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Abstract. Speech remediation by identifying those segments which take
away from the substance of the speech content can be performed by cor-
rectly identifying portions of speech which can be deleted without dimin-
ishing from the speech quality, but rather improving the speech. Speech
remediation is especially important when the speech is disfluent as in the
case of stuttered speech. In this paper, we describe a stuttered speech
remediation approach based on the identification of those segments of
speech which when removed would enhance speech understandability in
terms of both speech content and speech flow. The approach we adopted
consists of first identifying and extracting speech segments that have
weak significance due to their low relative intensity, then classifying the
segments that should be removed. We trained several classifiers using
a large set of inherent and derived features extracted from the audio
segments for the purpose of automatic improvement of stuttered speech
by providing a second layer filtering stage. This second layer would dis-
cern the audio segments that need to be eliminated from the ones that
do not. The resulting speech is then compared to the manually-labeled
“gold standard” optimal speech. The quality comparisons of the resulting
enhanced speeches and their manually-labeled counterparts were favor-
able and the corresponding tabulated results are presented below. To
further enhance the quality of the classifiers we adopted a voting tech-
niques that encompassed an extended set of models from 14 algorithms
and presented the classifier performance measures from different voting
threshold values. This voting approach allowed us to improve the speci-
ficity of the classification by reducing the false positive classifications at
the expense on additional false negatives thus improving the practical
effectiveness of the system.
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1 Introduction and Background

Quality of life is negatively impacted when individuals are chronically unable to
express themselves due to lack of speech fluency. Stuttering, also referred to as
stammering, is a condition that is exhibited in bad fluency of speech. The onset
of stuttering generally occurs during childhood years, and in one fourth of cases
this speech impediment persists throughout life [8, 11].

Automatic speech disfluency detection offers many advantages, ranging from
time saving, constant speech monitoring, reducing the subjectivity of manual
disfluency identification [9, 5] as well as a more effective automatic speech recog-
nition. Therefore, the identification of “episodes” of stutter will offer firm and
actionable information [3–5]. Reliable identification of speech segments, from the
beginning of episode to the end of episode, with pauses, blocks, interjections and
hesitations will allow speech cleanup by ridding the speech of the blocks, and in-
terjections, smoothing the hesitation segments and shortening the prolongations
[6, 7, 10].

The state of the art is rich with papers which describe various prosodic- and
semantic-based machine learning approaches and algorithms for the detection of
disfluent speech [1, 9, 11–13]; however, research work addressing disfluent speech
remediation is considerably less common. Stuttered speech is difficult to listen to;
our assumption in this research work is that speech clarity will be significantly
improved by eliminating those segments. As a result the listener will more intent
on listening to the speech.

To confirm the assumption that undesired speech segment removal enhances
speech quality, we ran a script that eliminates audio segments with low intensity
levels using varying intensity thresholds and segment durations. This resulted in
an unquestionably clearer and more intelligible audio compared to the original
speech. That being said, automatically detecting and removing these potentially
undesired segments, resulted occasionally in discarding the wrong segments. For
that reason, we introduced a second layer of filtering stage when the potentially
undesired segments are further classified into true undesired, which would need
to be discarded; and false undesired, which would need to be retained.

The complexity in this paper arose from the need to take into consideration
various overlapping multi-threshold data samples. Also, we devised a labeling
process which reduces the effort required during the labeling process. We feel
that the proposed adaptive data collection and processing method paves the
way and lays a sound foundation for successful treatment of future and similar
multi-perspective [15] data collection and classification challenges.

In this paper, we discuss one certain type of stuttered speech remediation; re-
mediation in the form of undesired speech segments removal. In the next section,
we present an algorithm to enhance the stuttered speech quality by eliminating
the speech segments that contain stuttering blocks, which are defined as the
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segments [14] of audio in which the person who stutters is unable to produce
clear sounds. Furthermore, unwanted segment elimination provides the listener
with yet another benefit; that is, the speech is shortened (up to 60% reduction)
without speeding up individual syllables.

Eliminating disfluent segments of speech requires identifying those segments
which do not add any value to the speaker’s message. Our algorithm first identi-
fies and creates sound files of those segments that have the distinct potential of
being undesired in the speech through linguistic intensity and length analysis;
detailed explanation will be provided in Section 2. Next, the set of potentially
undesired audio segments are listened to in order to determine whether they
have semantic value or not, and to determine whether they must be deleted
or retained accordingly. The final output of the speech audio file, after remov-
ing the segments that were manually-labeled true undesired, will represent the
“gold standard”. The “gold standard” speech is later used to measure the per-
formance of the trained classifier. There are two vital reasons for the phase in
which the potentially undesired segments are manually labeled; the first reason
is to generate the optimal speech that will be used to evaluate our enhanced
stuttered speeches, and the second reason is to generate the true undesired and
false undesired segments used to build our classifier.

