j=0 F

′
j

with F ′0 := ∅. Table 2 reports |F ′i \ Ui−1|, i.e., the number of new probabilistic
subtree patterns found in iteration i for i = 1, . . . , 10. For an initial number
of 3, 920 (NCI-HIV) and 9, 898 (ZINC40k) probabilistic patterns, the number of
newly discovered patterns drops to at most 22 for the following iterations. This
shows, that the feature set generated does not depend too much on the spanning
trees selected at random. Overall, we have found that independent runs of our
algorithm yield similar feature sets on the same data.

3.3 Comparison of Recall and Stability Experiments

It can be seen from Tables 1 and 2 that the number of patterns found by repeating
the sampling twice for k = 1 is much lower than that found by a single repetition
of the sampling for k = 2. This is not surprising, considering the notion of
“frequency” we use.

Indeed, suppose we “represent” a graph database D by another database Dk

obtained by choosing k non-isomorphic spanning trees for each G ∈ D. Then the
set F ′k of frequent tree patterns in Dk is equal to the union of the probabilistic
patterns for the implicitly k|D| tree datasets, where each set is obtained by
choosing one out of the k spanning trees for each graph. Suppose a tree T is
t-frequent for some t ∈ (0, 1) in Dk. Then there are at least dt · |Dk|e forests in
Dk that contain T , implying that there is at least one tree in each such forest
that contains T . Therefore, choosing those trees and an arbitrary tree from each
forest that does not contain T results in a database of trees where T is t-frequent.
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≤ n ≤ n
√
n ≤ n2

NCI-HIV 34.36% 63.35% 86.29%
ZINC 45.84% 89.63% 99.62%

Table 3. Distribution of the graphs in NCI-HIV and ZINC with respect to different
upper bounds on their number of spanning trees.

The other direction needed for proving the equality of the two pattern sets is
trivial. Thus, by selecting at least k = 2 random spanning trees per graph, we
exponentially blow up the number of combinations to be considered, in contrast
to the strategy of repeating Algorithm 1 polynomially many times for k = 1.
As long as k is bounded by a polynomial in the size of D, the algorithm runs in
time polynomial in the combined size of D and F ′k.

Although the exponential “blow-up” of the combinations increases the chance
of finding a frequent tree pattern, the number of all combinations is doubly expo-
nential because a graph may have exponentially many spanning trees in general.
The impressive experimental results presented in this section for relatively small
values of k can be explained by the fact that most molecular graphs used in our
experiments have quadratically many spanning trees only, as shown in Table 3.

Finally we note that if we sample k spanning trees per graph, we might get
less than k pairwise non-isomorphic spanning trees because of collisions (e.g.
there is only one spanning tree, if the graph itself is already a tree). Thus k|D| is
only an upper bound on the number of one-spanning-tree-per-graph databases
that can be generated from Dk.

3.4 Predictive Performance

Using the annotated dataset NCI-HIV, in this section we show that the pre-
dictive performance of the probabilistic subtree kernel compares favorably with
that of the frequent subgraph kernel. We choose, as does most related work,
a wrapper method and report the achieved area under the ROC-curve (AUC)
of a well trained support vector machine (SVM) [4]. To this end, we consider
the three binary classification problems described at the beginning of this sec-
tion. We compare the predictive performance of (i) the frequent subgraph kernel
computed by FSG [5] with that of (ii) the probabilistic frequent subtree kernel
for k = 1 and k = 2, and for frequency thresholds of 5%, 10%, 15%, and 20%.
For (ii), we use only the results with Wilson’s random spanning tree sampling
algorithm; we obtained nearly identical accuracy and runtime results with the
greedy sampling algorithm based on Kruskal’s method for all combinations of the
above parameters. For our evaluation, we use the SVM provided by the libSVM
package [1] with a radial basis function kernel.

We repeat Algorithm 1 four times using different sets of sampled trees and
report the average and standard deviation of AUC values from a 3-fold cross
validation for each resulting feature set. The same procedure is applied to the
frequent subgraph pattern set, here we use a different splitting for the cross
validation in each run.
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t AvsI AMvsI AvsMI

Frequent Patterns o.o.m o.o.m o.o.m
5% Uniform Trees k = 1 0.8927± 0.002 0.7235± 0.0023 0.8823± 0.0024

Uniform Trees k = 2 0.8994± 0.0012 0.7409± 0.0069 0.8909± 0.0074

Frequent Patterns 0.9131± 0.0038 0.7529± 0.0024 0.9082± 0.0031
10% Uniform Trees k = 1 0.8853± 0.0081 0.7132± 0.0054 0.8745± 0.0118

Uniform Trees k = 2 0.8828± 0.0151 0.7109± 0.0021 0.8729± 0.0062

Frequent Patterns 0.9134± 0.0026 0.7488± 0.0013 0.9093± 0.0031
15% Uniform Trees k = 1 0.8772± 0.0075 0.7062± 0.0055 0.8676± 0.0071

Uniform Trees k = 2 0.8762± 0.0071 0.7108± 0.0051 0.8676± 0.0042

Frequent Patterns 0.9135± 0.0039 0.7424± 0.0026 0.9057± 0.0017
20% Uniform Trees k = 1 0.8675± 0.0076 0.6855± 0.0073 0.86± 0.0074

Uniform Trees k = 2 0.864± 0.01 0.6879± 0.0061 0.8579± 0.0074

Table 4. Average AUC values for the three learning problems on the NCI-HIV bench-
mark dataset for the frequent subgraph kernel and the probabilistic frequent subtree
kernel for k = 1, 2 and for different frequency thresholds.

The results are presented in Table 4. On the one hand, one can see that from
a frequency threshold of 10%, the results with the frequent subgraph kernel are
more stable than those with the probabilistic frequent subtree kernel on all three
problems. Though the frequent subgraph kernel outperforms the probabilistic
frequent subtree kernel on the same frequency threshold, the difference seems
marginal once we compare the best results on each problem, especially in light
of the runtime presented in the next section. On the other hand, however, for
the frequent subgraph kernel, the results could be calculated only for t = 10%,
while for the probabilistic frequent subtree kernel we obtained the result in half
of the time for t = 5%. For this frequency threshold, we were unable to produce
any result because the system ran out of memory. In fact, we had difficulties
training the SVM using all frequent patterns, even for larger frequency thresh-
olds, because of its excessive memory usage. These observations clearly show the
limitation of the frequent subgraph kernel over the probabilistic frequent subtree
kernel when the predictive performance required can be achieved only for low
frequency thresholds. Finally we note that there is no improvement when sam-
pling two instead of one spanning tree per graph. Therefore, in the next section
we concentrate on sampling a single spanning tree per graph.

3.5 Speedup

In this section, we compare the runtime of FSG and our algorithm (using FSG
as the mining subroutine) on different subsets of the ZINC dataset. We use
Wilson’s method to generate a random spanning tree for each graph in all our
experiments and report the combined time for sampling and frequent pattern
generation. We used the implementation of the FSG algorithm [5] that is pro-
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Fig. 1. Runtime results in seconds for our method (black) and FSG (grey), for different
frequency thresholds. The x-values show the number of graphs in the subsets of ZINC
that were used.

vided by its authors6. As already noted, one could use a specialized frequent
subtree mining algorithm in combination with our sampling method to further
increase the speedup. We experimented with several such publicly available tree
mining algorithms but, somewhat surprisingly, they were not able to beat the
speed of FSG on the tree data set.

Figure 1 shows the time in seconds for our algorithm with k = 1 in black and
for FSG in gray. It reports results with subsets of the ZINC dataset of increasing
size. One can see that our method outperforms FSG on all datasets and for
all frequency thresholds. Furthermore, with decreasing frequency threshold, our
method has an increasing absolute speed-up. Last but not least, in contrast to
our method, FSG has a clear limitation beyond 200, 000 graphs for t = 5% and
beyond 100, 000 graphs for t = 2%.

4 Conclusion and Future Work

We have presented a kernel for graph structured data that is based on proba-
bilistic subtree patterns, i.e., on frequent subtrees in a forest database obtained
by randomly selecting a polynomially bounded set of spanning trees for each
transaction graph in the input database. Our empirical results on the NCI-HIV
benchmark graph dataset show that the probabilistic feature space considered is
expressive enough compared to that of frequent subgraph kernels when applying

6 http://glaros.dtc.umn.edu/gkhome/pafi/overview

http://glaros.dtc.umn.edu/gkhome/pafi/overview
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them to predictive graph mining. This advantageous property even holds if we
sample only a single spanning tree from each graph. Furthermore, our graph ker-
nel is not only faster than the frequent subgraph kernel, but has a much smaller
memory footprint in all stages.

We are currently working on some formal properties of the proposed method,
e.g., on probabilistic guarantees for (t1, t2)-frequent subtrees where t1 is a fre-
quency threshold for a tree pattern within the set of spanning trees of a graph,
whereas t2 within the database. These results will then be turned into an algo-
rithm that, for a given confidence value δ specified by the user, generates each
frequent subtree with probability at least δ. We are also considering the design
and implementation of a frequent subtree mining algorithm for unlabeled free
trees that is able to effectively process massive forest transaction datasets.

One of the strengths of our method is that it is not restricted to any particular
graph class. This advantageous property allows us to empirically investigate
the proposed graph kernel on more complicated graph classes beyond molecular
graphs, such as the k-neighborhood graphs of the web graph or RDF graphs.
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Abstract. The paper presents an approach to mining heterogeneous
information networks applied to a task of categorizing customers linked
in a heterogeneous network of products, categories and customers. We
propose a two step methodology to classify the customers. In the first
step, the heterogeneous network is decomposed into several homogeneous
networks by using different connecting nodes. Similarly to the construc-
tion of bag-of-words vectors in text mining, we assign larger weights to
more important nodes. In the second step, the resulting homogeneous
networks are used to classify data either by network propositionalization
or label propagation. Because the data set is highly imbalanced we adapt
the label propagation algorithm to handle imbalanced data. We perform
a series of experiments and compare different heuristics used in the first
step of the methodology, as well as different classifiers which can be used
in the second step of the methodology.

Keywords: · Network analysis · Heterogeneous information networks · Network
decomposition · PageRank · Text mining heuristics · Centroid classifier · SVM

1 Introduction

The field of network analysis is well established and exists as an independent
research discipline since the late seventies [24] and early eighties [1]. In recent
years, analysis of heterogeneous information networks [20] has gained popular-
ity. In contrast to standard (homogeneous) information networks, heterogeneous
networks describe heterogeneous types of entities and different types of relations.

This paper addresses the task of mining heterogeneous information networks
[20]. In particular, for a user-defined node type, we use the method of classify-
ing network nodes through network decomposition; this results in homogeneous
networks whose links are derived from the original network. Following [6], the
method constructs homogeneous networks whose links are weighed by counting
the number of intermediary nodes, connecting two nodes. After the individual
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homogeneous networks are constructed, we consider two approaches for classifi-
cation of network nodes. We classify the nodes either through label propagation
[25], or using a propositionalization approach [6], which allows the use of stan-
dard classifiers such as the centroid and SVM classifier on the derived feature
vector representation. The propositionalization approach was already applied to
a large heterogeneous network of scientific papers from the field of psychology
in our previous work [13]. In this work, we propose two improvements to the
presented methodology: 1) we propose a new variant of label propagation al-
gorithm which improves classification performance on imbalanced data sets; 2)
we introduce heuristics for homogeneous network construction, inspired by the
word weighting used in text mining and information retrieval.

The paper is structured as follows. Section 2 presents the related work. Sec-
tion 3 presents the two-stage methodology for classification in heterogeneous
networks. We present the method for constructing homogeneous networks from
heterogeneous networks and two methods for classification of nodes in a network:
a network propositionalization technique and a label propagation algorithm. Sec-
tion 4 presents how this method can be further improved. We first introduce a
variant of the label propagation algorithm with improves performance on imbal-
anced data sets. We then show how the homogeneous network construction can
be improved by using different weighting heuristics. Sect. 5 presents the applica-
tion of the methodology on a challenge data set of customers linked to products
they purchased, followed by the three stage analysis of the results. First, we
examine the effect of using different classifiers in a final step of classification via
propositionalization. Second, we test different heuristics for homogeneous net-
work construction. Finally, we analyze the improved label propagation method
for imbalanced data sets. Section 6 concludes the paper and presents plans for
further work.

