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Abstract

Knowledge discovery facilitates querying database knowl-
edge and intelligent query answering in database systems.
In this paper, we investigate the application of discov-
ered knowledge, concept hierarchies, and knowledge dis-
covery tools for intelligent query answering in database
systems. A knowledge-rich data model is constructed to
incorporate discovered knowledge and knowledge discovery
tools. Queries are classified into data queries and knowl-
edge queries. Both types of queries can be answered di-
rectly by simple retrieval or intelligently by analyzing the
intent of query and providing generalized, neighborhood or
associated information using stored or discovered knowl-
edge. Techniques have been developed for intelligent query
answering using discovered knowledge and/or knowledge
discovery tools, which includes generalization, data sum-
marization, concept clustering, rule discovery, query rewrit-
ing, deduction, lazy evaluation, application of multiple-
layered databases, etc. Our study shows that knowledge
discovery substantially broadens the spectrum of intelli-
gent query answering and may have deep implications on
query answering in data- and knowledge-base systems.

Index Terms — Database and knowledge-base systems,
knowledge discovery in databases, knowledge-rich data model,
intelligent query answering, multiple layered databases, query
analysis and query processing.

1 Introduction

Huge amounts of data are already being and will continue
to be collected in a large number of databases by vari-
ous kinds of data gathering tools, which creates both a
need and an opportunity for extracting knowledge from
databases. Knowledge discovery in databases (KDD), (or
data mining), which refers to the nontrivial extraction of
implicit, previously unknown, and potentially useful infor-
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mation from the data stored in databases [8], has become
an active area in both database and machine learning re-

searches [27, 23].

With the rapid development of knowledge discovery tech-
niques, it is natural to study the applications of the knowl-
edge discovery technology in querying database knowledge
and the impact of the technology to the development of in-
telligent query answering mechanisms in database systems.

In this paper, we investigate the application of concept
hierarchies, discovered rules, and knowledge discovery tools
to intelligent query answering in database systems. The
study is based on the premise that efficient, relatively so-
phisticated knowledge discovery tools will soon become
available for large database systems. Such a view has been
reinforced by some preliminary studies and experimental
results [8, 23, 9, 1, 3, 18, 11]. For example, in our previous
studies [4, 9, 11], an attribute-oriented induction method
has been developed for knowledge discovery in databases.
The method integrates a machine learning paradigm, es-
pecially learning-from-examples techniques, with database
operations and provides an efficient way for extraction of
generalized data from actual data in databases. A knowl-
edge discovery system prototype, DBLearn [11], has been
constructed based on this methodology and has been exper-
imented on several large relational databases with satisfac-
tory performance. Other studies, such as [8, 16, 23], have
also developed interesting knowledge discovery techniques
and systems/prototypes, such as INLEN [18], KDW+ [24],
Quest [1], IMACS [3], Datalogic/R [31], 49er [32], etc.,
which demonstrates the promising future of knowledge dis-
covery.

Different from most of the previous studies on cooper-
ative query answering [26, 25, 15, 7, 6, 30] and query-
ing database knowledge [20] which emphasize on the ap-
plication or inquiry of deduction rules and integrity con-
straints in relational or deductive databases, this study ex-
tends the domain of study from a deductive database to a
knowledge-rich database assisted with generalized knowl-
edge and knowledge discovery tools. A knowledge-rich
data model is constructed which consists of not only the
components from a deductive database (including database

schemas expressed by an extended deductive entity-relationship

model, data relations, deduction rules and integrity con-



straints) but also the components relevant to knowledge
discovery processing, including concept hierarchies, gener-
alized knowledge, and knowledge discovery tools. With the
availability of concept hierarchies and generalized knowl-
edge, queries can be posed and answered at levels higher
than that of primitive concepts, and knowledge about gen-
eral characteristics of data can be inquired or utilized in
query answering. Furthermore, knowledge discovery tools
can be used to extract general knowledge dynamically, when
necessary, from any set of interested data in the database.
A unified framework is established for answering data and
knowledge queries in a knowledge-rich database. A sys-
tematic study is performed on intelligent query answering
of data queries in a database system associated with dis-
covered knowledge and knowledge discovery tools.

The remaining of the paper is organized as follows. In
Section 2, a data model is constructed for knowledge-rich
databases, which consists of both deductive database and
knowledge discovery components. In Section 3, four basic
categories of query answering mechanisms in a knowledge-
rich database are introduced, according to the combina-
tions of data vs. knowledge queries and direct vs. intelligent
query answering mechanisms. In Section 4, knowledge dis-
covery methods and tools associated with intelligent query
answering are presented. Applications of knowledge dis-
covery techniques for intelligent answering of data queries
are studied in Section 5. A summary of our study and
a discussion of the future research issues are provided in
Section 6.

2 A Data Model for Knowledge-
Rich Databases

To study intelligent query answering using knowledge dis-
covery techniques, it is often necessary to distinguish data,
knowledge and queries defined at the primitive data level
from those defined at a high concept level. Data in a
knowledge-rich database are classified into primitive data
and high-level data. The former are actual data stored
in data relations and, if appearing in some concept hierar-
chies, correspond to the primitive level (i.e., leaf) nodes of
the hierarchies; whereas the latter are nonprimitive data
subsuming primitive ones and residing at the nonprimitive
level of concept hierarchies. Correspondingly, a primitive-
level query is a query whose constants involve only prim-
itive data; whereas a high-level query is a query whose
constants involve high-level data. Similarly, rules (notice
that integrity constraints can be viewed as a special kind
of rules) can be classified into primitive-level and high-
level rules based on whether they reference high-level

data. Many deduction rules in traditional deductive databases

are primitive-level rules because they do not reference high-
level data. However, a deduction rule can also be a high-
level one if it references high-level data. For example,
“every young facully member in computing science has a
Ph.D. degree in the field is a high-level rule if the con-
cepts “young” and “faculty” are high-level concepts.

Moreover, since a rule can be defined explicitly or be ex-
tracted by a knowledge discovery process, it is important
to differentiate a deduction rule from a generalized one. A
rule which is explicitly defined by a user or an expert is a
deduction rule; whereas a rule which is generalized from
a database state is a generalized rule. Both deduction
rules and generalized rules can be primitive-level or high-
level rules. However, since a generalized rule summarizes
data from a database state, it reflects a general fact in the
current database state but does not enforce a constraint on
the possible database states. This contrasts with a deduc-
tion rule or an integrity constraint which states a rule (or
a constraint) that a potential database state must follow.
For example, a generalized rule, “all of the teaching assis-
tants are graduate students”, states a fact in the current
database but does not claim that all the teaching assis-
tants must be graduate students nor reject the possibilities
of hiring an undergraduate student as a teaching assistant.
However, the same rule, if stated as a deduction rule or an
integrity constraint, will reject the possibility of allowing
an undergraduate student to serve as a teaching assistant
in a consistent database.

As an extension to the logic data model proposed in
deductive database research [29], a knowledge-rich data
model is constructed for databases with both deduction
and knowledge discovery capabilities.

Definition 2.1 A knowledge-rich database (KRDB)
consists of six components: (1) Schema, a knowledge-rich
database schema; (2) EDB, an extensional database; (3)
IDB, an intensional database; (4) H, a set of concept hi-
erarchies; (5) GDB, a generalized database; and (6) KDT,
a set of knowledge discovery tools, i.e., KRDB = (Schema,
EDB, IDB, H, GDB, KDT). It is defined as follows.

1. Schema, a knowledge-rich database schema, describes
the general structure and organization of KRDB in-
cluding (i) physical and wvirtual entities, attributes
and relationships, and (ii) the organization of rules,
integrity constraints and concept hierarchies, based
on a deductive entity-relationship data model [13].