The dataset of speeches that we used was obtained from the UCLASS series
of recordings. UCLASS, which stands for the University College London Archive
of Stuttered Speech, is a database of stuttered speech recordings with individual
speech and speaker metadata. UCLASS contains a collection of over one hundred
speeches from which we chose fifteen for our research study.

The approach that we followed was to begin by scanning each speech for
potentially stuttered segments according to varying intensity thresholds and
lengths of audio segments. Every potentially undesired extracted segment is con-
sidered a candidate for removal because of the selection criteria used; however,
in numerous cases, the candidate segment may contain semantic speech and
therefore should not be omitted from the original speech. Determining which
candidate segments are truly undesired candidates and which segments are not,
is done through a classification system that was trained by providing it with
manually-labeled true undesired and false undesired segments that were col-
lected beforehand.

The features that are used in the classifier training include data extracted
from both the frequency domain such as voice formants and pitch, and from the
time domain such as intensity. In addition to that, a combination of speaker and
speech metadata are also used to improve the trained classifier; a more elaborate
description of the list of features will be presented in the next section.

The difference between the quality of the “gold standard” of a given speech
compared to the quality of an enhanced speech after having every potentially
undesired segment being classified is used to evaluate the quality of our system.
The results with respect to classifier performance are tabulated in the findings
section according to the extraction parameters. Process efficiency improvements
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were created to minimize manual labeling effort as well as segment deletion
redundancy.

As we remove speech portions we must be careful to avoid deleting good
content i.e. we are quite reluctant to remove segments carrying meaning. We
consider such mistakes more detrimental to the speech than not removing blocked
voice portions. In order to minimize the rate of mistaken speech segment removal
we doubled the number of classifiers and performed the classification according
to a threshold vote cutoff. Instead of a majority vote we selected multiple voting
proportion cutoffs, tabulated and graphed the outcome for the respective True
Positives, True Negatives, False Positives, False Negatives, Accuracy, Specificity,
and True Positive Rates. This exercise was instrumental in helping us decide on
a voting threshold which greatly reduces the number of wrong segment omissions
at a reasonable rate of increase in non removal of blocked speech segments.

2 Proposed Method

The method we adopted for this research consisted of selecting a set of speeches
to be examined from a group of disfluent speeches available from UCLASS.
UCLASS speeches exhibit a wide variety of speakers and stuttering conditions,
yet the vast majority of the speeches are distinctly stuttered and quite disfluent.
We selected fifteen speeches (roughly one hour of stuttered speech) as the foun-
dation for our research. Our goal in this research is to develop a system capable
of automatically analyzing stuttered speeches for the purpose of detecting unde-
sired segments and enhancing the overall speech quality through eliminating the
disfluent segments. In this work, we used a Praat script for initially detecting
potential candidate segment to be removed from the stuttered speech; the ulti-
mate goal of this research is to build a system able to distinguish true undesired
from false undesired for all candidate segments. Next, we provide an elaborate
description of the workings of the overall process.

2.1 Extracting Potentially Undesired Candidate Segments

Fifteen speeches from the UCLASS repository are selected as the stuttered
speeches of interest, each is scanned with a total of 8 segment extraction param-
eters. The extraction parameters determine what the sound intensity threshold
and the minimum duration of those segments should be. The minimum durations
that we used to iterate through our speeches are 0.6, 0.8, 1.0 and 1.2 seconds,
and the speech intensity thresholds are at 95% and 90% of the entire speech
intensity in decibels; for example, if the average intensity of a given speech is 50
decibels, then the intensity thresholds that correspond to 95% and 90% are 47.5
db and 45 db, respectively.

For each possible pair combination of segment duration and intensity thresh-
old (total of 8 unique combinations), the entire speech is scanned and the po-
tentially undesired candidates are detected according to the corresponding pair
combination. The minimum segment duration ensures that no excessively short
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segments are extracted as potential candidates for deletion, which would disrupt
the flow of normal speech and unfavorably affect the speech cadence. Note that
the extracted segments from each unique pair will not overlap, and that only
such overlapping is possible, and rather likely to happen, when examining seg-
ments extracted from different pairs. We provide a demonstration of how the
segments may look like in Figure 1. For example, according to Figure 1, extract-
ing potentially undesired segments from the fourth row (0.6 minimum duration
with 95% intensity threshold) will result in three different segments (B, G, and
K ); since segment B ’s length is 0.8 seconds, which satisfies the minimum dura-
tion threshold for the third row, then the same segment will also be identified
as a potentially undesired segment on the third row; however, since the length
of the segment is not 1.0 second (or more), that segment will not be identified
on the second (or first) row in Figure 1.