2 Related work

In data analysis for networks, instances are connected in a network of connec-
tions. In ranking methods like Hubs and Authorities (HITS) [11], PageRank [18],
SimRank [9] and diffusion kernels [12], authority is propagated via network edges
to discover high ranking nodes in the network. Sun and Han [20] introduced the
concept of authority ranking for heterogeneous networks with two node types
(bipartite networks) to simultaneously rank nodes of both types. Sun et al. [21]
address authority ranking of all nodes types in heterogeneous networks with a
star network schema, while Grčar et al. [6] apply the PageRank algorithm to
find PageRank values of only particular type of nodes.

In network classification, a typical task is to find class labels for some of the
nodes in the network using known class labels of remaining network nodes. A
common approach is propagation of labels in the network, a concept used in [25]
and [23]. An alternative approach to label propagation, namely classification of
network nodes through propositionalization, is described in [6]. There, a hetero-
geneous network is decomposed into several homogeneous networks which are
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Fig. 1. An example of a heterogeneous network, decomposed into a homogeneous net-
work where papers are connected if they share a common author. The weight of the
edges is equal to the number of authors that contributed to both papers

used to create feature vectors corresponding to nodes in the network. The fea-
ture vectors are used by a SVM [16, 14, 4], kNN [22] or centroid classifier [7] to
predict class values of these nodes. The network propositionalization approach
was also used in [13].

Our work is also related to text mining, specifically to bag-of-words vector
construction. Here it is important to correctly set weights of terms in docu-
ments. Simple methods like term frequency are rarely used, as the term-frequency
inverse-document-frequency (tf-idf) weighting introduced in [10] is more efficient.
A number of weighting heuristics which also take into account labels of docu-
ments have been proposed, such as the χ2, the information gain [3], the ∆-idf
[17], and the relevance frequency [15].

3 Methodology

We first present a two step methodology to mine heterogeneous information
networks (defined by Sun and Han [20]), in which a certain type of nodes (called
the target type) is labeled. In the first step of the methodology, the heterogeneous
network is decomposed into a set of homogeneous networks. In the second step,
the homogeneous networks are used to predict the labels of target nodes.

3.1 Network decomposition

The original heterogeneous information network is firt decomposed into a set of
homogeneous networks, containing only the target nodes of the original network.
In each homogeneous network two nodes are connected if they share a particular
direct or indirect link in the original heterogeneous network. Take as an example
a network containing two types of nodes, Papers and Authors, and two edge
types, Cites (linking papers to papers) and Written by (linking papers to au-
thors). From it, we can construct two homogeneous networks of papers: the first,
in which two papers are connected if one paper cites another, and the second, in
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which they are connected if they share a common author (shown in Fig. 1). The
choice of links used in the network decomposition step requires expert who takes
the meaning of links into account and chooses only the decompositions relevant
for a given task.

3.2 Classification

In the second step of the methodology, the homogeneous networks are used to
classify the nodes. We compare two approaches to this task: the label propagation
algorithm [25] and the network propositionalization approach [6].

Label propagation. The label propagation algorithm starts with a network ad-
jacency matrix M ∈ Rn,n and a class matrix Y ∈ Rn,|C|, where C = {c1, . . . , cm}
is the set of classes, with which the network nodes are labeled. The j-th column
of Y represents the j-th label of C, meaning that Yij is equal to 1 if the i-th node
belongs to the j-th class and 0 otherwise. The algorithm constructs the matrix
S = D−

1
2MD−

1
2 , where D is a diagonal matrix and the value of each diagonal

element is the sum of the corresponding row of M . The algorithm iteratively
computes F (t) = αSF (t−1)+(1−α)Y until there are no changes in the matrix
F (t). The resulting matrix F is used to predict the class labels of all unlabeled
nodes in the network. Zhou et al. [25] show that the iteration converges to the
same value regardless of the starting point F (0). They also show that the value
F ∗ that F (t) converges to can also be calculated by solving a system of linear
equations, as

F ∗ = (I − αS)−1Y. (1)

To classify a heterogeneous network, decomposed into k homogeneous net-
works, we propose classification of nodes using all available connections from all
k homogeneous network. We construct a new network with the same set of nodes
as in the original homogeneous networks. The weight of a link between two nodes
is calculated as the sum of link weights in all homogeneous networks. In effect,
if the original networks are represented by adjacency matrices M1,M2, . . . ,Mk,
the new network’s adjacency matrix equals M1 +M2 + · · ·+Mk.

Classification by propositionalization. An alternative method for classify-
ing the target nodes in the original heterogeneous network (called network propo-
sitionalization) calculates feature vectors for each target node in the network.
The vectors are calculated using the personalized PageRank (P-PR) algorithm
[18]. The personalized PageRank of node v (P-PRv) in a network is defined as
the stationary distribution of the position of a random walker who starts its walk
in node v and then at each node either selects one of the outgoing connections
or travels to his starting location. The probability (denoted p) of continuing the
walk is a parameter of the personalized PageRank algorithm and is usually set to
0.85. Once calculated, the resulting PageRank vectors are normalized according
to the Euclidean norm. The vectors are used to classify the nodes from which
they were calculated.
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For a single homogeneous network, the propositionalization results in one
feature vector per node. For classifying a heterogeneous network, decomposed
into k homogeneous networks, Grčar et al. [6] propose to concatenate and assign
weights to the k vectors, obtained from the k homogeneous networks. The weights
are optimized using a computationally expensive differential evolution [19]. A
simpler alternative is to use equal weights; due to the size of feature vectors
in our experiments, we decided to follow this approach. Many classifiers, for
example SVM classifier [16, 14, 4], kNN classifier [22] or a centroid classifier [7]
can be used.

4 Methodology improvement

We present two improvements to the methodology described in Sect. 3. First,
we describe handling of imbalanced data sets, then we present a novel edge
weighting in construction of homogeneous networks from the original network.

4.1 Imbalanced data sets and label propagation

The label propagation approach may not perform well if the data is highly
imbalanced, i.e., if the frequency of class labels are not approximately equal.
We propose an adjustment of the label propagation algorithm i.e., to change
the initial label matrix Y so that larger classes have less effect in the iterative
process. The value of the label matrix Y in this case is no longer binary, but it
is set to 1

|cj | if node i belongs to class j and 0 otherwise.

If the data set is balanced (all class values are equally represented), then the
matrix Y is equivalent to the original binary matrix multiplied by the inverse
of the class value size. This, along with (1), means that the resulting prediction
matrix only changes by a constant and the final predictions remain unchanged.
However, if the data set is imbalanced, smaller classes have a greater effect in
the iterative calculation of F ∗. This prevents the votes of more frequent class
values to outweigh less frequent class values votes.

4.2 Text mining inspired weights calculation

We recall weighting of terms in the construction of bag-of-words (BOW) vectors
and explain how the same ideas can be applied to extraction of homogeneous
networks from heterogeneous networks.

Term weighting in text mining. In bag-of-words vector construction one
feature vector represents each document d in a corpus c of documents. In that
vector, the i-th value corresponds to the i-th term (a word or a n-gram) that
appears in the corpus. The value of the feature depends primarily on the fre-
quency of the term in the particular document. We describe some methods for
assigning the feature values. We use the following notations: f(t, d) denotes the
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number of times a term t appears in the document d and D denotes the corpus
(a set of documents). We assume that the documents in the set are labeled, each
document belonging to a class c from the set of all classes C. We use the notation
t ∈ d to describe that a term t appears in document d. Where used, the term
P (t) is the probability that a randomly selected document contains the term t,
and P (c) is the probability that a randomly selected document belongs to class
c.

Scheme Formula
tf f(t, d)

if-idf f(t, d) · log

( |D|
|{d′ ∈ D : t ∈ d′}|

)
chi^2 f(t, d) ·

∑
c∈C

(
(P (t ∧ c)P (¬t ∧ ¬c)− P (t ∧ ¬c)P (¬t ∧ c))2

P (t)P (¬t)P (c)P (¬c)

)

ig f(t, d) ·
∑
c∈C

 ∑
c′∈{c,¬c}

 ∑
t′∈{t,¬t}

(
P (t

′
, c

′
) · log

P (t′ ∧ c′)

P (t′)P (c′)

)
delta-idf f(t, d) ·

∑
c∈C

(
log

|c|
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}|

− log
|¬c|

|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

)
rf f(t, d) ·

∑
c∈C

(
log

(
2 +
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}|
|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

))
Table 1. Weight heuristics in text mining

Table 1 shows different methods for term weighting. Term frequency (tf) weights
each term with its frequency in the document. Term frequency–inverse document
frequency (tf-idf) [10] addresses the drawback of the tf scheme, which tends to
assign high values to common words that appear frequently in the corpus. The χ2

(chi^2) weighting scheme Debole and Sebastiani [3] attempts to correct another
drawback of the tf scheme (one which is not addressed by the tf-idf scheme)
by taking also class value of processed documents into consideration. This allows
the scheme to penalize terms that appear in documents of all classes, and favor
terms which are specific to some classes. Information gain (ig) [3] uses class
labels to improve term weights. The ∆-idf (delta-idf) [17] and the Relevance
frequency (rf) [15] attempt to merge the ideas of idf and both above class-based
schemes by penalizing both common and non-informative terms.

Midpoint weighting in homogeneous network construction. Let us re-
visit the example from Sect 3.1, in which two papers are connected by one link
for each author they share. The resulting network is equivalent to a network in
which two papers are connected by a link with a weight equal to the number of
authors that wrote both papers (Fig. 1). The method treats all authors equally
which may not be correct. For example, if two papers share an author that only
co-authored a small number of papers, it is more likely that these two papers
are similar than if the two papers share an author that co-authored tens or
even hundreds of papers. The first pair of papers should therefore be connected
by a stronger weight than the second. Moreover, if the papers are labeled by
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the research field, then two papers, sharing an author publishing in only one
research field, are more likely to be similar as if they share an author which
has co-authored papers in several research fields. Again, the first pair of papers
should be connected by an edge with larger weight.

Both described considerations are similar to the issues addressed in the term
weighting schemes in document retrieval (presented at the beginning of this
section). For example, the tf-idf weighting scheme attempts to decrease the
weight of terms which appear in many documents, while we wish to decrease the
weight of links, induced by authors which are connected to many papers. The
ig weighting scheme decreases the weight of terms which appear in variously
labeled documents, while we wish to decrease the weight of links induced by
authors appearing in different research areas i.e., connected to variously labeled
papers.

We alter the term weighting schemes in such a way that they can be used
to set weights to midpoints in heterogeneous graphs (such as authors in our
example). We propose that the weight of a link between two base nodes in the
first step of the methodology (see Sect. 3) is calculated as the sum of weights
of all the midpoints they share. In particular, if we construct a homogeneous
network in which nodes are connected if they share a connection to a node of
type T in the original heterogeneous network, then the weight of the link between
nodes v and w should be equal to ∑

m∈T :(m,v)∈E∧(m,w)∈E

w(m), (2)

where w(m) is the weight assigned to the midpoint m. The value of w(m) can
be calculated in several ways. Table 2 shows the proposed midpoint weighting
heuristics corresponding to term weighting used in document retrieval (Table 1).

Scheme Formula
tf 1

if-idf log

( |B|
|{b ∈ B : (b,m) ∈ E}|

)
chi^2

∑
c∈C

(P (m ∧ c)P (¬m ∧ ¬c)− P (m,¬c)P (¬m, c))2

P (m)P (c)P (¬m)P (¬c)

ig
∑
c∈C

 ∑
c′∈{c,¬c}

 ∑
m′∈{m,¬m}

P (m
′ ∧ c

′
) log

(
P (m′ ∧ c′)

P (c′)P (m′)

)
delta-idf

∑
c∈C

∣∣∣∣log
|c|

|{b′ ∈ B : b′ ∈ c ∧ (b′,m) ∈ E}|
− log

|¬c|
|{b′ ∈ B : b′ /∈ c ∧ (b′,m) /∈ E}|

∣∣∣∣ .
rf

∑
c∈C

(
log

(
2 +
|{b′ ∈ B : b′ ∈ c ∧ (b′,m) ∈ E}|
|{b′ ∈ B : b′ /∈ c ∧ (b′,m) /∈ E}|

))
Table 2. Heuristics for weighting midpoints in homogeneous network construction.

The tf weight is effectively used in [6], where all authors are weighed equally.
The delta-idf weighting scheme, unlike other term weighting schemes, may
assign negative weights to certain terms. Since link weights in graphs are assumed
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to be positive both by the PageRank and the link propagation algorithm, we must
change the weighting scheme before it can be used to construct homogeneous
networks. We propose that in the original weighting scheme, terms which receive
negative values are also deemed informative, as they are informative about the
term not being typical of a certain class. Therefore it is reasonable to take the
absolute values of the weights in network construction.

