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1 Introduction

As the World Wide Web becomes a major means in disseminating and sharing infor-
mation, there has been an exponential increase in the amount of data in web-compliant
format such as HyperText Markup Language (HTML) and Extensible Markup Lan-
guage (XML). XML is essentially a textual representation of the hierarchical (tree-like)
data where a meaningful piece of data is bounded by matching starting and ending tags,
such askname> and</name> . Due to the simplicity of XML as compared to SGML
and the expressiveness of XML as compared to HTML, XML has become the most
popular format for information representation and data exchange.

To cope with the tree-like structure in the XML model, many XML-specific query
languages have been proposed(e.g., XPatid XQuery [4]). All these query languages
aim at the exact matching of query conditions. Answers are found when those XML
documents match the given query conditiexactly However, this may not always
be the case in the XML model. To remedy this condition, we propose a cooperative
query answering framework that derivaggproximateanswers by relaxing query condi-
tions tolessrestricted forms. Query relaxation has been successfully used in relational
databases (e.g., [7], [6], [5], [12], [24]) and is important for the XML model because:

1. Unlike the relational model where users are given a relatively small-sized schema
to ask queries, the schema in the XML model is substantially bigger and more
complex. As a result, it is unrealistic for users to understand the full schema and to
compose complex queries. Thus, it is desirable to relax the user’'s query when the
original query yields null or not sufficient answers.

2. As the number of data sources available on the web increases, it becomes more
common to build systems where data are gathered from heterogeneous data sources.
The structures of the participating data source may be different even though they
use the same ontologies about the same contents. Therefore, the need to be able to
query differently-structured data sources becomes more important(e.g., [14], [15]).
Query relaxation allows a query to be structurally relaxed and routed to diverse data
sources with different structures.

Query relaxation in the relational model focuses on value aspects. For example,
for a relational queryfind a person with a salary range 50K-55Kif there are no
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answers or insufficient results available, the query can be relax&thtba person

with a salary range 45K-60K.In the XML model, in addition to the value relaxation,

a new type of relaxation callestructure relaxationis introduced, which relaxes the
structure conditions in a query. Structure relaxation introduces new challenges to the
guery relaxation in the XML model.

The rest of the paper is organized as follows. We first introduce the foundation
for XML relaxation including data model, query model, and query relaxation types.
We then represent an XML query relaxation approach by transforming XML schema
to relational schema and relaxing queries in the relational environment. We discuss
the advantages and limitations of this approach. Next, we present a new XML query
relaxation paradigm called cooperative (with users) XML query answering that places
users and their demands in the center of design approach. This framework includes
a relaxation-enabled query language, a relaxation index structure that provides user-
desired relaxation control, and a ranking model that combines content and structure
similarities in evaluating the overall relevancy of approximate answers returned from
query relaxation. After this, we present a scalable and extensible mediator architecture
for cooperative XML (CoXML) query answering and a CoXML testbed. Finally, we
discuss the evaluation of the performance of the proposed CoXML query relaxation
methodology.

2 Foundation of XML Relaxation

2.1 XML Data Model

We model an XML document as an ordered, labeled tree where each element is repre-
sented as a hode and each element-to-sub-element relationship is represented as an edge
between the corresponding nodes. We represent each data asdetriple id, label,

<text>), whereid uniquely identifies the nodégbel is the name of the corresponding
element or attribute, anxtis the corresponding element’s text content or attribute’s
value.Textis optional because not every element has a text content.
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Fig. 1. A sample XML data tree



Fig. 1 presents a sample XML data tree describing an article’s information. Each
circle represents a node with the nddenside the circle andhabel beside the circle.
The text of each node is represented in italic at the leaf level.

Due to the hierarchical nature of the XML data model, we consider the text of a data
nodew as part of the text of any af's ancestor nodes in the data tree. For example, in
the sample XML data tree (Fig. 1), the no8lés an ancestor of the node Thus, the
text of the nodé) (i.e., “Algorithms for mining frequent itemsets.).I's considered part
of the text of the nod8.

2.2 XML Query Model

A fundamental construct in most existing XML query languages is the tree-pattern
query ortwig, which selects elements and/or attributes with a tree-like structure. In
this paper, we use the twig as our basic query model. Similar to the tree representation
of XML data, we model a query twig as a rooted tree. More specifically, a query twig
T is a tuple toot, V, E), where

— root is the root node of the twig;

— V is the set of nodes in the twig, where each node is a tighdgbel, <cont>),
whereid uniquely identifies the nodéabel is the name of the corresponding ele-
ment or attribute. andontis the content condition on the corresponding nadet
is optional because not every query node may have a content condition;

— The content condition for a query node is either a Database-style value constraint
(e.g., a Boolean condition such as equality, inequality or range constraint) or an
IR-style keyword search. A IR-style content condition consists of a set of terms,
where each term is either a single word or a phrase. Each term may be prefixed
with modifiers, such as “+” or “-” for specifying preferences or rejections over the
term. An IR-style content condition is to be processed in a non-Boolean style;

— Eis the set of edges in the twig. An edge from nogtes to $v, denoted aBgy, gy
represents either a parent-to-child (i.e., “/") or an ancestor-to-descendant (i.e., “//")
relationship between the nodés and$v;

Given a twigT’, we us€l.root, T.V andT.E to represent its root, nodes and edges
respectively. Given a nodg in the twigT (i.e.,v € T.V), we uselv.id, $v.label and
$v.cont to denote the unique ID, the name, the content condition (if any) of the node
respectively. The IDs of the nodes in a twig can be skipped when the labels of all the
nodes are distinct.

For example, Fig. 2 illustrates a sample twig, which searches for articles with a
title on “data mining, a year in2000and a body section aboufréquent itemset al-
gorithms” In this query, the user has a preference over the &igorithm The twig
consists of five nodes, where each node is associated with an tidioent to the node.

The text under a twig node, shown in italic, is the content or value condition on the
node.

The terms “twig” and “query tree” will be used interchangeably throughout this
paper.

2 To distinguish a data node from a query node, we prefix the notation of a query node with a $.
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mining”
“frequent itemset”,
+algorithms

Fig. 2. A sample XML twig

2.3 XML Query Answer

With the introduction of XML data and query models, we shall now introduce the defi-
nition of an XML query answer. An answer for a query twig is a set of data nodes that
satisfy both the structure and content conditions in the twig. We formally define a query
answer as follows:

Definition 1. Query AnswelGiven an XML data treé® and a query twid’, an answer
for the twigT', denoted asd%, is a set of nodes in the dafa such that

— V$u € T.V, there exists an unique data nodén A% s.t.$u.label = u.label. Also
if $u.cont # null and$u.cont is a Database-style value constraint, then the text of
the data node:.text satisfies the value constraint.df..cont # null and $u.cont
is an IR-style content condition, then the textiakxt should contain all the terms
that are prefixed with “+” in $u.cont and must not contain any terms that are
prefixed with “-” in $u.cont;

— Veg, 5o € T.E, letu andv be the data nodes id% that correspond to the query
node $u and $v respectively, then the structural relationship betweeand v
should satisfy the edge constrai, g, .

For example, given the twig in Fig. 2, the set of nod&s2, 6, 7, § in the sample
XML data tree( Fig. 1) is an answer for the query, which matches the query f6des
$2, $3, $4, $5% respectively. Similarly, the set of nodé€s, 2, 6, 7, 12 is also an answer
to the sample query. Although the text of the data ntitleontain the phrasdrequent
itemset’, it does not contain the teralgorithm which is prefixed with “+”. Thus, the
set of data node§l, 2, 6, 7, 10 is not an answer for the twig.

