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Abstract. Action rules can be seen as logical terms describing knowl-
edge about possible actions associated with objects which is hidden in a
decision system. Classical strategy for discovering them from a database
requires prior extraction of classification rules which next are evaluated
pair by pair with a goal to build a strategy of action based on condition
features in order to get a desired effect on a decision feature. An action-
able strategy is represented as a term r = [(ω) ∧ (α → β)] ⇒ [φ → ψ],
where ω, α, β, φ, and ψ are descriptions of objects or events. The term
r states that when the fixed condition ω is satisfied and the changeable
behavior (α → β) occurs in objects represented as tuples from a database
so does the expectation (φ → ψ). This paper proposes a new strategy,
called ARAS, for constructing action rules with the main module resem-
bling LERS [6]. ARAS system is more simple than DEAR and its time
complexity is also lower.

1 Introduction

Finding useful rules is an important task of a knowledge discovery process. Most
researchers focus on techniques for generating patterns from a data set such as
classification rules, association rules...etc. They assume that it is user′s respon-
sibility to analyze these patterns in order to infer solutions for specific problems
within a given domain. The classical knowledge discovery algorithms have the
potential to identify enormous number of significant patterns from data. There-
fore, people are overwhelmed by a large number of uninteresting patterns and
it is very difficult for a human being to analyze them in order to form timely
solutions. Therefore, a significant need exists for a new generation of techniques
and tools with the ability to assist users in analyzing a large number of rules for
a useful knowledge.

There are two aspects of interestingness of rules that have been studied in
data mining literature, objective and subjective measures [1], [12]. Objective



measures are data-driven and domain-independent. Generally, they evaluate the
rules based on their quality and similarity between them. Subjective measures,
including unexpectedness, novelty and actionability, are user-driven and domain-
dependent.

For example, classification rules found from a bank’s data are very useful to
describe who is a good client (whom to offer some additional services) and who
is a bad client (whom to watch carefully to minimize the bank loses). However,
if bank managers hope to improve their understanding of customers and seek
specific actions to improve services, mere classification rules will not be convinc-
ing for them. Therefore, we can use the classification rules to build a strategy of
action based on condition features in order to get a desired effect on a decision
feature [9]. Going back to the bank example, the strategy of action would consist
of modifying some condition features in order to improve their understanding of
customers and then improve services.

Action rules, introduced in [9] and investigated further in [14], [16], [11], are
constructed from certain pairs of classification rules. Interventions, defined in
[5], are conceptually very similar to action rules.

The process of constructing action rules from pairs of classification rules is
not only unnecessarily expensive but also gives too much freedom in constructing
their classification parts. In [11] it was shown that action rules do not have
to be built from pairs of classification rules and that single classification rules
are sufficient to achieve the same goal. However, the paper only proposed a
theoretical lattice-theory type framework without giving any detailed algorithm
for action rules construction. In this paper we propose a very simple LERS-type
algorithm for constructing action rules from a single classification rule. LERS
is a classical example of a bottom-up strategy which constructs rules with a
conditional part of the length k+1 after all rules with a conditional part of the
length k have been constructed. Relations representing rules produced by LERS
are marked. System ARAS assumes that LERS is used to extract classification
rules. This way ARAS instead of verifying the validity of certain relations only
has to check if these relations are marked by LERS. The same, by using LERS
as the pre-processing module for ARAS, the overall complexity of the algorithm
is decreased.

2 Action Rules

In paper [9], the notion of an action rule was introduced. The main idea was
to generate, from a database, special type of rules which basically form a hint
to users showing a way to re-classify objects with respect to values of some
distinguished attribute (called a decision attribute).

We start with a definition of an information system given in [8].

By an information system we mean a pair S = (U,A), where:



– U is a nonempty, finite set of objects (object identifiers),
– A is a nonempty, finite set of attributes (partial functions) i.e. a : U → Va

for a ∈ A, where Va is called the domain of a.

