
Tree-based Algorithms for Action Rules
Discovery

Zbigniew W. Raś1,2, Li-Shiang Tsay3, and Agnieszka Dardzińska4

1 Univ. of North Carolina, Charlotte, Dept. of Computer Science, 9201 Univ. City
Blvd., Charlotte, NC 28223, USA

2 Polish-Japanese Institute of Information Technology, Koszykowa 86, 02-008
Warsaw, Poland

3 North Carolina A&T State Univ., School of Technology, Greensboro, NC 27411,
USA

4 Bialystok Technical Univ., Dept. of Computer Science, 15-351 Bialystok, Poland

Abstract. One of the main goals in Knowledge Discovery is to find interesting
associations between values of attributes, those that are meaningful in a domain of
interest. The most effective way to reduce the amount of discovered patterns is to
apply two interestingness measures, subjective and objective. Subjective measures
are based on the subjectivity and understandability of users examining the pat-
terns. They are divided into actionable, unexpected, and novel. Because classical
knowledge discovery algorithms are unable to determine if a rule is truly actionable
for a given user [1], we focus on a new class of rules [15], called E-action rules, that
can be used not only for automatic analysis of discovered classification rules but also
for hints of how to reclassify some objects in a data set from one state into another
more desired one. Actionability is closely linked with the availability of flexible at-
tributes [18] used to describe data and with the feasibility and cost [23] of desired
re-classifications. Some of them are easy to achieve. Some, initially seen as impossi-
ble within constraints set up by a user, still can be successfully achieved if additional
attributes are available. For instance, if a system is distributed and collaborating
sites agree on the ontology [5], [6] of their common attributes, the availability of
additional data from remote sites can help to achieve certain re-classifications of
objects at a server site [23]. Action tree algorithm, presented in this paper, requires
prior extraction of classification rules similarly as the algorithms proposed in [15]
and [17] but it guarantees a faster and more effective process of E-action rules
discovery. It was implemented as system DEAR 2.2 and tested on several public
domain databases. Support and confidence of E-action rules is introduced and used
to prune a large number of generated candidates which are irrelevant, spurious, and
insignificant.

1 Introduction

Finding useful rules is an important task of knowledge discovery in data.
Most of the researchers focused on techniques for generating patterns, such
as classification rules, association rules...etc, from a data set. They assume
that it is users responsibility to analyze these patterns and infer actionable



2 Zbigniew W. Raś et al.

solutions for specific problems within a given domain. The classical knowl-
edge discovery algorithms have the potential to identify enormous number
of significant patterns from data. Therefore, people are overwhelmed by a
large number of uninteresting patterns which are very difficult to analyze
and use to form timely solutions. So, there is a need to look for new tech-
niques and tools with the ability to assist people in identifying rules with
useful knowledge.

There are two types of interestingness measure: objective and subjective
(see [10], [1], [19], [20]). Subjective interestingness measures include unex-
pectedness [19] and actionability [1]. When a rule contradicts the user’s prior
belief about the domain, uncovers new knowledge, or surprises him, it is clas-
sified as unexpected. A rule is deemed actionable, if the user can take action
to gain an advantage based on this rule. Domain experts basically look at a
rule and say that this rule can be converted into an appropriate action.

E-action rules mining is a technique that intelligently and automatically
assists humans in acquiring useful information from data. This information
can be turned into actions which can benefit users. The approach gives sug-
gestions about how to change certain attribute values of a given set of objects
in order to reclassify them according to a user wish.

There are two frameworks for mining actionable knowledge: loosely cou-
pled and tightly coupled [9]. In the tightly coupled framework, action rules
are extracted directly from a database [7], [8], [22]. In the loosely coupled
framework, proposed in [15], the extraction of actionable knowledge is pre-
ceded by classification rules discovery. It is further subdivided into:

• strategies generating action rules from certain pairs of classification rules
[18], [21], [23],

• strategies generating action rules from single classification rules [16], [24].

This paper relates to a loosely coupled framework. In most of the al-
gorithms for action rules mining, there is no guarantee that the discovered
patterns in the first step will lead to actionable knowledge that is capable
of maximizing profits. One way to approach this problem is to assign a cost
function to all changes of attribute values [24]. If changes of attribute values
in the classification part of an action rule are too costly, then they can be
replaced by composing this rule with other action rules, as proposed in [23].
Each composition of these rules uniquely defines a new action rule. Objects
supporting each new action rule, let’s say r, are the same as objects support-
ing the action rule replaced by r but the cost of reclassifying them is lower
for the new rule.