2.4 XML Query Relaxation Types

In the XML model, there are two types of query relaxatiorsue relaxatiorandstruc-

ture relaxation A value relaxation expands a value scope to allow the matching of addi-
tional answers. A structure relaxation, on the other hand, derives approximate answers
by relaxing the constraint on a node or an edge in a twig. Value relaxation is orthogonal
to structure relaxation. In this paper, we focus on structure relaxation.



Many structure relaxation types have been proposed ([15], [26], [2]). We use the
following three types, similar to the ones proposed in [2], which capture most of the
relaxation types used in previous work.

— Node Relabel
With this relaxation type, a node can be relabeled to similar or equivalent labels ac-
cording to domain knowledge. We us€ ($u, 1) to represent a relaxation operation
that renames a nodi to labell. For example, the twig in Fig. 2 can be relaxed to
that in Fig. 3(a) by relabeling the nodectionto paragraph

— Edge Generalization
With an edge relaxation, a parent-to-child edge (/') in a twig can be generalized
to an ancestor-to-descendant edge (/). We gts€(eg,, s,) to represent a gener-
alization of the edge between nodesand$v. For example, the twig in Fig. 2 can
be relaxed to that in Fig. 3(b) by relaxing the edge between nooldgandsection

— Node Deletion
With this relaxation type, a node may be deleted to derive approximate answers.
We usedel($v) to denote the deletion of a no8e. When$wv is a leaf node, it can
simply be removed. Whe$w is an internal node, the children of noie will be
connected to the parent 86 with ancestor-descendant edges (“//"). For instance,
the twig in Fig. 2 can be relaxed to that in Fig. 3(c) by deleting the internal node
body Since the root node in a twig is a special node representing the search context,
we assume that any twig root cannot be deleted.

article article
titte  year body tit‘le ye‘ar bo‘(‘jy article
| _ .
“dllta 20‘00 pafa?raph “data 2000 Section t”|'e ye‘ar SeCt"O“
mining” mining”
ning “frequent ning “frequent “‘data 2000 “frequent
itemset”, itemset”, mining” itemset”,
+algorithms +algorithms +algorithms
(a)Node relabel (b)Edge generalization (c)Node delete

Fig. 3. Examples of structure relaxations for Fig. 2

Given a twigT', arelaxed twigcan be generated by applying one or more relaxation
operations tdl'. Let m be the number of relaxation operations applicabl@'tghen
there are at mos(t’f) + ..+ (Z) = 2™ relaxation operation combinations. Thus, there
are at mos2™ relaxed twigs.

3 XML Query Relaxation Based on Schema Conversion

One approach to XML query relaxation is to convert XML schema, transform XML
documents into relational tables with the converted schema, and then apply relational



query relaxation techniques. A schema conversion tool, called XPR&8IF(ocessing

and Relaxation in Elational SorageSystem) has been developed for these purposes:
XML documents are mapped into relational formats so that queries can be processed
and relaxed using existing relational technologies. Fig. 4 illustrates the query relaxation
flow via the schema conversion approach. This process first begins by extracting the
schema information, such as DTD, from XML documents via tools such as XML Spy

3. Second, XML schema is transformed to relational schema via schema conversion
(e.g., XPRESS). Third, XML documents are parsed, mapped into tuples, and inserted
into the relational databases. Then relational query relaxation techniques (e.g., CoBase
[6]) can be used to relax query conditions. Further, semi-structured queries over XML
documents are translated into SQL queries. These SQL queries are processed and re-
laxed if there is no answer or there are insufficient answers available. Finally, results in
the relational format are converted back into XML (e.g., the Nesting-based Translation
Algorithm (NeT) & Constraints-based Translation Algorithm (CoT) [18] in XPRESS).
The entire process can be done automatically and is transparent to users. In the fol-
lowing sections, we shall briefly describe the mapping between XML and relational
schema.

extract D10 from XML
1 file
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Fig. 4. The processing flow of XML query relaxation via schema conversion

3.1 Mapping XML Schema to Relational Schema

Transforming a hierarchical XML model to a flat relational model is a non-trivial task
because of the following inherent difficulties: the non-trivial 1-to-1 mapping, exis-
tence of set values, complicated recursion, and/or fragmentation issues. Several research
works have been reported in these areas. [28] mainly focuses on the issues of structural
conversion. The Constraints Preserving Inline (CPI) algorithm [16] considers the se-
mantics existing in the original XML schema during the transformation. CPI inclines

as many descendants of an element as possible into a single relation. It maps an XML
element to a table when there is 1{0; ...} or 1-to{1, ...} cardinality between its par-

ent and itself. The first cardinality has the semantics of “any,” denoted by * in XML.

% http://www.xmlspy.com



The second means “at least,” denoted by +. For example, consider the following DTD
fragment:

<IELEMENT author (nhame, address)>
<IELEMENT name (firsthame?, lastname)>

A naive algorithm will map every element into a separate table, leading to excessive
fragmentation of the document, as follows:

author (address, name_id)
name (id, firsthame, lastname)

The CPI algorithm converts the DTD fragment above into a single relational table
asauthor(firstname, lastname, address).

CPI Relational Schema
DD »hybri d() g —@{elational Schema
I@ Fi ndConst r ai nt s( )I ‘@ntegrity ConstrainD

Fig. 5. Overview of the Constraint Preserving Inline (CPI) Algorithm

In addition, semantics such as #REQUIRED in XML can be enforced in SQL with
NOT NULL. Parent-to-child relationships are captured with KEYS in SQL to allow join
operations. Fig. 5 overviews the CPI algorithm, which utilizes a structure-based con-
version algorithm, i.e., hybrid algorithm [16], as a basis and identifies various semantic
constraints in the XML model. The CPI algorithm has been implemented in XPRESS,
which reduces the number of tables generated while preserving most constraints.

3.2 Mapping Relational Schema to XML Schema

After obtaining the results in the relational format, we may need to represent them in
the XML format before returning them back to users. To this end, XPRESS developed
a Flat Translation (FT) algorithm [17], which translates tables in a relational schema
to elements in an XML schema and columns in a relational schema to attributes in an
XML schema. Since FT translates the “flat” relational model to a “flat” XML model in

a one-to-one manner, it does not utilize basic “non-flat” features provided by the XML
model such as representing sub-elements though regular expression operator (e.g., “*”
and “+"). As a result, the NeT algorithm [18] is proposed to decrease data redundancy
and obtains a more intuitive schema by: 1) removing redundancies caused by multi-
valued dependencies; and 2) performing grouping on attributes. The NeT algorithm,
however, considering tables one at a time, cannot obtain an overall picture of the rela-
tional schema where many tables are interconnected with each other through various



other dependencies. The CoT algorithm [18] uses Inclusion Dependencies (INDs) of

relational schema, such as foreign key constraints, to capture the interconnections be-
tween relational tables and represent them via parent-to-child hierarchical relationships
in the XML model.

Query relaxation via schema transformation (e.g., XPRESS) has the advantage of
leveraging on the well-developed relational databases and relational query relaxation
techniques. Information, however, may be lost during the decomposition of hierarchi-
cal XML data into “flat” relational tables. For example, by transforming the following
XML schema into the relational schema author (firsthame, lastname, address), we lose
the hierarchical relationship between elemauthorand elemenbhame as well as the
information that elemerfirstnameis optional.

<IELEMENT author (name, address)>
<IELEMENT name (firsthame?,lastname)>

Further, this approach does not support structure relaxations in the XML data model.
To remedy these shortcomings, we shall perform query relaxation on the XML model
directly, which will provide both value relaxation and structure relaxation.

4 A Cooperative Approach for XML Query Relaxation

Query relaxation is often user-specific. For a given query, different users may have
different specifications about which conditions to relax and how to relax them. Most
existing approaches on XML query relaxation (e.g., [2]) do not provide control during
relaxation, which may yield undesired approximate answers. To provide user-specific
approximate query answering, it is essential for an XML system to have a relaxation
language that allows users to specify their relaxation control requirements and to have
the capability to control the query relaxation process.

