
Discovering the concise set of actionable patterns

Li-Shiang Tsay1) & Zbigniew W. Raś2 ,3)

1)North Carolina A&T State Univ., School of Tech., Greensboro, NC 27411

2)Univ. of North Carolina, Dept. of Comp. Science, Charlotte, NC 28223
3)Polish-Japanese Inst. of Inf. Tech., 02-008 Warsaw, Poland

e-mai l: ltsay@ncat.edu & ras@uncc.edu

Abstract. It is highly expected that knowledge discovery and data mining
(KDD) methods can extract useful and understandable knowledge from large
amount of data. Action rule mining presents an approach to automatically
construct relevantly useful and understandable strategies by comparing the
profiles of two sets of targeted objects – those that are desirable and those that
are undesirable. The discovered knowledge provides an insight of how
relationships should be managed so that objects of low performance can be
improved. Traditionally, it was constructed from one or two classification rules.
The quality and quantity of such Action Rules depend on adopted classification
methods. In this paper, we present StrategyGenerator, a new algorithm for
constructing a complete set of Action Rules which satisfies specified constraints.
This algorithm does not require prior extraction of classification rules. Action
rules are generated directly from a database.

Keywords. Action Rules, Interestingness Measure, Reclassification Models

1. Introduction

Knowledge Discovery and Data mining (KDD) is the process which identifies and
exploits useful and understandable knowledge buried in large volumes of data. The
products of KDD have been proven very effective in many fields, such as business,
science, government, etc. While most of the KDD algorithms generate predictions and
describe behaviors, a focus on understanding changes in object behaviors normally
improves the quality of the decision making process. Action Rule mining constructs
relatively interesting and useful strategies by comparing the profiles of two groups of
targeted objects – those that are desirable and those that are undesirable. It is formed
as a term [(ω)∧(α→β)]⇒(φ→ψ), where ω is a conjunction of fixed condition features
shared by both groups, (α→β) represents proposed changes in values of flexible
features, and (φ→ψ) is a desired effect of the action. The discovered knowledge
provides an insight of how relationships should be managed so the undesirable objects
can be changed to desirable objects. For example, in society, one would like to find a
way to improve his or her salary from a low-income to a high-income. Another
example in business area is when an owner would like to improve his or her

company’s profits by going from a high-cost, low-income business to a low-cost,
high-income business.

The goal of this research is twofold: (1) making the discovered patterns actionable
by providing specific action plans; (2) facilitate the decision-making process in an
efficient and easy way by giving users the information they need. Making a decision
implies that there are several choices to be considered in a short time frame. It is
important not only to identify as many of these choices as possible but also to avoid a
redundancy among them.

Action Rules algorithms exam the data in an objective way and represent the
discovered information in a short and clear statement. The discovered rules can be
served as choices to help a decision maker to produce better decisions. The rules
presented to a decision maker should only consist of simple, understandable, and
complete strategies that allow a reasonably easy identification of preferable rules. The
support and confidence are used to determine which candidate pattern passes the
criteria and becomes a desired action rule.

Conventional actionable patterns [6-15], and [3] are built on the basis of previously
discovered classification rules, so the quality and quantity of the action rules strictly
depend on the adopted classification methods. Because these methods may fail to
discover some useful action strategies, there is a strong need to develop an algorithm
which can derive a set of actionable patterns directly from a given data set. Paper [4]
is probably the first attempt towards formally introducing the problem of mining
action rules from the scratch. Authors explicitly formulated it as a search problem in a
support-confidence-cost framework and next they presented an Apriori-like [1]
algorithm for mining action rules. Their definition of an action rule is an object-
oriented one and it allows changes on stable attributes. Changing the value of an
attribute, either stable or flexible, is linked with a cost [15]. In order to rule out action
rules with undesired changes on stable attributes, authors have assigned very high cost
to such changes. However, that way, the cost of action rules discovery is getting
unnecessarily increased. Also, they did not take into account the dependencies
between attribute values which are naturally linked with the cost of rules used either
accept or reject a rule. In this paper, we investigate properties of action rules and
present a new efficient algorithm, StrategyGenerator, generating a simple and
complete set of action rules without using classification rules. This type of action
rules is called Object-Based Action Rules (OBAC). Three thresholds, Right Support,
Left Support, and Confidence of OBAC, are defined and used to identify which action
rules are interesting.