2. EDB, an eztensional database, consists of a set of
extensional data relations.

3. IDB, an intensional database, consists of a set of
deduction rules and integrity constraints (ICs).

4. H, a set of concept hierarchies, specifies taxonomies
of concepts on top of primitive data in extensional
and intensional databases.

5. GDB, a generalized database, consists of a set of gen-
eralized rules which summarize the regularities of the
data at a high level.

6. KDT, a set of knowledge discovery tools, performs
knowledge discovery efficiently in databases, when
necessary. O



The first component, Schema, follows from a deductive
entity-relationship model [13] which extends an entity-rela-
tionship model [5, 28] to incorporate rules, integrity con-
straints and complex data objects for deductive databases.
Based on this model, a database schema consists of a set
of entities and relationships, each of which (including their
attributes) could be defined by physical data (i.e., data
relations), virtual data (i.e., deduction rules), or their mix-
tures. Furthermore, physical or virtual entities and rela-
tionships are organized into an entity-relationship diagram,
some of which may also form generalization or specializa-
tion hierarchies, with some of the properties of the lower
level components (entities or relationships) inherited from
their corresponding higher level ones. The details of such
a model are described in [13].

The second and third components, EDB and IDB, are
the same as in deductive databases [29] except that IDB
rules can be defined by some nonprimitive data as well.
Notice that a rule (or an integrity constraint) in the IDB
can be first discovered by a knowledge discovery process
and then be recognized and stored in the IDB as a regular
rule or integrity constraint. However, once a discovered
regularity is recognized and stored, it will play the same
role as the originally defined one. Thus, we assume that
all of the rules in IDB are defined ones.

The last three components, H, GDB and KDT), are the
newly introduced knowledge discovery components which
are used to incorporate discovered knowledge and knowl-
edge discovery processes.

H, a set of concept hierarchies, represents the relation-
ships among concepts at different levels. The information
about concept hierarchies can be provided by knowledge
engineers or domain experts or be discovered automati-
cally or semi-automatically using knowledge discovery tools
based on the statistics of data distribution in databases and
the relationships among different attributes [10]. Many
concept hierarchies are implicitly stored in the database.
For example, the hierarchical relationship among “city”,
“province” and “country” attributes are usually stored in
the database and can be made explicit at the schema level
by indicating a part-of-hierarchy: “city C province C coun-
try”. It is realistic to have some concept hierarchies pro-
vided by knowledge engineers or domain experts even in
a large database system since a concept hierarchy regis-
ters only the distinct discrete attribute values or ranges
of numerical values for an attribute, which is, in general,
not very large. Further, by providing different concept hi-
erarchies, users or experts may have preference to control
the knowledge discovery or intelligent query answering pro-
cesses.

GDB, the generalized database, is another important com-
ponent in the knowledge-rich database. Since there are
usually a very large set of generalized rules which can be
extracted from any interesting subset of data in a database
by performing generalization in different directions, it is
unrealistic to store all of the possible generalized rules.
However, it is often useful to store some generalized rules or
intermediate generalized relations in the GDB based upon

the importance of the knowledge and the frequency of in-
quiries. The stored generalized rules are useful for query-
ing database knowledge and semantic query optimization.
Notice that a stored generalized rule should be updated in-
crementally in response to the updates of the relevant set of
data to preserve its correctness. This can be performed by
an incremental learning algorithm provided in knowledge
discovery tools [8, 9].

The last component, K DT, consists of a set of knowledge
discovery tools, which could be a set of knowledge discov-
ery algorithms or a database-oriented knowledge discovery
subsystem, such as INLEN [16], KDW++ [8], DBLearn [9],
etc. Since a knowledge-rich database stores only a small
portion of all of the possible generalized knowledge, it is
often necessary to evoke a knowledge discovery process dy-
namically and extract general regularity from a specific set
of data relevant to the query. The KDT tools can be used
for on-line knowledge discovery and intelligent query an-
swering.

An illustrative example of such a knowledge-rich database
is presented in Example 2.1.

Example 2.1 Let a university database be modeled by
a deductive entity-relationship model in which the exten-
sional database (EDB) is mapped to a relational-like schema
presented in Figure 1, where Cnum stands for course num-
ber, TA for teaching assistant, and GPA for grade point
average.

Course (Cnum, Title, Semester, Department, Instructor,
TA, Enrollment, Time).

Professor (Pname, Department, Salary).
Student (Sname, Status, Sex, Major,
Birth_place( City, Province, Country), GPA).

Grading (Student, Course, Grade).

Figure 1: Schema of the University database

The concept hierarchies defined in the database are shown
in Figure 2. The first three lines imply that the primi-
tive data for Status is {freshman, ..., Ph.D.}, and their
corresponding high-level data is undergraduate or gradu-
ate respectively. The entry “Birth_place( City C Province
C Country)” indicates that the concept hierarchy for the
attribute Birth_place is given by the data stored in the
relation Student according to the pari_of hierarchy: City,
Province and Country. For example, a tuple,

Student(Tom_Jackson, ..., Birth_place(V ancouver,
BC,Canada), .. .),

indicates that Vancouver is a part of British Columbia
(BC), which is in turn a part of Canada, in the concept
hierarchy for Birth_place.

Notice that there are many different kinds of hierarchi-
cal relationships among data in a database, such as part_of,
1s_a, subset_of, etc., which may play different roles in con-
ceptual analysis. The different semantics among concept



hierarchies are not essential in the knowledge discovery al-
gorithm itself since different concepts are generalized to
their corresponding higher level concepts by following their
corresponding concept hierarchies in a similar manner in
the generalization process. However, such semantic differ-
ences will be important in the analysis of query intent and
provision of intelligent answers.

{ freshman, sophomore, junior, senior } C undergraduate
{ M.S., M.A., Ph.D. } C graduate

{ undergraduate, graduate } C ANY (status)

{ biology, chemistry, computing, ..., physics } C science
{ literature , music, ..., painting } C art

{ science, art } C ANY (major)

{0.0—1.99 } C poor

{2.0—2.99 } C average

{3.0—349 } C good

{3.5— 4.0} C excellent

{ poor, average, good, excellent } C ANY (GPA)
Birth_place (City C Province C Country).

Birth_date (Day C Month C Year).

Figure 2: A concept hierarchy table of the database.

IDB rules are defined on top of EDB predicates. For
example, award_candidate and pre_requisite are two IDB
predicates defined in Figure 3.

award_candidate(P) —

status(P) = “graduate” A gpa(P) > 3.75.
award_candidate(P) —

status(P) = “undergraduate” A gpa(P) > 3.5.(2.2)

pre_requisite(Course, Pre_requisite_course) «—

(2.1)

edb_pre_requisite(Course, Pre_requisite_cours¢€l.3)

pre_requisite(Course, Pre_requisite_course) «—
edb_pre_requisite(Course, Required_course),
pre_requisite( Required_course,

(2.4)

Pre_requisite_course).

Figure 3: A set of deduction rules in IDB.

Figure 4 shows a set of generalized rules extracted from
EDB and stored in GDB.

Our study below on intelligent query answering mecha-
nisms will reference this database frequently. a

3 Four Categories of Query An-

swering Mechanisms in Knowledg

Rich Databases

In a knowledge-rich database system, there may exist two
kinds of queries, data queries and knowledge queries, where

1. All of the teaching assistants are graduate students.

s € Student A c € Course ANc.T'A = s.Sname —
s.Status = “graduate”.