Furthermore, query relaxation usually returns a set of approximate answers. These
answers should be ranked based on their relevancy to both the structure and content con-
ditions of the posed query. Most existing ranking models (e.g., [21], [11]) only measure
the content similarities between queries and answers, and thus are inadequate for rank-
ing approximate answers that use structure relaxations. Recently, [3] proposed a family
of structure scoring functions based on the occurrence frequencies of query structures
among data without considering data semantics. Clearly, using the rich semantics pro-
vided in XML data in design scoring functions can improve ranking accuracy.

To remedy these shortcomings, we propose a new paradigm for XML approximate
query answering that places users and their demands in the center of design approach.
Based on this paradigm, we develop a cooperative XML system that provides user-
specific approximate query answering. More specifically:

First, we develop a relaxation language that allows users to specify approximate
conditions and control requirements in queries (e.g., preferred or unacceptable relax-
ations, non-relaxable conditions and relaxation orders).

Second, we introduce a relaxation index structure that clusters twigs into multi-
level groups based on relaxation types and their distances. Thus, it enables the system
to control the relaxation process based on users’ specifications in queries.



Third, we propose a semantic-based tree editing distance to evaluate XML structure
similarities, which is based on not only the number of operations but also the operation
semantics. Furthermore, we combine structure and content similarities in evaluating the
overall relevancy.
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Fig. 6. The CoXML system architecture

In Fig.6, we present the architecture of our cooperative XML (CoXML) query an-
swering system. The system contains two major parts: off-line components for build-
ing relaxation indexes and online components for processing and relaxing queries, and
ranking results.

— Building relaxation indexes
TheRelaxation Index Buildezonstructs relaxation indexesM{. T ype Abstraction
Hierarchy (XTAH), for a set of document collections.

— Processing, relaxing queries and ranking results
When a user posts a query, tRelaxation Engindirst sends the query to afML
Database Enginéo search for answers that exactly match the structure conditions
and approximately satisfy the content conditions in the query. If enough answers
are found, theRanking Moduleranks the results based on their relevancy to the
content conditions and returns the ranked results to the user. If there are no answers
or insufficient results, then thRelaxation Engingbased on the user-specified re-
laxation constructs and controls, consults the relaxation indexes for the best relaxed
guery. The relaxed query is then resubmitted toXhMi. Database Engint search
for approximate answers. Tiranking Moduleanks the returned approximate an-
swers based on their relevancies to both structure and content conditions in the
query. This process will be repeated until either there are enough approximate an-
swers returned or the query is no longer relaxable.



The CoXML system can run on top of any existing XML database engine (e.g.,
BerkeleyDB, Tamin®, DB2XML®) that retrieves exactly matched answers.

5 XML Query Relaxation Language

A number of XML approximate search languages have been proposed. Most extend
standard query languages with constructs for approximate text search (e.g., XIRQL
[11], TeXQuery [1], NEXI [30]). For example, TeXQuery extends XQuery with a rich
set of full-text search primitives, such as proximity distances, stemming and thesauri.
NEXI introducesaboutfunctions for users to specify approximate content conditions.
XXL [29] is a flexible XML search language with constructs for users to specify both
approximate structure and content conditions. It, however, does not allow users to con-
trol the relaxation process. Users may often want to specify their preferred or rejected
relaxations, non-relaxable query conditions, or to control the relaxation orders among
multiple relaxable conditions.

To remedy this shortcoming, we propose an XML relaxation language that allows
users to both specify approximate conditions and to control the relaxation process. A
relaxation-enabled que is a tuple ¢, R, C, S), where:

— 7 is atwig as described as Section 2.2;

— R is a set of relaxation constructs specifying which conditiong imay be ap-
proximated when needed;

— C is a boolean combination of relaxation control stating how the query shall be
relaxed;

— Sis a stop condition indicating when to terminate the relaxation process.

The execution semantics for a relaxation-enabled query is: we first search for an-
swers that exactly match the query; we then test the stop condition to check whether
relaxation is needed. If not, we repeatedly relax the twig based on the relaxation con-
structs and control until either the stop condition is met or the twig cannot be further
relaxed.

Given a relaxation-enabled que®; we useQ.7, Q. R, Q.C and Q.S to represent
its twig, relaxation constructs, control and stop condition respectively. Note that a twig
is required to specify a query, while relaxation constructs, control and stop condition are
optional. When only a twig is present, we iteratively relax the query based on similarity
metrics until the query cannot be further relaxed.

A relaxation construct for a querg is either a specific or a generic relaxation
operation in any of the following forms:

— rel(u, —), whereu € Q.7 .V, specifies that node may be relabeled when needed;

— del(u), whereu € Q.7 .V, specifies that node may be deleted if necessary;

— gen(eyr), Wheree,, , € Q.7 .E, specifies that edgs, , may be generalized when
needed.

4 http://www.sleepycat.com/
5 http://www.softwareag.com/tamino
5 www.ibm.com/software/data/db2/



The relaxation control for a queid is a conjunction of any of the following forms:

— Non-relaxable conditionr, wherer € {rel(u, —), del(u), gen(e, ) | u, v €
Q.7T.V, e, € QT.E}, specifies that node cannot be relabeled or deleted, or
edgee,, , cannot be generalized;

— Prefer(u,ly,...,l,), whereu € Q. 7.V andl; is a label (1< i < n), specifies that
nodeu is preferred to be relabeled to the labels in the ordetof (,1,,);

— Reject(u,ly,...,1,), whereu € Q.7.V, specifies a set of unacceptable labels for
nodeu;

— RelaxOrder(ry,...,mn), Wherer; € QR (1 < i < n), specifies the relaxation
orders for the constructs iR to be 1, ...,r,);

— UseRType(rty, ..., rt), wherert; € {noderelabel, nodedelete, edggyeneralize
(1 <i <k < 3), specifies the set of relaxation types allowed to be used. By default,
all three relaxation types may be used.

A stop conditionS is either:

— AtLeast(n), wheren is a positive integer, specifies the minimum number of an-
swers to be returned; or

- d(Q.7,7T") < 7, whereT” stands for a relaxed twig anda distance threshold,
specifies that the relaxation should be terminated when the distance between the
original twig and a relaxed twig exceeds the threshold.

article $1 R={gen(ey, ), del($3)}
tile $2 year $3 body $4  C='del($4) Dlgen(eyq) U'gen(ey s0) U
‘ ‘ | UseRType(node _delete, edge_generalize)
“data 2000 Section $5  S= Atl east(20)
mining”

“frequent itemset”,
+algorithms

Fig. 7. A sample relaxation-enabled query

Fig. 7 presents a sample relaxation-enabled query. The minimum number of answers
to be returned is 20. When relaxation is needed, the edge bebeegandsectionmay
be generalized and nogiearmay be deleted. The relaxation control specifies that node
bodycannot be deleted during relaxation. For instancgaionabout ‘frequent item-
set in an article’s appendix part is irrelevant. Also, the edge between rardiete and
title and the edge between nodeticle andbodycannot be generalized. For instance,
an article with a reference to another article that possesses a titidate rhining is
irrelevant. Finally, onlyedge generalizatioandnode deletiortan be used.

We now present an example of using the relaxation language to represent query
topics in INEX 057. Fig. 8 presents Topic 267 with three padastitle(i.e., the query
formulated in an XPath-like syntaxjescriptionandnarrative Thenarrative part de-
scribes a user’s detailed information needs and is used for judging result relevancy.