We often write (a, v) instead of v, assuming that v ∈ Va. Information systems
can be used to model decision tables. In any decision table together with the
set of attributes a partition of that set into conditions and decisions is given.
Additionally, we assume that the set of conditions is partitioned into stable and
flexible [9]. Attribute a ∈ A is called stable for the set U , if its values assigned
to objects from U can not change in time. Otherwise, it is called flexible. ”Date
of Birth” is an example of a stable attribute. ”Interest rate” on any customer
account is an example of a flexible attribute. For simplicity reason, we will con-
sider decision tables with only one decision. We adopt the following definition of
a decision table:

By a decision table we mean an information system S = (U,A1 ∪A2 ∪ {d}),
where d 6∈ A1 ∪ A2 is a distinguished attribute called decision. Additionally,
it is assumed that d is a total function. The elements of A1 are called stable
attributes, whereas the elements of A2 ∪ {d} are called flexible. Our goal is
to suggest changes in values of attributes in A2 for some objects from U so
the values of the attribute d for these objects may change as well. A formal
expression describing such a property is called an action rule [9], [14].

Stable F lexible Stable F lexible Stable F lexible Decision

A B C E G H D

a1 b1 c1 e1 d1

a1 b2 g2 h2 d2

Table 1. Two classification rules extracted from S

To construct an action rule [14], let us assume that two classification rules,
each one referring to a different decision class, are considered. We assume here
that these two rules have to be equal on their stable attributes, if they are both
defined on them. We use Table 1 to clarify the process of action rule construction.
Here, ”Stable” means stable attribute and ”Flexible” means flexible one. In a
standard representation, these two classification rules have a form:

r1 = [(a1 ∧ b1 ∧ c1 ∧ e1) → d1], r2 = [(a1 ∧ b2 ∧ g2 ∧ h2) → d2].

Assume now that object x supports rule r1 which means that it is classified
as d1. In order to reclassify x to a class d2, we need to change not only the value
of B from b1 to b2 but also to assume that G(x) = g2 and that the value H for
object x has to be changed to h2. This is the meaning of the (r1, r2)-action rule
defined by the expression below:



r = [[a1 ∧ g2 ∧ (B, b1 → b2) ∧ (H,→ h2)] → (D, d1 → d2)].

The term [a1 ∧ g2] is called the header of the action rule. Assume now that
by Sup(t) we mean the number of tuples having property t. By the support of
(r1, r2)-action rule (given above) we mean: Sup[a1∧g2∧b1∧d1]. By the confidence
Conf(r) of (r1, r2)-action rule r (given above) we mean (see [14], [15]):

[Sup[a1∧ g2∧ b1∧d1]/Sup[a1∧ g2∧ b1]] · [Sup[a1∧ b2∧ c1∧d2]/Sup[a1∧ b2∧ c1]].

Assume now that S = (U,A1∪A2∪{d}) is decision system, where A1 = {a, b}
are stable attributes, A2 = {c, e, f} are flexible attributes, and d is the decision.
For a generality reason, we take an incomplete decision system. It is represented
as Table 2. Our goal is to re-classify objects in S from (d, 2) to (d, 1). Additionally,
we assume that Dom(a) = {2, 3, 10}, Dom(b) = {2, 3, 4, 5}, and the null value
is represented as −1. We will follow optimistic approach in the process of action
rules discovery, which means that the Null value is interpreted as the disjunction
of all possible attribute values in the corresponding domain.

Stable Stable F lexible F lexible F lexible Decision

a b c e f d

2 −1 −1 7 8 1

2 5 4 6 8 1

−1 −1 4 9 4 2

10 4 5 8 7 2

2 2 5 −1 9 3

2 2 4 7 6 3

−1 2 4 7 −1 2

2 −1 −1 6 8 3

3 2 4 6 8 2

3 3 5 7 4 2

3 3 5 6 2 3

2 5 4 9 4 1

Table 2. Incomplete Decision System S

Now, we present the preprocessing step for action rules discovery. We start
with our incomplete decision system S as the root of the Reduction Tree (see
Fig. 1). The next step is to split S into sub-tables taking an attribute with
the minimal number of distinct values as the splitting one. In our example, we
chose attribute a. Because the 3rd and the 7th tuple in S contain null values in
column a, we move them both to all three newly created sub-tables. This process



is recursively continued for all stable attributes. Sub-tables corresponding to
outgoing edges from the root node which are labelled by a = 10, a = 3 are
removed because they do not contain decision value 1. Any remaining node in
the resulting tree can be used for discovering action rules. Clearly, if node n is
used to construct action rules, then its children are not used for that purpose.