2. FEvery teaching assistant has a good or excellent grade
point average.

s € Student A c € Course A c.T'A = s.Sname —
s.GPA = {“good", “excellent"}

Figure 4: A set of generalized rules stored in GDB.

Data query
Category of queries:
Knowledge query

Direct query answering
Query answering mechanisms:
Intelligent query answering

Figure 5: Categories of queries and query answering mech-
anisms.

a data query is to find concrete data stored in a database,
which corresponds to a basic retrieval statement in a database
system; whereas a knowledge query is to find rules and
other kinds of knowledge in the database, which corresponds
to querying database knowledge [20] including deduction
rules, integrity constraints, generalized rules and other reg-
ularities. For example, “retrieving all of the students who
took the course CMPT-454 in 1994 is a data query; whereas
“describing the general characteristics of those students” is
a knowledge query.

Furthermore, it is often desirable to provide intelligent
and assisted answers to queries besides (or instead of) di-
rect retrieval of data and knowledge. Thus, query answer-
ing mechanisms in a knowledge-rich database can be clas-
sified based on their responses to queries into two cate-
gories: direct query answering and intelligent (or coop-
erative) query answering. Direct query answering is
a direct, simple retrieval of data or knowledge from the
knowledge-rich database; whereas intelligent query an-
swering consists of analyzing the intent of query and pro-
viding generalized, neighborhood or associated information
relevant 1o the query [7]. For example, simple retrieval of
the names of the students who take the designated course
is direct query answering to the above data query; whereas
summarizing the characteristics of those students, such as
“90% of them majored in computing science and took CMPT-
354 as prerequisites” , provides an intelligent answer to the

€Tme data query.

Based on such classifications (as shown in Figure 5),
query answering mechanisms can be categorized into the
following four combinations, each of which will be exam-
ined in this section.



1. (data query and direct answering): direct answering of
data queries;

2. (data query and intelligent answering): intelligent an-
swering of data queries;

3. (knowledge query and direct answering): direct an-
swering of knowledge queries; and

4. (knowledge query and intelligent answering): intelli-
gent answering of knowledge queries.

Notice that in many cases, a database user may not be
able to distinguish between primitive and high-level data
and between information that is data and information that
is knowledge. Thus it is difficult for a user to explicitly
indicate to which category a query belongs. A knowledge
query can often be viewed as a follow-up to a data query
when further explanation, reasoning or summarization are
needed besides the answers to a data query. Therefore,
it is important to provide a single, coherent framework to
handle data and knowledge queries and to handle direct
query answering and intelligent query answering.

3.1 Direct answering of data queries

Direct answering of data queries corresponds to direct data
retrieval in knowledge-rich databases. Traditional query
processing in relational and deductive databases belongs
to direct answering of data queries. A primitive-level data
query can be processed directly using relational and deduc-
tive query processing techniques.

A high-level data query can be processed in two steps.
First, a query rewriting process can be performed to rewrite
the query into one or a set of equivalent primitive-level data
queries by substituting each high-level concept in the query
with a set of or a range of its subordinate primitive-level
concepts by consulting concept hierarchies in the KRDB.
Second, each rewritten query is then fed into a relational or
deductive query processor for processing. Answers should
be returned at the primitive level. Presentation of answers
at a nonprimitive level, when desired, is considered as a
task of intelligent query answering and will be discussed in
the next subsection. One example is illustrated below.

Example 3.1 To find the graduate students born in Canada,

majoring in science, and with excellent GPAs, the query
can be formulated in a syntax similar to SQL as follows.

retrieve Name

from Student

where Status = “graduate” and Major = “science”
and Birth_place = “Canada”

and GPA = “excellent”

Notice that “graduate”, “science” and “excellent” are
high-level concepts which are not stored in the relation
Student. Using the information stored in the concept hi-
erarchy H, the query can be reformulated by substituting
graduate with {M.S., M.A., Ph.D.}, and GPA = “excel-
lent” with GPA > 3.5 and GPA < 4.0, etc. The rewritten
query can be answered by direct data retrieval. a

3.2 Intelligent answering of data queries

Intelligent answering of data queries refers to the mecha-
nisms which answer data queries cooperatively and intelli-
gently. Intelligent query answering is accomplished by ana-
lyzing the intent of a query and providing some generalized,
neighborhood, or associated answers. There are many ways
for a data query to be answered intelligently, including gen-
eralization and summarization of answers, explanation of
answers or returning intensional answers, query rewriting
using associated or neighborhood information, comparison
of answers with those of similar queries, etc.

Example 3.2 The data query in Example 3.1 can be an-
swered intelligently in many ways as illustrated below.

1. Query rewriting using associated or neighborhood in-
formation. For example, instead of printing only the
names of the students satisfying the query condi-
tion, one may print other information as well, such
as age, major, advisor, etc. associated with each stu-
dent name. Such a technique is referred to as “width
extension” [7].

2. Generalization and summarization of the answers to
a query. For example, one may also print the summa-
tive information for the students satisfying the query
condition, such as 45% of those students major in
“computing science” and 20% major in “physics”,
ete.

3. Comparison of the answer set with those under sim-
tlar situations. For example, one may print the com-
parative information for the referred students, e.g.,
there are 35 such graduate students (born in Canada,
majoring in science, and with excellent GPAs) in
comparison with 150 such undergraduate students,
ete. O

Mechanisms for implementations of intelligent answering
of data queries using knowledge discovery techniques will
be examined in detail in Section 4.

3.3 Direct answering of knowledge queries

A knowledge query is a statement which inquires about
database knowledge, including concept hierarchies, deduc-
tion rules, integrity constraints and general characteristics
of a particular set of data in a database. Direct answering
of knowledge queries means that a query processor receives
a knowledge query and answers it directly by returning the
inquired knowledge. Since IDB knowledge and concept hi-
erarchy information are stored in the database according
to our assumption, a query on such knowledge can be an-
swered by direct retrieval. However, the situation is dif-
ferent at querying generalized knowledge. A generalized
database (GDB) usually stores only a small, but frequently
used portion of generalized knowledge. Thus, an inquiry on
general knowledge should be answered by direct retrieval
only if the knowledge is available in GDB. Otherwise, the



knowledge should be discovered dynamically by a knowl-
edge discovery process, which will be described in Section 4.
In general, a knowledge query can be answered by consult-
ing concept hierarchy, retrieving stored rules (if available)
or triggering a discovery process.

Different syntactic specifications can be adopted to dis-
tinguish knowledge queries from data queries. A data query
is to retrieve the data elements that satisfy a condition ®;
whereas a knowledge query is to describe the data elements
that satisfy ®. Following the notion proposed by Motro
and Yuan [20], data queries and knowledge queries are dis-
tinguished in syntax by starting the former with retrieve
but the latter with describe. Further, to distinguish differ-
ent types of knowledge being inquired, concrete keywords
such as generalized rule, deduction rule, concept hierarchy,
integrity constraint, etc. can be used after the keyword de-
scribe. Moreover, to query a discriminant rule which dis-
tinguishes the general characteristics of one class (target
class) from others (contrasting classes), the following syn-
tax is adopted:

describe generalized rule for relation
which distinguishes target_class from conirasting_class
where condition ®.

Several knowledge queries are presented in the following
examples.