7 Initiative for the Evaluation of XML retrieval http://inex.is.informatik.uni-duisburg.de/



<inex_topic topic_id="267" query_type="CAS" ct_nd2'3" >
<castitle>//article//fm//atl[about(., "digital liaries")]</castitle>
<description>Articles containing "digital librariem their title.</description>
<narrative>I'm interested in articles discussinggifali Libraries as their main subjeqt.
Therefore | require that the title of any relevantiicle mentions "digital library" explicitly
Documents that mention digital libraries only untie bibliography are not relevant, as well
as documents that do not have the phrase "digitalry" in their title.</narrative>
</inex_topic>

Fig. 8. Topic 267 in INEX 05

The user considers an article’s titlatl) non-relaxable and regards titles about “digital
libraries” under the bibliography patbl) irrelevant. Based on this narrative, we formu-
late this topic using the relaxation language as shown in Fig. 9. The query specifies that
nodeatl cannot be relaxed (either deleted or relabeled) and frndannot be relabeled

to bb.

aﬂhcle $1  C=1rel($3, -) O'del($3) OReject($2, bh)

frl‘ln $2
altl $3

“digital libraries”

Fig. 9. Relaxation specifications for topic 267

6 XML Relaxation Index

Several approaches for relaxing XML or graph queries have been proposed ([15], [3],
[23], [2], [22]). Most focus on efficient algorithms for deriving top-k approximate an-
swers without relaxation control. For example, [3] proposed a DAG structure that orga-
nizes relaxed twigs based on their “consumption” relationships. Each node in a DAG
represents a twig. There is an edge from tWig to twig 75 if the answers fofl'z
is a superset of those fd@r,. Thus, the twig represented by an ancestor DAG node is
always less relaxed and thus closer to the original twig than the twig represented by a
descendant node. Therefore, the DAG structure enables efficient top-k searching when
there are no relaxation specifications. When there are relaxation specifications, the ap-
proach in [3] can also be adapted to top-k searching by adding a postprocessing part that
checks whether a relaxed query satisfies the specifications. Such an approach, however,
may not be efficient when relaxed queries do not satisfy the relaxation specifications.
To remedy this condition, we propose an XML relaxation index structure, XTAH,
that clusters relaxed twigs into multi-level groups based on relaxation types used by
the twigs and distances between them. Each group consists of twigs using similar types



of relaxations. Thus, XTAH enables a systematic relaxation control based on users’
specifications in queries. For examplgjectcan be implemented by pruning groups
of twigs using unacceptable relaxatioRelaxOrdercan be implemented by scheduling
relaxed twigs from groups based on the specified order.

In the following, we first introduce XTAH and then present the algorithm for build-
ing an XTAH.

6.1 XML Type Abstraction Hierarchy - XTAH

Query relaxation is a process that enlarges the search scope for finding more answers.
Enlarging a query scope can be accomplished by viewing the queried object at different
conceptual levels.

In the relational database, a tree-like knowledge representation called Type Abstrac-
tion Hierarchy (TAH) [6] is introduced to provide systematic query relaxation guidance.
A TAH is a hierarchical cluster that represents data objects at multi levels of abstrac-
tions, where objects at higher levels are more general than objects at lower levels. For
example, Fig. 10 presents a TAH for brain tumor sizes, in which a medium tumor size
(i.e., 3mm - 10mm) is a more abstract representation than a specific tumor size (e.g.,
10mm). By such multi-level abstractions, a query can be relaxed by modifying its con-
ditions viageneralization(moving up the TAH) andpecialization(moving down the
TAH). In addition, relaxation can be easily controlled via TAH. For examREJECT
of a relaxation can be implemented by pruning the corresponding node from a TAH.

all

0 ... 3mm 3mm 4mm 10mm 10mm ... 15mm

Fig. 10.A TAH for brain tumor size

To support query relaxation in the XML model, we propose a relaxation index struc-
ture similar to TAH, called XML Type Abstraction Hierarchy (XTAH). An XTAH for a
twig structurel’, denoted a( T, is a hierarchical cluster that represents relaxed twigs
of T' at different levels of relaxations based on the types of operations used by the twigs
and the distances between them. More specifically, an XTAH is a multi-level labeled
cluster with two types of nodes: internal and leaf nodes. A leaf node is a relaxed twig
of T. An internal node represents a cluster of relaxed twigs that use similar operations
and are closer to each other by distance. The label of an internal node is the common
relaxation operations (or types) used by the twigs in the cluster. The higher level an
internal node in the XTAH, the more general the label of the node, the less relaxed the
twigs in the internal node.

XTAH provides several significant advantages: 1) we can efficiently relax a query
based on relaxation constructs by fetching relaxed twigs from internal nodes whose la-
bels satisfy the constructs; 2) we can relax a query at different granularities by traversing



up and down an XTAH; and 3) we can control and schedule query relaxation based on
users’ relaxation control requirements. For example, relaxation control such as non-
relaxable conditions, Reject or UseRType can be implemented by pruning XTAH inter-
nal nodes corresponding to unacceptable operations or types.

[Twig T article $1 1, relax
title $2 year $3 bo‘dy $4
 ation]
section $5 edge_generalizationl; 1, node_relabel %
1, {gen(ey s} I,_(_g_e_n_ J_ﬁ)_)___ 1, {del($3)} 1,5 {del($4)}
Tagde | e S /N L N e »\
gen(g,, ; T,, article T,. article | l=s {del($3), —
" Ty article 10 15 o | Tos article
title year bod: g artic en(g, 25
¥ I_y T~ yﬁ)dy tit@dy oeni s TSN
sectiol title year body | | title year sectior|
- se;io sectio sectiol
T, arficle

Ty article
title year b(ildy

title bcildy

secton T g » Virtual links

sectio

Fig. 11.An example of XML relaxation index structure for the twig

Fig. 11 shows an XTAH for the sample twig in Fig. 3¢for ease of reference, we
associate each node in the XTAH with an unique ID, where the IDs of internal nodes
are prefixed witH and the IDs of leaf nodes are prefixed with

Given a relaxation operatian let I, be an internal node with a labél}. That is,

I,. represents a cluster of relaxed twigs whose common relaxation operatioBug

to the tree-like organization of clusters, each relaxed twig belongs to only one cluster,
while the twig may use multiple relaxation operations. Thus, it may be the case that
not all the relaxed twigs that use the relaxation operatiare within the groug,.. For
example, the relaxed twig@,, which uses two operationgn(eg; g2) andgen(egs gs5),

is not included in the internal node that represégs (eg, s5)}, I7. This is because,

may belong to either groupy, or groupI; but is closer to the twigs in groufy.

To support efficient searching or pruning of relaxed twigs in an XTAH that use an
operationr, we add a virtual link from internal nodg to internal nodd;, wherel is
not a descendant df. but all the twigs within/;, use operatiom. By doing so, relaxed
twigs that use operation are either within groug.. or within the groups connected
to I, by virtual links. For example, internal node is connected to internal nodés;
andIss via virtual links. Thus, all the relaxed twigs using the operatjen(eg, g5) are
within the groupd, I and/ss.

6.2 Building an XTAH

With the introduction of XTAH, we now present the algorithm for building the
XTAH for a given twigT'.