Fig. 1. Extracting potentially undesired candidate segments

Each extracted candidate segment results in a waveform audio file accom-
panied by five additional vectors that serve as the segment inherent features,
three out of which contain the values of formant 1, formant 2, and formant 3
and the remaining two vectors contain the pitch values and the intensity values.
All formants were computed with a 50 ms Gaussian analysis window with a 12.5
ms offset. The pitch values were taken at 10 ms interval and computed with the
Praat software algorithm which performs an acoustic periodicity detection on
the basis of an accurate autocorrelation method as described in [2]. The inten-
sity values were computed by squaring then convolving the sound values within
Gaussian analysis window of 50 ms length. The waveform audio files will be
later used for manually labeling the candidate segment, and the set of inherent
features (in addition to a set of derived features presented in Subsection 2.3) will
be used to build our classifier.
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2.2 Labeling Potentially Undesired Segments

Following the generation of the segment files, the labeling process is performed
to begin building the classifier and testing our dataset. The segment candidates
must be manually labeled as: 1) delete and analyze, these are denoted by G, 2)
leave in the speech and analyze, these are denoted by B, and 3) no analysis, but
delete from the speech, these segments of speech represent external sounds such
as when the interviewer was attempting to speak softly. We chose to exclude
these segments from the speech during cleanup because they showed no speech
disfluency but refrained from including them in the training dataset.

The “delete and analyze” labels (G) indicate that the sound is void of se-
mantic meaning and that we would like for our classifier to mark such segments
as “delete”, or as true undesired. The “leave in the speech and analyze” label is
used for sounds that were long enough and with low intensity yet the segment
sound contained semantic meaning and must not be removed from the original
speech; our classifier should label such segment as “retain”, or false undesired.
The “delete and do not analyze” label indicates that a segment is best deleted
from the speech but does not represent the type of sound that our classifier
must learn to recognize or take any action about; an common example would be
a segment containing the soft voice of the interviewer.

In an attempt to avoid redundant labeling efforts and minimize the number of
segments which must be manually reviewed, we have sorted the list of segments to
be reviewed such that if a segment s is marked “delete”, then all other segments
that are contained within s (start with, or after, s; and end when s ends, or
anytime before that) will also be marked as “delete”. The reasoning behind our
approach is that if some segment s is void of semantic meaning, then any other
segment contained in s must also be void of semantic meaning. Note here that
it is not the case that the opposite is true; given that some segment s contains
some semantic meaning, we cannot conclude that all other segments contained
in s must also contain semantic meaning. This approach has allowed us to reduce
review time by a factor of five.

We will use Figure 1 to demonstrate the process explained above. The first
step is to sort all potentially undesired segments according to their start time,
from top to bottom. This means that based on Figure 1, the list of candidate
segments will be sorted as follows: A, B, C, D, E, F, G, H, I, J, K, L, and M.
The first candidate segment to be listened to is A; if the segment A is marked
as true undesired (no semantic value), then all other subsets that are contained
in A are also marked true undesired, which are B and C. Similarly, if segment
D is labeled as true undesired, then segments E, F, G, H, and I are also labeled
true undesired. If however, segment D was marked as false undesired (contains
semantic value), then this only implies that segments E, F, and G are also false
undesired (since they are essentially the same as segment D), but we cannot
conclude that segment H nor I are also false undesired ; therefore, we would
need to listen to the two segments H and I to determine what the label of each
of them should be.



Segment-Removal Based Stuttered Speech Remediation 7

The dataset used in our classification exhibited two possible class values:
G (positive), which meant that the candidate sound must be deleted; and B
(negative), which meant that the sound segment should not be deleted.

2.3 Building the Classifiers

In addition to the label feature, the dataset used to train our classifiers will con-
tain two additional types of features: 1) a set of derived attributes extrapolated
from the set inherent features, and 2) speaker and speech metadata [15]. The
inherent features that are associated with each candidate segment are formant
1, formant 2, and formant 3 (sampled at 50 ms intervals with the time step
being 12.5 ms), pitch (sampled at 10 ms), and intensity (sampled at 8 ms). The
derived features that are used in our classifier training are all extrapolated from
the inherent features and will serve as a set of data-points that provide infor-
mation about the entire segment as opposed to an exact point in time (due to
sampling). We start by calculating the derivatives of each one of the five inherent
features; the reason for calculating the derivatives is to assess the variance of our
inherent features, which is vital for detecting stutter. Then, for each one of the
inherent features and their derivatives, we calculate the average, median, stan-
dard deviation, percentiles (25, 50, and 75), minimum value, maximum value,
peak-to-peak amplitude measurement, and variance.

The speaker and speech metadata we included in our dataset consisted of
those data features provided with the UCLASS dataset; they consisted of the
following:

Speaker category metadata: Gender (M/F), Handedness (L, R, not known),
Past history of stuttering in the family, Age of stuttering onset, Age at the time
of recording, Location of recording (clinic, UCL, or home), Recording conditions
(quiet room or sound-treated room), Type of therapy received (family based
treatment or holistic treatment), Time between therapy and recording time,
Speaker had any history of hearing problems (Y/N), Speaker had a history of
language problems (Y/N), and Special educational needs (Y/N).