2. Mining Action Rules

An information system is used for representing knowledge. Its definition, presented
here, was proposed in [5]. By an information system we mean a pair S = (U, A),
where:
• U is a nonempty, finite set of objects,
• A is a nonempty, finite set of attributes, i.e. a : U→Va is a function for any a ∈ A,

where Va is called the domain of a.
Elements of U are called objects. In this section, for the purpose of clarity, objects

are interpreted as customers. Attributes are interpreted as features such as, offers
made by a bank, characteristic conditions etc. We only consider a special type of
information systems called decision tables.

A decision table consists of a set of objects where each object is described by a set
of attributes. Attributes are partitioned into conditions and decisions. Additionally,
we assume that the set of conditions is partitioned into stable conditions and flexible
conditions. In our example, we take “profit ranking” as the decision attribute. Its
domain is defined as a set of integers. The decision attribute classifies objects
(customers) with respect to the profit gained by a bank. Date of birth is an example of
a stable attribute. The interest rate on any customer account is an example of a
flexible attribute because the bank can adjust rates. We adopt the following definition
of a decision table:

By a decision table we mean any information system S = (U, ASt ∪ AFl ∪ {d}),

where d ∉(ASt ∪ AFl) is a distinguished attribute called a decision. The set of

attributes A in S is partitioned into stable conditions ASt and flexible conditions AFl.
The number of elements in d(U) = { k: (∃x∈U)[d(x)=k]} is called the rank of d

and it is denoted by r(d). Let us observe that the decision d determines the partition
PartS(d) = {X1, X2,…, Xr(d)} of the universe U, where Xk = d-1({k}) for 1≤ k ≤ r(d).
PartS(d) is called the classification of objects in S with respect to the decision d.

As we have mentioned before, objects in U are interpreted as bank customers.
Additionally, we assume that customers in d-1({ k2}) are more profitable than
customers in d-1({k1}), for any k1 < k2. The set d-1({ r(d)}) contains the most profitable
customers. Clearly one of the main goals of any bank is to increase its profit. One
way to do that is to shift some customers from a group d-1({ k1}) to d-1({ k2}), for any k1
< k2. Action rules can be used for that purpose since they provide hints about what
type of special offers can me made by a bank to guarantee that values of targeted
flexible attributes will be changed in a way that a desired group of customers should
move from a group of a lower profit ranking to a group of a higher profit.

The basic principle of reclassification is a process of learning a function that maps
one class of objects into another class by changing values of some conditional
attributes describing them. The conditional attributes are divided into stable and

flexible. The goal of the learning process is to create a reclassification model, for
objects in a decision system, which suggests possible changes that can be made within
values of some flexible attributes to reclassify these objects the way user wants. In
other words, reclassification is the process of showing what changes in values of some
of the flexible attributes for a given class of objects are needed in order to shift them
from one decision class into another more desired one.

A decision system S classifies a set of objects so that for each object there exists a
class label assigned to it.

By action rule in S we mean an expression r =[[(a 1 = ω1) ∧ (a2 = ω2) ∧ …∧
(aq = ωq)]∧ (b1, α1→ β1)∧ (b2, α2 → β2)∧…∧ (bp, αp → βp)] ⇒[(d, k1 → k2)], where
{b1, b2, …, bp } are flexible attributes and {a1, a2,…, aq} are stable in S. Additionally,
we assume that ωi ∈ Dom(ai), i=1,2,…,q and αi, βi ∈ Dom(bi), i=1,2,…,p. The
term (ai = ωi) states that the value of the attribute ai is equal to ωi, and (bj, αj →

βj) means that value of the attribute bj has been changed from αj to β j.
We say that object x ∈ U supports an action rule r in S, if there is an object

y ∈ U such that: (∀i ≤ p)[[bi (x) = αi] ∧ [bi (y) = βi]], (∀i ≤ q) [ai (x) = ai (y) = ωi],
d(x) = k1 and d(y) = k2.

An action rule is meaningful only if it contains at least one flexible attribute. If we
apply the left hand side of an action rule to object x, then the rule basically says: the
values ωi of stable attributes ai (i=1,2,…,q) have to remain unchanged in x and then if

we change the value of attribute bi in x from αi to βi, for i=1,2,…,p , then the object x
which is in the class k1 is expected to move to class k2.