8 Due to space limit, we only show part of the XTAH here.



Algorithm 1 Building the XTAH for a given twigl"
Input: 7' atwig
K: domain knowledge about similar node labels
Output: XTr7: an XTAH for T
1: ROr «— GetRelaxOperationg, K) {GetRelaxOperations(T, K) returns a set of relax-
ation operations applicable to the twigbased on the domain knowledge}
2: let XTr be a rooted tree with four nodes: a root nodelax with three child nodes
noderelabel, nodedelete and edggeneralization
: for each relaxation operatione ROt do
rtype «— the relaxation type of
InsertXTNode(relax /rtype, {r}) {InsertXT Node(p,n) inserts noden into X7r
under pathp}
T’ « the relaxed twig using operation
InsertXTNode(relaz /rtype/{r}, T')
: end for
9: for k=2to|ROr| do
10: Sy < all possible combinations of k relaxation operation&i@
11:  for each combination € S), do

akrw

© N2

12: lets={ri, ...,7%}

13: if the set of operations inis applicable tdl’ then

14: T’ + the relaxed twig using the operationssin

15: I; — the node representing-{r;} (1 <i < k)

16: I; «— the node s.tvi, d(T", I;) < d(T',I;) (1 <i,j <Kk)

17: InsertXTNode(/l;, {r1,...,7x})

18: InsertXTNode(/;/{r1,...,mx}, T")

19: AddVLink(//{r;}, I1I;) {AddV Link(p1, p2) adds a virtual link from the node un-
der pathp, to the node under pat }

20: end if

21: endfor

22: end for

In this subsection, we assume that a distance function is available that measures the
structure similarity between twigs. Given any two twifisand 75, we used(71, 1)
to represent the distance between the two twigs. Given afwdgd an XTAH internal
nodel, we measure the distance between the twig and the internal d@d,), as the
average distance betwe®rand any twigl” covered byi.

Algorithm 1 presents the procedure of building the XTAH for tWign a top-down
fashion. The algorithm first generates all possible relaxations applicablé€ltme 1).
Next it initializes the XTAH with the top two level nodes (Line 2). In Line 3-8, the
algorithm generates relaxed twigs using one relaxation operation and builds indexes on
these twigs based on the type of the relaxation used: for each relaxation operation
it first adds a node to representthen inserts the node into the XTAH based G
type, and places the relaxed twig usingnder the node. In Line 9-22, the algorithm
generates relaxed twigs using two or more relaxations and builds indexes on these twigs.
Let s be a set ok relaxation operations (k 2), 77 a relaxed twig using the operations
in s, andI an internal node representing Adding nodel into the XTAH is a three-
step process: 1) it first determinés parent in the XTAH (Line 16). In principle, any



internal node that uses a subset of the operationscanm bel’s parent. The algorithm
selects an internal nodg to beI’s parent if the distance betwe&t andI; is less than
the distance betweeR and other parent node candidates; 2) it then connects htue
its parentl; and adds a leaf node representifigo node! (Line 17-18); and 3) finally,
it adds a virtual link from the internal node representing the relaxation opergtian
node! (Line 19), where-; is the operation that occurs in the labellabut not in label
of its parent nodd;.

7 Query Relaxation Process

7.1 Query Relaxation Algorithm

Algorithm 2 Query Relaxation Process
Input: X7Tr:an XTAH
0 ={7,R,C,S}: arelaxation-enabled query
Output: A: a list of answers for the quer®
: A — SearchAnswer).7); {Searching for exactly matched answers (T }
if (the stop conditior@.S is met)then
return.A
end if
if (the relaxation control®.C are non-empty)hen
PruneXTAHX T'r, Q.C) {Pruning nodes irX T+ that contain relaxed twigs using unac-
ceptable relaxation operations based@g }
end if
if the relaxation construci@.R are non-emptyhen
while (Q.S is not met)&&(not all the constructs i@.R have been processedi)
T’ + the relaxed twig fromX T'r that best satisfies the relaxation specificatigh®
& Q.C
11: Insert SearchAnswer() into A
12:  end while
13: end if
14: while (Q.7 is relaxable)&&(@.S is not met)do
15: T’ « the relaxed twig fromX T’r that is closest t@.7 based on distance
16: Insert SearchAnswer() into A
17: end while
18: return A

oahwnhE

© ®©

H
e

Fig. 12 presents the control flow of a relaxation process based on XTAH and re-

laxation specifications in a query. Thelaxation Controlmodule prunes irrelevant

XTAH groups corresponding to unacceptable relaxation operations or types and sched-

ules relaxation operations based Brefer and RelaxOrderas specified in the query.
Algorithm 2 presents the detailed steps of the relaxation process:
1) Given a relaxation-enabled que®y= {7, R, C, S} and an XTAH forQ.7, the

algorithm first searches for exactly matched answers. If there are enough number of
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Fig. 12.Query relaxation control flow

answers available, there is no need for relaxation and the answers are returned (Lines
1-4).

2) If relaxation is needed, based on the relaxation cod6l(Lines 5 - 7), the al-
gorithm prunes XTAH internal nodes that correspond to unacceptable operations such
as non-relaxable twig nodes (or edges), unacceptable node relabels and rejected relax-
ation types. This step can be efficiently carried out by using internal node labels and
virtual links. For example, the relaxation control in the sample query (Fig. 7) speci-
fies that onlynodedeleteandedgegeneralizatiormay be used. Thus, any XTAH node
that usesnoderelabel either within grouply or connected td, by virtual links, is
disqualified from searching. Similarly, the internal nodes and 1, representing the
operationsiel($4) andgen(eg; o) respectively, are pruned from the XTAH by tRe-
laxation Controlmodule.

3) After pruning disqualified internal groups, based on relaxation constructs and
control, such afkelaxOrderand Prefer, the Relaxation Contromodule schedule and
searches for the relaxed query that best satisfies users’ specifications from the XTAH.
This step terminates when either the stop condition is met or all the constructs have
been processed. For example, the sample query contains two relaxation constructs:
gen(egy g5) anddel($3). Thus, this step selects the best relaxed query from internal
groups,/; andly, representing the two constructs respectively.

4) If further relaxation is needed, the algorithm then iteratively searches for the
relaxed query that is closest to the original query by distance, which may use relaxation
operations in addition to those specified in the query. This process terminates when
either the stop condition holds or the query cannot be further relaxed.

5) Finally, the algorithm outputs approximate answers.

7.2 Searching for Relaxed Queries in an XTAH

We shall now discuss how to efficiently search for the best relaxed twig that has the
least distance to the query twig from its XTAH in Algorithm 2.

A brute force approach is to select the best twig by checking all the relaxed twigs at
the leaf level. For a twig" with m relaxation operations, the number of relaxed twigs
can be up t@2™. Thus, the worst case time complexity for this approact{8™),
which is expensive.



To remedy this condition, we propose to assign representatives to internal nodes,
where a representative summarizes the distance characteristics of all the relaxed twigs
covered by a node. The representatives facilitate the searching for the best relaxed twig
by traversing an XTAH in a top-down fashion, where the path is determined by the
distance properties of the representatives. By doing so, the worst case time complexity
of finding the best relaxed querydsdx=h), whered is the maximal degree of an XTAH
node and: is the height of the XTAH. Given an XTAH for a twi@f with m relaxation
operations, the maximal degree of any XTAH node and the depth of the XTAH are both
O(m). Thus, the time complexity of the approacltiém?), which is far more efficient
than the brute force approad (2™)).

In this paper, we use M-tree [8] for assigning representatives to XTAH internal
nodes. M-tree provides an efficient access method for similarity search in the “metric
space,” where object similarities are defined by a distance function. Given a tree orga-
nization of data objects where all the data objects are at the leaf level, M-tree assigns
a data object covered by an internal ndd be the representative object bfEach
representative object stores the covering radius of the internal node, i.e., the maximal
distance between the representative object and any data object covered by the internal
node. These covering radii are then used in determining the path to a data object at the
leaf level that is closest to a query object during similarity searches.

8 XML Ranking

Query relaxation usually generates a set of approximate answers, which need to be
ranked before being returned to users. A query contains both structure and content con-
ditions. Thus, we shall rank an approximate answer based on its relevancy to both the
structure and content conditions of the posed query. In this section, we first present how
to compute XML content similarity, then describe how to measure XML structure rel-
evancy, and finally discuss how to combine structure relevancy with content similarity
to produce the overall XML ranking.