Speech category metadata: Background acoustic noise level (numeric), en-
vironmental noise level (numeric), speaker clarity (numeric), interlocutor intru-
siveness (numeric).

The resulting dataset consisting of signal statistics, metadata, and labels
consisted of 126 features and was used to train eight different classifiers, each
for a unique pair combination of minimum duration and intensity threshold
(see Algorithm 1). Recall that the minimum duration threshold is the minimum
length of potentially undesired segments, and that the intensity (percentage)
threshold is measured by examining the averaged speech intensity. We used the
R ‘caret’package in order to streamline the classifier testing process and cover a
wide range of classifiers.
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Algorithm 1: Summary of our proposed algorithm

for every segment duration and intensity threshold pair do
extract potentially undesired candidate segments from a given speech;
manually label each candidate as true undesired or false undesired ;

end
training and testing phase;
for every segment duration and intensity threshold pair do

train a classifier using a portion of the labeled candidate segments;
test the remaining segments using the classifier built above;
evaluate the resulting labels by comparing them to the “gold
standard”;

end

There are three different courses of action for segments removal that are
examined in this research work, each producing a different level of stutter reme-
diation:

1. Remove all candidate segments without human intervention (this approach
does not require manual labeling).

2. Remove only the candidate segments that are manually labeled true unde-
sired (resulting speech is referred to by the “gold standard”).

3. Classify all candidate segments using our trained classifier, and only remove
the candidates that are classified true undesired.

Because of the speech intensity weakness during the episodes to be deleted
we were able to remove the segment minus 50 ms from the front both the front
and end of the episode without creating any perceptible sound discontinuities.

Each removal course of action yields a certain “enhanced” speech file; the
enhanced files are then examined and compared. Our goal is to build a classifier
that generates an audio file (course of action number 3) that is as close as possible
to the golden standard audio file (generated from course of action number 2).

In the case of speech remediation, it is more important to avoid deleting
semantically meaningful segments than to miss deleting semantically meaning-
less segments. In other terms, when evaluating our classifier performance, false
negatives (deleting what should not be deleted) should be considered more unde-
sirable than false positives (missing to delete segments which must be deleted).
The R classifiers that we trained and tested are C5.0, Neural Networks, Recur-
sive Partitioning, Random Forests, Polynomial SVM, and AdaBoost. In Figure
2 below we show the process flow starting at the top left Extraction of the can-
didate segments followed by two independent paths (1)Feature extraction and
(2)Labeling ; the results of the two flows provides the digital signal processing
predictors and manual label results which will be combined with the metadata
to create the complete dataset.
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Fig. 2. Depiction of our proposed method

2.4 Practical classifier enhancement

We mentioned the impact of removing block episodes throughout the paper and
established the detrimental effect of removing episodes which are not truly bad.
In this section, we will revisit the segment removal concept as it pertains to the
optimization of speech repair.

The benefits of the identification and removal of blocked segments is multi-
fold; the listener benefits in a multitude of ways:

1. He/she does not hear spurious sounds which provide no meaningful lexical
content to the recording.

2. The flow of the recording is conducive to a smoother listening experience
because of increased fluency.

3. The speech is shortened thus reducing speech length.

The speaker benefits also, we list two such advantages:

1. By listening to the repaired speech, he/she acquires the confidence that some
prosodic speech repairs will greatly improve the message delivery.

2. The speaker can listen to the message on the merit of its meaning instead of
style thereby focusing on the core semantic components of the recording

Original, pre-repair speeches are qualitatively weak, yet their prosodic and
lexical content is uncompromised. If sought indiscriminately, the benefits listed
above could compromise the speech where meaning loss is incurred due to the
repair process.
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The aim of the described system enhancement is to generate a speech which is
superior in practical usability without the collateral damage of lexical component
resulting from removing segments that were not supposed to be removed.

The reason for remedy optimization is to ensure that as little meaning loss
as possible is caused thanks to the intervention from our proposed process. To
this end, we remain cognizant that meaning loss is more “detrimental” to the
message conveyed by a recording than the inconvenience of hearing unnecessary
blocks of speech. By more detrimental we mean that we would prefer to retain
stutter speech episodes if eliminating them means losing other lexical content.
Therefore, we will explore the options available to us which help with the reme-
diation process without cognitive meaning compromise. The level of tolerance to
collateral lexical damage incurred from our remediation approach and attempts
to improve a message prosodic quality must be carefully considered.

In the following remedy improvement discussion, we will use classifier pre-
diction confusion matrix results and derived measurements to help frame the
proposed solution qualitatively, and quantitatively.

actual
value

Prediction outcome

p n

p′ True
Positive

False
Negative

n′ False
Positive

True
Negative

Table 1. Confusion Matrix

The confusion matrix Table 1 provides general measurements which apply
to classification prediction models. We will describe the confusion matrix and
measurements as they relate to our proposed remediation environment in general
and the improvement covered in this section.