5 Experimental setting and results

Data set description. We evaluated the proposed weighting heuristics on a
data set of customer purchases used in the PAKDD 2015 mining competition
Gender prediction based on e-commerce data. The data consists of 30, 000 cus-
tomers. The data for each customer consists of the gender (the target variable),
the start and end time of the purchase, and the list of products purchased. A
typical product is described by a 4-part string (for example: A3/B5/C2/D8). The
strings describe a 4-level hierarchy of products, meaning that the example prod-
uct is the product D8 (or D-level category) which belongs to (A-level) category
A3, sub-category (or B-level category) B5 and sub-subcategory (or C-level cat-
egory) C3. The data set is highly imbalanced: 23, 375 customers are women and
6, 625 are men.

The data set implicitly defines a heterogeneous network consisting of five node
types: customers (the base node type) and four hierarchy levels. We constructed
four homogeneous networks from the original heterogeneous network. In the first,
two customers are connected if they purchased the same product (same D-level
item). In the second, they are connected if they purchased a product in the same
sub-subcategory (C-level item), in the third if they purchased the same B-level
item and in the fourth if they purchased the same A-level item. The constructed
networks are referred to as A-, B-, C- and D-level networks from this point on.

Experiment description. The first set of experiments was designed to deter-
mine if the results of [6], which show that a centroid classifier, trained on Per-
sonalized PageRank feature vectors, performs as good as more complex SVM
classifier. We tested the performance of the centroid classifier, the k-nearest
neighbors classifier (with k set to 1, 2, 5 and 10), and the SVM classifier. Be-
cause the data set is imbalanced we tested the SVM classifier both with uniform
instance weights as well as weights proportional to the class frequencies. The
tests were performed on feature vectors extracted from all four homogeneous
networks. We randomly sampled 3, 000 network nodes to train all classifiers and
tested their performance on the remaining 27, 000 nodes. The small size of the
training set ensured that all classifiers trained fast.

In the second set of experiments we tested the heuristics, used in the con-
struction of the homogeneous networks. We tested two classifiers: the SVM clas-
sifier which classified the network nodes using solely the Personalized PageRank
vectors extracted from the network, and the label propagation classifier which
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Classifier: Centroid 1-nn 2-nn 5-nn 10-nn SVM SVM (balanced weights)
A-level network 74.19% 63.61% 71.93 72.74% 74.36% 74.03% 74.62%
B-level network 70.78% 56.42% 59.17% 65.30% 67.73% 63.51% 72.61%
C-level network 64.71% 63.62% 67.21% 68.26% 71.65% 70.15% 75.18%
D-level network 60.08% 67.36% 70.39% 66.72% 66.06% 65.61% 71.17%

(a) Results of the first set of experiments.

Scheme A-level B-level C-level D-level
tf 76.61% 74.00% 77.34% 73.65%

chi^2 77.80% 74.17% 76.86% 68.76%
idf 77.80% 74.22% 77.23% 72.25%

delta 77.80% 74.14% 77.23% 72.52%
rf 77.80% 74.11% 76.81% 70.54%
ig 77.80% 74.12% 76.87% 68.72%

(b) Performance of the SVM classi-
fier in the second round of experi-
ments.

Scheme A-level B-level C-level D-level
tf 75.52% 64.28% 63.60% 72.44%

chi^2 76.02% 65.15% 71.95% 72.75%
idf 74.90% 63.83% 61.02% 72.48%

delta 74.90% 63.76% 61.05% 72.48%
rf 75.52% 64.28% 67.59% 72.55%
ig 76.02% 65.15% 72.41% 72.96%

(c) Performance of the label propa-
gation classifier in the second round
of experiments.

Scheme A-level B-level C-level D-level
tf 77.16% 74.75% 77.28% 73.91%

chi^2 77.16% 74.44% 77.61% 73.82%
idf 77.20% 74.70% 77.74% 73.76%

delta 77.20% 74.71% 77.74% 73.76%
rf 77.16% 74.59% 77.21% 74.03%
ig 77.16% 74.49% 77.59% 73.79%

(d) Performance of the balanced la-
bel propagation classifier in the sec-
ond round of experiments.

Scheme SVM Label propagation
tf 81.35% 77.06%

chi^2 81.78% 77.10%
idf 82.09% 79.03%

delta 81.94% 79.08%
rf 81.49% 77.16%
ig 81.56% 77.12%

(e) The results of the third set
of experiments showing the bal-
anced accuracies of the SVM
and label propagation classifier
on the entire data set.

classified the network nodes using the graph itself. Again, because of the im-
balanced nature of the data set, we tested the label propagation classifier with
the binary starting matrix Y (as first proposed in [25]) and with the starting
matrix Y , adjusted to the class frequencies, as proposed in Sect. 3.2. In this set
of experiments, we trained the classifiers on 90% (27.000 nodes) of the data set.

In all experiments we evaluated the accuracy of the classifiers using the bal-
anced accuracy metric. This is the metric used in the PAKDD’15 Data Mining
Competition and is defined as

|{Correctly classified male customers}|
|{All male customers}| + |{Correctly classified female customers}|

|{All female customers}|

2
. (3)

Experimental results. The first set of experiments, shown in Table 3a, shows
that there is a large difference in the performance of different classifiers. Similarly
to Grčar et al. [6], the simple centroid classifier performs well on feature vectors
extracted from several different homogeneous networks. However, the classifier
is still consistently outperformed by the SVM classifier if the instance weights of
the classifiers are set according to the class sizes. We conclude that the optimal
classifier for the methodology, introduced in [6], depends on the data set.

The results of the second set of experiments are shown in Tables 3b, 3c and
3d. When comparing the results of the two label propagation approaches the
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results show that label propagation with adjusted starting matrix has large im-
pact on the performance of the classifier, as the balanced accuracy increases by
1–2% in the case of the A- and D-level network and even more in the case of B-
and C-level networks. Different heuristics used in construction of homogeneous
networks also affect the final performance of all three classifiers. No heuristic
consistently outperform the others, meaning that the choice of heuristic is ap-
plication dependent. The last conclusion of the second round of experiments is
that the computationally demanding propositionalization method does not out-
perform the label propagation method. In all four networks choosing a correct
heuristic and correct weights for the starting matrix allows the label propagation
method to perform comparably to the SVM classifier.

Table 3e shows the results of the third set of experiments. Here the propositionalization-
based approach clearly outperforms the label propagation algorithm. It is pos-
sible that this effect occurs because the network propositionalization approach,
in particular the SVM classifier, require more training examples (compared to
the network propagation classifier) to perform well. The effect of using weighting
heuristics in the construction of the homogeneous networks is also obvious. With
both classification methods the adjusted delta and idf heuristics perform best.

6 Conclusions and further work

While network analysis is a well established research field, analysis of hetero-
geneous networks is much newer and less researched. Methods taking the het-
erogeneous nature of the networks into account show an improved performance
[2]. Some methods like RankClus and others presented in [20] are capable of
solving tasks that cannot be defined with homogeneous information networks
(like clustering two disjoint sets of entities). Another important novelty is merg-
ing network analysis with the analysis of node data, either in the form of text
documents or results obtained from various experiments [5, 8, 6].

The contributions of the paper are as follows. By setting the weights of the
initial class matrix proportionally to the class value frequency, we improved the
performance of the label propagation algorithm when applied to a highly imbal-
anced data set. We adapt heuristics, developed primarily for use in text mining,
for the construction of homogeneous networks from heterogeneous networks. Our
results show that the choice of heuristics impacts the performance of both label
propagation classifier and classifiers based on the propositionalization approach
of [6]. We also present a variation of the label propagation approach, described
in [25].

In future we wish to detailly analyze the network-construction heuristics and
their performance in classifiers applied to homogeneous networks. We plan to
design efficient methods for propositionalization of large data sets and decrease
the computational load of PageRank calculations by first detecting communities
in a network. This ”pre-processing” will allow us to shrink the network on which
PageRank calculation are performed.
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We plan to test the methods, described in this paper, on publicly available
data sets such as the DBLP, Cora and CiteSeer databases. The presented heuris-
tics shall be evaluated on the methodology for mining text enriched heteroge-
neous networks presented in [6]. For that one has to construct a heterogeneous
network in which the central node represent genes, connected to the response
of plants against an infection. We will enrich the nodes with papers from the
PubMed database which mention the genes.
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Abstract. An index is a data structure that improves the speed of data
retrieval, thus facilitating query-answering. Data indexing is as funda-
mental as costly, since space and time are needed to construct and main-
tain the index data structure. In this paper we propose a new approach
and tool for automatic index maintenance based on data mining. Given a
log of operations and a set of user-specified queries, AIDA uses sequential
pattern mining to learn to predict future occurrences of desired queries
and maintain their indices on-demand.

1 Introduction

An index is a data structure that improves the speed of data retrieval facilitating
query answering. Indices are built to support searching based on a search key,
that is, in the relational database context, an attribute or a set of attributes:
given a query imposing some conditions on an certain attribute, if the attribute
has an associated index, finding the tuples satisfying the required constraints
is much quicker. This improvement is fundamental but does not come for free,
as space and time resources are needed to construct and maintain the index
data structure. Changes to the data (such as insertions, updates, deletions, etc.)
require the update of indices and maintenance costs depend on the kind of
index. Dense indices have higher costs because an index record must exist for
every search-key value; sparse indices have lower costs because each index record
corresponds to a sequence of search-key values.

Indices are designed by keeping into account the queries the system deals
with. Due to construction and maintenance costs, it is usually not possible to
build an index for every single query, thus, depending on system requirements,
some queries are considered more important (eg. because they are expensive)
and the set of indices to adopt is based on the attributes they require. Every
time a change in the data happens, all the involved indices must be updated.
This continuous maintenance of indices is paramount to keep them up-to-date
in particular in the case of queries that are frequently executed; however, for
queries that are not so frequent, on-demand maintenance can be considered
as an alternative, that is, the index must not be updated every time the data
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change, but can be updated only before the related query is executed. Thus, if
we are able to predict when an expensive, not very frequent query is going to be
executed, we can perform index maintenance in time to use them.

In this paper we introduce a new technique for automatic indexing based
on Sequential Pattern Mining (SPM), that creates a model of the execution of
expensive queries and then adopts it to predict when the query is going to arrive
in order to perform on-demand index maintenance. SPM [10] is a data-mining
technique to find relevant patterns in data sequences. In Section 2 below, we
review the state of the art of existing systems for automatic index management
while in Section 3 we propose AIDA, our new method. In Section 4 we show some
experimental results obtained with the AIDA tool and we conclude in Section 5
by stating our contributions and future developments.

2 State of the art

The capability to quickly answer user requests is fundamental in all systems
that deal with data retrieval. Many techniques used to support query optimiza-
tion consist in maintaining statistical information about the data; however, this
information needs to be constantly and quickly kept up to date [1].

Index design and maintenance is a laborious process, thus, methods to sup-
port it have been investigated since the 70s [3] and many tools have been pro-
posed [4–8] that usually take as input a log of the operations performed on data
and produce the suggested indices. Most of them are either offline (periodically
take the log and analyze it) or online (constantly monitor real-time operations
performed on data) and can be manual, semi-automatic or automatic. Moreover,
the majority of them is reactive, i.e., they update or suggest indices after a tar-
get expensive query has been executed, in order to have them ready for its next
execution. A drawback is that the system can adapt (eg. suggest or update some
indices) only after an undesired event has happened (eg. an expensive query
has arrived). To overcome this limitation a proactive approach was introduced
in [9] whose aim is to predict when a target query is going to be executed and
update its indices before it arrives. Given a log of operations and a query, the
method applies linear regression and other related techniques to learn to predict
when the query is going to be executed again and to update its indices in time.
We use a similar approach, but propose a different learning method: in [9], the
prediction model of a query is based on linear regression and related techniques
and it is based only on the timespans between different occurrences of the same
query in the past; instead, our approach looks for sequences of operations whose
last one is the target query. If some of these sequences recur in the log, then
we expect them to recur also in the future and thus use them to predict future
occurrences of the target query. A similar technique has also been investigated
in the field of process mining [14].

To learn a model based on frequent sequences we use SPM [12], which is sim-
ilar to frequent itemsets mining technique but considers sequences, i.e., the order
of the items is important. Given a set of sequences and a frequency threshold,
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the aim of SPM is to find frequent subsequences, that is, subsequences whose
frequency is above the given threshold. Different approaches to SPM have been
investigated and a lot of algorithms have been proposed [11]: we adopt Pre-
fixSpan [13], that uses a pattern-growth approach where, starting from frequent
patterns containing one element, it progressively increases the length of the found
patterns in order to find the frequent ones.