E-action rule models the actionability concept in a better way than action
rule [15] by introducing a notion of its supporting class of objects. E-action
rules are constructed from certain pairs of classification rules. They can be
used not only for evaluating discovered patterns but also for reclassifying



Tree-based Algorithms for Action Rules Discovery 3

some objects in a dataset from one state into a new more desired state. For
example, classification rules found from a bank’s data can be very useful to
describe who is a good client (whom to offer some additional services) and
who is a bad client (whom to watch carefully to minimize the bank loses).
However, if bank managers need to improve their understanding of customers
and seek for specific actions to improve the services, mere classification rules
are not sufficient. In this paper, we propose to use classification rules to build
a new strategy of action based on their condition features in order to get a
desired effect on their decision feature. Going back to the bank example, the
strategy of action would consist of modifying some condition features in or-
der to improve our understanding of customers behavior and then improve
the services. E-action rules are useful in many other fields, including medical
diagnosis. In medical diagnosis, classification rules can explain the relation-
ships between symptoms and sickness and in predicting the diagnosis of a
new patient. E-action rules are useful in providing a hint to a doctor what
symptoms have to be modified in order to recover a certain group of patients
from a given illness.

Action Tree algorithm is presented for generating E-action rules and it
is implemented as System DEAR 2.2. The algorithm follows a top-down
strategy that searches for a solution in a part of the search space. It is seeking
at each stage for a stable attribute that has a least number of values. Then, the
set of rules is split recursively using that attribute. When all stable attributes
are processed, the final subsets are split further based on a decision attribute.
This strategy generates an action tree which is used to construct E-action
rules from the leaf nodes of the same parent.

2 Information System and E-Action Rules

An information system is used for representing knowledge. Its definition,
presented here, is due to Pawlak [12].

By an information system we mean a pair S = (U,A), where:

• U is a nonempty, finite set of objects,
• A is a nonempty, finite set of attributes i.e. a : U −→ Va is a function for

any a ∈ A, where Va is called the domain of a.

Elements of U are called objects. In this paper, for the purpose of clarity,
objects are interpreted as customers. Attributes are interpreted as features
such as, offers made by a bank, characteristic conditions etc.

We consider a special case of information systems called decision tables
[12]. In any decision table together with the set of attributes a partition
of that set into conditions and decisions is given. Additionally, we assume
that the set of conditions is partitioned into stable conditions and flexible



4 Zbigniew W. Raś et al.

conditions. For simplicity reason, we assume that there is only one decision
attribute. Date of birth is an example of a stable attribute. The interest rate
on any customer account is an example of a flexible attribute as the bank
can adjust rates. We adopt the following definition of a decision table:

By a decision table we mean any information system S = (U,ASt ∪AFl ∪
{d}), where d 6∈ ASt ∪ AFl is a distinguished attribute called the decision.
The elements of ASt are called stable conditions, whereas the elements of AFl

are called flexible conditions.

As an example of a decision table we take S = ({x1, x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12}, {a, c} ∪ {b} ∪ {d}) represented by Table 1. The set {a, c}
lists stable attributes, b is a flexible attribute and d is a decision attribute.
Also, we assume that H denotes a high profit and L denotes a low one.

Table 1. Decision System

a b c d

x1 2 1 2 L
x2 2 1 2 L
x3 1 1 0 H
x4 1 1 0 H
x5 2 3 2 H
x6 2 3 2 H
x7 2 1 1 L
x8 2 1 1 L
x9 2 2 1 L
x10 2 3 0 L
x11 1 1 2 H
x12 1 1 1 H

In order to induce rules in which the THEN part consists of the decision
attribute d and the IF part consists of attributes belonging to ASt ∪AFl, for
instance system LERS [4] can be used for rules extraction.

Alternatively, we can extract rules from sub-tables (U,B∪{d}) of S, where
B is a d-reduct (see [11]) of S, to improve efficiency of the algorithm when
the number of attributes is large. The set B is called d-reduct in S if there is
no proper subset C of B such that d depends on C. The concept of d-reduct
in S was introduced to induce efficiently rules from S describing values of the
attribute d depending on minimal subsets of ASt ∪AFl.