In Table 1 the prediction outcome corresponds to the segment evaluation in
our classification, column p represents a segment evaluation of positive; a positive
evaluation means that a sound episode which was extracted as a candidate for
removal is evaluated as a blocked utterance segment and must, according to our
classifier prediction, be removed from the speech.

The n column in the Table 1 confusion matrix represents a candidate speech
episode which was presented as candidate for deletion, but the classifier predic-
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tion evaluated it to be a segment with lexical content and therefore, the classifier
indicates that it must be retained in the recording. The negative (n) column will
be used to denote candidate speech episodes which were presented as candidates
for deletion, but the classifier predictions evaluated them to be segments with
lexical content and therefore, they should be retained in the recording. So, p
means that a classifier suggests a segment must be removed and n indicates that
a classifier judged a segment as negative for removal and thus it must remain
in the recording. The actual value rows consist of the results obtained from the
manual segment labeling effort. Manual labeling is assumed to provide accurate
results, and True or False according to that assumption.

The p′ row represents a speech extracted candidate segment which, when
manually reviewed, was labeled as a blocked stutter segment and contained no
lexical meaning. If we had a perfect candidate extraction system, all p′ segments
would be predicted as such by our classifier(s) and consequently removed.

The n′ row represents speech candidates presented for removal considera-
tion but when manually reviewed they were labeled as lexically meaningful and
therefore should ideally be excluded from the list segments to remove from the
speech.

The matrix cells are represented by four squares: True Positive, False Posi-
tive, False Negative, True Negative at the intersection of the actuals and predic-
tion.

True Positive represents the number of candidate segments that were man-
ually reviewed and determined to be of no value to the speech and evaluated
by the trained classifier model as “bad”, lexically void, segments. This is a case
where both the actual/manual accurate values and the classifier predicted values
agree.

True Negative represents the number of speech segments manually labeled
as lexically meaningful hence they should be retained; and, consistently, these
segments were classified as lexically meaningful by the trained model. This, also,
is a prediction outcome that agrees with the actual value of the segment.

The True Positive and True Negative cells represent the desired outcome and
pose no concern; if all our samples fell in these two categories we would consider
our classifier to be performing in an absolutely optimal way.

A False Negative, means that the segment is manually labeled devoid of
lexical meaning (e.g. “Positive”) but the trained classifier was not able to detect
that and as a result it assigned it a class of Negative, thus a disfluent segment,
and it will be left in the recording and no repair will be performed.

The False Positive classifications occur when the manual, accurate, label
indicates that the candidate segment is a negative segment implying that the
segment contains semantic meaning, yet the classifier indicates that the segment
should be deleted. The False Positive cells count represents the total number of
samples that fell in that category at time of prediction. These False classifications
cause a loss of speech semantic content.
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The False Negative and False Positive cells in the confusion matrix represent
predictions for which we want to insightfully fine tune our model classification
capabilities, thereby improving the practical usability of our classifier.

False Positive conditions lead to speech content compromise due to removal
of speech parts which contain semantic information. False Positive mistakes are
fundamentally detrimental to the message and should be avoided if possible,
albeit at a price. Avoiding a False Positive means that we will incur additional
False Negatives; it is a trade off because the classifier is generally tuned to
minimize the total number of misclassification thus maximizing accuracy. One
can assume that by further tuning the classifier to minimize the total number of
False Positives would result in adding proportionately more False Negatives.

Deciding on our level of tolerance for lexical loss is of central importance
to the repair we propose. How many bad episodes are we willing to leave in a
recording to avoid losing a good segment is an essential question to the work
body of this research. Namely, how many false negatives would we be willing
incur to avoid one False Positive.

To realize our tolerance for False Positives, we consider the False Positive
Rate (FPR), False Negative Rate (FNR) and Accuracy. False Positive Rate
(FPR) represents the percentage of Negative samples that were classified posi-
tively relatively to the total number of Negative samples.

The lower our FPR is, the less mistakes our classifier would have made in
classifying segments for removal when those should have been retained in the
speech. Therefore, we would like the FPR to be as low as possible; and since we
would like to compare our measures to the accuracy which ranges between 0 and
100%, we will consider Specificity (SPC) instead of FPR (SPC = 1 − FPR).
When working with SPC we would aim to maximize SPC to a value as close to
100% as possible.

Also we will consider the False Negative Rate (FNR). FNR is the percentage
of samples classified as negative when the actual class is Positive; these are
segments that must be deleted, however our classifier has classified them for
retention. These mistakes are not as damaging to the speech and will have a
lesser priority. We would be willing to trade multiple False Negatives for one
False Positive. For ease of comparison with Accuracy and Specificity, we will
be considering the True Positive Rate (TPR = 1 − FNR).

There are multiple ways to perform classifications that tilt the balance in
favor of more False Negatives than False Positives (or the opposite).

1. Cost based training: Train individual classifiers by placing a higher penalty
on False Positives (FP ) than False Negatives (FN) thus creating models
which are less prone to FPs.