 

--Splitting the node using the stable 
attribute  

--Attribute “a” has least distinct values ∴ 
“a” is chosen the splitting value 

 

a    b    c    e    f    d    
2 -1 -1 7 8 1 
2 5 4 6 8 1 

-1 -1 4 9 4 2 
10 4 5 8 7 2 
2 2 5 -1 9 3 
2 2 4 7 6 3 

-1 2 4 7 -1 2 
2 -1 -1 6 8 3 
3 2 4 6 8 2 
3 3 5 7 4 2 

3 3 5 6 2 3 
2 5 4 9 4 1 

a = 2 a = 10 
a = 3 

b    c    e    f    d    
-1 -1 7 8 1 
5 4 6 8 1 

-1 4 9 4 2 
2 5 -1 9 3 
2 4 7 6 3 
2 4 7 -1 2 

-1 -1 6 8 3 
5 4 9 4 1 
 

b    c    e    f    d    
-1 4 9 4 2 
4 5 8 7 2 
2 4 7 -1 2 
 

b    c    e    f    d    
-1 4 9 4 2 
2 4 7 -1 2 
2 4 6 8 2 

3 5 7 4 2 
3 5 6 2 3 

 

b = 2 

c    e    f    d    
-1 7 8 1 
4 9 4 2 
5 -1 9 3 
4 7 6 3 
4 7 -1 2 

-1 6 8 3 
 

Decision values are all 
the same ∴ Stop 
splitting further 

b = 5 

c    e    f    d    
-1 7 8 1 
4 6 8 1 
4 9 4 2 

-1 6 8 3 
4 9 4 1 

Decision values do not contain a 
desired class (“1”) ∴ Stop 
splitting further 

Fig. 1. Table Reduction Process



3 ARAS: algorithm for discovering action rules

This section covers only complete information systems. For an incomplete in-
formation system, we can use ERID [3] to discover classification rules. Their
syntax is the same as the syntax of rules discovered from a complete system.

Let us assume that S = (U,A1∪A2∪{d}) is a complete decision system, where
d 6∈ A1 ∪A2 is a distinguished attribute called the decision. The elements of A1

are stable conditions, whereas the elements of A2∪{d} are flexible. Assume that
d1 ∈ Vd and x ∈ U . We say that x is a d1-object if d(x) = d1. We also assume that
{a1, a2, ..., ap} ⊆ A1, {ap+1, ap+2, ...an}=A1-{a1, a2, ..., ap}, {b1, b2, ..., bq} ⊆ A2,
a[i,j] denotes a value of attribute ai, b[i,j] denotes a value of attribute bi, for any
i, j and that

r = [[a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1] ∧ b[1,1] ∧ b[2,1] ∧ ..... ∧ b[q,1]] −→ d1]

is a classification rule extracted from S supporting some d1-objects in S. Class
d1 is a preferable class and our goal is to reclassify d2-objects into d1 class, where
d2 ∈ Vd.

By an action rule schema r[d2−→d1] associated with r and the above reclassi-
fication task (d, d2 −→ d1) we mean the following expression:

r[d2−→d1] = [[a[1,1]∧a[2,1]∧...∧a[p,1]∧(b1,−→ b[1,1])∧(b2,−→ b[2,1])∧.....∧(bq,−→
b[q,1])] −→ (d, d2 −→ d1)]

In a similar way, by an action rule schema r[→d1] associated with r and the
reclassification task (d,−→ d1)we mean the following expression:

r[−→d1] = [[a[1,1]∧a[2,1]∧ ...∧a[p,1]∧(b1,−→ b[1,1])∧(b2,−→ b[2,1])∧ .....∧(bq,−→
b[q,1])] −→ (d,−→ d1)]

The term [a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]], built from values of stable attributes, is
called the header of r[d2−→d1] and its values can not be changed. It is denoted
by h[r[d2−→d1]].

The support set of the action rule schema r[d2→d1] is defined as Sup(r[d2→d1]) =
{x ∈ U : (a1(x) = a[1,1]) ∧ (a2(x) = a[2,1]) ∧ ... ∧ (ap(x) = a[p,1]) ∧ (d(x) = d2)}.

Now, we outline ARAS strategy for generating the set AR of action rules
from the action rule schema r[d2→d1].