By L(r) we mean all attributes listed in the IF part of a rule r. For
example, if r1 = [(a1, 2) ∧ (a2, 1) ∧ (a3, 4) −→ (d, 8)] is a rule then L(r1) =
{a1, a2, a3}.



Tree-based Algorithms for Action Rules Discovery 5

By d(r1) we denote the decision value of that rule. In our example d(r1) =
8. If r1, r2 are rules and B ⊆ ASt∪AFl is a set of attributes, then r1/B = r2/B
means that the conditional parts of rules r1, r2 restricted to attributes B are
the same. For example if r2 = [(a2, 1) ∗ (a3, 4) −→ (d, 1)], then r1/{a2, a3} =
r2/{a2, a3}.

In our example, we get the following certain rules with support greater or
equal to 2:

(b, 3) ∗ (c, 2) −→ (d,H), (a, 1) ∗ (b, 1) −→ (d, L),
(a, 1) ∗ (c, 1) −→ (d, L), (b, 1) ∗ (c, 0) −→ (d,H),
(a, 1) −→ (d,H)

Now, let us assume that (a, v −→ w) denotes the fact that the value of
attribute a has been changed from v to w. Similarly, the term (a, v −→ w)(x)
means that a(x) = v has been changed to a(x) = w. Saying another words,
the property (a, v) of object x has been changed to property (a,w).

Let S = (U,ASt ∪ AFl ∪ {d}) be a decision table and rules r1, r2 are
extracted from S. The notion of an extended action rule (E-action rule) was
given in [21]. Its definition is given below. We assume here that:

• BSt is a maximal subset of ASt such that r1/BSt = r2/BSt,
• d(r1) = k1, d(r2) = k2 and k1 ≤ k2,
• (∀a ∈ [ASt ∩ L(r1) ∩ L(r2)])[a(r1) = a(r2)],
• (∀i ≤ q)(∀ei ∈ [ASt ∩ [L(r2)− L(r1)]])[ei(r2) = ui],
• (∀i ≤ r)(∀ci ∈ [AFl ∩ [L(r2)− L(r1)]])[ci(r2) = ti],
• (∀i ∈ p)(∀bi ∈ [AFl ∩ L(r1) ∩ L(r2)])[[bi(r1) = vi]&[bi(r2) = wi]].

Let ASt∩L(r1)∩L(r2) = B. By (r1, r2) -E-action rule on x ∈ U we mean
the expression r:

[
∏{a = a(r1) : a ∈ B}∧ (e1 = u1)∧ (e2 = u2)∧ ...∧ (eq = uq)∧ (b1, v1 −→

w1) ∧ (b2, v2 −→ w2) ∧ ... ∧ (bp, vp −→ wp) ∧ (c1,−→ t1) ∧ (c2,−→ t2) ∧ ... ∧
(cr,−→ tr)](x) =⇒ [(d, k1 −→ k2)](x)

Object x ∈ U supports (r1, r2)-E-action rule r in S = (U,ASt∪AFl∪{d}),
if the following conditions are satisfied:

• (∀i ≤ p)[bi ∈ L(r)][bi(x) = vi] ∧ d(x) = k1

• (∀i ≤ p)[bi ∈ L(r)][bi(y) = wi] ∧ d(y) = k2

• (∀j ≤ p)[aj ∈ (ASt ∩ L(r2))][aj(x) = uj ]
• (∀j ≤ p)[aj ∈ (ASt ∩ L(r2))][aj(y) = uj ]
• object x supports rule r1

• object y supports rule r2

By the support of E-action rule r in S, denoted by SupS(r), we mean the
set of all objects in S supporting r. Saying another words, this set is defined
as:



6 Zbigniew W. Raś et al.

{x : [a1(x) = u1] ∧ [a2(x) = u2] ∧ ... ∧ [aq(x) = uq] ∧ [b1(x) = v1]∧
[b2(x) = v2] ∧ ... ∧ [bp(x) = vp] ∧ [d(x) = k1]}.

By the confidence of r in S, denoted by ConfS(r), we mean

[SupS(r)/SupS(L(r))]× [Conf(r2)]

To find the confidence of (r1, r2)-E-action rule in S, we divide the num-
ber of objects supporting (r1, r2)-action rule in S by the number of objects
supporting left hand side of (r1, r2)-E-action rule times the confidence of the
classification rule r2 in S.