2. Sampling technique: During the classification inflate the number of positive
samples in the training sets by using same Positive samples multiple times,
thereby resulting in a higher count of Positive samples. This approach, also,
creates classifier models with higher sensitivity to FP than to FN classifica-
tions.
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3. Probability cutoff: During training adjust the probability cutoff for classifier
models to favor minimizing False Positives as opposed to being optimized
to minimize both FNs and FP s combined.

4. Voting consensus: One could also rely on a voting approach where one would
take pre-trained classifiers and use a consensus among multiple classifiers to
determine a final class.

Because we had many tuned and trained classifiers ready for use, we chose
the fourth approach and experimented with a voting mechanism that utilizes all
classifier results to consider collectively, and reach an optimal FPR. We chose to
devise a voting mechanism that utilizes the result of 14 classifiers to extract a
subset which, when combined, provided all we needed to perform the next steps.

In this case, we chose to vary a percentage of votes threshold as the method
to decide whether a segment should be classified Positive or Negative, i.e. Delete
or Retain a segment. In preparation of the dataset, we averaged the results of
all classifiers and varied the decision cutoff threshold to classify every sample as
Positive or Negative.

For this experimentation, we used the models that were trained and tuned
within the ‘caret’package with a balanced dataset described in prior sections.
The results from the models are combined with the actual label which consists
of 15 columns; one actual class (e.g. the manual label) and the 14 classifiers
results.

We used the resulting table of 15 columns to evaluate the impact of changing
the voting threshold on the Specificity (SPC), True Positive Rate (TPR) and
Accuracy. As previously stated, because false positives are especially detrimental
to the remediation process, we wanted to maximize SPC while maintaining
acceptable Accuracy and TPR levels. To make FP s less frequent, we intuitively
expected that the higher the majority vote requirement we impose on the votes-
based classifier, the less FP s (e.g. High SPC) we will end up with.

As shown in Table 2 we varied the voting threshold (Θ) to range from 14/14
to 1/14, where Θ denotes the number of classifiers needed to classify a segment
s as Positive. This means that if Θ is set to 14/14 (leftmost row in Table 2), the
audio segment will be classified as Positive if all 14 classifiers vote Positive; if Θ
is set to 13/14 the audio segment will be classified as Positive when 13 or more
classifiers vote Positive etc..

In addition to True Positive, True Negative, False Positive, and False Nega-
tive totals, we measured the Accuracy rate, Specificity, and TPR corresponding
to each of the 14 voting threshold results. As can be shown by Table 2, our initial
intuition that to minimize FP s we must use higher threshold was confirmed.
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Table 2. TP, TN, FP, FN with Specificity, TPR, Accuracy

1-FPR 1-FNR

Vote	ϴ TP TN FP FN Accu SPC TPR
14/14 1601 198 1 121 93.65% 99.50% 92.97%
13/14 1679 193 6 43 97.45% 96.98% 97.50%
12/14 1699 180 19 23 97.81% 90.45% 98.66%
11/14 1712 157 42 10 97.29% 78.89% 99.42%
10/14 1715 132 67 7 96.15% 66.33% 99.59%
9/14 1717 99 100 5 94.53% 49.75% 99.71%
8/14 1720 84 115 2 93.91% 42.21% 99.88%
7/14 1720 63 136 2 92.82% 31.66% 99.88%
6/14 1721 50 149 1 92.19% 25.13% 99.94%
5/14 1722 40 159 0 91.72% 20.10% 100.00%
4/14 1722 33 166 0 91.36% 16.58% 100.00%
3/14 1722 23 176 0 90.84% 11.56% 100.00%
2/14 1722 0 199 0 89.64% 0.00% 100.00%
1/14 1722 0 199 0 89.64% 0.00% 100.00%
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The analysis of Table 2 leads to the observation that there is a reverse cor-
relation between FP and FN . A close review of Accuracy (Accu), SPC and
TPR shows the best Accuracy results (97.81%) to occur at Θ = 12/14 but the
nature of our speech remediation prefers lower FP classes even if there is a rela-
tively larger increase in FN classifications. By considering Θ = 13/14 we lower
the FP values from 19 to 6, namely, we end up with 13 less instances where
we remove an episode which contains actual meaning; while increasing the FN
classifications from 23 to 43 thereby increasing the number of stutter blocks that
remain in the speech by 20. So, we choose to trade 13 FP s for 20 FNs and left
20 blocks in the recording.

Such a trade off is reasonable when considering the high negative impact False
Positives have on a recording and we find that varying a voting cut off threshold
brings considerable improvement to the overall practicality of our system.

The effect of moving the Θ threshold is further illustrated in Figure 3 where
the line graph depicted over a narrow range of Θ (14/14 to 7/14) and a narrow
range of Specificity, TPR and Accuracy (70% to 100%) visually magnifies the
impact of Θ and helps us confirm the soundness of our decision to use a Θ value
of 13/14.