Assume that:

– Vap+1 = {a[p+1,1], a[p+1,2], ..., a[p+1,J(1)]}
– Vap+2 = {a[p+2,1], a[p+2,2], ..., a[p+2,J(2)]}
– ...
– Vap+n = {a[p+n,1], a[p+n,2], ..., a[p+n,J(n)]}
– Vb1 = {b[1,1], b[1,2], ..., b[1,J(n+1)]}
– Vb2 = {b[2,1], b[2,2], ..., b[2,J(n+2)]}
– .................
– Vbq = {b[q,1], b[q,2], ..., b[q,J(n+q)]}



To simplify the presentation of the algorithm we assume that:

– ck = ap+k and c[k,i] = a[p+k,i], for 1 ≤ i ≤ J(k), 1 ≤ k ≤ n,
– cn+m = bm and c[n+m,i] = b[m,i], for 1 ≤ i ≤ J(n + m), 1 ≤ m ≤ q.

For simplicity reason, we use U[r,d2] to denote Sup(r[d2→d1]). We assume that
the term c[i1,j1] ∧ c[i2,j2] ∧ ... ∧ c[ir,jr] is denoted by [c[ik,jk]]k∈{1,2,...,r}, where all
i1, i2, ..., ir are distinct integers and jp ≤ J(ip), 1 ≤ p ≤ r. Following LERS
notation [6], we also assume that t? denotes the set of all objects in S having
property t.

Algorithm AR(r, d2)
i:=1

while i ≤ n + q do
begin
j:=2; m:=1
while j < J(i) do
begin
if [h[r[d2−→d1]] ∧ c(i,j)]? ⊆ U[r,d2] ∧ ci ∈ A2 then
begin
mark[c(i,j)];
output Action Rule

[[h[r[d2−→d1]] ∧ (ci, c(i,j) −→ c(i,1))] −→ [d, d2 −→ d1]]
end

if [h[r[d2−→d1]] ∧ c(i,j)]? ⊆ U[r,d2] ∧ ci ∈ A1 then
begin
mark[c(i,j)];
output Action Rule

[[h[r[d2−→d1]] ∧ (ci, c(i,j))] −→ [d, d2 −→ d1]]
end

j:=j+1
end

end
Ik := {ik};
(where ik - index randomly chosen from {2, 3, ..., q + n}).

for all jk ≤ J(ik) do [c(ik,jk)]ik∈Ik
:= c(ik, jk);

for all i, j such that both sets [c(ik,jk)]ik∈Ik
, c(i,j) are not marked and

i ∈ Ik

do
begin
if [[h[r[d2−→d1]] ∧ [c(ik,jk)]ik∈Ik

∧ c(i,j)]]? ⊆ U[r,d2] ∧ ci ∈ A2 then
begin
mark [[c(ik,jk)]ik∈Ik

∧ c(i,j)];
output Action Rule

[[h[r[d2−→d1]] ∧ [c(ik,jk)]ik∈Ik
∧ (ci, c(i,j) −→ c(i,1))] −→ [d, d2 −→ d1]]

end
if [[h[r[d2−→d1]] ∧ [c(ik,jk)]ik∈Ik

∧ c(i,j)]]? ⊆ U[r,d2] ∧ ci ∈ A1 then



begin
mark [[c(ik,jk)]ik∈Ik

∧ c(i,j)];
output Action Rule

[[h[r[d2−→d1]] ∧ [c(ik,jk)]ik∈Ik
∧ (ci, c(i,j))] −→ [d, d2 −→ d1]]

end
else
begin
Ik := Ik ∪ {i}; [c(ik,jk)]ik∈Ik

:= [c(ik,jk)]ik∈Ik
∧ c(i,j)

end

The complexity of ARAS is lower than the complexity of DEAR system
discovering action rules. The justification here is quite simple. DEAR system [14]
groups classification rules into clusters of non-conflicting rules and then takes all
possible pairs of classification rules within each cluster and tries to build action
rules from them. ARAS algorithm is treating each classification rule describing
the target decision value as a seed and grabs other classification rules describing
non-target decision values to form a cluster and then it builds decision rules
automatically from them. Rules grabbed into a seed are only compared with that
seed. So, the number of pairs of rules which have to be checked, in comparison
to DEAR is greatly reduced. Another advantage of the current strategy is that
the module generating action rules in ARAS only checks if a mark is assigned
by LERS to the relation [h[r[d2−→d1]] ∧ c(i,j)]? ⊆ U[r,d2] instead of checking its
validity.

The confidence of generated action rules depends on the number of remaining
objects supporting them. Also, if Conf(r) 6= 1, then some objects in S satisfying
the description [a1,1 ∧ a2,1 ∧ ...∧ ap,1 ∧ b1,1 ∧ b2,1 ∧ .....∧ bq,1] are classified as d2.
According to the rule r[d2→d1] they should be classified as d1 which means that
the confidence of r[d2→d1] will get also decreased.