Example 3.3 To find the deduction rule award_candidate
for Canadian graduate students, a query can be formulated
as below.

describe deduction rule award_candidate(candidate)
where Status(candidate) = “graduate”
and Birth_place(candidate) = “Canada”

This query can be answered by direct retrieval of deduc-
tion rules. Suppose that there are only two rules, (2.1)
and (2.2), in the IDB defined for award_candidate. Notice
that only (2.1) matches the condition, Status(candidate) =
“graduate”. Furthermore, there is no further distinction
on birth place in the condition for an award candidate in
(2.1). Thus the rule (2.1) is presented as the answer to the
query. O

Example 3.4 To describe the characteristics of the gradu-
ate students in computing science who were born in Canada
with excellent GPA, the query can be formulated as below.

describe generalized rule

for Student

where Status = “graduate” and Major =
and Birth_place = “Canada”
and GPA = “excellent”

((csﬂ

Notice that the query represents a high-level knowledge
query since “graduate”, “Canada” and “ezxcellent” are not
stored as primitive data in the University database. The
query can be answered by directly retrieving the discovered
rule, if available, or by performing induction on the relevant
data set [9]. O

Example 3.5 To distinguish the characteristics of the grad-
uate students from undergraduate students in computing
science, born in Canada with excellent GPA, the query can
be formulated as below.

describe generalized rule for Student

which distinguishes Status = “graduate”

from Status = “undergraduate”

where Major = “cs” and Birth_place = “Canada”
and GPA = “excellent”

Notice that the query wishes to find a discriminant rule
which contrasts the general properties of the two classes.
The rule can be discovered dynamically by a knowledge
discovery process from the primitive data [9] or from an
intermediate generalized relation [12]. O

3.4 Intelligent answering of knowledge queries

Intelligent answering of knowledge queries means that a
knowledge query is answered in an intelligent way by an-
alyzing the intent of the query and providing generalized,
neighborhood or associated information. Similar to the
intelligent answering of data queries, a knowledge query
can be answered in many ways, such as generalization and
summarization of answers, explanation of answers, query
rewriting using associated or neighborhood information,
comparison of answers with those of neighborhood queries,
etc. The availability of database knowledge and knowledge
discovery tools enhances the power and efficiency of intel-
ligent query answering of knowledge queries, as illustrated
in the following examples.

Example 3.6 The knowledge query of Example 3.3, which
is to find the deduction rule award_candidate, can be an-
swered intelligently not only by returning the eward_candidate
rule eligible to Canadian graduate students but also by (i)
providing an explanation that both Canadian and foreign
graduate students share the same condition for the award,
(ii) returning the award_candidate rule eligible for under-
graduate students as well, or (iii) returning other associ-
ated information, such as award titles, amounts, applica-
tion deadlines, regulations, summary of award history, or
statistical information, etc. a

Example 3.7 The knowledge query of Example 3.4, which
is to find the characteristics of designated graduate stu-
dents, can be answered intelligently by returning the char-
acteristic rule for Canadian graduate students with excel-
lent GPA’s, together with (i) the characteristics of Cana-
dian graduate students with different majors or weaker
GPAs for comparison, or (ii) an explanation of the reasons
why such students got excellent GPA’s, etc. a

Intelligent answering of knowledge queries may involve
greater complexity in query intent analysis and require
more sophisticated implementation techniques than intel-
ligent answering of data queries. Due to space limitation,
this paper is focused on the efficient methods for intelligent
answering of data queries and leave the in-depth discussion
of the mechanisms for knowledge queries to future studies.



4 Knowledge Discovery Methods
and Tools for Intelligent Query
Answering

Many knowledge discovery methods have been developed in
recent studies for mining knowledge from data [8], ranging
from database search [1], generalization [9, 18], knowledge
representation [2], to mathematical or statistical modeling
[22, 31], etc. Based on the kinds of knowledge to be dis-
covered from data, knowledge discovery tools can be classi-
fied into two major classes: (1) generalization-based discov-
ery, and (2) discovering knowledge without generalization,
as shown in Fig. 6. In each class, further classifications
can be performed based on the kinds of rules or the form
of knowledge to be discovered, including knowledge rules
(characteristic, discriminant, clustering, dependency or as-
sociation rules), generalized relations and multiple layered
databases, etc. These discovery methods and the discov-
ered knowledge will contribute to intelligent query answer-
ing.

Since the rules discovered without going through gener-
alization processes represent data regularities at the primi-
tive concept level, their roles in intelligent query answering
are similar to that of deduction rules and/or integrity con-
straints defined at the primitive concept level, which have
been discussed in intelligent query answering in relational
or deductive databases [26, 25, 15, 7, 6]. Therefore, this
study will emphasize more on the impact of generalization-
based discovery to intelligent query answering. The tech-
niques studied here are based on one generalization method:
attribute-oriented induction developed in our previous stud-
ies [9, 11], with an emphasis on the derivation of prime
relations, extraction of generalized feature tables, and con-
struction of multiple layered databases. Nevertheless, the
techniques studied here can be easily integrated with other
generalization-based knowledge discovery methods.

4.1 Generalization and extraction of prime
generalized relations

Data generalization, statistics summarization and gener-
alized rule extraction are essential techniques for intelli-
gent query answering. Generalization can be classified into
two categories: (1) attribute generalization, and (2) relation
generalization.

The first category refers to the generalization of certain
attributes in one or a small set of tuples (e.g., the answer
set) to certain high level concepts, which may help sum-
marize data and expressing data at a high concept level.
For example, instead of stating that “Tom is a junior stu-
dent, born in Vancouver on July 15, 1971, the statement
can be generalized to a more summative statement, “7Tom
ts an undergraduate student, born in Canada in 19717.
Attribute generalization can be performed by simply sub-
stituting some low level data in the answer set by the cor-
responding superordinate concepts at an appropriate level
based on a query intent analysis (see Section 5).

The second category refers to the generalization of a rela-
tively large data relation, which is usually a query-relevant
portion of a database, resulted from query processing. The
generalization can be performed efficiently by an attribute-
oriented induction method [9, 11]. Here we present a sim-
ilar process which extracts a special intermediate gener-
alized relation, prime relation, to facilitate the extraction
of different feature tables and the generation of various
generalized rules for different purposes of intelligent query
answering.

It is often desirable to express a generalized result us-
ing a small number of distinct (generalized) values for each
attribute in the generalized relation. Also, a user or an ex-
pert may sometimes like to specify explicitly a designated
concept level as the desirable level for an attribute, such
as the level “country” for a birth_place, etc. Otherwise, a
small integer is usually specified (or taken by default) as
a desirability threshold for an attribute. An attribute
is at the desirable level if it contains no more distinct val-
ues than its desirability threshold. It is generalizable if
the attribute contains a relatively large number of distinct
values in the relation but there exist higher level concepts
(e.g., in a specified concept hierarchy) which subsume these
attribute values. Otherwise, if there exist no such higher
level concepts, it is nongeneralizable. A prime rela-
tion is a generalized relation in which each nongeneraliz-
able attribute is removed and each generalizable attribute
is generalized to the desirable level.

The extraction of a prime relation and the mapping of
such a relation to interesting rules can be performed by the
attribute-oriented induction in the following three steps.

1. Relevant data collection. A set of task-relevant data
is collected by execution of a (direct) data query.

2. Prime relation generation. The collected data is gener-
alized by (1) removal of nongeneralizable attributes,
and (2) performing concept-tree ascension (replacing
lower-level attribute values in a relation by their cor-
responding superordinate values using the concept hi-
erarchy) on each generalizable attribute to its desir-
able level. By removal of nongeneralizable attributes
and generalization of the values in the generalizable
attributes to the desirable level, some generalized tu-
ples in the relation may become identical. The iden-
tical generalized tuples are merged into one tuple,
associated with a special internal attribute, count,
which registers the number of original tuples gener-
alized to the current one. The generalized relation
obtained at this stage is the prime relation.