Segment-Removal Based Stuttered Speech Remediation 15

Fig. 3. Specificity, TPR, Accuracy (Accu) according the voting threshold

1-FPR 1-FNR

Vote	ϴ TP TN FP FN Accu SPC TPR
14/14 1601 198 1 121 93.65% 99.50% 92.97%
13/14 1679 193 6 43 97.45% 96.98% 97.50%
12/14 1699 180 19 23 97.81% 90.45% 98.66%
11/14 1712 157 42 10 97.29% 78.89% 99.42%
10/14 1715 132 67 7 96.15% 66.33% 99.59%
9/14 1717 99 100 5 94.53% 49.75% 99.71%
8/14 1720 84 115 2 93.91% 42.21% 99.88%
7/14 1720 63 136 2 92.82% 31.66% 99.88%
6/14 1721 50 149 1 92.19% 25.13% 99.94%
5/14 1722 40 159 0 91.72% 20.10% 100.00%
4/14 1722 33 166 0 91.36% 16.58% 100.00%
3/14 1722 23 176 0 90.84% 11.56% 100.00%
2/14 1722 0 199 0 89.64% 0.00% 100.00%
1/14 1722 0 199 0 89.64% 0.00% 100.00%
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3 Experiments and Results

Our approach proved to be effective in eliminating the vast majority of voice
blocks when applied to stuttered speech. The results of disfluent speech remedi-
ation consisted of the elimination of anomalous speech and a reduction in speech
length between 60% for the most severe stuttered speech to about 25% for mildly
stuttered speeches.

The effectiveness of our remediation process is highly dependent on the
threshold of the speech intensity tolerance during the potentially undesired seg-
ments identification. As we have stated earlier, we used two different thresholds
for the sound intensity for the initial phase - not to be confused with the voting
threshold. On the one hand, the lower threshold (90% of average) resulted in
a considerably less undesired candidates as shown in Table 3; although most of
the undesired candidates extracted using the lower threshold were actually true
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undesired, there were many instances where stutter segments were not detected
(due to the low threshold). On the other hand, the higher threshold (95%) re-
sulted in a much higher number of potentially undesired segments, some of which
were false undesired; however, most of the stuttered segments were detected in
the first phase. Therefore, the value of the second phase (training and testing
phase), which identifies true undesired and false undesired from potentially un-
desired segments, is most useful when the threshold is high, and when most of
the actual stutter segments are detected, even if that means potentially marking
some segments as potentially undesired while in reality they are false undesired,
during the first phase.

We have subsequently added a component to this system of remediation
which helped us to enhance the usability of the system. Because a good remedi-
ation process should lose little to no semantic meaning we implemented a False
Positives restricting subsystem which relies on a voting cutoff approach. This
enhancement would only tag a segment for removal if the vote for removal is
almost unanimous amongst all qualifiers. Although our accuracy was negatively
affected by this component, the results of this experimentation proved to be
effective in reducing False Positives.

Table 3. Segment count

90% of speech avg sound
volume threshold

95% of speech avg sound
volume threshold

0.6 seconds 195 211

0.8 seconds 149 159

1.0 seconds 114 130

1.2 seconds 83 93

The second threshold value that we used during the extraction of the poten-
tially undesired sound segments was the minimum time duration, starting with
0.6 seconds and ending with 1.2 seconds. It is worth noting that we tried shorter
duration time frames with little success, causing the comprehensibility of the
speech to be diminished; we found 0.6 second minimum silence duration to be
the lowest value that can be used in our experiments.

We used two different approaches for treating our data with each classifier.
The first approach is to build one classifier for our data after balancing the la-
bels regardless of the minimum duration and intensity threshold values; in other
words, we combine all the segments extracted from all eight different unique
pairs of minimum duration and intensity threshold, and build our classifier ac-
cordingly. The balancing approach we chose to apply for the balancing of the
data consisted of randomly excluding data tuples of the over-represented class
G.
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The second approach is to build a single classifier for each unique pair, then
average the accuracy and confusion matrix results. Table 4 shows the results
obtained using the first approach, while Table 5 shows the results obtained from
using the second approach for the two classifiers that performed the best using
separate classifiers for every unique pair; Random Forests and C5.0.

Using 10-fold cross validation, we trained six different classifiers: C5.0, Neu-
ral Networks, Recursive Partitioning, Random Forests, Polynomial SVM, and
AdaBoost. During the training of our classifiers, we used the ‘caret’R pack-
age because of its built-in tuning functionality. The parameters to build the
respective models were chosen based on highest accuracy. We have listed the
‘caret’package chosen parameters below:

Neural Network (nnet): Tuned model parameters when training on the bal-
anced dataset: size = 5 and decay = 0.1. Tuned model parameters when training
on the entire dataset: size = 1 and decay = 0.1. Size represents the number of
units in the hidden layer and can be zero if there are skip-layer units. The decay
parameter represents weight decay.