If Sup(r[d2→d1]) = ∅, then r[d2→d1] can not be used for reclassification of
objects. Similarly, r[→d1] can not be used for reclassification, if Sup(r[d2→d1]) = ∅,
for each d2 where d2 6= d1. From the point of view of actionability, such rules
are not interesting.

Let Sup(r[→d1]) =
⋃{Sup(r[d2→d1]) : (d2 ∈ Vd)∧(d2 6= d1)} and Sup(R[→d1]) =⋃{Sup(r[→d1]) : r ∈ R(d1)}, where R(d1) is the set of all classification rules ex-

tracted from S which are defining d1. So, Sup(RS) =
⋃{Sup(R[→d1]) : d1 ∈ Vd}

contains all objects in S which potentially can be reclassified.

Assume now that U(d1) = {x ∈ U : d(x) 6= d1}. Objects in the set B(d1) =
[U(d1)− Sup(R[→d1])] can not be reclassified to the class d1 and they are called
d1-resistant [11].

Let B(¬d1) =
⋂{B(di) : (di ∈ Vd) ∧ (di 6= d1)}. Clearly B(¬d1) represents

the set of d1-objects which can not be reclassified. They are called d1-stable.
Similarly, the set Bd =

⋃{B(¬di) : di ∈ Vd} represents objects in U which can
not be reclassified to any decision class. All these objects are called d-stable. In



order to show how to find them, the notion of a confidence of an action rule is
needed.

Let r[d2→d1], r′[d2→d3]
are two action rules extracted from S. We say that

these rules are p-equivalent ('), if the condition given below holds for every
bi ∈ A1 ∪A2:

if r/bi, r′/bi are both defined, then r/bi = r′/bi.

Now, we explain how to calculate the confidence of r[d2→d1]. Let us take d2-
object x ∈ Sup(r[d2→d1]). We say that x positively supports r[d2→d1] if there
is no classification rule r′ extracted from S and describing d3 ∈ Vd, d3 6= d1,
which is p-equivalent to r, such that x ∈ Sup(r′[d2→d3]

). The corresponding
subset of Sup(r[d2→d1]) is denoted by Sup+(r[d2→d1]). Otherwise, we say that
x negatively supports r[d2→d1]. The corresponding subset of Sup(r[d2→d1]) is
denoted by Sup−(r[d2→d1]).

By the confidence of r[d2→d1] in S we mean [11]:

Conf(r[d2→d1]) = [card[Sup+(r[d2→d1])]/card[Sup(r[d2→d1])]] · conf(r).

Now, if we assume that Sup+(r[→d1]) =
⋃{Sup+(r[d2→d1]) : (d2 ∈ Vd)∧(d2 6=

d1)}, then by the confidence of r[→d1] in S we mean:

Conf(r[→d1]) = [card[Sup+(r[→d1])]/card[Sup(r[→d1])]] · conf(r).
It can be easily shown that the definition of support and confidence of action

rules given in Section 3 is equivalent to the definition of support and confidence
given in Section 2.

4 An example

Let us assume that the decision system S = (U, {A1 ∪ A2 ∪ {d}}), where U =
{x1, x2, x3, x4, x5, x6, x7, x8}, is represented by Table 3 [11]. The set A1 = {a, b, c}
contains stable attributes and A2 = {e, f, g} contains flexible attributes. System
LERS [6] is used to extract classification rules.

Table 3. Decision System

U a b c e f g d

x1 a1 b1 c1 e1 f2 g1 d1

x2 a2 b1 c2 e2 f2 g2 d3

x3 a3 b1 c1 e2 f2 g3 d2

x4 a1 b1 c2 e2 f2 g1 d2

x5 a1 b2 c1 e3 f2 g1 d2

x6 a2 b1 c1 e2 f3 g1 d2

x7 a2 b3 c2 e2 f2 g2 d2

x8 a2 b1 c1 e3 f2 g3 d2



We are interested in reclassifying d2-objects either to class d1 or d3. Four
certain classification rules describing d1, d3 can be discovered by LERS in the
decision system S. They are given below:

r1 = [b1 ∧ c1 ∧ f2 ∧ g1] → d1, r2 = [a2 ∧ b1 ∧ e2 ∧ f2] → d3,
r3 = e1 → d1, r4 = [b1 ∧ g2] −→ d3.