3. Generalized rule extraction. This step can be per-
formed in two different directions. One direction is
to derive a final generalized relation by further ap-
plication of attribute-oriented induction. The other
direction is to derive a generalized feature table for
intelligent query answering, which is presented in the
next subsection. The derivation of a final generalized
relation is performed by further generalization on the
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Figure 6: A classification of knowledge discovery tools.

attributes in the prime relation based on preferred Input. (i) A frequently inquired data set R, which is a

rule forms, tuple reduction ratio, preferred concept relation of arity m with a set of attributes A4; (1 <
levels of the attributes, etc. and then merge of identi- i < m); (ii) a set of concept hierarchies, H;, where
cal generalized tuples with count accumulation. The H; is a hierarchy on the generalizable attribute A;, if
final generalized relation, which consists of only a available; and (iii) a set of desirability thresholds T;
small number (usually controlled by a generalization for each attribute A;.

threshold) of distinct generalized tuples, can be ex-

pressed in a logic form with the association of statis-

tical information.

The core of the attribute-oriented induction is the concept-

Output. The prime relation R,.
Method.

1. Collect the statistics of the initial relation R.

tree ascension on generalizable attributes, which relies heav-

ily on the information stored in the concept hierarchy (H) 2. Compute the minimum desired level, determine the
in the KRDB. The concept hierarchy for numerical values mapping pairs (v,v’) for each attribute, where v is
can be constructed dynamically without prior knowledge the (original) attribute value and v’ the generalized
based on the value range distribution in the database. For one, and perform concept tree climbing.
other hierarchies found in the KRDB, modification can be
performed dynamically based on the statistics of current R':=R; /* R is a frequently inquired data set,
relevant data sets and user preference in order to extract obtained by a data query. */
interesting rules [10]. For example, to extract the interest- for each attribute A; in R’ do {
ing relationships between GPA and Birth_place, a given if A; is not at the desirable level and is nongeneralizable
hierarchy can be modified dynamically to allow more de- then remove 4;;
tailed distributions of Birth_places in nearby provinces or if A; is not at the desirable level but generalizable
countries than remote ones. then generalize A; to the desirable level;

A prime relation maintains the relationships among gen- 1
eralized data in different attributes for a frequently in-
quired data set at a reasonable cost. The prime relation 3. Derive the prime relation, R,, by merging identical
can be used for extraction of various kinds of generalized tuples in R’ (with the number of identical tuples reg-
rules. Therefore, the prime relations for frequently inquired istered in count). O

data sets can be stored in the GDB to facilitate intelligent

query answering.

The generalization is essentially based on the generaliza-

The algorithm for the extraction of a prime relation is tion rules, dropping conditions and climbing generalization

presented as follows.

trees, in learning-from-ezamples [17]. However, it is per-
formed in attribute-oriented fashion, which substantially

Algorithm 4.1 Extraction of a prime relation R, from a reduces the computational complexity when performed in

frequently inquired data set R.

large databases.



Theorem 4.1 The worst-case time complexity of Algorithm
4.11is O(nlogp) where n is the number of tuples of the ini-
tial relation R and p is the number of tuples in the prime
relation R,.

Proof. The total processing cost is the accumulation of the
cost of the following three parts.

e Step 1 collects the statistics of the initial relation,
which scans the copied initial relation R', collects
the distinct attribute values in R’, and registers the
number of occurrences of each distinct value in R'.
This step takes O(n) time since the process scans R’
exactly once.

e Step 2 computes the minimum desired level and de-
termines the mapping pairs (v, v') for each attribute.
Suppose there are m relevant attributes and the av-
erage number of distinct values for each attribute is
d, the average number of levels to be climbed up is [,
and the average cost of tree-climbing is ¢. Then the
cost of Step 2 should be m x d x{ x ¢, which is in the
order of O(n), since d < n, and m, [, and ¢ are small
constants.

e Step 3 derives the prime relation by merging equiva-
lent tuples, which is performed as follows. For each
tuple t in R', substitute its attribute values based on
the value mapping-pairs derived in Step 2. This re-
sults in a generalized tuple ¢t'. If ¢’ is not already in
the prime relation R, insert it into R, and set its
count to 1. Otherwise, increment the count of ¢ in
Rp. Since there are total p tuples in R,, the search
takes O(log p) time if a B-tree structure is used. The
total cost will be O(n logp).

e Summing-up the cost of the three portions, it is clear

Status | Sex | Age | Birth_country GPA IsTA | count
grad M | 25.30 Canada good Y
grad F 2530 Canada excellent Y

underg | M | 16_25 Asia good N

Table 1: A prime relation for the interested set of students.

from a data set obtained by a selection from the relation
Student using, Major = “computing_science”, plus an at-
tribute IsT'A to indicate whether the student is a teach-
ing assistant (i.e., whether the tuple is joinable with the
Course relation on the teaching assistant attribute). The
scheme for the initial data relation is,

Student(Sname, Status, Sex, Birth_date(Day, Month,Year),

Birth_place(City, Province, Country), GPA, IsTA).

Following Algorithm 4.1, the attributes Sname, Day,
Month, City, and Province are removed, and the prime
relation has the scheme,

Student(Status, Sex, Age, Birth_country, GPA, IsT A),

where Age is from Birth_date(Day, Month, Year), and Birth_country

is from Birth_place(Country). After generalization, the
prime relation contains only a small number of distinct val-
ues in each attribute as follows: Status: {grad, undergrad},

Sex: {male, female}, Age: {1625,26_30, >30}, Birth_-Couniry:

{Canada, USA, Asia, Europe}, GPA: {poor, average, good,
excellent}, and IsTA: {Yes, No}. The prime relation is
shown in Table 1. a

that the worst case time complexity should be O(nlogp)4.2 Extraction of generalized feature ta-

O

Notice that if the production of the thresholds, Hznzl T,
is small, a multi-dimensional array may be used to register
the number of tuple occurrences in each array element in
the derivation of the prime relation by mapping the gen-
eralized tuples into corresponding array elements. In this
case, the time complexity is O(n). However, when [~ T;
is very large, such an array could be too big and too sparse
to be useful, and the B-tree structure mentioned above
should still be used to keep the worst case time complexity
to O(nlogp).

The attribute-oriented induction technique avoids inef-
ficient search in tuple-oriented generalization, explores the
integration of well-implemented relational operations with
the learning-from-examples algorithm, and leads to an eas-
ily implementable and highly efficient algorithm for induc-
tion in large databases [9].

Example 4.1 Suppose a frequently inquired data set in
the University database collects the information about com-
puting science students and their associated teaching as-
sistant information. Let the prime relation be generalized

bles and generalized rules

A prime generalized relation, though compressed substan-
tially from the original relevant set of data, may still not be
compact enough to disclose interesting relationships among
different attributes. To facilitate intelligent query answer-
ing, a prime generalized relation can be mapped into sev-
eral generalized feature tables from which a variety of in-
teresting generalized rules can be extracted.

A generalized feature table is a two-dimensional table gen-
erated from the prime relation. It represents the occurrence
frequency of a set of generalized features in relevance to one
or a set of reference attributes in the prime relation.

The following algorithm extracts a feature table from a
prime relation.

Algorithm 4.2 Extraction of the feature table Ty for an
attribute A from the prime relation R,.

Input. A prime relation R, consists of (i) an attribute A
with distinct values ay, ..., am, (ii) k other attributes
By, ..., By (suppose different attributes have distinct
values), and (iii) a special attribute, count.



Output. The feature table Ty for the attribute A.

Method.

1. The feature table Ty consists of m + 1 rowsand [+ 1
columns, where m is the number of distinct values in
the attribute A, and [ is the total number of distinct
values in all of the other k attributes. Each slot of

the table is initialized to 0.