From the point of reclassification, we are not targeting all possible cases on the
decisional part of reclassification. Since some states are more preferable than other
states, we should basically ask users to specify in what direction they prefer to see the
changes. On the conditional part of action rules, we have no information to verify if
the rule is applicable. If the domain expert can supply prior knowledge of a given
domain then some of the rules cannot be applied. For example, the size of a tumor’s
growth can not increase when the status of a patient is changing from sick to becoming
cured. Therefore, some combinations can be ruled out automatically just by having an
expert who is involved in the application domain.

 Since action plans are constructed by comparing the profiles of two sets of
targeted customers, we can assume that there are two patterns associated with each
object-based action rule, a left hand side pattern PL and a right hand side pattern PR.
There are three objective measures of rule interestingness including Left Support,
Right Support, and confidence.

The Left Support defines the domain of an action rule which identifies objects in U
on which the rule can be applied. The larger its value is, the more interesting the rule
will be for a user. The left hand side pattern of action rule

 r = [[(a 1 = ω1) ∧ (a2 = ω2) ∧ …∧ (aq = ωq)] ∧ (b1,α1→ β1) ∧

 (b2, α2 → β2) ∧… ∧ (bp, αp → βp)] ⇒ [(d, k1 → k2)]
is defined as the set PL =VL∪{ k1}, where VL = { ω1, ω2,…, ωq, α1, α2,…, αp}. The
domain DomS(VL) of the left pattern PL is a set of objects in S that exactly match VL.
Card[DomS(VL)] is the number of objects in that domain. Card[DomS(PL)] is the
number of objects in S that exactly match PL and Card[U] is the total number of
objects in the decision system S. By the left support supL of an action rule r, we
mean supL(r) = Card[DomS(PL)] /Card[U].

The Right Support shows how well is the rule supported by objects in S from the
preferable decision class. The higher its value is, the stronger case of the
reclassification effect will be. The pattern PR of an action rule r is defined as PR=
VR∪{ k2}, where VR = {ω1, ω2,…, ωq, β1, β2,…, βp}.

By domain DomS(VR) we mean a set of objects matching VR. Card[DomS(PR)] is
the number of objects that exactly match PR. By the right support supR of action rule
r, we mean supR(r) = Card[DomS(PR)] /Card[U].

The confidence of rule r shows the success measure in transforming objects from a
lower preference decision class to a higher one. The support of action rule r in S,
denoted by SupS(r), is the same as the left support supL(r) of action rule r. This is the
percentage of objects that need to be reclassified into more preferable class. By the
confidence of the action rule r in S, denoted by ConfS(r), we mean
ConfS(r)=(Card[DomS(PL)]/Card[DomS(VL)])∗(Card[DomS(PR)]Card[DomS(VR)]).

3. Algorithm and Example: StrategyGenerator

The Brute Force method used in [10] to construct all action rules, directly from the
decision table, is expensive and inefficient because it considers all possible pair
combinations of flexible attributes. Hence, we propose the StrategyGenerator
algorithm to find the set of most concise action rules. It considers each change of
value within a single flexible attribute and each value of a stable attribute as an atomic
expression from which more complex expressions are built. The algorithm operates
similarly to LERS [2] and the same it guarantees that all discovered action rules are
the shortest. This is an agglomerative type of a strategy used for instance in [9] to
construct action rules. However, the new method does not require prior extraction of
classification rules.

 There are two basic steps in the proposed approach. (1) Partition the decision
table and select target sub-tables: The original decision table S is first partitioned into
a number of sub-tables S1, S2, …, Sp according to the decision attribute in the decision
table. Two relevant sub-tables are selected based on the reclassification goal for
forming workable strategies. (2) Form actionable plans: The workable strategies are
formed by comparing the domains of these two chosen sub-tables. In this case, we can

avoid generating unqualified candidate terms similarly to LERS algorithm [2]. First,
single-element candidate terms are computed and checked for its relations with the
reclassification goal. If the relation holds, a positive mark is placed on it and the rule
is generated. By doing this, we guarantee that the discovered action rules are the most
concise ones. The anti-monotonic property is applied to filter candidate terms. When
one of the support values is below the threshold, a negative mark is placed on the
candidate term. The algorithm recursively takes unmarked candidate terms and
extends them by one new unmarked atomic term till no new candidates are found.

Now, we present a decision table used to illustrate the StrategyGenerator for
construction of action rules step by step.