It can be shown that R[d,→d1] = {r1, r3} and R[d,→d3] = {r2, r4}. Action
rule schemas associated with r1, r2, r3, r4 and the reclassification task either
(d, d2 → d1) or (d, d2 → d3) are:

r1[d2→d1] = [b1 ∧ c1 ∧ (f,→ f2) ∧ (g,→ g1)] → (d, d2 → d1),
r2[d2→d3] = [a2 ∧ b1 ∧ (e,→ e2) ∧ (f,→ f2)] → (d, d2 → d3),
r3[d2→d1] = [(e,→ e1)] → (d, d2 → d1),
r4[d2→d3] = [b1 ∧ (g,→ g2)] → (d, d2 → d3).

We can also show that U[r1,d2] = Sup(r1[d2→d1]) = {x3, x6, x8}, U[r2,d2] =
Sup(r2[d2→d3]) = {x6, x8}, U[r3,d2] = Sup(r3[d2→d1]) = {x3, x4, x5, x6, x7, x8},
U[r4,d2] = Sup(r4[d2→d3]) = {x3, x4, x6, x8}.

Following AR(r1, d2) algorithm we get: [b1 ∧ c1 ∧ a1]? = {x1} 6⊆ U[r1,d2],
[b1∧c1∧a2]? = {x6, x8} ⊆ U[r1,d2], [b1∧c1∧f3]? = {x6} ⊆ U[r1,d2], [b1∧c1∧g2]? =
{x2, x7} 6⊆ U[r1,d2], [b1 ∧ c1 ∧ g3]? = {x3, x8} ⊆ U[r1,d2].

It will generate two action rules:

[b1 ∧ c1 ∧ (f, f3 → f2) ∧ (g,→ g1)] → (d, d2 → d1),
[b1 ∧ c1 ∧ (f,→ f2) ∧ (g, g3 → g1)] → (d, d2 → d1).

In a similar way we construct action rules from the remaining three action
rule schemas.

The action rules discovery process, presented above, is called ARAS and
it consists of two main modules. For its further clarification, we use another
example which has no connection with Table 3. The first module extracts all
classification rules from S following LERS strategy. Assuming that d is the de-
cision attribute and user is interested in re-classifying objects from its value d1

to d2, we treat the rules defining d1 as seeds and build clusters around them.

For instance, if A1 = {a, b, g} are stable attributes, A2 = {c, e, h} are flexible
in S = (U,A1 ∪ A2 ∪ {d}), and r = [[a1 ∧ b1 ∧ c1 ∧ e1] → d1] is a classification
rule in S, where Va = {a1, a2, a3}, Vb = {b1, b2, b3}, Vc = {c1, c2, c3}, Ve =
{e1, e2, e3}, Vg = {g1, g2, g3}, Vh = {h1, h2, h3}, then we remove from S all
tuples containing values a2, a3, b2, b3, c1, e1 and we use again LERS to extract
rules from this subsystem. Each rule defining d2 is used jointly with r to construct
an action rule. The validation step of each of the set-inclusion relations, in the
second module of ARAS, is replaced by checking if the corresponding term was
marked by LERS in the first module of ARAS.



5 Mining Database HEPAR

As the application domain for our research we have chosen the HEPAR system
built in collaboration between the Institute of Biocybernetics and Biomedical
Engineering of the Polish Academy of Sciences and physicians at the Medical
Center of Postgraduate Education in Warsaw, Poland [2], [7]. HEPAR was de-
signed for gathering and processing clinical data on patients with liver disorders.
Its integral part is a database created in 1990 and thoroughly maintained since
then at the Clinical Department of Gastroenterology and Metabolizm in Warsaw,
Poland. It contains information about 758 patients described by 106 attributes
(including 31 laboratory tests with values discretized to: below normal, normal,
above normal). It has 14 stable attributes. Two laboratory tests are invasive:
HBsAg [in tissue] and HBcAg [in tissue]. The decision attribute has 7 values: I
(acute hepatitis), IIa (subacute hepatitis [types B and C]), IIb (subacute hep-
atitis [alcohol-abuse]), IIIa (chronic hepatitis [curable]), IIIb (chronic hepatitis
[non-curable]), IV (cirrhosis-hepatitis), V (liver-cancer).