2. Each slot in T4 (except the last row) is filled by the
following procedure,

for each row r in R, do {
for each atiribute B; in R, do
Talr.A, r.B;] := Ta[r.A, r.B;] + r.count,;
Talr.A, count] := Ta[r.A, count] + r.count; }

3. The last row p in T4 is filled by the following proce-
dure:

for each column s in T4 do {

for each rowt (except the last row p) in Ty do

Talp, s] := Talp, s] + Talt, s;

}

Theorem 4.2 The worst-case time complexity of Algorithm
4.2 is O(a X p), where a is the number of attributes and p
is the number of rows in the prime relation R p.

Proof. There are a attributes and p rows in R,, and each
attribute in each row in R, will be examined exactly once
in the computation according to the nested loop structure
of the algorithm. Moreover, each such examination will
take only a few steps of calculations, i.e., bounded to a
constant time ¢. Thus the total processing cost is O(a x p).

O

Since the number of attribute and the number of rows in
the prime relation R, is in general small, Algorithm 4.2 is
fairly efficient. The algorithm is optimal in the sense that
we have to look at each attribute value of each row in R,
at least once.

Different feature tables can be extracted from a prime
relation based on the interest of particular reference at-
tributes. The following example shows how the feature
table in relevance to one reference attribute, Status, is ex-
tracted from the prime relation of Example 4.1.

Example 4.2 The feature table in relevance to the at-
tribute Status, called Status feature table (Table 7), is ex-
tracted from the prime relation of Example 4.1. It is use-
ful when comparing students who possess different status
(graduates vs. undergraduates).

The Status feature table consists of 3 rows: each of the
two distinct Status values in the prime relation {“grad”,
“undergrad”} corresponds to one row, and the last row (to-
tal) is the summation of information in the previous rows.
The table consists of 5 major columns, each corresponding
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to one attribute in the prime relation, plus one special col-
umn for count. Each major column in the table is further
divided into & subcolumns (where & is the number of dis-
tinct general values in the corresponding major column),
each corresponding to one distinct value in the attribute.
For example, GPA is divided into 4 subcolumns: {poor,
avg, good, exclnt}, each corresponding to one distinct value
in GPA.

The table contents are derived from the prime relation as
follows. Each slot in the table (except for the last row) cor-
responds to the number of occurrences of the correspond-
ing values in the prime relation. For example, the slot for
“grad” and “good (GPA)” corresponds to the number of
grad’s with good GPAs, that is, the summation of all of
the count of those rows with Status = “grad” and GPA
= “good” in the prime relation. The special column count
registers the number of occurrences of the corresponding
class in the relation. For example, 50 in “grad”’ indicates
that there are 50 graduates in total in the prime relation.
The special row total summarizes the total number of oc-
currences with each feature in all of the classes. For exam-
ple, total = 160 in the column “Sex = M” indicates that
there are totally 160 male students computed in the prime
relation.

The method can be easily extended to generate feature
tables in relevance to more than one reference attribute.

O

Since a feature table registers the number of occurrences
for each general feature in the prime relation, with two
specific properties: total and count, the quantitative rela-
tionships between the corresponding general features can
be easily referenced and transformed into a set of interest-
ing general rules to facilitate intelligent query answering.

The following algorithm extracts generalized rules from
a feature table.

Algorithm 4.3 Eztraction of generalized rules from the
feature table Ty.

Input. A feature table T4 for the attribute A, where A
has a set of distinct generalized values ay, ..., an,.
Another attribute B in the table has a set of distinct
generalized values by, ..., b,. The slot of the table
corresponding to the row with the value a; and the
column with the value b; is referenced by T'4[a;, b;].

Output. A set of generalized rules relevant to A and B
extracted from the feature table.

Method.

1. For each row a;, the following rule is generated
in relevance to attribute B, which presents the
distribution of different generalized values of B
in class a;.

al(r) — bl[pil] V...V bn[pzn]:

where p;, is the probability that the value b; of
B is in class a;, which is computed by,

pi; = Talai, bj]/Tala;, count].



Status Sex Age Birth_country GPA IsTA count
M F 11625 | 26.30 | >30 | Canada | USA | Asia | Europe | poor | avg | good | exclnt | Y N
grad 40 10 10 20 20 30 5 10 5 1 1 30 18 30 20 50
underg | 120 | 80 140 60 0 130 40 30 0 15 90 70 25 0 200 200
total 160 | 90 150 80 20 160 45 40 5 16 91 100 43 30 | 220 250
Figure 7: A Status feature table mapped from the prime relation.
2. For each column b;, the following rule is gen- statistics of the answer set, comparison of the answer set

erated in relevance to all of the classes, which
presents the distribution of the generalized value
b; of B among all of the classes.

b] (x) — al[qu] V...V am[QmJ‘]a

where ¢;; is the probability that the value b;
of B is distributed in class a; among all of the
classes, which is computed by,

qi; = Talai, bj]/Taltotal, bj].

Theorem 4.3 The worst-case time complexity of Algorithm
4.8 is O(r x ¢), where r is the number of rows and ¢ the
number of columns of the feature table Ty .

Proof. Algorithm 4.3 extracts generalized rules from each
column and each row in the feature table by computing the
proportion of the number of occurrences of each generalized
feature vs. its corresponding total number of occurrences
in each row or each column. In Step 1, it computes total r
rows with each computing ¢ columns and thus takes total
O(r x ¢) time. Similarly for Step 2. Thus, we have the
theorem. a

with those of neighborhood queries, etc. can be realized by
extraction of different rules from the corresponding gener-
alized feature table.

4.3 Construction of multiple-layered databases

Besides the extraction of characteristic rules, discriminant
rules and prime (generalized) relations, an important tech-
nique to facilitate intelligent query answering is the con-
struction of multiple-layered databases [12].

Although the extraction of the rules or prime relations
provides a flexible means for intelligent query answering, it
has two drawbacks: (1) the discovered knowledge is often
too task-relevant to be readily applied to other situations,
and (2) it is often too costly to extract such knowledge dy-
namically. For example, a prime relation about the general
characteristics of the graduate students majoring in com-
puting science, with GPA greater than 3.5, though takes
some processing effort, may hardly be useful for answering
similar queries about senior students majoring in engineer-
ing. It is infeasible to store the generalized data of all the
different combinations of the relevant sets of data, but it is
too costly to generalize each such data set dynamically. A
good compromise is to store, based on the query accessing
frequency, some generalized relations in the GDB as higher

Example 4.3 The extracted feature table is useful for deriva-layered data. This leads to the construction of a multiple

tion of the relationships between the classification attribute
and other attributes at a high level. For example, the gen-
eralized rule, all of the teaching assistants are graduate stu-
dents, can be extracted from Table 7 based on the fact that
the class grad takes all of the IsTA count.

The feature table is especially useful for generation of
rules associated with quantitative (statistical) information.
For example, the following quantitative rule can be derived
from the first row grad and the first major column Sez,

grad(z) — male(x)[80%)] V female(x)[20%].

The rule indicates that 80% of (computing_science) gradu-
ate students are male and 20% are female. Obviously, the
rules extracted from the feature table are useful for present-
ing summary and neighborhood information in intelligent
query answering.

By extraction of generalized feature tables and general-
ized rules, many of the intelligent query answering mech-
anisms which require knowledge discovery tools can be
implemented efficiently. For example, summarization of

layered database.

A multiple layered database (MLDB) is a database com-
posed of several layers of information, with the lowest layer
corresponding to the primitive information stored in a con-
ventional database, and with higher layers storing more
general information extracted from lower layers.