3 The AIDA approach

AIDA [2] consists of two phases:

1. Training: given a log file containing past activities (that is, the sequence
of operations, each one with a timestamp (Figure 1a), performed so far by
the DBMS) and a user-specified target query qB , AIDA learns a model for
predicting future executions of qB ; 2)

2. Using: given the real-time sequence of operations being performed on the
data, AIDA uses the constructed model to predict the arrival of query qB
and to perform index maintenance before the query is executed.

oA#140327#13:53:10#
qB#140327#13:53:50#
oC#140327#13:54:20#
oD#140327#13:54:50#
oC#140327#13:55:45#
oA#140327#13:56:00#
qB#140327#13:56:50#
oC#140327#13:57:10#
oC#140327#13:57:35#
oC#140327#13:58:05#
oD#140327#13:58:50#
oA#140327#13:59:25#
qB#140327#13:59:55#
oC#140327#14:00:20#
oC#140327#14:01:00#
qB#140327#14:01:50#

oA#140327#13:53:10#
qB#140327#13:53:50#
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(a) Log file (b) Split log file (c) Graphical representation of sequences in the split log file 
and occurrences of pattern <oC,oC,qB>
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Fig. 1. Training AIDA

Background and notation. A sequence 〈e1, e2, . . . , eI〉 is an ordered list of
events. Given two sequences α = 〈a1, a2, . . . , an〉 and β = 〈b1, b2, . . . , bm〉, α is a
subsequence of β if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that
a1 = bj1, a2 = bj2, . . . , an = bjn. Consider a set of sequences Se, containing three
sequences s1 = 〈a, b, c, d, c〉, s2 = 〈a, d, c, b〉, s3 = 〈f, a, b, d, c, b〉; α = 〈a, b, c〉 is
a subsequence of s1 and s3 while it is not a subsequence of s2. Given a set of
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sequences S and a sequence α, the absolute support of α in S is the number of
sequences in S such that α is their subsequence; while the relative support of α
in S is the ratio between its absolute support and the total number of sequences
in S. The absolute support of α in Se is 2 while its relative support is 2/4 = 0.5.

3.1 Training AIDA

Given a log file containing query qB and other operations o performed on the
data (eg. insertions, deletions, updates, queries, etc.), AIDA learns a model to
predict future executions of qB . In particular:

– first, the log and a user-defined minsupp threshold are given as input to the
PrefixSpan algorithm that outputs the set of frequent patterns;

– second, the found frequent patterns are further analyzed: (i) only those end-
ing with qB are kept and (ii) each pattern is enriched with temporal infor-
mation to support more precise predictions.

If we break the log every time we find qB (Figure 1b), we obtain several
chunks, each one represents a history of events that brought, as the final event,
to the execution of qB (in Figure 1: C1, C2, C3, C4). By mining frequent patterns
from them, we find the sequences of events that frequently led to qB and use
this succinct information to predict future executions of qB .

Algorithm 1 TrainingAIDA (logfile,qB ,minsupp).

1: chunks=splitLog(logfile,qB)
2: seqPatterns=PrefixSpan(chunks,minsupp)
3: for all s ∈ seqPatterns do
4: if last event in s differs from qB then
5: delete s from seqPatterns
6: end if
7: end for
8: for all s ∈ seqPatterns do
9: for all c ∈ chunks do

10: if s is a subsequence of c then
11: update timespans of s
12: end if
13: end for
14: end for
15: return seqPatterns

The training phase is formalized in Algorithm 1. After breaking the log se-
quence into subsequences terminating with qB (line 1), AIDA inputs these se-
quences and a user-defined minsupp threshold to PrefixSpan, which outputs all
the frequent subsequences (line 2). Given the log in Figure 1 and minsupp=0.5,
some frequent patterns are: 〈oA, qB〉 (with support 3/4), 〈oC , oD〉 (support=1/2),
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〈oC , oc, qB〉 (support=3/4). We keep only the patterns that end with qB because
they are the ones we can use for prediction purposes (lines 3-7 in Algorithm 1).
In fact, pattern 〈oA, qB〉 gives us useful information about qB because it tells us
that frequently qB happens after operation oA has been executed. On the other
hand the pattern 〈oC , oD〉 does not give us any useful information to predict the
execution of qB , thus we are not interested in keeping it.

Each pattern is enriched with one timespan for each pair of consecutive op-
erations (lines 8-14 in Algorithm 1). This time information is necessary for the
index maintenance phase; indeed, consider the pattern σ = 〈oC , oC , qB〉: when
the system detects an occurrence of oC , it waits to see if another one arrives
and, as soon as this is the case, starts updating the indices of qB . However, this
is not a reliable approach because the second occurrence of oC might arrive well
after the first one or not arrive at all. This is why, to give more accurate predic-
tions, the search for frequent patterns is enriched by requiring that the timespan
between one operation and the next one does not exceed a certain value. In this
way we are able to express, for example, that if oC occurs and, after a timespan
of at most t1, another occurrence of oC arrives, then probably, after a timespan
of at most t2, the user-defined query qB is going to be executed.

Given a frequent pattern p found by PrefixSpan, the time information to
be associated with p is chosen by analyzing each chunk of the log file and,
for each occurrence of p, taking the timespans between its events, as shown in
Figure 1 for the pattern σ = 〈oC , oC , qB〉. Note that some chunks do not contain
any occurrence of σ (C1), some contain only one (C2 and C4) while others
contain more than one (C3). The timespan assigned to each pair of consecutive
operations is the average of the timespans in all p’s occurrences. In the case of
σ we compute t1: the time between oC and oC , and t2: the time between oC and
qB . t1 = 47 is the average of the timespans between oC and oC (85s in C2; 25s,
55s, 30s in C3 and 40s in C4) and similarly, t2 = 91.25 is the average of the
timespans between oC and qB (65s in C2; 140s, 110s, 110s in C3 and 50s in C4).
To make our model more flexible, we add to each timespan a tolerance; different
measures can be adopted, such as the variance, the standard deviation, the
difference between the maximum and the minimum time divided by 2. However,
the method can be easily extended to support different ad-hoc measures. At the
end of this process, we have a model represented in terms of frequent patterns
ending in the user-defined query and enriched with a temporal dimension (see
an example in Figure 2).

oC oC qB
47 +/- 31 91.25 +/- 46

s1

oC oC oA
47 +/- 31 33 +/- 12

s2 qB
91.25 +/- 46

Fig. 2. Using AIDA
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3.2 Using AIDA

The idea behind AIDA, formalized in Algorithm 2, is to check at real-time each
operation requested to the DBMS and see if it is possibile to match it to an
event in the sequence patterns; if it is possible we wait for another operation
that matches the next event in the sequence. If such operation arrives within the
timespan specified by the pattern we can match the corresponding event in the
sequence and wait for the next one. If the desired operation does not arrive in
time we continue considering the other patterns. Moreover, each time we match
an event we decide whether it is time to schedule indices’ maintenance; to do
so we compute an estimate of the time left before the arrival of the user-defined
query by summing all the times between the events we have not matched yet in
the pattern. If the obtained time is greater than a user-specified mintime thresh-
old we do not start updating the indices, otherwise we trigger the maintenance.
Moreover, as the matching process goes on, if we reach the last event before the
user-define query we start updating the indices regardless of the time estimation.

Algorithm 2 UsingAIDA (seqPatterns,qB ,tindex).

1: partialSpList = seqPatterns
2: for all o in run-time operations do
3: for all sp ∈ partialSpList do
4: if sp is time-valid then
5: if next node in sp is qB then
6: maintain indices
7: else
8: compute estimated time before qB
9: if estimated time <= tindex then

10: maintain indices
11: end if
12: increment node in sp
13: end if
14: else
15: remove sp from partialSpList
16: end if
17: end for
18: end for

Example 1. Consider pattern s1 in Figure 2, let mintime = 30s and suppose an
occurrence of oC arrives to the DBMS. AIDA matches it to the first event in s1
and computes the estimate time left before the arrival of qB as 91.25s - 46s =
45.25s (line 11 in Algorithm 2). Since the result is greater than mintime we do
not start the update of the indices. Now, suppose that:

1. a second occurrence of oC arrives after at least 47s - 31s but not later than 47s
+ 31s w.r.t. the first match. We match it to the second event in s1. This event
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is the last one in the sequence before the arrival of qB : we expect to match
qB next, thus, we do not compute the estimate time left but immediately
trigger the update of the indices (line 8 in Algorithm 2);

2. a second occurrence of oC arrives after more than 47s + 31s w.r.t. the first
match (or does not arrive at all). The pattern has expired, thus, we abandon
the exam of that pattern (line 18 in Algorithm 2).

Example 2. Consider pattern s2 in Figure 2, let mintime = 50s and suppose an
occurrence of oC arrives. We match it to the first event in s2 and we compute
the estimate time left before the arrival of qB as (33s - 12s) + (91.25s - 46s)
= 66.25s. Since it is greater than mintime we do not start the update of the
indices. Now, suppose another occurrence of oC arrives in time (i.e. after at least
47s - 31s but not later than 47s + 31s w.r.t. the first one). We match the second
event in s2 and compute the estimate time of qB as 91.25s - 46s = 45.25s. Since
this time is lower than mintime we immediately start updating the indices. Note
that we started the update of the indices before reaching the end of the pattern
because the computed estimate time suggests that if we wait any longer there
will not be enough time to update the indices to use them when qB arrives.

Note that, every time an incoming operation is matched to the first node of a
pattern, a new instance of that pattern is activated for future matchings and all
active instances are evaluated independently. Given the patterns in Figure 2, an
incoming oC will be matched to the first node of each pattern, thus one instance
of each pattern will be activated. If a second oC arrives, it will be possibly
matched to the second node of the two active pattern instances, however, it will
also be matched to the first node of both patterns in Figure 2, thus, two new
instances of these patterns will be activated.

4 Experimental results

We developed a Java prototype where, given a log file, the DB administrator
specifies the set of queries the system should learn to predict. For each query
the user has to specify a minsupp threshold needed to construct the model and
a mintime threshold that is an estimate time for indices maintenance which is
needed during the prediction phase.

We performed a study on the accuracy of AIDA’s predictions using precision
and recall. Let:

c1 : the number of times AIDA predicts a query q (and thus updates its indices)
and the query is actually executed;

c2 : the number of times AIDA predicts a query q (and thus updates its indices)
and the query is not actually executed;

c3 : the number of times AIDA does not predict a query q (and thus does not
update its indices) and the query is actually executed.
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Then, precision is an indicator of the correctness, it indicates the number of
correct predictions over the total number of predictions:

precision =
c1

c1 + c2

The recall is an indicator of completeness, it indicates the number of correct
predictions over the total number of query executions:

confidence =
c1

c1 + c3

Fig. 3. Precision study

We used a dataset containing operations performed by users before an im-
portant event and the aim is to predict future occurrences of such event. In
particular, in our experiments we use a log file containing 14451 operations, con-
sider a single target query q and extract temporal sequential patterns considering
different minsupp thresholds. As a result, the tool found 650 chunks containing
an average of 10 events each. We perform the experiments on the log file using
cross-validation (60% of data for training and 40% for testing). The models we
find contain, depending on the minsupp threshold (0.3, 0.35, 0.4, 0.45), between
2 and 5 patterns with a length of 2 to 4 events. Lower support thresholds pro-
duce higher amounts of patterns which are usually more specific that is, longer
in terms of the number of operations they involve; on the other hand, the higher
the support threshold the lower the number of patterns whose length also tends
to decrease.

After model construction, we analyze the operations coming to the DBMS
and every 500 operations compute the precision and recall of the data analyzed
so far. Figure 3 and Figure 4 show the results of our study. The first thing
we notice from the results is a difference in the performances of the different
models. In particular, a model based on the use of patterns with higher support
has higher precision but lower recall while a model based on the use of patterns
with lower support has lower precision but higher recall. To understand the
meaning of this result we have to consider that patterns with high support are
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Fig. 4. Recall study

usually short, while patterns with low support are longer; therefore we can say
that shorter sequences have a higher probability of being recognized thus they
allow to obtain high precision while longer sequences have a lower probability of
being recognized, thus have a lower precision.