8.1 XML Content Similarity

Given an answex and a queng, the content similarity between the answer and the
query, denoted as castm(A andQ), is the sum of the content similarities between the
data nodes and their corresponding matched query nodes. That is,

cont_sim(A, Q) = Z cont_sim(v, $u) (1)

veEA, $ucQ.7.V, v matches $u

For example, given the sample twig in Fig 2, the set of ndde<, 6, 7, § in the
sample data tree is an answer. The content similarity between the answer and the twig
equals tacont_sim(2, $2) + cont_sim(6, $3) + cont_sim(8, $5).

We now present how to evaluate the content similarity between a data node and a
query node. Ranking models in traditional IR evaluate the content similarity between
a document to a query and thus need to be extended to evaluating the content similar-
ity between a XML data node and a query node. Therefore, we need a new ranking



model for evaluating XML content similarity. To this end, we proposed an extended
vector space model [21] for measuring XML content similarity, which is based on two
conceptsweighted term frequen@ndinverse element frequency

Weighted Term Frequency

Due to the hierarchical structure of the XML data model, the text of a node is also
considered as a part of the ancestor nodes’ text. This introduces the challenge of how
to calculate the content relevancy of an XML data nede a query ternt, wheret
could occur in the text of any node nested within the nod€or example, all three
sectionnodes (i.e., noded 10 and12) in the XML data tree (Fig. 1) contain the phrase
“frequent itemsets” in their text parts. The phrase “frequent itemsets” occurstitehe
part of the node, theparagraphpart in the nodd 0 and thereferencepart in the node
12 respectively. The same term occurring at the different text parts of a node may be of
different weights. For example, a “frequent itemset” in tiie part of asectionnode
has a higher weight than a “frequent itemset” in gagagraphpart of asectionnode,
which in turn is more important than a “frequent itemset” in théerencepart of a
sectionnode. As a result, it may be inaccurate to measure the weight of & terthe
text of a data node by simply counting the occurrence frequency of the teimthe
text of the node without distinguishing the term’s occurrence paths within the node

To remedy this condition, we introduce the concept of “weighted term frequency,”

which assigns the weight of a terimin a data node based on the term’s occurrence
frequency and the weight of tleecurrence pathGiven a data node and a ternt, letp
= v1.v9...v; be anoccurrence patifior the termt in the nodev, wherev,, is a descendant
node ofv, vy, directly contains the terrhandv—uv, —...—wvy, represents the path from
the nodev to the nodeyy,. Letw(p) andw(v;) denote the weight for the pathand the
nodew; respectively. Intuitively, the weight of the path= v;.v2...v, is a function of
the weights of the nodes on the path, ke(p) = f(w(vy), ... w(vg)), with the following
two properties:

1. f(w(v1), w(va), ..., w(xy)) is @ monotonically increasing function with respect to
w(v;) (L <i<Kk);
2. f(w(vy), w(va), ...,w(vs))) = 0ifanyw(v;) =0 (1< i <Kk).

The first property states that the path weight function is a monotonically increasing
function. That is, the weight of a path is increasing if the weight of any node on the
path is increasing. The second property states that if the weight of any node on the path
is zero, then the weight of the path is zero. For any ngdd < i < k) on the pattp,
if the weight of the node; is zero, then it implies that users are not interested in the
terms occurring under the nodg Therefore, any term in the text of either the nage
or a descendant node of is irrelevant.

A simple implementation of the path weight functionff ), w(vs), ...,w(vy)) that
satisfies the properties stated above is to let the weight of a path equal to the product of
the weights of all nodes on the path:

w(p) = H w(v;) (2)



With the introduction of the weight of a path, we shall now define the weighted term
frequency for a termin a data node, denoted asf., (v, t), as follows:

tfw(v,t) = prj ) X tf(v,pj,t) 3)

wherem is the number of paths in the data nodecontaining the termt and
tf(v,p;,t) is the frequency of the termoccurred in the node via the patlp;.

@i
i: nodeid
j: node weight

XML...XML

Fig. 13.An example of weighted term frequency.

For example, Fig. 13 illustrates an example of an XML data tree with the weight
for each node shown in italic beside the node. The weight fokéysvordnode is 5,
i.e., w(keyword) =5. From Equation 2, we have(front matter.keyworfi= 5*1 = 5,
w(body.section.paragraph) = 2*1*1 = 2 andw(back_matter.re ference) = 0*1 =
0, respectively. The frequencies of the term “XML” in the pafitesit_ matter.keyword
body.section.paragraplandback matter.referencare 1, 2 and 1 respectively. There-
fore, from Equation 3, the weighted term frequency for the term “XML” in the data
nodearticle is 5*1+2*2+0*1=9.

Inverse Element Frequency

Terms with different popularity in XML data have different degrees of discriminative
power. It is well known that a term frequendy)(needs to be adjusted by the inverse
document frequencydf) [25]. A very popular term (with a smaidif) is less discrim-
inative than a rare term ( with a largéf). Therefore, the second component in our
content ranking model is the concept of “inverse element frequency,igfewhich
distinguishes terms with different discriminative powers in XML data. Given a g@ery
and a termt, let $u be the node in the twi@.7 whose content condition contains the
termt, i.e.,t € $u.cont. Let DN be the set of data nodes such that each nodehn
matches the structure condition related with the query rfaddntuitively, the more
frequent the termt occurs in the text of the data nodeslinv, the less discriminative
power the ternt has. Thus, the inverse element frequency for the query texam be
measured as:

ief($u,t) = log(% +1) (4)



whereN; denotes the number of nodes in the Bé&{ and N, represents the number
of the nodes in the sé? N that contain the termin their text parts.

For example, given the sample XML data tree (Fig. 1) and the query twig (Fig. 2),
the inverse element frequency for the term “frequent itemset” can be calculated as fol-
low: first, the content condition of the query no$fecontains the term “frequent item-
set”; second, there are three data nodes (i.e., nodes 8, 10 and 12) that match the query
node$5; and third, all the three nodes contain the term in their text. Therefore, the
inverse element frequency for the term “frequent itemset” is log(3/3 + 1) = log2. Sim-
ilarly, since only two nodes (i.e., nodes 8 and 12) contain the term “algorithms,” the
inverse element frequency for the term “algorithms” is log(3/2 + 1) = log(5/2).

Extended Vector Space Model
With the introduction “weighted term frequency” and “inverse element frequency,”

we now first present how we compute the content similarity between a data node and a
query node and then present how we calculate the content similarity between an answer
and a query.

Given a query nod8u and a data node, where the node matches the structure
condition related with the query node:, the content similarity between the nodes
and$u can be measured as follows:

cont_sim(v, $u) = Z w(m(t)) X tf,(v,t) x ief($u,t) (5)

te$u.cont

wheret is a term in the content condition of the notle m(¢) stands for the modi-
fier prefixed with the term (e.g., “+”, “”, “-") and w(m(t)) is the weight for the term
modifier as specified by users.

For example, given theectionnode $5, in the sample twig (Fig. 2), the data node 8
in Fig 1 is a match for the twig nod&. Suppose that the weight for a ‘+’ term modifier
is 2 and the weight for thétle node is 5 respectively. The content similarity between
the data nod& and the twig node$5 equals tot f,,(8, “frequent itemset) xie f ($5,
“frequent itemset) + w(‘+') xt f,(8, “algorithms”) xie f($5, “algorithms”), which
is 5 x log2 + 2 x 5 x log(5/2) = 18.22. Similarly, the data nodeis a match for
the twig nodetitle (i.e., $2) and the content similarity between them:j5, (2, “data
mining”) xief($2, “data mining”) = 1.