3 Discovering E-Action Rules

In this section we present a new algorithm, called Action-Tree algorithm,
for discovering E-action rules. Basically, we partition the set of classification
rules R discovered from a decision system S = (U,ASt ∪ AFl ∪ {d}), where
ASt is the set of stable attributes, AFl is the set of flexible attributes and,
Vd = {d1, d2, ..., dk} is the set of decision values, into subsets of rules having
the same values of stable attributes in their classification parts and defining
the same value of the decision attribute. Classification rules can be extracted
from S using, for instance, discovery system LERS [2].

Action-tree algorithm for extracting E-Action rules from decision system
S is as follows:

i. Build Action-Tree
a. Partition the set of classification rules R in a way that two rules are

in the same class if their stable attributes are the same
1. Find the cardinality of the domain Vvi for each stable attribute

vi in S.
2. Take vi, which card(Vvi) is the smallest, as the splitting attribute

and divide R into subsets each of which contains rules having the
same value of the stable attribute vi.

3. For each subset, obtained in step 2, determine if it contains rules
of different decision values and different values of flexible at-
tributes. If it does, go to step 2. If it doesn’t, there is no need to
split the subset further and we place a mark.

b. Partition each resulting subset into new subsets each of which contains
only rules having the same decision value.

c. Each leaf of the resulting tree represents a set of rules which do not
contradict on stable attributes and also it uniquely defines decision
value di. The path from the root to that leaf gives the description of
objects supported by these rules.

ii. Generate E-action rules
a. Form E-action rules by comparing all unmarked leaf nodes of the same

parent.



Tree-based Algorithms for Action Rules Discovery 7

b. Calculate support and confidence of each new-formed E-action rule.
If support and confidence meet the thresholds set up by user, print
the rule.

The algorithm starts at the root node of the tree, called E-action tree,
representing all classification rules extracted from S. A stable attribute is
selected to partition these rules. For each value of that attribute an outgoing
edge from the root node is created, and the corresponding subset of rules that
have the attribute value assigned to that edge is moved to the newly created
child node. This process is repeated recursively for each child node. When we
are done with stable attributes, the last split is based on a decision attribute
for each current leaf of E-action tree. If at any time all classification rules
representing a node have the same decision value, then we stop constructing
that part of the tree. We still have to explain which stable attributes are
chosen to split classification rules representing a node of E-action tree. The
algorithm selects any stable attribute which has the smallest number of pos-
sible values among all the remaining stable attributes. This step is justified
by the need to apply a heuristic strategy (see [14]) which will minimize the
number of edges in the resulting tree and the same make the time-complexity
of the algorithm lower.

We have two types of nodes: a leaf node and a non-leaf node. At a non-leaf
node, the set of rules is partitioned along the branches and each child node
gets its corresponding subset of rules. Every path to the decision attribute
node, one level above the leaf node, represents a subset of the extracted
classification rules when the stable attributers have the same value. Each leaf
node represents a set of rules, which do not contradict on stable attributes
and also define decision value di. The path from the root to that leaf gives
the description of objects supported by these rules.

Instead of splitting the set of rules R by stable attributes and next by
the decision attribute, we can also start the partitioning algorithm from a
decision attribute. For instance, if a decision attribute has 3 values, we get
3 initial sub-trees. In the next step of the algorithm, we start splitting these
sub-trees by stable attributes following the same strategy as the one presented
for E-action trees. This new algorithm is called action-forest algorithm.

Now, let us take Table 1 as an example of a decision system S. Attributes
a, c are stable and b, d flexible. Assume now that our plan is to re-classify some
objects from the class d−1({di}) into the class d−1({dj}). In our example, we
also assume that di = (d, L) and dj = (d, H).

First, we represent the set R of certain rules extracted from S as a table
(see Table 2). The first column of this table shows objects in S supporting
the rules from R (each row represents a rule). For instance, the second row
represents the rule [[(a, 2) ∧ (c, 1)] ⇒ (d, L)]. The construction of an action



8 Zbigniew W. Raś et al.

Table 2. Set of rules R with supporting objects

Objects a b c d

{x3, x4, x11, x12} 1 H
{x1, x2, x7, x8} 2 1 L
{x7, x8, x9} 2 0 L
{x3, x4} 1 0 H
{x5, x6} 3 2 H