5 Conclusion

Our new approach to automatic index maintenance based on the use of sequen-
tial pattern mining from the log of operations performed on data, to predict
the arrival of a target query and start the update of its indices before its execu-
tion. Future works include the automatic identification of the queries to monitor,
and of the most convenient support thresholds for each one. Moreover, we are
currently expanding the experimental results by considering different SPM al-
gorithms with the aim of comparing different performance costs and by keeping
into account unexpected parameters such as drifts in the query distribution.
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Abstract. Multivariate sequence analysis is of growing interest for learn-
ing on data with numerous correlated time-stamped sequences. It is char-
acterized by correlations among sequences and may not be separately
analyzed as multiple univariate sequences. On the other hand, labeled
data is usually expensive and difficult to obtain in many real-world ap-
plications. In this paper, we present a transductive learning framework
for multivariate sequence classification. The graph-based transductive
classification framework takes advantage of unlabeled sequences in ad-
dition to labeled data to enhance predictive performance. Additionally,
we exploit PCA based method for graph construction to incorporate the
correlation within the multivariate sequences. Experimental results on
real-world data show that our approach achieves substantial improve-
ments in classification performance.

1 Introduction

The growing popularity of social media, e-commerce and sensor systems has
generated considerable interest in sequential data analysis, ranging from web site
visit data mining to sensor data analysis in Internet of Things (IoT) systems. The
sequential data in many applications involves numerous correlated observations
received at each time point, such as data collected from multiple related sensors.
An intrinsic property of multivariate sequential data is the correlations between
different variables. So it may not be modeled as multiple independent univariate
sequences.

In many real-world applications, there is usually a large amount of unlabeled
data but limited labeled data, which can be difficult and time consuming to
obtain. The aim of this work is to exploit additional information about the dis-
tribution of both labeled and unlabeled data to provide better performance of
multivariate sequence classification. We propose a graph-based transductive se-
quence classification framework, which also incorporate the correlations between
sequences. In our framework, a weighted graph of sequence is constructed based
on the distances of both labeled and unlabeled data to capture the underlying
structures. In particular, we exploit PCA (principal component analysis) based
similarity measure to effectively encode the correlations within the multivariate
sequences. The unlabeled sequences can be classified by label propagation over
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the constructed graph with a harmonic Gaussian field based method [22]. We
evaluate the transductive classification framework with real-world datasets. The
proposed approach demonstrates superior predictive performance.

The rest of the paper is organized as follows. We discuss related work in
Section 2. Section 3 introduces the proposed transductive multivariate sequence
classification framework. The experimental results are provided in Section 4.
Finally the paper is concluded in Section 5.

2 Related Work

To improve the predictive performance by leveraging unlabeled data, some semi-
supervised learning methods for sequential data classification have been proposed
in the recent literature. Wei et al. introduced a self-training method based on
one-nearest-neighbor classifier[17]. The method starts by training a classifier with
labeled data, by which the unlabeled data is classified. Then the most confident
unlabeled time series with the estimated labels are added to the training data.
The classifier is retrained and the procedure repeated. Self-training based meth-
ods are dependent on the employed classifier, and the classification mistake can
reinforce itself [3]. The SUCCESS method proposed by Marussy et al. is based
on constrained hierarchical clustering [10]. The method clusters the whole set
of time series, including labeled and unlabeled ones, using single-linkage hierar-
chical agglomerative clustering. Then the top-level clusters are labeled by their
corresponding seeds. Clustering based semi-supervised learning methods usu-
ally rely on whether clustering algorithms can match the true data distributions
[21]. These work on semi-supervised sequence classification mainly concentrate
on univariate sequential data, whereas multivariate sequential data is of growing
importance in many applications.

3 The Transductive Sequence Classification Framework

In this section, we will describe the graph-based transductive learning frame-
work for multivariate sequential classification. Transductive learning is originally
analysed in [15], which can enhance supervised learning by extracting additional
information from the unlabeled data [3]. Here we assume that there are a set of
L labeled sequences, denoted as {(s1, y1), (s2, y2), . . . , (sL, yL)}, and a set of U
unlabeled sequences, denoted as {sL+1, sL+2, . . . , sL+U}. Each sequence in the
data is multivariate, represented with a matrix si ∈ RD×Mi whose columns are
D-dimensional vectors for Mi time frames. The sequences are evenly spaced, and
can be of variable length. The goal of the proposed framework is to fit a model
for label prediction based on the entire dataset by exploiting underlying struc-
ture of the data. Within the transductive learning framework, each multivariate
sequence (MVS) is viewed as a vertex v ∈ V of a graph, and all the MVS are
linked with each other using undirected edges e ∈ E, which are associated with
weights W computed as a function of distance between the involved sequences.
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The labels of {yL+1, yL+2, . . . , yL+U} can then be estimated by exploring the
structure of the graph G = (V,E,W ) through label propagation.

To effectively derive the underlying structures of a set of multivariate se-
quences, we first construct a weighted graph G represented as an adjacency ma-
trix W of size (L+U)× (L+U), where L and U denote the numbers of labeled
and unlabeled sequences, respectively. Each entry Wi,j represents weight of an
undirected edge ei,j between sequences i and j, and is formulated as a function
of their distance di,j , i.e.

Wi,j = f(di,j), di,j ≥ 0.

The mathematical form of the function f(·) can be arbitrary. Inspired with
stationary kernels, Wi,j can be defined as, e.g.:

Squared exponential: exp(−d2/2`2) (1)

Rational quadratic: (1 + d2/2α`2)−α (2)

γ-exponential: exp(−(d/`)γ), 0 < γ ≤ 2 (3)

The weight monotonically decreases with the distance. The smaller the distance,
the larger the weight and the stronger the connection between two sequences.
The function f(·) can model how the weights decay with the distances, and is
more flexible than directly using the distances (or similarity) as the weights of
the edges. In the experimental analysis of Sec. 4, we use γ-exponential function
with γ = 1.

The construction of adjacency matrix W is based on the distance between
MVS which can well capture the characteristics of MVS and the latent structure
of the dataset. The distance measure for univariate sequence has been largely
investigated in the literature [16, 8, 4, 11]. However these methods can not be
simply extended to MVS due to correlations between dimensions in MVS. The
MVS distance measures fall into two categories: dynamic time warping (DTW)
based methods [12, 2, 1] and PCA/SVD based methods [6, 13, 20, 7, 18]. In this
work, we exploit the Eros method, which explores correlations between different
dimensions of MVS based on principal component analysis (PCA) and provide
superior performance over DTW based methods [20]. The Eros method extends
Frobenius matrix norm to measure similarity between two MVS using principal
components extracted with PCA. In particular, MVS similarity is computed as
a weighted sum of cosine similarity of eigenvectors between two MVS matrices
si and sj :

Eros(i, j) =

D∑
k=1

ωk| cos θk|, (4)

where θk denotes the angle between the k’th principal components of si and sj .
The weight ωk specifies how much variability of the set of MVS can be explained
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by the k’th principal components:

ωk =

N∑
i

λk,i/

D∑
k

N∑
i

λk,i, (5)

where λk,i is the k’th eigenvalue of the MVS si. As the Eros method provides
similarity between two MVS, we define distance as di,j = 1 − Eros(i, j) for
graph computation. The proposed framework allows incorporating different MVS
modeling techniques. Although we employ the Eros distance in this work, it is
natural to generalize to other MVS modeling techniques, and leverage multiple
MVS modeling methods by graph combination.

The adjacency matrix W formulates the constructed graph for the entire
MVS data. The smaller the distance of a pair of MVS, the larger the corre-
sponding entry Wi,j . It is natural to assume that the closer sequences tend
to have similar class labels. The constructed graph with the adjacency matrix
W fully specifies proximity and underlying structure of the data. Labels of se-
quences can propagate to unlabeled sequences according to their proximity on
the graph. In this work, we use a harmonic Gaussian field based method [22] for
label propagation.

Each MVS is associated with an auxiliary random variable zi ∈ R, which
represents soft label of the MVS. The distribution of the set of random variables
zi’s is modeled with Gaussian Markov random field. In particular, the state of zi
is only conditioned on the connected random variables, and follows a Gaussian
distribution. As the connected vertices should have similar labels, the energy,
i.e. sum of clique potentials of a Markov random field, can be defined as [22]:

E(z) =
1

4

∑
i,j

Wi,j(zi − zj)2. (6)

The distribution of the Gaussian field is

pβ(z) ∝ exp (−βE(z)) , (7)

where the parameter β = 1/T is usually called inverse temperature of the field.
The minimum energy of the field can be achieved at z∗, which satisfies

∆z∗ = 0

due to harmonic property [22]. ∆ denotes combinatorial graph Laplacian, which
is an essential component in graph-based methods:

∆ = D −W, (8)

where D is diagonal degree matrix with Di,i =
∑
jWi,j . To characterize the

properties of the data explicitly in terms of matrix operations, the harmonic
function is defined as:[

D`,` −W`,` −W`,u

−Wu,` Du,u −Wu,u

] [
z∗`
z∗u

]
= 0, (9)
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where z∗` denotes the observed labels, and z∗u is the unknown ones to be predicted.
The Laplacian of the entire data is split into four corresponding blocks for labeled
and unlabeled MVS. By solving the function (9), we have:

z∗u = (Du,u −Wu,u)
−1
Wu,`z

∗
` . (10)

The class assignments of the unlabeled sequences can then be obtained by thresh-
olding the soft labels z∗u.

Additionally, a graph kernel can be obtained using the Laplacian ∆. In par-
ticular, the distribution of the Gaussian random field is:

pβ(z) ∝ exp

−β
4

∑
i,j

Wi,j(zi − zj)2
 (11)

= exp

(
−β

2
zT∆z

)
. (12)

One can find that the term (β∆)−1 defines a graph kernel (covariance matrix).
Considering the singular matrix issue, we further regularize the Laplacian as
∆ = ∆ + I/σ2, where I denotes identity matrix. This corresponds to remove
zero eigenvalues of the Laplacian by regularizing its spectrum [14]. Finally, the
graph kernel is computed as:

k(G) =
[
β
(
∆+ I/σ2

)]−1
. (13)

The kernel specifies the correlations among MVS based on spectral graph theory.
Due to the inverse of the Laplacian, the correlation here is not a local one, but
depends on all values of the whole dataset. Intuitively, this kernel can better
capture the latent structure of a set of MVS. We will provide visualization of
the graph kernels in the experimental analysis section.

4 Experimental Analysis

The experimental analysis of the proposed framework is carried out on two
real-world datasets, uWave and AUSLAN, to evaluate the performance of the
framework on multivariate sequence classification problem.

The Australian Sign Language dataset (AUSLAN) is originally collected by
[5]. The dataset includes 95 Auslan signs, for each of which 27 examples are
captured from a native signer using high-quality position trackers with totally
22 sensors. The signs are of variable length. The average length of each sign is
approximately 57 frames. Fig. 1 visualizes the signs: answer, happy, cold and
building. The task of the experiments is to assign the 22-dimensional sequences
into one of 95 signs (classes).

The uWave dataset [9] is about gesture recognition using data collected with
3-axis accelerometers. The dataset involves gestures of eight users. These sam-
ples are recorded with a 3-axis accelerometer and represented in the form of
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Fig. 1: Multivariate sequences of the Australian signs: answer, happy, cold and
building.

Table 1: Misclassification ratio on the AUSLAN data
Labeled data 10% 20% 30% 40% 50%

Our approach 0.266 0.196 0.164 0.141 0.131

1NN 0.300 0.219 0.180 0.156 0.142

3-dimensional sequences. The length of the sequence are variable. In addition,
the dataset is collected over multiple weeks to simulate the real situation. Users
show high variations in a gesture over time. The task of the experiments is
to perform user-dependent gesture recognition. Fig. 2 illustrates some gestures
generated by two users at different days. One can see high variations in gesture
sequences across users at different days.

The proposed framework is compared with the nearest neighbor classifier
(denoted as 1NN), which is a commonly-used method in sequence classification
problem with superior predictive performance [19]. In the experiments, we ran-
domly select 10% (20%, 30%, ...) of data as labeled sequences and the rest as
unlabeled ones for prediction. Every experiment is repeated 10 times, the aver-
aged misclassification ratio is reported to measure the performance.

The experimental results on the AUSLAN data are summarized in Table 1
and Fig. 3. The experiments show that our approach substantially outperforms
the baseline method, especially when the training data is few. We perform further
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Fig. 2: Multivariate sequences of gestures generated by 2 users at different days.