Discussions

The Extended Vector Space Model has shown to be very effective in ranking con-
tent similarities of SCAS retrieval results[21]. SCAS retrieval results are usually
of relatively similar sizes. For example, for the twig in Fig 2, suppose that the node
sectionis the target node, i.e., whose matches are to be returned as answers. All the
SCAS retrieval results for the twig will be sections inside article bodies. Results that
approximately match the twig, however, could be nodes otherdbationnodes, such

%n a SCAS retrieval task, structure conditions must be matched exactly while content condi-
tions are to be approximately matched.



asparagraph bodyor article nodes, which are of varying sizes. Thus, to apply the ex-
tended vector space model for evaluating content similarities of approximate answers
under this condition, we introduce the factor of “weighted sizes” into the model for
normalizing the biased effects caused by the varying sizes in the approximate answers
[19]:

cont_sim(A, Q) = Z cont_sim(v, $u) 6)

logawsize(v)
veEA, $ucQ.7.V, v matches $u

wherewsize(v) denotes the weighted size of a data node

Given an XML data node, wsize(v) is the sum of the number of terms directly
contained in node’s text, size(v.text), and the weighted size of all its child nodes
adjusted by their corresponding weights, as shown in the following equations.

wsize(v) = size(v.text) Z wsize(v;) * w(v;) (7)

v; s.t.v|v;

For example, the weighted size of th@ragraphnode equals to the number of terms
in its text part. This is because tharagraphnode does not have any child node.

Our normalization approach is similar to the scoring formula proposed in [10],
which uses the log of a document size to adjust the produgct ahdidyf.

8.2 Semantic-based Structure Distance

The structure similarity between two twigs can be measured using tree editing distance
(e.g., [31]), which is frequently used for evaluating tree-to-tree similarities. Thus, we
measure the structure distance between an andwed a queng, struct_dist(A, Q),

as the editing distance between the t@d” and the least relaxed twiff/, d(Q.7,T"),

which is the total costs of operations that rel@x7” to 7":

struct_dist(A, Q) = d(Q.7,T") = Z cost(r;) (8)

where{ry, ..., i} is the set of operations that relax@s7 to 7”; and cost(r;) (0 <
cost(r;) < 1) is equal to the cost of the relaxation operatigiil < i < k).

Existing edit distance algorithms do not consider operation cost. Assigning equal
cost to each operation is simple, but does not distinguish the semantics of different
operations. To remedy this condition, we propose a semantic-based relaxation operation
cost model.

We shall first present how we model the semantics of XML nodes. Given an XML
datasetD, we represent each data nodeas a vecto{w;, w;sa, ..., w;y }, where N
is the total number of distinct terms i andw;; is the weight of thej*" term in the
text of v;. The weight of a term may be computed usiftifdf [25] by considering each
node as a “document.” With this representation, the similarity between two nodes can
be computed by the cosine of their corresponding vectors. The greater the cosine of the
two vectors, the semantically closer the two nodes.

We now present how to model the cost of an operation based on the semantics of
the nodes affected by the operation with regard to a fivags follows:



— Node Relabel +el(u, 1)

A node relabel operatiomel(u, 1), changes the label of a noddrom u.label to a new

labell. The more semantically similar the two labels are, the less the relabel operation
will cost. The similarity between two labels,label and!l, denoted asim(u.label,l),

can be measured as the cosine of their corresponding vector representations in XML
data. Thus, the cost of a relabel operation is:

cost(rel(u,l)) = 1 — sim(u.label,l) 9)

For example, using the INEX 05 data, the cosine of the vector represesgatmpn
nodes and the vector representpagagraphnodes is 0.99, while the cosine of the vec-
tor for sectionnodes and the vector féigurenodes is 0.38. Thus, it is more expensive
to relabel nodeectionto paragraphthan tofigure

— Node Deletion el (u)

Deleting a node: from the twig approximates to its parent node in the twig, say

The more semantically similar nodeis to its parent node, the less the deletion will
cost. LetV,,, andV, be the two vectors representing the data nodes satisfying
andv respectively. The similarity betweer/« andv, denoted asim(v/u,v), can be
measured as the cosine of the two vecldrs, andV,. Thus, a node deletion cost is:

cost(del(u)) =1 — sim(v/u,u) (10)

For example, using the INEX 05 data, the cosine of the vectosdotionnodes inside
bodynodes and the vector fdrody nodes is 0.99, while the cosine of the vector for
keywordnodes insidearticle nodes and the vector farticle nodes is 0.2714. Thus,
deleting thekeywordnode in Fig. 3(a) costs more than deleting $keetionnode.

— Edge Generalizationgen (e, )

Generalizing the edge between nodesand $u approximates a child node/u to

a descendant node//u. The closerv/u is to v//u in semantics, the less the edge
generalization will cost. Lev,, ,,, andV,,,,, be two vectors representing the data nodes
satisfyingv/u andv//u respectively. The similarity betweeryu andv//u, denoted
assim(v/u,v//u), can be measured as the cosine of the two vedtprsandV,,,/,,.
Thus, the cost for an edge generalization can be measured as:

cost(gen(ey ) =1 — sim(v/u,v//u) (11)

For example, relaxingrticle/title in Fig. 3(a) toarticle//title makes the title of an ar-
ticle’s author (i.e./article/author/title an approximate match. Since the similarity be-
tween an article’s title and an author’s title is low, the cost of generaliaitigle/title
to article//title may be high.

Note that our cost model differs from [3] in that: [3] applie to twig structures
without considering node semantics, while we appligdif to nodes with regard to
their corresponding data content.



8.3 The Overall Relevancy Ranking Model

We now discuss how to combine structure distance and content similarity for evaluating
the overall relevancy.

Given a queng, the relevancy of an answeglrto the quenyQ, denoted asim(.A, Q),
is a function of two factors: the structure distance betwéamdQ, i.e.,struct _dist(A, Q),
and the content similarity between and Q, denoted asont_sim(A, Q). We use
our extended vector space model for measuring content similarity [21]. Intuitively, the
larger the structure distance, the less the relevancy; the larger the content similarity, the
greater the relevancy. When the structure distance is zero, i.e., exact structure match, the
relevancy of the answer to the query should be determined by their content similarity
only. Thus, we combine the two factors in a way similar to the one used in XRank [13]
for combining element rank with distance:

sim(A, Q) = atruct-distA.Q) y cont_sim(A, Q) (12)

wherea is a constant between 0 and 1.

9 A Scalable and Extensible Architecture

Application User

Q % R % 9 Applicaion

Mediation

Information
Sources

Relational XML XML Unstructured KB, KB Dictionary/
DB DB DB Data . Directory
QPM: Query Parser Mediator Mediation Capability

DSM: Data Source Mediator

RM: Relaxation Mediator

XTM: XTAH Mediator Mediation Requirement
DM: Directory of Mediators

Fig. 14. A scalable and extensible cooperative XML query answering system.

Fig. 14 illustrates a mediator architecture framework for a cooperative XML system.
The architecture consists of an application layer, a mediation layer and an information



source layer. The information source layer includes a set of heterogeneous data sources
(e.g., relational databases, XML databases and unstructured data), knowledge bases and
knowledge base dictionaries or directories. The knowledge base dictionary (or direc-
tory) stores the characteristics of all the knowledge bases, including XTAH and domain
knowledge in the system. Non-XML data can be converted into the XML format by
wrappers. The mediation layer consists of data source mediators, query parser media-
tors, relaxation mediators, XTAH mediators and directory mediators. These mediators
are selectively inter-connected to meet the specific application requirements. When the
demand for certain mediators increases, additional copies of the mediators can be added
to reduce the loading. The mediator architecture allows incremental growth with appli-
cation, and thus the system ssalable Further, different types of mediators can be
interconnected and can communicate with each other via a common communication
protocol (e.g., KQML [9], FIPA!9) to perform a joint task. Thus, the architecture is
extensible

For query relaxation, based on the set of frequently-used query tree structures, the
XTAHs for each query tree structure can be generated accordingly. During the query
relaxation process, the XTAH manager selects the appropriate XTAH for relaxation. If
there is no XTAH available, the system generates the corresponding XTAH on-the-fly.