Fig. 1. Action tree

tree starts with the set R as a table (see Table 2) representing the root of
the tree (T1 in Fig. 1). The root node selection is based on a stable attribute
with the smallest number of values among all stable attributes. The same
strategy is used for a child node selection. After labelling the nodes of the
tree by all stable attributes, the tree is split based on the value of the decision
attribute. Referring back to the example in Table 1, we use stable attribute a
to split that table into two sub-tables defined by values {1, 2} of attribute a.
The domain of attribute a is {1, 2} and the domain of attribute c is {0, 1, 2}.
Clearly, card[Va] is less than card[Vc] so we partition the table into two: one
table with rules containing a = 0 and another with rules containing a = 2.
Corresponding edges are labelled by values of attribute a. All rules in the sub-
table T2 have the same decision value. So, we can not construct E-action rule
from that sub-table which means it is not divided any further. Because rules
in the sub-table T3 contain different decision values and a stable attribute



Tree-based Algorithms for Action Rules Discovery 9

c, T3 is partitioned into three sub-tables, one with rules containing c=0, one
with rules containing c=1, and one with rules containing c=2. Now, rules in
each of the sub-tables do not contain any stable attributes. Sub-table T6 is
not split any further for the same reason as sub-table T2. All objects in sub-
table T4 have the same value of flexible attribute b. There is no way to form
a workable strategy from this sub-table so it is not partitioned any further.
Sub-table T5 is divided into two new sub-tables. Each leaf represents a set of
rules, which do not contradict on stable attributes and also define decision
value di.

The path from the root of the tree to that leaf gives the description of
objects supported by these rules. Following the path labelled by value [a = 2],
[c = 2], and [d = L], we get table T7. Following the path labelled by value
[a = 2], [c = 2], and [d = H], we get table T8. Because T7 and T8 are sibling
nodes, we can directly compare pairs of rules belonging to these two tables
and construct one E-action rule such as:

[[(a, 2) ∧ (b, 1 → 3)] ⇒ (d, L → H)].

After the rule is formed, we evaluate it by checking its support and its
confidence (sup = 4, conf = 100%).

This new algorithm (called DEAR 2.2) was implemented and tested on
several data sets from UCI Machine Learning Repository. In all cases, the
action tree algorithm was more efficient then the action forest algorithm. The
generated E-action rules by both algorithms are the same. The confidence of
E-action rules is higher than the confidence action rules.

4 Conclusion

E-action rules are structures that represent actionability in an objective way.
The strategy used to generate them is data driven and domain independent
because it does not depend on domain knowledge. Although the definition
of E-action rules is purely objective, we still can not get rid of some degree
of subjectivity in determining how actions can be implemented. To build
E-action rules, we divide all attributes into two subsets, stable and flexible.
Obviously, this partition has to be done by users who decide which attributes
are stable and which are flexible. This is a purely subjective decision. A
stable attribute has no influence on change, but any flexible attribute may
influence changes. Users have to be careful judging which attributes are stable
and which are flexible. If we apply E-action rule on objects then it shows
how values of their flexible features should be changed in order to achieve
their desired re-classification. Stable features always will remain the same.
Basically, any E-action rule identifies a class of objects that can be reclassified
from an undesired state to a desired state by properly changing some of
the values of their flexible features. How to implement these changes often
depends on the user. If the attribute is an interest rate on the banking account



10 Zbigniew W. Raś et al.

then banks can take appropriate action as the rule states (i.e., change lower
interest rate to 4.75%). In this case, it is a purely objective action. However, if
the attribute is a fever then doctors may lower the temperature by following a
number of different actions. So, this is a purely subjective concept. Basically,
we cannot eliminate some amount of subjectivity in the process of E-action
rules construction and implementation.

5 Acknowledgement

This research was partially supported by the National Science Foundation
under grant IIS-0414815.

References

1. Adomavicius G, Tuzhilin A (1997) Discovery of actionable patterns in databases:
the action hierarchy approach. In: Proceedings of KDD97 Conference. Newport
Beach, CA. AAAI Press

2. Chmielewski M R, Grzymala-Busse J W, Peterson N W, Than S (1993) The
rule induction system LERS - a version for personal computers. In: Foundations
of Computing and Decision Sciences. Vol. 18, No. 3-4, Institute of Computing
Science, Technical University of Poznan, Poland: 181–212

3. Geffner H, Wainer J (1998) Modeling action, knowledge and control. In: ECAI
98, Proceedings of the 13th European Conference on AI, (Ed. H. Prade). John
Wiley & Sons, 532–536

4. Grzymala-Busse J (1997) A new version of the rule induction system LERS. In:
Fundamenta Informaticae, Vol. 31, No. 1, 27–39