Similar to the derivation of prime relations by attribute-
oriented induction, the algorithm for construction of an
MLDB is presented below.

Algorithm 4.4 Construction of an MLDB.

Input. A relational database, a set of concept hierarchies,
and a set of frequently referenced attributes and fre-
quently used query patterns.

Output. A multiple layered database.

Method. An MLDB is constructed in the following steps.

1. Determine the multiple layers of the database based
on the frequently referenced attributes and frequently
used query patterns.
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2. Starting with the most specific layer, generalize the
relation step-by-step (using the given concept hierar-
chies) to form multiple layered relations (according
to the layers determined in Step 1).

3. Merge identical tuples in each generalized relation
and update the count of each generalized tuple.

4. Construct a new schema by recording all the primi-
tive and generalized relations, their relationships and
the generalization paths. a

Rationale of Algorithm 4.4.

Step 1 indicates that the layers of an MLDB should be
determined based on the frequently referenced attributes
and frequently used query patterns. This is reasonable
since to ensure the elegance and efficiency of an MLDB,
only a small number of layers should be constructed, which
should provide maximal benefits to the frequently accessed
query patterns. Obviously, the frequently referenced at-
tributes should be preserved in higher layers, and the fre-
quently referenced concept levels should be considered as
the candidate concept levels in the construction of higher
layers. Steps 2 and 3 are performed in a way similar to
the attribute-oriented induction, studied previously [9, 4].
Step 4 constructs a new schema which records a route map
and the generalization paths for database browsing and co-
operative query answering. a

Example 4.4 Figure 8 illustrates the route map and the
generalization paths of a multiple layered database con-
structed on top of the University database in Example 2.1.

The schema of the higher layer generalized relations are
illustrated in Fig. 9, where Student’ is a generalized rela-
tion with Sname (the key) preserved, Birth_place removed,
Birth_date generalized to Age, etc.; Student’ is a general-
ized relation with the key removed, which summarizes the
general relationship among Status, Major, Age and GPA;
and SGC' is obtained by firstly joining three relations,
Student’, Grading, and Course’, and then generalizing
the joined relation to obtain the general statistics of the
performance of a course.

Student’ (Sname, Status, Sex, Major, Age, GPA).
Student” (Status, Major, Age, GPA).

Course’ (Cnum, Title, Semester, Department, Instructor,

SGC' (Cnum, Semester, Department, Instructor, Grade).

Figure 9: Schema of the University database

This multiple layered database facilitates the extraction,
summarization and comparison of data at a generalized
level in intelligent query answering, as illustrated in the
next section. a
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5 Intelligent Answering of Data Queries
Using Knowledge Discovery Meth-

ods

With the availability of knowledge discovery tools, a query
can be answered intelligently by interacting query intent
analysis and intelligent query answering processes with the
major components of a knowledge-rich database as illus-
trated in Fig. 10.

The intelligent query answering consists of three major
processes: query intent analysis, query rewriting, and an-
swer transformation and answer explanation. Query intent
analysis analyzes the intent of the query and determines
whether it is necessary to provide assisted answers, and
if it is, what kind of assistance should be provided. A
query rewriting process transforms, when desired, a query
into a generalized, specialized or neighborhood rewritten
query using associative and neighborhood information. Fi-
nally, answer transformation and answer explanation pro-
cess, when desirable, transforms the answers into a summa-
rized or general form, compares them with a neighborhood
query, and explains the answers based on rules and/or gen-
eralized knowledge. The analysis and the transformation
processes are based on the available or discovered knowl-
edge about databases, queries, and users. Therefore, they
interact closely with the major components of the KRDB.

5.1 Analysis of the intent of a query

Several interesting methods for query intent analysis have
been developed in the studies of intelligent query answering
[14, 15, 19, 7, 26]. Such analyses are based on the notions
of generalization, association, aggregation, concept cluster-
ing, etc. Semantic data modeling, classification of topics
of interests, and plan analysis and formation are powerful
techniques for query intent analysis [15, 19, 7, 26].

When posing a query, different users often have different
intentions. For example, when asking the highest monthly
balance of an account, a customer and a bank manager are
likely to have different intentions. Therefore, an important
task of query intent analysis is user modeling, which ana-
lyzes the user’s background and intention and constructs
different models for different classes of users.

Moreover, a large volume of knowledge may exist or can
be discovered in a database. One may often find that there
exist too many “intelligent” ways to associate a query with
the available or discoverable database knowledge. It is cru-
qi@,hép have knowledge about user’s background and the
role that he/she plays in order to understand user’s in-
tention, avoid superfluous answers, and provide users with
quality assistance.

Since the knowledge-rich database is constructed based
on an extended deductive entity-relationship model and en-
hanced with knowledge discovery components, it provides
naturally the above mentioned notions, and thus a powerful
support for query intent analysis.

Taking the university database as an example, we ana-
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Figure 8: A multiple level database (MLDB) for the University Database.
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Figure 10: Intelligent query answering under the KRDB model.
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lyze how knowledge discovery components may help query
intent analysis.

1. User modeling;:

Based upon a user’s profession/position (e.g., uni-
versity administrator, professor, student, etc.), secu-
rity level (e.g., eligibility of accessing some sensitive
data, such as a professor’s salary), accessing history
(e.g., new student, new professor, etc.) or other re-
lated information, a user can be associated with a
particular user category built in the system. The
linkage between a category of users and a class of
preferred concepts or queries is constructed by ex-
perts in the development of intelligent query answer-
ing system, based on the summarization of the ac-
cessing history of each class of users, etc. With the
available knowledge-rich data model and knowledge
discovery components, users can be categorized into
some high-level user classes (e.g., graduate program
applicants, experienced finance secretary) and be as-
sociated with a set of high-level concepts (e.g., the
major interests of a new student being expressed at
a high concept level) to assist query intent analysis.

. Query classification:

A query can also be classified into different categories
according to the query condition and the informa-
tion to be inquired. For example, queries on a course
plan can be categorized into long term course plan,
semester course plan, etc. according to the conditions
given in the query (notice that a long term course
plan may ignore many levels of details, such as class-
room, class time, etc. while a short term one may not)
or be categorized into general browsing, detailed ex-
amination, or course registration according to query
actions. A query class can be linked with certain user
categories, generalized concept classes and transfor-
mation rules to guide appropriate intelligent query
answering for particular classes of queries.

. Data classification and concept clustering:

Based upon the extended entity-relationship model,
data which includes entities, relationships, attributes
and specific conditions can be classified and clustered.
For example, a set of courses in a particular subarea
(e.g., Databases, Graphics, etc.) or at a particular
level (e.g., senior, M.Sc., etc.) can be clustered to-
gether. The data classification and clustering task is
facilitated by the availability of concept hierarchies
and knowledge discovery tools.

. Heuristic rule specification:

A set of heuristic rules can be specified by experts
based upon user category, query category, concept
hierarchies and the relationships among high-level en-
tities, attributes, and conditions. For example, if a
user is in the category of freshman student, the de-
tailed information about course sequence, workload,
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general course description could be of a major con-
cern at course registration, etc. Such heuristics can
be specified as rules to guide intelligent query answer-
ing.

Query intent analysis is performed by systematically ap-
plying the above techniques. Furthermore, the constructed
models and transformation rules should be testified by ex-
periments and be tuned according to their effectiveness in
intelligent query answering and the feedbacks from users.
Note that query intent analysis and user modelling can
also be enhanced by a graphical use interface component
which communicates with users to determine the desired
and concrete types of intelligent responses.