Assume that S = ({x1, x2, x3, x4, x5, x6, x7, x8}, { a }∪{ b, c, e}∪{ d}) is a decision
table represented by Table 1. Attributes in {b, c, e} are flexible, attribute a is stable,
and d is the decision attribute. We assume that H denotes customers of a high profit
ranking and L denotes customers of a low profit ranking. The direction of
reclassification is from L to H. The minimum support for both supR and supL is
12.5%, and the minimum confidence for rules is 75%.

Partition the decision table. In this example, the domain of the decision attribute

is L, N, and H and the reclassification direction is from L to H. That means the
customers with decision value N are not the focus point in this case. Therefore, the
decision table S can be divided into S1 and S2 according to the decision value L and H
as represented in Figure 1. Actionable strategies will be constructed based on sub-
tables S1 and S2 only

Forming actionable strategies. The main idea of the reclassification goal is to
move objects from an undesirable group into a more desirable one. Objects in S
having property L are denoted by LS* and objects in S having property R are denoted

Objects a b c e d

X1 0 2 1 1 H

X2 0 2 2 1 H

X3 2 1 2 2 L

X4 0 3 1 0 N

X5 2 3 2 0 N

X6 2 3 1 0 H

X7 2 1 2 1 L

X8 2 1 1 1 L

Table 1: Decision table
S.

Objects a b c e d

X1 0 2 1 1 H

X2 0 2 2 1 H

X3 2 1 2 2 L

X4 0 3 1 0 N

X5 2 3 2 0 N

X6 2 3 1 0 H

X7 2 1 2 1 L

X8 2 1 1 1 L

d = L d = H d = N

Objects a b c e

X3 2 1 2 2

X7 2 1 2 1

X8 2 1 1 1

Objects a b c e

X1 0 2 1 1

X2 0 2 2 1

X6 2 3 1 0

S

S1 S2
Figure 1: Partition objects

by RS*. These two sets are also called granules. StrategyGenerator algorithm starts
with atomic terms for S generated in its first loop. These terms are classified into two
groups: premise-type and decision-type. Premise-type atomic terms are split into
stable and flexible. As we mentioned before, an action rule without at least one
flexible premise-type atomic term is meaningless. Stable atomic terms can not be
solely used to construct action rules but they are important in boosting their
confidence [10], [12]. In this example, one valid candidate term which is a stable
atom (a, 2) is generated. In order to create atomic terms for a flexible attribute we
check its domain in both sub-tables. Referring back to Example 1, the values of
attribute b are “1” in sub-table S1 and “2” and “3” in sub-table S2. It means that the
action recommendations for attribute b say that its value should be changed from 1 to
2 or from 1 to 3. The corresponding atomic terms are presented as (b, 1�2) and
(b, 1�3). Following the same procedure for attributes c and e, their corresponding
atomic terms can be formed and they are listed below.

One-element term loop:

// Granules corresponding to values of a decision a ttribute
Decision-type atomic term: (d, L�H),
Granules: L* = {x 3, x 7, x 8}, R*={x 1, x 2, x 6}
// Granules corresponding to values of condition at tributes
Premise-type stable atomic expressions:
(a,0), L*= ∅ Marked “-“
(a,2), L* = {x 3,x 7,x 8}, R* = {x 6}

Premise-type flexible atomic expressions:
(b, 1 →2) , L* = {x 3,x 7,x 8}, supL(r) = 3/8; R*= {x 1,x 2}, supR(r) =

2/8; Conf(r) = (3/3) ×(2/2) = 100% Marked “+”
(b, 1 →3), L* = {x 3,x 7,x 8}, supL(r) = 3/8; R* = {x 6}, supR(r) =

1/8; Conf(r) = (3/3) ×(1/3) = 33%
(c, 2 →1) , L* = {x 3,x 7}, supL(r) = 2/8; R* = {x 1,x 6}, supR(r) =

2/8; Conf(r) = (2/4) ×(2/4) = 25%
(c, 1 →2) , L* = {x 8}, supL(r) = 1/8; R* = {x 2}, supR(r) = 1/8;

Conf(r) = (1/4) ×(1/4) = 6.25%
(e, 2 →1), L* = {x 3}, supL(r) = 1/8; R* = {x 1,x 2}, supR(r) = 2/8;

Conf(r) = (1/1) ×(2/4) = 50%
(e, 2 →0), L* = {x 3}, supL(r) = 1/8; R* = {x 6}, supR(r) = 1/8;