Fig. 3: Misclassification ratio on the AUSLAN data given 10% (20%, ..., 50%) of
sequences with class labels. The box plots show variability across reruns.

analysis on our algorithm to better understand the results. Fig. 4 illustrates the
structure and the corresponding graph kernel of the AUSLAN data with 100
example signs. One can find that the underlying structure of the data can be well
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Fig. 4: The constructed graph and the corresponding graph kernel of the AUS-
LAN data.

captured by the adjacency matrix and formulated by graph kernel (right panel),
which in turn results in improved performance. The experiments on the uWave
data show similar tendency: the transductive classification framework provides
superior predictive performance over the baseline method. Fig. 5 summarizes the
experimental results. The experimental analysis demonstrates that exploiting the
underlying structure of sequence data does improve the prediction performance.

5 Conclusion

We have presented a transductive learning framework to improve the perfor-
mance of multivariate sequential classification. The framework exploits addi-
tional information on the distribution of both labeled and unlabeled sequential
data with graph-based approach. Additionally the correlation within the mul-
tivariate sequences is also incorporated in graph construction. The proposed
method achieves promising predictive performance in empirical analysis on real-
world sequential datasets. An interesting avenue for future work would be to
extend the framework to other types of time stamped sequential data, such as
unevenly spaced sequence data.
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Abstract. This paper presents a simple string representation for hourly
foreign exchange data and evaluates the performance of a trading strat-
egy derived from it. We make use of a natural discretisation of the time-
series based on arbitrary partitioning of the real valued hourly returns to
create an alphabet and combine these individual characters to construct
a string. The trading decision for each string is learnt in an incremental
manner and is thus subject to temporal fluctuations. This naive represen-
tation and strategy is compared to the support vector machine, a popular
machine learning algorithm for financial time series prediction, that is
able to make use of the continuous form of past prices and complex kernel
representations. Our extensive experiments show that the simple string
representation is capable of outperforming these more exotic approaches,
whilst supporting the idea that when it comes to working in high noise
environments often the simplest approach is the most effective.

Keywords: Financial time series prediction, Discretisation, Parzen win-
dow estimators, Text kernels, Support vector machines

1 Introduction

The returns of financial time series (FTS) are renowned for being extremely noisy
making it difficult to make predictions based upon these observations. This has
led many previous authors to seek out novel and exotic representations of the
time series that remove this noise and allow for better predictions to be made. In
this paper we present an alternative view of the problem and introduce a simple
discretisation operator on the observed returns. This discretisation, or binning,
operator maps individual hourly returns from their original continuous form to
a letter from an arbitrary, predefined alphabet. The letters corresponding to
past returns are combined together to form a string representative of past price
movements and we use this string to guide our trading decisions.

In this paper we examine 8 years of hourly data taken from four of the
most actively traded currency pairs; AUD/USD, CHF/USD, EUR/USD and
GBP/USD. The performance of our simple strategy is compared against sup-
port vector machines (SVMs), a popular machine learning algorithm for FTS
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prediction. Extensive experiments are conducted using the SVM framework and
a wide range of parameters are evaluated. The strategy that we present uses an
incremental learning algorithm that records the average return of each unique
market state representation (string). The decision on whether to trade is con-
trolled by using an expected return threshold and confidence proxy, measured
in terms of the number of times we have visited that state. The results indicate
that our relatively simple approach is capable of outperforming its more com-
plicated counterpart, supporting our claim that the simplest solution is likely to
fare best when in noisy environments.

2 Previous work

This paper addresses the problem of FTS prediction from two aspects: (a) in
terms of the complexity of an algorithm and (b) in terms of data representation
techniques.

A large part of FTS research focuses on pattern discovery within the noisy
data. The usual approach is to use a type of autoregressive model so as to predict
the future price or return trajectories. While this approach has proven quite use-
ful for the prediction of mean-reverting and persistent processes such as volatility,
it is less successful in predicting the value or even directional movement of a price
time-series. Machine learning has demonstrated some encouraging results for the
prediction of FTS, with SVMs being one of the most popular approaches. One
of the first applications of SVMs to FTS was presented in [1] and later extended
in [2]. Both papers provide an empirical analysis of SVM-based FTS prediction
and compare its performance against a number of other techniques including
multi-layer back-propagation neural network and case-based reasoning. The ex-
perimental results in both paper suggest a superiority of SVM methods when
compared to similar techniques, however they do outline the challenges of the
SVM approach in terms of generalisation. In [3] the authors compare the per-
formance of Least Squares SVMs (LS-SVMs)1 to that of several autoregressive
models as well as non-parametric models for both return and volatility predic-
tion. They report a superior performance of the LS-SVM in terms of achieving
higher directional prediction and better overall performance compared to that
of other models used in their investigation. Further applications of SVMs for
financial forecasting can be found in [4,5,6,7,8].

In terms of data representation, the prevalent approach is to work with con-
tinuous time series data, favouring returns instead of prices due to a number of
statistical properties that they possess. Relatively less attention has been given
to the study of the discretisation of financial time series, although there have
been attempts to reduce the noise of a time series by using various quantisation
techniques. Another way is to employ rule-based prediction methods that allow
the incorporation of prior knowledge into the decision-making process. Accord-
ing to [9] rule-based forecasting involves two sources of knowledge (a) forecasting

1 An extension of the original SVM that penalises the slack variables according to
their squared value.
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expertise (e.g. quantitative extrapolations and modelling) and (b) domain knowl-
edge (practical knowledge about causal relations within particular field). Perhaps
the most popular example of the latter in finance are methods with rules based
on technical indicators2. These allow a researcher to include their expert knowl-
edge into the forecasting process in the form of various thresholds and patterns
applied to technical indicators that ultimately lead to discrete evaluation of the
market at a specific point in time. Understandably, rule-based forecasting goes
beyond rules based on technical indicators, e.g. assigning different considerations
to level and trend of a time series, combining predictions of a number of models,
separating models according to their forecast horizons etc. ([9]).

In this sense, machine learning is less restrictive compared to classical time
series analysis since it does not necessarily demand that the process satisfies a
specific set of assumptions. While classical econometrics normally steers clear of
including technical indicators and other heuristics, machine learning techniques
allow for an easy inclusion of such indicators without violating any statisti-
cal assumptions. In fact it is quite popular to use these technical indicators as
building blocks of the feature space when predicting FTS with machine learning
algorithms. Moreover, it extends the possibilities of data representation through
the use of kernel functions. The majority of implementations use the Gaussian
kernel function due to its rich representation ability. Also frequently used are
Polynomial and Laplacian kernels. To the best of our knowledge, text-based ker-
nels have not yet been applied for pattern recognition in FTS, except in the
context of news analytics. For more details on kernel methods see for example
[10].

3 Simple Strategy

In this section we discuss a simple representation for FTS and explain how to
use it to construct a trading strategy. At each hourly interval we have prices
for the open, high, low and close over that interval, given by Ot, Ht, Lt and Ct
respectively, with each price being a positive real number. Our goal is to predict
at the beginning of the price interval whether the price will increase or decrease
over the interval, therefore our target is yt = sign (Ct −Ot) ∈ {−1,+1}. To do
this we look at the relative price movements, or returns, rt = (Ct−Ot)/Ot that
have occurred leading up to time t. Rather than using the continuous values of
the returns we form a partitioning of the real line R and label each sub-interval
with a unique identifier i.e. a letter σ from alphabet Σ.

The approach we take is to use sub-intervals (bk, bk+1], where bk < bk+1, that
have roughly an equal number of members i.e. in the training sample there a
roughly the same number of returns rt corresponding to each sub-interval. This
can be achieved by sorting the returns rt and taking equally separated percentile
points as the limits of the sub-intervals. An important point to consider is the

2 Technical indicators would best be described as rule-based evaluations of the un-
derlying time series where their mathematical formulae is not based on statistical
theory but on an expert’s domain knowledge instead.



169

sub-interval that contains both positive and negative values. Intuitively it makes
sense to split this sub-interval into two separate sub-intervals either side of zero.

The mapping A : R→ Σ between returns and the alphabet is given by

A(r) =


σ1, b0 < r ≤ b1
σ2, b1 < r ≤ b2

...

σ|Σ|, b|Σ|−1 < r ≤ b|Σ|,

(1)

where b0 = −∞ and b|Σ| = +∞. Using this notion each observation belongs
to a given sub-interval, which we identify with a letter from our alphabet. The
representation can be extended to include the past observations by concatenating
the letters corresponding to past returns (see Figure 1).

Fig. 1. Alphabet representation: left side displays letters (i.e. partitions) together with
the number of examples (returns) that fall into individual partitions. Right side displays
the time series of these same hourly returns over the period of 24 hours with each of
the hourly returns being assigned a letter depending on which partition they fall into.

More formally, an alphabet Σ of |Σ| letters is constructed by an arbitrary
partitioning of the real line R. Each return rt ∈ R is mapped to a letter σt ∈ Σ.
A string is constructed according to st = σt−1 . . . σt−K , where K defines how
many past returns we look at. Our goal is to come up with a prediction rule g :
ΣK → {−1, 1} indicating whether we believe the price will increase or decrease
over the next interval. The feature space φ is constructed by mapping each
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unique string s ∈ ΣK to binary vector with one non-zero entry corresponding
to that particular string such that 〈φ(s), φ(s′)〉 = 1 if and only if s = s′, and
zero otherwise. This is equivalent to a bag-of-words kernel where we only have
a single word in each document.

We learn our predictor in an incremental manner by maintaining an individ-
ual weight ws and count cs for each string. This weight ws is given by the sum
of observed outcomes for that string i.e. the weight corresponding to string s
at time T is given by ws =

∑T
t=1 ytI[st = s], where I[a] is the indicator func-

tion returning 1 if the predicate a is true and 0 otherwise. The count cs simply
measures the number of times we have seen string s, i.e. cs =

∑T
t=1 I[st = s].

We can think of our predictor as an incremental version of the Parzen window
classifier, which is traditionally used in conjunction with feature map φ and
kernel function k(x, x′) = 〈φ(x), φ(x′)〉. The Parzen window prediction function
gpw is given by

gpw(x) = sign

(
T∑
t=1

ytk(xt, x)

)
,

which takes into consideration each training example. This is often referred to as
the Watson-Nadaraya estimator, which is an estimate of the conditional prob-
ability of a class. Note that we no longer have to maintain previous examples
as they can be captured by the primal representation of the predictor and we
only have to maintain |Σ|K individual weights. In our experiments this remains
a feasible primal representation as the maximum alphabet length and string
length are both set to 5 meaning that |Σ|K ≤ 3125. In Algorithm 1 we present
the simple string based trading algorithm and have introduced two additional
variables, a threshold τ and minimum observation number ν. The threshold τ
can be interpreted as the excess in probability of a given class occurring that
is required to invoke a trading decision. The minimum observation number ν is
used to ensure that we can have gathered enough information in order to make a
decision. Together these variables control the level of confidence that we have in
our trading decision. The dimension of our primal weight vector w depends on
the size of the alphabet Σ and the number of past returns K that we examine
i.e. |w| = |Σ|K . At each time step t we only update a single entry of w, the one
corresponding to the particular string observation st at that time i.e. wst . We
construct and update the counts c in a similar manner.

4 String subsequences strategy

In this section we examine an extension of the simple string strategy by mea-
suring the impact that subsequences of strings, known as n-grams (NG), have
on the probability of class membership i.e. given string s do we expect price
to go up or down. Here we present a quick overview of the n-grams approach,
a method for text representation popular especially in the fields such as com-
putational linguistics [11] and bioinformatics [12]. One way a document can be
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Algorithm 1 Algorithm to run simple strings trading strategy

SimpleStrings(S,R,Σ,K, τ, ν)

Require: S-string representation, R returns, Σ alphabet, K time steps considered, τ
trade threshold, ν minimum observation number

1: Initialise weights ws = 0 and counts cs = 0 for each s ∈ ΣK , Profit R = 0
2: for t = 1 : T do
3: Observe st, cst compute f(st) = 〈w, φ(st)〉 = wst and δ = wst/cst
4: if δ > τ ∩ cst > ν then
5: Take long position, p = 1
6: else if δ < −τ ∩ cst > ν then
7: Take short position, p = −1
8: else
9: Do not trade, p = 0

10: end if
11: Observe return rt, yt = sign(rt)
12: Update profit R← R+ prt
13: Update observation counts cst ← cst + 1
14: Update weight vectors wst ← yt + wst

15: end for

represented is in terms of substrings where each substring represents a feature of
the underlying document. As its name suggests n-grams refers to n-number of
adjacent characters in the alphabet with each n-gram type representing a type
of substring (i.e. a feature). We can write such a mapping of a document dl into
a vector space characterised by n-grams as φ : dl → φ(dl) ∈ F ⊆ R|Σ|n .