5. Guarino N (1998) Formal Ontology in Information Systems, IOS Press, Amster-
dam

6. Guarino N, Giaretta P (1995) Ontologies and knowledge bases, towards a ter-
minological clarification, in Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing, IOS Press, Amsterdam

7. He, Z., Xu, X., Deng, S., Ma, R. (2005) Mining action rules from scratch, Expert
Systems with Applications, Vol. 29, No. 3, 691-699

8. Im, S., Ras, Z.W. (2008) Action rule extraction from a decision table: ARED,
in Foundations of Intelligent Systems, Proceedings of ISMIS′08, A. An et al.
(Eds.), Toronto, Canada, LNAI, Springer, 2008, will appear

9. Kaur, H. (2005) Actionable rules: issues and new directions, in Transactions
on Engineering, Computing and Technology, World Informatica Society, April,
61–64

10. Liu B, Hsu W, Chen S (1997) Using general impressions to analyze discovered
classification rules. In: Proceedings of KDD97 Conference, Newport Beach, CA,
AAAI Press

11. Pawlak Z (1991) Rough sets-theoretical aspects of reasoning about data.
Kluwer, Dordrecht

12. Pawlak Z (1981) Information systems - theoretical foundations. In: Information
Systems Journal, Vol. 6, 205–218



Tree-based Algorithms for Action Rules Discovery 11

13. Polkowski L, Skowron A (1998) Rough sets in knowledge discovery. In: Studies
in Fuzziness and Soft Computing, Physica-Verlag, Springer

14. Raś Z (1999) Discovering rules in information trees. In: Principles of Data
Mining and Knowledge Discovery, (Eds. J. Zytkow, J. Rauch), Proceedings of
PKDD’99, Prague, Czech Republic, LNAI, No. 1704, Springer, 518–523

15. Raś Z, Wieczorkowska A (2000) Action rules: how to increase profit of a
company. In: Principles of Data Mining and Knowledge Discovery, (Eds. D.A.
Zighed, J. Komorowski, J. Zytkow), Proceedings of PKDD’00, Lyon, France,
LNCS/LNAI, No. 1910, Springer-Verlag, 587–592

16. Raś, Z.W., Wyrzykowska, E., Wasyluk, H. (2008) ARAS: Action rules discovery
based on Agglomerative Strategy, in Mining Complex Data, Post-Proceedings
of 2007 ECML/PKDD Third International Workshop (MCD 2007), LNAI, Vol.
4944, Springer, 196–208

17. Raś Z W, Tsay L.-S. (2003) Discovering extended action-rules (System DEAR).
In: Intelligent Information Systems 2003, Proceedings of the IIS’2003 Sympo-
sium, Zakopane, Poland, Advances in Soft Computing, Springer-Verlag, 293–300

18. Raś Z W, Tzacheva A, Tsay, L.-S. (2005) Action rules. In: Encyclopedia of
Data Warehousing and Mining, (Ed. J. Wang), Idea Group Inc., 1–5

19. Silberschatz A, Tuzhilin A (1995) On subjective measures of interestingness in
knowledge discovery. In: Proceedings of KDD9́5 Conference, AAAI Press

20. Silberschatz A, Tuzhilin A (1996) What makes patterns interesting in knowl-
edge discovery systems. In: IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 5, No. 6

21. Tsay L-S, Raś Z W (2005) Action rules discovery: System DEAR2, method
and experiments. In:the Special Issue on Knowledge Discovery, Journal of Ex-
perimental and Theoretical Artificial Intelligence, Taylor & Francis, Vol. 17, No.
1-2, 119–128

22. Tsay, L.-S., Raś, Z.W. (2008) Discovering the concise set of actionable patterns,
in Foundations of Intelligent Systems, Proceedings of ISMIS′08, A. An et al.
(Eds.), Toronto, Canada, LNAI, Springer, 2008, will appear

23. Tzacheva A, Raś Z W (2005) Action rules mining. In:the Special Issue on
Knowledge Discovery, International Journal of Intelligent Systems, Wiley, Vol.
20, No. 7, 719–736

24. Tzacheva A, Raś Z W (2007) Constraint based action rule discovery with single
classification rules, in Proceedings of the Joint Rough Sets Symposium (JRS07),
May 14-16, 2007, in Toronto, Canada, LNAI, Vol. 4482, Springer, 322–329