Conf(r) = (1/1) ×(1/3) = 33.3%
(e, 1 →0), L* = {x 7,x 8}, supL(r) = 1/8; R* = {x 6}, supR(r) = 1/8;

Conf(r) = (2/4) ×(1/3) = 16.7%

The action rule r linking each premise-type term and the decision-type term is

acceptable when the values of the corresponding supL(r), supR(r), and Conf(r) meet
the user specified thresholds. The primary idea of the StrategyGenerator algorithm
lies in the property of anti-monotonic property of the support. It is used to prune
unqualified candidates. This is achieved by placing a “-” mark when a term does not
have sufficient support. Going back to the example, the support of the atomic term
(a,0) does not satisfy the minimum support requirement, so it is marked with “-“
symbol and it is not considered in later steps of the algorithm. The goal of this

algorithm is to find the shortest action rules. It means when a premise-type term t1
jointly with a decision-type term form an acceptable action rule, then t1 is not
investigated any further. In this example, the term (b, 1�2) jointly with (d, L�H)
meet all three thresholds, so the action rule (b, 1�2) ⇒ (d, L�H) is discovered and
the term (b, 1�2) is marked as “+”.

Build two-element premise-type terms by concatenating any two unmarked
premise-type terms that have different attributes. Below is the list of two-element
terms. There is no action rule generated in this step, since none of the terms jointly
with (d, L�H) satisfy all three thresholds.

Two-elements term loop:

(a,2) ∧ (b, 1 �3), L* = {x 3,x 7,x 8}, supL(r) = 3/8; R* ={x 6}, supR(r) =
1/8; Conf(r) = (3/3) ×(1/2) = 50%

(a,2) ∧ (c, 2 �1), L* = {x 3,x 7}, supL(r) = 2/8; R* = {x 6}, supR(r) =
1/8; Conf(r) = (2/3) ×(1/2) = 33.3%

(a,2) ∧ (c, 1 �2), L* = {x 8}, supL(r) = 1/8; R* = ∅; Marked “-“
(a,2) ∧ (e, 2 �1), L* = {x 3}, supL(r) = 1/8; R* = ∅; Marked “-“
(a,2) ∧ (e, 2 �0), L* = {x 3}, supL(r) = 1/8; R* = {x 6}, supR(r) = 1/8;

Conf(r) = (1/1) ×(1/2) = 50%
(a,2) ∧ (e, 1 �0), L* = {x 7,x 8}, supL(r) = 2/8; R* = {x 6}, supR(r) =

1/8;Conf(r) = (2/2) ×(1/2) = 50%
(b, 1 �3) ∧ (c, 2 �1), L* = {x 3,x 7}, supL(r) = 2/8; R* = {x 6},

supR(r) = 1/8; Conf(r) = (2/2) ×(1/2) = 50%
(b, 1 �3) ∧ (c, 1 �2), L* = {x 8}, supL(r) = 1/8; R* = ∅ Marked “-“
(b, 1 �3) ∧ (e, 2 �1), L* = {x 8}, supL(r) = 1/8; R* = ∅ Marked “-“
(b, 1 �3) ∧ (e, 2 �0), L* = {x 3}, supL(r) = 1/8; R* = {x 6},supR(r) =

1/8; Conf(r) = (1/1) ×(1/3) = 33.3%
(b, 1 �3) ∧ (e, 1 �0), L* = {x 7, x8}, supL(r) = 2/8; R* = {x 6}, supR(r)

= 1/8; Conf(r) = (2/2) ×(1/3) = 33.3%
(c, 2 �1) ∧ (e, 2 �1), L* = {x 3}, supL(r) = 1/8; R* = {x 1}, supR(r) =

1/8; Conf(r) = (1/1) ×(1/2) = 50%
(c, 2 �1) ∧ (e, 2 �0), L* = {x 3}, supL(r) = 1/8; R* = {x 6}, supR(r) =

1/8; Conf(r) = (1/1) ×(1/2) = 50%
(c, 2 �1) ∧ (e, 1 �0), L* = {x 7}, supL(r) = 1/8; R* = {x 6}, supR(r)

= 1/8; Conf(r) = (1/2) ×(1/2) = 25%
(c, 1 �2) ∧ (e, 2 �1), L* = ∅; Marked “-“
(c, 1 �2) ∧ (e, 2 �0), L* = ∅; Marked “-“
(c, 1 �2) ∧ (e, 1 �0), L* = {x 8}, supL(r) = 1/8; R* = ∅; Marked “-“

Build three-element terms by concatenating any two unmarked terms that have

different attributes. Below is the list of three-element terms. There are three action
rules discovered.