As an example let us consider that the entire document is composed of the
word ”excellent”, (dl = excellent) and we are interested in a 3-grams feature
representation. The word “excellent” contains 7 unique 3-grams,

excellent→ [ exc xce cel ell lle len ent ],

which will correspond to 7 non-zero entries in the feature mapping φ. This simple
example shows that the dimensionality in real life problems can increase very
quickly. One of the challenges associated with n-grams is the choice of the value
of n. In practice this value is normally relatively low as the dimensionality prob-
lem basically does not allow for very high values of n. In terms of our strings
subsequence strategy, note that the size of the feature space is now |Σ|k, where
k ≤ K is the size of the subsequences that we examine. However our feature
space is no longer a binary vector with one non-zero entry, instead there is a
non-zero entry for each subsequence that is present in the string. The approach
used in Algorithm 1 can be simply adjusted to account for the use of n-grams.
The observation s = (sp1 . . . s

p
k) is now decomposed to k = max(K − p + 1, 0)

n-grams of length p, which results in f(s) = 1
k

∑k
i=1 wspi . The weight vector

and count updates occur in a synonymous manner to before, where we take
each subsequence spi in turn, updating its count cspi and weight wspi . To keep

our expressions as clear as possible we now drop the superscripts on spi , when
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the context is clear that we use a fixed length n-gram. The confidence of the
trading decisions are controlled by the total count c = 1

k

∑
i csi and the value

δ = f(s)/c. The value δ can once again be interpreted as an estimate that the
difference between the probability that price will increase versus decrease over
the next time period, given that we have observed string s and all past strings.

4.1 Time decay n-grams

The n-gram feature space that we have described thus far corresponds to the
traditional one used in machine learning literature, however this has not been
designed to take into consideration any temporal influences that may exist. For
example, we would expect that more recent subsequences will have a stronger
influence on the likely outcomes and should therefore have a greater weight
placed upon them. To factor this into our representation we can introduce a
simple decay function that weights subsequences according to their position in
the string,

f(s) =

k∑
i=1

qiwsi where

k∑
i=1

qi = 1 and q1 ≥ q2 ≥ · · · ≥ qk,

note that in traditional n-grams we effectively have qi = 1
k for each k. We have to

make a slight adjustment to the updates, which are now given by csi ← qi + csi
and wsi ← qiy + wsi , where w = (ws)s∈Σk maintains a weighted sum of the
directional movements associated with each subsequence. We now show that the
prediction rule g is equivalent to that of a Parzen window classifier constructed
using this new time decay feature mapping.

Proposition 1. Let φ(s) be the feature mapping associated with the time-decay
n-gram kernel of length k given by

k(s, s′) =
∑
u∈Σk

k∑
i=1

k∑
j=1

qiqjI[si = u]I[sj = u],

where
∑k
i=1 qi = 1 and qi ≥ qj if i ≥ j. At time T the value of each component of

the primal weight vector (wsi)si∈Σk is given by wsi =
∑T
t=1 yt

∑k
i=1 qiI[st,i = si],

where st,i corresponds to the i-th n-gram at time t. At time T the prediction

function g(s) = sign(〈w, φ(s)〉) = sign
(∑k

i=1 qiwsi

)
is equivalent to the Parzen

window classifier given by gpa(s) = sign
(∑T

t=1 ytk(s, st)
)

.

Proof. By expressing the sum over kernel functions in terms of the subsequences
present in string s we have

T∑
t=1

ytk(s, st) =

T∑
t=1

yt

k∑
i=1

qi

k∑
j=1

qjI[st,j = si] =

k∑
i=1

qi

T∑
t=1

yt

k∑
j=1

qjI[st,i = si],

which is equivalent to
∑k
i=1 qiwsi . Therefore we see that both the Parzen

window classifier and our simple average strategy will return the same prediction.



173

5 Experiments

We evaluate the performance of our proposed string based predictors by us-
ing hourly data taken from four of the most actively traded currency pairs;
AUD/USD, CHF/USD, EUR/USD and GBP/USD. The extensive dataset con-
sists of 50,000 observations for each currency, covering dates ranging from Febru-
ary 2005 to January 2013. Digressing briefly, the majority of previous experi-
ments using machine learning for FTS prediction have focused on predicting
stock returns and often report abnormal returns. We have chosen to focus on
currencies due to their permanence and relatively stable prices, rather than the
survivorship bias and tendency for an upward drift in prices that exists with
stocks taken from indices such as S&P500 or the FTSE100. We investigate the
performance from two perspectives: (a) the type of data used for decision making
and (continuous vs. discrete i.e. alphabet) and (b) the complexity of the learning
algorithm (Simple Strings vs. SVM).

Fig. 2. Threshold τ = 0.00: heat map shows a cumulative absolute return for the simple
strategy for different alphabet and word lengths. The lighter the field the higher the
absolute returns for a particular combination of alphabet and word lengths.
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5.1 Simple Strings Strategy

Initially we run a simple strategy for a range of alphabet lengths |Σ| = [2 :
6] and word lengths K = [1 : 5]. We set the minimum number of previously
seen observations fixed at ν = 50. The experiments are then conducted for
a range of threshold values τ = 0.00 and τ = 0.05. Figures 2 and 3 display
the cumulative return for τ = 0.00 and τ = 0.05, respectively. The heat maps
reflect the cumulative absolute return achieved by the simple strings strategy for
various values of alphabet and word lengths. We see that the best performance is
achieved by strategies with short word and alphabet lengths. This resembles the
empirical fact that there is little to no autocorrelation between returns and that
the short look-back periods offer more information relative to longer periods.The
performance does not seem to be overly sensitive to the size of the threshold τ ,
although the returns do seem to be slightly higher when τ = 0.05 is used to
assist the decision-making process.

Fig. 3. Threshold τ = 0.05: simple strategy applied with a non-zero trading threshold.
Again, shorter alphabet and word lengths result in higher cumulative absolute returns.

5.2 SVM Strategy

To compare the performance of the simple string representation we trained a
linear SVM classifier using the continuous representation of the respective string
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Fig. 4. Performance (cumulative return) comparison between linear SVM and sim-
ple string representation. Blue stars correspond to performance of different alphabet
and word length string combinations, red stars are the linear SVM performance for
continuous inputs of given length.

length i.e. K = 5 means that we used the last 5 returns to construct the input
space for the SVM. Given the size of our dataset, we opted for a rolling window
classifier approach, training for 1500 points, using a validation set of 500 points
to choose the best regularisation parameter, and then testing the predictor on
the subsequent 500 points. We compare the performance of the linear SVM with
our string representation in Figure 4. We can see that in general the simple string
representation outperforms a linear SVM trained using the continuous features.
For most currencies and string parameterisations, the cumulative performance
is higher than that of the continuous linear SVM. This results show that the
simple discretisation and optimisation scheme can perform on par with more
sophisticated learning algorithms. One explanation could be the fact the the
strength of the SVM comes from the generalisation guarantees offered by the
margin that it obtains. However in particularly noisy situations, like FTS, the
margin that the algorithm obtained may not provide reasonable generalisation
guarantees. Furthermore the solution of the SVM is constructed based upon
those examples that lie at the margin or on the wrong side of it, therefore we
see that solutions in noisy situations are comprised of examples that lie on the
periphery of the underlying distribution whereas the approach we have taken
simply uses an efficient representation of the class conditional mean of these
samples.
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5.3 String subsequences

To evaluate the performance of the string subsequences representation outlined
earlier, we repeated the same experiments used for the simple strings, whilst
varying the size of the n-grams and the weighting function qi. For all of the exper-
iments presented we used a simple decay factor of 10, meaning that q1/qK = 10.
In Figure 5 we compare the performance of the string subsequence approach to
our previous approach. We can see from the results that the n-gram implementa-
tion performs similarly to the original string approach, however what we can say
is that it appears to be less sensitive to parameterisation. This is evident from
a smaller amount of variance in the returns across a range of parameters. This
shows promise for this approach for representation and something that could be
studied more extensively in the future.
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Fig. 5. Performance (cumulative return) comparison between n-gram and string rep-
resentation. Blue stars correspond to performance of different n-gram combinations of
n-gram length and alphabet length, red stars are the string performance for different
alphabet lengths.

6 Conclusions

This paper presents a novel approach to FTS forecasting based on a simple string
representation. We examine the design of a trading strategy from two perspec-
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tives (a) the complexity of the underlying algorithm and (b) the representation
of the underlying time series used in the decision making process. We compare
a simple approach based on discrete data to the popular linear SVM with con-
tinuous inputs, and introduce a new kernel function that captures the temporal
importance of string subsequences. Furthermore we show that this kernel can be
evaluated efficiently using a simple weighted averaging process that is equivalent
to the Parzen window classifer using that kernel. The algorithms and represen-
tations are tested on eight years of foreign exchange data using four different
currencies. The results of these experiments suggest that a simple string repre-
sentation coupled with an averaging process is capable of outperforming more
exotic approaches, whilst supporting the idea that when it comes to working in
high noise environments often the simplest approach is the most effective.
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Abstract. In recent years recurrence plots have become a widely ac-
cepted tool for identifying and visualizing structural patterns in time se-
ries. It has been shown that the structural patterns found in recurrence
plots can be used to determine the similarity between two time series,
which is necessary for classification. For instance, it has been proposed
to employ video compression algorithms for measuring the similarity be-
tween two recurrence plots, which visualize the structural patterns that
were extracted from the time series under study.

In this work we assess to what extend the choice of video compression
algorithm influences the similarity measurements and classification per-
formance for recurrence plots or time series respectively. Furthermore,
we introduce a novel time series distance measure based on the compres-
sion of cross recurrence plots. Our evaluation shows that more advanced
compression algorithm do not necessarily result in higher classification
accuracy, but lead to superior results for relatively long time series.

1 Introduction

Classifying time series has become an important task in many computer science
disciplines like data mining and knowledge discovery [4, 12]. An important part
of this classification is the definition of a similarity function that measures the
distance of two time series under study. In [2] Campana and Keogh proposed
a distance measure that employs the video compression algorithm MPEG-1 to
determine the similarity of textures. In [10] Silva et al. applied the video com-
pression distance to recurrence plots and showed that especially the classification
of shape-based time series benefit from the new approach.

While the MPEG-1 standard proved to be a good basis for the compression of
recurrence plots, it is unclear how different and more advanced video encoding
alogrithms contained in standards such as MPEG-2 and MPEG-4 effect the
distance measure and thus the classification.

In this work we further analyze the possibilities of applying the concept of video
compression to recurrence plots. We analyze how well the recurrence plot com-
pression distance performs with newer video compression algorithms such as
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MPEG-2 and MPEG-4. We also propose a new compression distances that com-
bines the concepts of video compression distances and cross recurrence plots. In
our experimental evaluation we analyze how the different approaches perform
with the different video compression algorithms.

2 Background

2.1 Recurrence plots

Recurrence plots (RP) are used to visualize and analyze systems with nonlinear
behavior. The input data is usually represented as a vector of real values, which
correspond to different states of the system under study. The recurrence plot
illustrates recurring states as individual points and recurring segments as line
structures [8].

Fig. 1: The plot of a time series (1) showing CO2 in the atmosphere measured every
month between 1958 and 1975 [3]. Below that are the resulting unthresholded recurrnce
plot (2) and thresholded recurrence plot with a threshold of 0.2 (3).

A recurrence plots of a time series x can be mathematically described as follows:

Rd,εi,j = Θ(ε− ||xi − xj ||) xi ∈ Rd, i, j = 1 . . . n
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where ε is a threshold distance, || · || is a norm, and Θ(·) is the Heaviside step
function. According to this definition, a recurrence of a state at time i at a
different time j is pictured within a two-dimensional squared matrix with black
and white dots, where black dots mark a recurrence [7].

Unthresholded recurrence plots are a variation where the threshold parameter
ε and the Heaviside function are removed, which results in gray-shaded plots.
Figure 1 compares traditional recurrence plots with unthresholded recurrence
plots with the help of a sample time series.

Extending the concept of recurrence plots, cross recurrence plots (CRPs) are
used to visualize recurring patterns between two time series x and y:

CRd,εi,j = Θ(ε− ||xi − yj ||) xi, yj ∈ Rd, i = 1 . . . n, j = 1 . . .m

A cross recurrence plot (CRP) shows all those times at which a state in one
dynamical systems occurs in a second dynamical system. In other words, the
CRP reveals all the times when the trajectories of the first and second time
series, x and y, visits roughly the same area in the phase space. The data length,
n and m, of both systems can differ, leading to a non-square CRP matrix [9, 11].