Random Forest (rf): Tuned model parameters when training on the balanced
dataset: mtry = 2. Tuned model parameters when training on the entire dataset:
mtry = 56. The parameter mtry represents the number of variables randomly
sampled as candidates at each split.

SVM Polynomial (svmPoly): Tuned model parameters when training on the
balanced dataset: degree = 3, scale = 0.01 and C = 1. Tuned model parameters
when training on the entire dataset: degree = 3, scale = 0.01 and C = 1. The
degree parameter represents the polynomial degree of the kernel function. The
scale is the scaling parameter of the polynomial and tangent kernel. C is the cost
regularization parameter.

Adaptive Boosting (AdaBag): Tuned model parameters when training on
the balanced dataset: mfinal = 100 and maxdepth = 3. Tuned model parameters
when training on the entire dataset: mfinal = 150 and maxdepth = 3. The mfinal
parameters represents the number of iterations for which boosting is run or the
number of trees to use. Maxdepth is the maximum depth of any node of the final
tree.

Recursive Partitioning (rpart): Tuned model parameters when training on the
balanced dataset: : cp = 0.03797468. Tuned model parameters when training on
the entire dataset: cp = 0.05970149. Cp is the complexity parameter; any split
that does not decrease the overall lack of fit by a factor of cp is not attempted.
The main role of this parameter is to save computing time by pruning off splits
that are evidently not worthwhile.

As can be seen in Table 4, when we balance our data we reduce the number
of samples in the dataset, this big reduction in the number of tuples seems to
have a detrimental impact on our neural network classifier model, since neural
network training is best accomplished with large datasets.
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Table 4. Results obtained from building a single classifier using all of segments

True Positive Rate True Negative RateAccuracy

C5.0 100% 94% 97.4%

Neural Networks 75.6% 55.9% 67.7%

Recursive Partitioning 92.6% 94.2% 93.2%

Random Forests 98.4% 91.7% 95.8%

Polynomial SVM 89.9% 75.6% 84.4%

AdaBoost 98.3% 93.8% 96.4%

Table 5. Results obtained from using a single classifier for each pair of minimum
duration and intensity threshold, and averaging the results

Random Forest C5.0 Classifier

True Positive Rate (Aver-
aged)

95.3 % 94.8%

True Negative Rate (Aver-
aged)

82.3 % 76.6%

Classifier with Highest True
Positive Rate

1.2 minimum duration,
90% intensity threshold

0.8 minimum duration,
90% intensity threshold

Classifier with Highest True
Negative Rate

1.2 minimum duration,
90% intensity threshold

1.2 minimum duration,
90% intensity threshold

Classifier with Lowest True
Positive Rate

1.2 minimum duration,
95% intensity threshold

1.0 minimum duration,
95% intensity threshold

Classifier with Lowest True
Negative Rate

1.0 minimum duration,
95% intensity threshold

1.0 minimum duration,
95% intensity threshold

4 Conclusion and Future Work

In summary, we described a system which can be successfully used to reduce
stuttered speech disfluency by removing certain potentially undesired speech
segments. The dataset consisted of speech and speaker metadata and speech
signal statistics. The remedied speeches showed a marked improvement over the
original speeches.

The innovation in our system is two-fold. First, both the scope of data col-
lection and the classification is predetermined and designed with the singular
objective of determining whether a possible action must be performed or not; in
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our case, we only collected potentially undesired candidate segments that might
be removed, and extracted features which are then used to classify the segments
with the sole purpose of deciding whether a segment needs to be removed or
not. Secondly, the data collected represents different examination perspectives
of single instances.

As a practical enhancement to our system we implemented a voting based
classification system to reduce the possibility of speech meaning loss by tilting the
model in favor of less meaning loss at the expense of missed removal of blocked
segments. This also was interesting in outcome and continued such explorations
would likely bring practical usability enhancements to the system.

A specific use of a system such as the one presented in this work is to remedy
a disfluent speech with blocks for a speaker who wishes to make his (or her)
speech easy to listen to and better understood. Remediation makes a speech
easier to listen to with minimal inconvenience to the listener and minimal need
for re-recording.

The concept of single action based intelligent solutions can help systems
utilize compartmentalized machine learning and classification solutions. Such
scope-specific machine-learned actions can provide lightweight and fast inde-
pendent action prediction tool that can be chained together for more complex
tasks. The process of utilizing the use of multiple perspectives can be employed
to optimize and devise an adaptive approach to data gathering, where the data
collection method and scope are optimized according to the metadata and con-
dition of the subject on hand.

In future work, we recommend utilizing various extraction thresholds to fine
tune the feature collection to the speech condition, which would better stream-
line the remediation process. Another extension to disfluent speech remediation
would be to eliminate speech interjections by identifying the voiced and un-
voiced segments of speech and then singling out those voiced sound segments
with interjection episode characteristics for removal.
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