Three-elements term loop:

(a,2) ∧(b, 1 �3) ∧(c, 2 �1), L* = {x 3,x 7}, supL(r)=2/8; R*= {x 6},

supR(r) = 1/8; Conf(r) = (2/2) ×(1/1) = 100%; Marked “+“

(a,2) ∧(b, 1 �3) ∧(e, 2 �0), L* = {x 3}, supL(r) = 1/8; R*={x 6}, supR(r)

= 1/8; Conf(r) = (1/1) ×(1/2) = 50%

(a,2) ∧(b, 1 �3) ∧(e, 1 �0), L* = {x 7, x 8}, supL(r)=2/8; R*= {x 6},

supR(r) = 1/8; Conf(r)=(2/2) ×(1/2)=50%

(a,2) ∧(c, 2 �1) ∧(e, 2 �0), L* = {x 3}, supL(r)=1/8; R*= {x 6}, supR(r) =

1/8; Conf(r)=(1/1) ×(1/1)=100%; Marked “+“

(a,2) ∧(c, 2 �1) ∧(e, 1 �0), L* = {x 7}, supL(r)= 1/8; R*={x 6},

supR(r)=1/8; Conf(r)= 1/1) ×(1/1) = 100%; Marked “+“

(b, 1 �3) ∧(c, 2 �1) ∧(e, 2 �1), L* = {x 3}, supL(r)=1/8; R*= ∅ Marked
“-“

(b, 1 �3) ∧(c, 2 �1) ∧(e, 2 �0), L* = {x 3}, supL(r)=1/8; R*={x 6},

supR(r)=1/8; Conf(r)=(1/1) ×(1/2) = 50%

(b, 1 �3) ∧(c, 2 �1) ∧(e, 1 �0), L* = {x 7}, supL(r)=1/8; R*={x 6},

supR(r)=1/8; Conf(r)=(1/1) ×(1/2)=50%

In Example 1, we have the following four action rules:
(b, 1�2)⇒(d, L�H), supL(r)=3/8, supR(r)=2/8, Conf(r)=100%

((a,2)∧(b, 1�3)∧(c, 2�1))⇒(d, L�H), supL(r)=2/8, supR(r)=1/8, Conf(r)=100%

((a,2)∧(c, 2�1)∧(e, 2�0))⇒(d, L�H), supL(r)=1/8, supR(r)=1/8, Conf(r)=100%

((a,2) ∧(c, 2�1)∧(e, 1�0))⇒(d, L�H), supL(r)=1/8, supR(r)=1/8, Conf(r)=100%

We claim that the new method guarantees that the actionable patterns are concise,
general, and reliable. As we can see the discovered action rules contain relatively few
attribute-value pairs on the classification side and the number of these rules is also
relatively small. Such rules are more readable, easier to understand and apply later on.

The algorithm, StrategyGenerator, was implemented under Windows XP. It was
tested on several public domain databases and on the medical database HEPAR
prepared in the Medical Center of Postgraduate Education (Warsaw, Poland) by Dr.
med. Hanna Wasyluk. In all cases the recall of the new algorithm was higher than
DEAR [11][12].

Finally, let us compare the action rules generated by StrategyGenerator with action
rules constructed by the tree-based algorithms DEAR [7], [14], [10], [11], [6], [12],
[13], [9]. For the same Example 1, thirteen classification rules have been generated by
LERS algorithm and they are listed below:

(b,2)�(d, H) (b,1)�(d, L) (e, 2)�(d, L)
(a,0)∧(b,3)�(d, N) (a,0)∧(c,2)�(d, H) (a,0)∧(e,1)�(d, H)
(a,0)∧(e,0)�(d, N) (a,2)∧(e,1)�(d, L) (b,3)∧(c,2)�(d, N)

(a,2)∧(b,3)∧(c,1)�(d, H) (a,2)∧ (b,3)∧(c,2)�(d, N)
(a,2)∧(c,1)∧(e,0)�(d, H) (a,2)∧(c,2)∧(e,0)�(d, N).