2.2 Campana-Keogh distance

The Campana-Keogh distance CK-1 is a Kolmogorov complexity-based com-
pression distance for textures. It uses the MPEG-1 algorithms to calculate a
semimetric distance [2].

The MPEG-1 encoding is a specific set of algorithms used to compress a series
of coherent images. It not only uses similarities in the horizontal and vertical
data of the images (intra frame compression) but heavily relies on similarities
in temporal space (inter frame compression) [6].

When encoding a series of images with MPEG-1, each images is either stored
as an intra-frame (often called I-frame) or as a predictive frame (often called
P-frame). The compressed I-frames can be seen as keyframes that contain all
the information to reconstruct the images while the P-frames are storing the
information that describes the transition from the previous image to the next
one. So to decompress a P-frame, the decoding algorithm has to decompress the
preceding I-frame and subsequent P-frames up to the current frame [6].

CK-1 makes use of the MPEG-1 I-frames and P-frames to measure the distance
between two images. As a prerequisite the two images are converted to grayscale
to provide color invariance and are scaled to the same size. Then an MPEG-1
video is created with two frames. The first frame is an intra frame of the first
image and the second frame is a predictive frame of the second image. Relying
on the inter frame compression of MPEG-1, Campana and Keogh reason that
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the size of the compressed video is getting smaller as the images get more similar
[2].

The CK-1 distances measure is defined as follows:

CK1(x, y) =
C(x|y) + C(y|x)

C(x|x) + C(y|y)
− 1

where x and y are the time series to compare and C(x|y) is a function that
evaluates the size of a two frame long MPEG-1 file with y as the I-Frame and x
as the P-Frame [2].

2.3 Compression distance on recurrence plots

In recent work [10] Silva et al. employed the CK-1 distance to measure the sim-
ilarity between unthresholded recurrence plots that were generated from time
series. They argue that the MPEG video compression algorithm is able to de-
tect similar structures in recurrence plots, which correspond to similar time
series patterns. Their experimental evaluation of this recurrence plots compres-
sion distance (RPCD) shows that, in comparison to the euclidean distance and
dynamic time warping, the combination of the CK-1 distance measure together
with unthresholded recurrence plots results in higher classification accuracy for
time series which represent shapes (e.g. leaves or faces that are encoded into
time series).

3 Proposed method

In the following we introduce our novel cross recurrence plots compression dis-
tance (CRPCD), which combines the concept of the discussed compression dis-
tance with cross recurrence plots (CRPs). Our proposed approach computes the
compression distance between the RPs of two individual time series and their
corresponding CRPs.

The intuition behind our proposal is that CRPs are able to reveal co-occurring
patterns, which are assumed to be advantageous for video encoding algorithms.
Our hypothesis is that the introduced video compression approach produces
better classification results when using CRPs, since these plots reveal patterns
that co-occur within two time series.

To simplify the notation of the CRPCD, we will denote a recurrence plot Rx

with the equivalent cross recurrence plot CRx,x.

For the calculation of the cross recurrence plots compression distance of two time
series x and y, the plots CRx,x, CRy,y. CRx,y and CRy,x have to be generated.
With a video compression algorithm the distance between CRx,x and CRx,y and
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between CRy,y and CRy,x can be calculated as defined by the CK-1 algorithm
and then combined to form one distance measure.

Fig. 2: Cross recurrence plots that are used for the CRPCD measure. On the top
are CRPs from x to itself and to y. On the bottom are the CRPs from y to x
and to itself.

Mathematically, the CRPCD measure can be defined as follows:

CK2(x, y) =

C(CRx,x|CRx,y) + C(CRy,y|CRy,x) + C(CRx,y|CRx,x) + C(CRy,x|CRy,y)

C(CRx,y|CRx,y) + C(CRy,x|CRy,x) + C(CRx,x|CRx,x) + C(CRy,y|CRy,y)
− 1

where x and y are two time series, CRa,b is the cross recurrence plots of the time series
a and b and C(A|B) is a compression function for object A given object B.

4 Experiments

In our experimental evaluation we investigate: i) how the accuracy of RPCD [10]
changes when we use other compression algorithms (such as MPEG-2 and MPEG-4);
and ii) how our proposed CRPCD measure performs in comparison.
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4.1 Experimental setup

We used publicly available libraries [1] to test the RPCD method with the newer
compression algorithms MPEG-2 and MPEG-4. We configured the libraries to use
modes that favor inter-frame to intra-frame compression, but we did not have the
resources to perform an exhaustive search over all possible parameter settings. Hence,
there is still potential for further improvement.

Data set ED DTW
RPCD

MPEG1
RPCD

MPEG2
RPCD

MPEG4
CRPCD
MPEG1

CRPCD
MPEG2

Kind

50words 63.10 69.00 77.36 73.85 61.76 78.46 71.43 •
Adiac 61.10 60.40 61.64 72.12 70.08 61.38 70.08 H
Beef 53.30 50.00 63.33 63.33 63.33 46.67 46.67 •
ChlorineConcentration 65.00 64.80 51.09 63.78 ?? 48.93 63.33 •
CinC ECG torso 89.70 65.10 97.90 97.24 94.20 93.19 86.16 •
Coffee 75.00 82.10 100.00 100.00 100.00 85.71 85.71 •
Cricket X 57.40 77.70 70.77 38.46 13.59 75.64 53.59 N
Cricket Y 64.40 79.20 73.85 42.31 11.03 82.56 52.05 N
Cricket Z 62.00 79.20 70.77 40.76 12.82 77.69 56.41 N
DiatomSizeReduction 93.50 96.70 96.41 94.77 95.42 96.08 96.08 •
ECG200 88.00 77.00 86.00 87.00 81.00 88.00 86.00 •
ECGFiveDays 79.70 76.80 86.41 87.92 88.27 80.48 90.36 •
FaceAll 71.40 80.80 80.95 73.96 31.24 80.59 79.74 H
FaceFour 78.40 83.00 94.32 94.32 90.91 95.45 88.64 H
FacesUCR 76.90 90.49 94.15 78.88 48.00 95.80 89.32 H
Fish 78.30 83.30 87.43 95.43 96.00 76.00 93.71 H
Gun Point 91.30 90.70 100.00 100.00 100.00 98.67 98.00 N
Haptics 37.00 37.70 38.64 43.83 44.16 41.23 43.18 •
InlineSkate 34.20 38.40 32.00 44.00 45.45 35.45 42.73 N
ItalyPowerDemand 95.50 95.00 84.26 82.41 69.48 83.77 87.56 •
Lighting2 75.40 86.90 75.41 67.21 57.38 81.97 70.49 •
Lighting7 57.50 72.60 64.38 21.92 17.81 69.86 42.47 •
MedicalImages 68.40 73.70 71.05 61.71 59.60 71.97 68.29 •
Motes 87.90 93.50 79.71 65.58 ?? 82.59 68.37 •
OliveOil 86.70 86.70 83.33 76.67 83.33 73.33 83.33 •
OSULeaf 51.70 59.10 64.46 83.06 83.88 65.29 80.17 H
RobotSurface 69.50 72.50 79.70 70.55 66.39 79.70 73.04 •
RobotSurfaceII 85.90 83.10 84.26 78.49 51.31 84.47 84.26 •
SwedishLeaf 78.70 79.00 90.24 88.64 86.24 88.80 88.48 H
Symbols 90.00 95.00 90.45 96.38 96.08 90.05 96.18 •
WordsSynonyms 61.80 64.90 72.41 71.00 62.54 73.35 67.24 •
Wins 6/31 7/31 7/31 5/31 7/31 5/31 1/31

Table 1: Accuracy rates for each distance measure. Following the notation in
[10], the symbols H, N and • represent data sets generated from figure shapes,
human movements and all remaining data sets, respectively.

For the CRPCD approach with the MPEG-1 video encoding algorithm we used the
test setup described in [10] but implemented our new compression distance approach
to preclude distorted results due to different configurations of the video encoding al-
gorithms.

In the evaluation we used the nearest neighbor method to classify the data sets provided
by the UCR Time Series Classification/Clustering Page [5]. Due to the fact that we
had four different distance measures to test, two of which were based on the CRPCD
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method that requires 8 video compressions to be made, we removed the largest data
sets from the testing corpus. The results of the evaluation can be seen in table 1.

0 20 40 60 80 100
0

20

40

60

80

100

In this area

RPCD-MPEG2 is better

In this area

RPCD-MPEG1 is better

RPCD-MPEG1

R
P

C
D

-M
P

E
G

2

Fig. 3: A plot comparing the accuracy of the RPCD method using MPEG-1 (bottom-right) and
MPEG-2 (top-left) video encoding algorithms. Each point represents a data set. In all data sets in
the white area of the plot the MPEG-2 approach outperformed MPEG-1. Following the notation in
[10], the symbols H, N and • represent data sets generated from figure shapes, human movements
and all remaining data sets, respectively.

4.2 Results and Discussion

As seen in Table 1, each tested setup, except for the CRPCD-MPEG2 approach, had
roughly the same number of data sets where it scored the best result (values in bold).
This shows that the different measurement approaches complement each other in a way
that none of the tested measures outperform all the others.

Notably large time series like InlineSkate (1882 data points) or Haptics (1092 data
points) performed better with the newer video compression algorithms. We believe
that this is due to the fact that with large plots the overhead and the intra-frame
encoding are less significant. Thus the resulting file size depends more on the inter-
frame compression of two images.

The approach to calculate the RPCD measure with the newer video encoding algorithm
MPEG-2 showed no significant improvements to the RPCD implementation as can
be seen in Figure 3. Notably, most of the data sets that were generated by human
movement performed significantly worse. Because the MPEG-2 algorithm is used as
a black box it is difficult to identify the reasons of this unexpected result. Possible
reasons may be due to the fact that the MPEG-2 video encoding produces a bigger file
overhead and that the intra-frame compression improved over the MPEG-1 algorithm.
This may lower the significance of the inter-frame compression in the video file.
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Fig. 4: A plot comparing the accuracy of the RPCD measure to the CRPCD measure - both with
the MPEG-1 video encoding algorithm - where each point represents a data set. In all data sets in
the white area of the plot CRPCD outperformed RPCD. Following the notation in [10], the symbols
H, N and • represent data sets generated from figure shapes, human movements and all remaining
data sets, respectively.
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Fig. 5: A plot comparing the accuracy of the RPCD measure with MPEG-1 video encoding to
the CRPCD measure with MPEG-2 video encoding, where each point represents a data set. In all
data sets in the white area of the plot CRPCD-MPEG2 outperformed RPCD-MPEG1. Following the
notation in [10], the symbols H, N and • represent data sets generated from figure shapes, human
movements and all remaining data sets, respectively.
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The CRPCD method tested with the MPEG-1 algorithm shows slight improvements
to the original RPCD approach. Especially time series that were generate by human
movement improved in contrast to RPCD as can be seen in Figure 4. However it is
notably that the calculation time of the CK-2 algorithm is significantly higher than
the time of the RPCD method because our approach requires two times as many plots
to be generated and videos to be encoded.

We tested the newer video encoding algorithm MPEG-2 with the CRPCD approach
combined, to see how these two factors influence each other. Apart from a few outliers,
the MPEG-2 CRPCD method performs worse than the MPEG-1 CRPCD approach, as
can be seen in Figure 5. We reason that in line with our hypothesis that the MPEG-2
algorithm undermines the inter-frame compression with the intra-frame compression,
the CRPCD method further lessens the significance of the compression between two
plots.

Additionally to the MPEG-2 video encoding algorithm we also tested the more ad-
vanced MPEG-4 algorithms. Overall the data sets that performed well with the MPEG-
2 algorithm also performed well with the MPEG-4 video encoder and data sets that
had less accuracy with MPEG-2 also had less accuracy with MPEG-4.

5 Conclusion

In this work we evaluated the use of more advanced video encoding algorithms like
MPEG-2 and MPEG-4 with the RPCD measure. We furthermore introduced a new
recurrence plot-based distance measure CRPCD that utilizes cross recurrence plots.

We showed that more advanced compression algorithms do not necessarily result in
higher classification accuracy. However, we observed that the MPEG-2 and MPEG-4
algorithms yield better performance for relatively long time series. Though none of the
classifiers is consistently better, the results show that they complement one another.

In future work we intend to evaluate the correlation between the size of a time series and
the accuracy of video compression-based distance measures. Future work may also in-
clude the modification of video encoding algorithms in a way that the compression only
takes place in temporal space so that overhead and unwanted intra-frame-compression
get minimized.
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