The diagnosis of liver disease depends on a combination of patient’s history,
physical examinations, laboratory tests, radiological tests, and frequently a liver
biopsy. Blood tests play an important role in the diagnosis of liver diseases.
However, their results should be analyzed along with the patient’s history and
physical examination. The most common radiological examinations used in the
assessment of liver diseases are ultrasound and sonography. Ultrasound is a good
test for the detection of liver masses, assessment of bile ducts, and detection of
gallstones presence. However, it does not detect the degree of inflammation or
fibrosis of the liver. Ultrasound is a noninvasive procedure and there are no
risks associated with it. Liver biopsy enables the doctor to examine how much
inflammation and how much scarring has occurred. Liver biopsy is an example
of invasive procedure that carries certain risks to the patient. Therefore, despite
of the importance of its results to the diagnosis, clinicians try to avoid biopsy as
often as possible. However, liver biopsy is often the only way to establish correct
diagnosis in patients with chronic liver disorders.

A medical treatment is naturally associated with re-classification of patients
from one decision class into another one. In our research we are mainly interested
in the re-classification of patients from the class IIb into class I and from the
class IIIa into class I but without referring to any invasive tests results in action
rules.

Database HEPAR has many missing values so we decided to remove all its
attributes with more than 90% of null values assuming that these attributes are
not related to invasive tests. Also, subjective attributes (like history of alcohol
abuse) and cammong performed basic medical tests have been removed. Finally,
we used classical null value imputation techniques to make the resulting database
complete.

The next step of our strategy is to apply RSES software [13] to find d-reducts.
The set R = {m, n, q, u, y, aa, ah, ai, am, an, aw, bb, bg, bm, by, cj, cm} is



one of them and it does not contain invasive tests. The description of its values
is given below:

– m - Bleeding
– n - Subjaundice symptoms
– q - Eructation
– u - Obstruction
– y - Weight loss
– aa - Smoking
– ah - History of viral hepatitis (stable)
– ai - Surgeries in the past (stable)
– am - History of hospitalization (stable)
– an - Jaundice in pregnancy
– aw - Erythematous dermatitis
– bb - Cysts
– bg - Sharp liver edge (stable)
– bm - Blood cell plaque
– by - Alkaline phosphatase
– cj - Prothrombin index
– cm - Total cholesterol
– dd Decision attribute

Two action rules discovered by ARAS from the database reduced to d-reduct
R are given below.

[(ah = 1) ∧ (ai = 2) ∧ (am = 2) ∧ (bg = 1)] ∧ [(cm = 1) ∧ (aw = 1)∧
(u,→ 1) ∧ (bb = 1) ∧ (aa = 1) ∧ (q,→ 1) ∧ (m,→ 1) ∧ (n = 1) ∧ (bm,→ down)∧
(y = 1) ∧ (by, norm → up)] =⇒ (dd, IIIa → I)

[(ah = 1) ∧ (ai = 2) ∧ (am = 2) ∧ (bg = 1)] ∧ [(cm = 1) ∧ (aw = 1)∧
(u,→ 1) ∧ (bb = 1) ∧ (aa = 1) ∧ (q,→ 1) ∧ (m,→ 1) ∧ (n = 1) ∧ (bm,→ down)∧
(y = 1) ∧ (by, norm → down)] =⇒ (dd, IIIa → I)

Both action rules are applicable to patients with no history of viral hepatitis
but with a history of surgery and hospitalization. Sharp liver edge has to be
normal, no subjaundice symptoms, total cholesterol, erythematous dermatitis,
and weight have to be normal, no cysts, and patient can not smoke.

For this class of patients, the action rule says that:
By getting rid of obstruction, eructation, bleeding, by decreasing the blood cell
plaque and by changing the level of alkaline phosphatase we should be able to
reclassify the patient from class IIIa to class I. Medical doctor should decide if
the alkaline phosphatase level needs to be decreased or increased. Attribute values
of total cholesterol, weight, and smoking have to remain unchanged.



6 Conclusion

System ARAS differs from the tree-based strategies for action rules discovery
(for instance from DEAR [14]) because clusters generated by its second module
are formed around target classification rules. An action rule can be constructed
in ARAS from two classification rules only if both of them belong to the same
cluster and one of them is a target classification rule. So, the complexity of the
second module of ARAS is 0(k · n), where n is the number of classification rules
extracted by LERS and k is the number of clusters. The time complexity of the
second module of DEAR is equal to 0(n · n), where n is the same as in ARAS.
The first module of ARAS is the same as the first module of DEAR, so their
complexities are the same.
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