We shall now describe the functionalities of various mediators as follows:

— Data Source Mediator, DSM
The data source mediator provides a virtual database interface to query different
data sources which usually have different schema. The data source mediator main-
tains the characteristics of the underlying data sources and provides a unified de-
scription of these data sources. As a result, XML data can be accessed from data
sources without knowing the differences of the underlying data sources.

— Query Parser Mediator, PM

The query parser mediator parses the queries from the application layer and trans-
forms the queries into query representation objects.

XTAH

Ranked i
Answers Post-  |g Relaxation }(/ Mediator
< processor Manager N Data Source
Mediator

Fig. 15. The relaxation mediator.

— Relaxation Mediator, RM
Fig. 15 illustrates the functional components of the relaxation mediator, which con-
sists of a pre-processor, a relaxation manager, and a post-processor. The flow of the

10 http:/iwww.fipa.org
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Fig. 16. The flow chart of XML query relaxation processing.

relaxation process is depicted in Fig. 16. When a relaxation-enabled query is pre-
sented to the Relaxation Mediator, the system first goes through a preprocessing
phase. During preprocessing, the system transforms the relaxation constructs into
standard XML query constructs. All relaxation control operations specified in the
guery are processed and forwarded to the relaxation manager and are ready for use
if the query requires relaxation. The modified query is then presented to the un-
derlying databases for execution. If no answers are returned, then the Relaxation
Manager relaxes the query conditions guided by the relaxation index (XTAH). We
repeat the relaxation process until either the stop condition is met or the query is no
longer relaxable. Finally, the returned answers are forwarded to the post-processing
module for ranking.

Capability:

- XTAH Directory Generate XTAH

Browse XTAH

_+ XTAH Editor Edit and reformat XTAH
Traverse XTAH nodes

—4 XTAH Management Requirements:
Data sources

Fig. 17.The XTAH mediator.

XTAH Mediator, XTM

The XTAH Mediator provides three conceptually separate, yet interlinked functions
to peer mediators: XTAH Directory, the XTAH Management and the XTAH Editing
facilities, as illustrated in Fig. 17.

Usually, a system contains a large number of XTAHSs. In order to allow other me-
diators to determine which XTAH exist within the system and their characteristics,



the XTAH Mediator contains a directory. This directory is searchable by the XML
query tree structures.

The XTAH Management facility provides client mediators with traversal functions
and data extraction functions (for reading the information out of XTAH nodes).
These capabilities present a common interface so that peer mediators can traverse
and extract data from an XTAH. Further, the XTAH mediator has an editor that
allows users to edit XTAHs to suit their specific needs. The editor handles recalcu-
lation of all information contained within XTAH nodes during the editing process
and supports exportation and importation of entire XTAHSs if a peer mediator wishes
to modify it.

— Directory Mediator, DM
The Directory Mediator provides the locations, characteristics and functionalities
of all the mediators in the system and is used by peer mediators for locating a
mediator to perform a specific function.

10 A Cooperative XML (CoXML) Query Answering Testbed

o)

— Relaxation-

Approximate
Answers

Knowledge

Fig. 18.The architecture of the CoXML testbed.

A cooperative XML (CoXML) query answering testbed has been developed at
UCLA to evaluate the effectiveness of XML query relaxation through XTAH. Fig. 18



illustrates the architecture of CoXML testbed, which consists of a Query Parser, a Pre-
processor, a Relaxation Manager, a Database Manager, an XTAH Manager, an XTAH
Builder, and a Post-processor. We describe the functionality provided by each module
as follows:

— XTAH Builder
Given a set of XML documents and the domain knowledge, Xfé&H Builder
constructs a set of XTAHs that summarizes the structure characteristics of the data.

— Query Parser
The Query Parserchecks the syntax of the query. If the syntax is correct, then
it extracts information from the parsed query and creates a query representation
object.

— Preprocessor
The Preprocessor transforms relaxation constructs (if any) in the query into the
standard XML query constructs.

— Relaxation Manager
The Relaxation Manager performs the following services: 1) building a relaxation
structure based on the specified relaxation constructs and controls; 2)obtaining the
relaxed query conditions from the XTAH Manager; 3) modifying the query accord-
ingly; and 4) retrieving the exactly matched answers.

— Database Manager
The Database Manager interacts with an XML database engine and returns exactly
matched answers for a standard XML query.

— XTAH Manager
Based on the structure of the query tree, the XTAH Manager selects an appropriate
XTAH to guide the query relaxation process.

— Post-processor
The Post-processor takes unsorted answers as input, ranks them based on both
structure and content similarities and outputs a ranked list of results.

11 Evaluation of XML Query Relaxation

INEX is a DELOS working groug*! that aims to provide a means for evaluating XML
retrieval systems in the form of a large heterogeneous XML test collection and appro-
priate scoring methods. The INEX test collection is a large set of scientific articles,
represented in XML format, from publications of the IEEE Computer Society cover-
ing a range of computer science topics. The collection, approximately 500 megabytes,
contains over twelve thousand articles from 18 magazines/transactions from the period
of 1995 to 2004, where an article (on average) consists of 1500 XML nodes. Different
magazines/transactions have different data organizations although they use the same
ontology for representing similar content.

There are three types of queries in the INEX query sets: content-only (CO), strict
content and structure (SCAS), and vague content and structure (VCAS). CO queries
are traditional Information Retrieval (IR) queries that are written in natural language

1 http:/iwww.iei.pi.cnr.iy DELOS



and constrain the content of the desired results. Content and structure queries not only
restrict content of interest but also contain either explicit or implicit references to the
XML structure. The difference between a SCAS and a VCAS query is that the structure
conditions in a SCAS query must be interpreted exactly while the structure conditions
in a VCAS query may be interpreted loosely.

To evaluate the relaxation quality of the CoXML system, we perform the VCAS
retrieval runs on the CoXML testbed and compare the results against the INEX's rele-
vance assessments for the VCAS task, which can be viewed as the “gold standard.” The
evaluation studies reveal the expressiveness of the relaxation language and the effec-
tiveness of using XTAH in providing user-desired relaxation control. The evaluatation
results demonstrate that our content similarity model has significantly high precision at
low recall regions. The model achieves the highest average precision as compared with
all the 38 official submissions in INEX 03 [21]. Furthermore, the evaluation results also
demonstrate that using the semantic-based distance function yields results with greater
relevancy than using the uniform-cost distance function. Comparing with other systems
in INEX 05, our user-centeric relaxation approach retrieves approximate answers with
greater relevancy [20].

12 Summary

Approximate matching of query conditions plays an important role in XML query an-
swering. There are two approaches to XML query relaxation: either through schema
conversion or directly through the XML model. Converting the XML model to the re-
lational model by schema conversion can leverage on the mature relational model tech-
niques, but information may be lost during such conversions. Further, this approach
does not support XML structure relaxation. Relaxation via the XML model approach
remedies these shortcomings. In this paper, a new paradigm for XML approximate
query answering is proposed that places users and their demands at the center of de-
sign approach. Based on this paradigm, we develop an XML system that cooperates
with users to provide user-specific approximate query answering. More specifically, a
relaxation language is introduced that allows users to specify approximate conditions
and relaxation control requirements in a posed query. We also develop a relaxation
index structure, XTAH, that clusters relaxed twigs into multi-level groups based on
relaxation types and their inter-distances. XTAH enables the system to provide user-
desired relaxation control as specified in the query, Furthermore, a ranking model is in-
troduced that combines both content and structure similarities in evaluating the overall
relevancy of approximate answers returned from query relaxation. Finally, a mediator-
based CoXML architecture is presented. The evaluation results using the INEX test col-
lection reveal the effectiveness of our proposed user-centric XML relaxation methodol-
ogy for providing user-specific relaxation.
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