Five classification rules have been generated by C4.5 algorithm and they are listed

below:
(b,2)�(d, H) (b,1)�(d, L) (a,0)∧(b,3)�(d, N)
(a,2)∧(b,3)∧(c,1)�(d, H) (a,2)∧ (b,3)∧(c,2)�(d, N).

DEAR algorithms generated from them only one action rule: (b,1�2) ⇒
(d,L�H). The new method generates more action rules than DEAR as we have seen
in the above example.

4. Conclusion

The ability to discover useful knowledge hidden in large volumes of data and to act
on that knowledge is becoming increasingly important in today’s competitive world.
The knowledge extracted from data can provide a competitive advantage in support of
decision-making. In this paper, we focus on analyzing a complete information system
and obtaining a set of concise workable strategies. Any action rule provides a brief
and clear hint to a user about required changes within flexible attributes that are
needed to re-classify some objects from a lower ranked class to a higher one. This
knowledge can be turned into action and this action may help to achieve user’s goal.
StrategyGenerator is a novel method of a reclassification strategy which extracts
higher level actionable knowledge from large volumes of data.

Acknowledgments
This work was supported by the National Science Foundation under grant IIS-
0414815.

References

1 Agrawal R., Srikant, R. (1994) Fast algorithm for mining association rules, Proceeding of
the Twentieth International Conference on VLDB, 487-499

2 Chmielewski M. R., Grzymala-Busse J., W., Peterson N. W., Than S. (1993) The rule
induction system LERS - a version for personal computers, Foundations of Computing and
Decision Sciences, Vol. 18, No. 3-4, 181-212

3 Greco S, Matarazzo B, Pappalardo N, Slowinski R (2005) Measuring expected effects of
interventions based on decision rules, Journal of Experimental and Theoretical Artificial
Intelligence, Taylor and Francis, Vol. 17, No. 1-2, 103-118

4 He, Z., Xu, X., Deng, S., Ma, R. (2005) Mining action rules from scratch, Expert Systems
with Applications, Vol. 29, No. 3, 691-699

5 Pawlak, Z. (1981) Information systems - theoretical foundations, Information Systems
Journal, Vol. 6, 205-218

6 Raś, Z.W., Tzacheva, A., Tsay, L.-S., Gurdal, O. (2005) Mining for interesting action
rules, Proceedings of IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT 2005), Compiegne University of Technology, France, 187-193

7 Raś, Z.W., Tsay, L.-S. (2003) Discovering extended action-rules (System DEAR), in
Intelligent Information Systems, Proceedings of the IIS'2003 Symposium, Advances in
Soft Computing, Springer, 293-300

8 Raś, Z., Wieczorkowska, A. (2000) Action rules: how to increase profit of a company, in
Principles of Data Mining and Knowledge Discovery, Proceedings of PKDD'00, Lyon,
France, LNCS/LNAI, No. 1910, Springer, 587-592

9 Raś, Z.W., Wyrzykowska, E. (2008) ARAS: Action rules discovery based on agglomerative
strategy, in Mining Complex Data, Post-Proceedings of the ECML/PKDD'07 Third
International Workshop, MCD 2007, LNAI, Vol. 4944, 196-208

10 Tsay, L.-S. (2005) Discovery of extended action rules, Ph.D. Dissertation, Department of
Computer Science, University of North Carolina, Charlotte, 2005.

11 Tsay L.-S., Raś Z.W. (2005) Action rules discovery: system DEAR2, method and
experiments, Journal of Experimental and Theoretical Artificial Intelligence, Taylor and
Francis, Vol. 17, No. 1-2, 119-128.

12 Tsay, L.-S., Raś, Z.W. (2006) Action rules discovery systems DEAR3, in Foundations of
Intelligent Systems, Proceedings of ISMIS'06, LNAI, No. 4203, Springer, 483-492

13 Tsay, L.-S., Raś, Z.W. (2007) E-Action Rules, in Foundations of Data Mining, Studies in
Computational Intelligence, Springer, 2007, will appear

14 Tsay, L.-S., Raś, Z., Wieczorkowska, A. (2004) Tree-based algorithm for discovering
extended action-rules (System DEAR2), in Intelligent Information Processing and Web
Mining, Advances in Soft Computing, Proceedings of the IIS'2004 Symposium, Springer,
459-464

15 Tzacheva, A., Raś, Z.W. (2005) Action rules mining, International Journal of Intelligent
Systems, Wiley, Vol. 20, No. 7, 719-736