5.2 Query rewriting using associated or neigh-

borhood information

Direct data retrieval may not always find enough answers
for a user. Furthermore, a user may like to know more in-
formation than the direct answers to a query for decision
making. Therefore, it is often useful to provide associated
or neighborhood answers to a query. Directed by query in-
tent analysis, associated query answering can be performed
by (1) presenting the information about some additional at-
tributes which are not directly inquired but are relevant to
the query; (2) relazation of certain query conditions; and
(3) adding an alternative query which is closely related to
the original one [7].

Let the answer set be viewed as a relation table. The
above three mechanisms can find their corresponding rela-
tional transformations: width-extension, height-extension,
and table-extension.

1. Width-extension: The first case (addition of rel-
evant attributes) can be viewed as extension of the
width of the answer table by adding some closely re-
lated attributes to the table. For example, an inquiry
on the course number for a course can be answered
by returning the course offering time and location as

well.

2. Height-extension: The second case (relaxation of
certain query conditions) can be viewed as an ex-
tension of the height of the table. For example, an
inquiry on the information for a particular course can
be answered by relaxation of the query condition to
provide information about other similar courses as
well.

3. Table-extension: The third case (answering an al-

ternative query) can be viewed as an extension of the
answer table or a switch to a similar table. For ex-
ample, an inquiry on the available teaching assistant
positions can be answered by returning information
about research assistant and project assistant posi-
tions in the same department (possibly in other re-
lation tables) if the user is a graduate student and
the time is at the beginning of a new semester (a job
hunting season).



Query rewriting redirects a query according to the intent
of the query. The success of query rewriting depends on
the query intent analysis and the availability of associated,
generalized and neighborhood information which may exist
in concept hierarchies or discovered knowledge rules or can
be discovered by knowledge discovery tools. Query rewrit-
ing can be implemented by mapping query constants to an
appropriate level via generalization or specialization hier-
archies and mapping a query to a neighborhood one by pro-
viding with additional, associated or neighborhood infor-
mation. The knowledge discovery components, which spec-
ify or discover generalization, aggregation, neighborhood,
or association relationships among data in the database,
provide important assistance in the analysis of query in-
tent and in the rewriting of queries into their alternatives
based on hierarchical or neighborhood relationships.

Example 5.1 Suppose a student poses a query about the
course numbers of the available database courses for ju-
niors offered by the School of Computer Science in the Fall
of 1994 to the University database of Example 2.1. The in-
telligent query processor will first examine the user model
of “student”, which may suggest to extend the “width of
the table” by association of the closely related attribute
information with the course number. Suppose that a set
of attributes associated with the course information are as
follows, which can be obtained based upon the deductive
entity-relationship model and the clustering of concepts,

course_number
course_name
instructor
location
time
course_outline

course_information

other_info

For concise presentation of the associative information

(the “conciseness” can be determined based upon the schema

definition), course_outline and other_info will not be pre-
sented in the “width extension”. Thus the width-extended
table will carry the following header,

Since the lowest conceptual hierarchy node higher than
database systems is computing science, the “height exten-
sion” may print the course numbers of the available com-
puting science courses for juniors offered by Computing
Science in the same semester. Notice that other alterna-
tives exist, such as relaxation of the constraint of junior
to undergraduate using the conceptual hierarchy related to
junior, etc.

Therefore, the selection of associated additional attributes
(as width-extension) or the relaxation of query constraints
(as height-extension) can be performed by analyzing the
semantics of the query and using the conceptual hierar-
chy information related to query constraints or semantic
structures of the database. ad

5.8 Answer transformation and answer ex-
planation

Besides query rewriting, the set of answers may also be
transformed, explained, compared or summarized in differ-
ent ways for intelligent query answering.

5.3.1 Generalization and summarization of answers

A database user may be interested in general descriptions
or overall statistics of the answer set but not the detailed
answer set itself. Thus, a data query can be answered
by generalization and summarization of the answer set,
that is, by presenting generalized data only, a combination
of generalized and primitive data, or a summarization of
concrete answers (possibly together with the presentation
of concrete answers) using generalized data and database
statistics. Such an answer transformation process can
be realized by the following techniques.

1. Presentation of higher level concepts in the answer.
Based upon the analysis of a user model, a query
may be answered by presenting higher level concepts
in the answer set using the available concept hierar-
chies or data generalization tools. By association of

general information with concrete answers, answers

| course_number | course_name | instructor | location | time |

to a query can be presented in a general and concise

Alternatively, the intelligent query processor may sug-
gest to extend the “height of the table” by association of
other closely related courses with the inquired courses. The
information about other closely related courses could be ob-
tained by the available conceptual hierarchy of the courses.
Suppose that available conceptual hierarchy for courses are
as follows.

Artificial Intelligence { e

All Courses
Operating Systems { cee

Physics { cee

Programming Languages { e
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manner, thus making the implications of the answers
better understood.

Example 5.2 A query which inquires about the in-
formation of a professor Tom Smith in the University
database can be answered as “Tom Smith is ¢ Com-
puter Science professor (not mentioning the specific
fields), born in Europe (not mentioning the specific
city, province, and country) in 1940s (not mentioning

CMPT-354 the specific date and year)”. This is meaningful if the
Database Systems 4 - CMP1-454 user (such as a university administrator) is concerned
Computing Science CMPT-459

of the general information but not the detailed one.
O

. Generalization and summarization of the set of an-

swers. This process can be realized by extraction



of the prime generalized relations and characteristic
rules, as described in the last section.

Example 5.3 A query which inquires “who have good
or excellent GPAs in computing science?” can be an-
swered intelligently in several ways: (1) “100% grad-
uate students, 55% senior students, and 25% junior
students” (general, statistical information only), (2)
“all of the graduate students and the following un-
dergraduate students ...” (a combination of general-
ized and primitive data), (3) concrete answer (stu-
dent names) plus a summarization of the answers at
a high level, etc. Obviously, the general informa-
tion can be obtained dynamically using knowledge
discovery tools or retrieved directly from the corre-
sponding higher level relation stored in a multiple-
level database. a

. Lazy evaluation using generalized rules or relations.
As an intelligent query answering mechanism, lazy
evaluation presents the deduction or generalized rules
related to the query without accessing the database
or presenting the full answers set. The detailed and
concrete answers are provided only by further re-
quests. Lazy evaluation by deduction rules has been
studied in deductive database research [15, 20, 26,
25]. With the availability of multiple layered databases
or stored generalized rules, it is interesting to exam-
ine how to perform lazy evaluation using generalized
rules and multiple layered database.

Example 5.4 Suppose that a user poses a query:
“print the information about the graduate students
i computing science”. Obviously, it is too clumsy to
print all such information. A lazy evaluation method
can be performed by presenting the generalized rule
or the relevant portion of the generalized (prime) re-
lation stored in a high-layered database without eval-
uation of the query against the database. For exam-
ple, suppose a database stores a higher layered rela-
tion H which describes the general characteristics of
all the graduate students in the university. Since the
graduate students majoring in Computing Science is
a proper subset of all the graduate students in the
university, the query-relevant portion should be ex-
tracted from the generalized relation H by enforcing
a selection condition such as “major = computing sci-
ence”. The extracted generalized relation can be sim-
plified or mapped into feature tables, etc., and can be
used as a “lazy” answer to the query, such as, 25% of
them has GPAs greater than 3.5, etc. Notice that the
processing is performed on a higher layered relation
without accessing large primitive-level relations. O

Notice that it is important to perform concept mapping
between different levels of data based upon the concept
hierarchies. Constants in a query or answers to a query
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can be mapped up or down along a concept hierarchy de-
pending on the semantics and the intent of the query. A
high-level query can be rewritten into a primitive-level one
by mapping the high-level data in the query to a set of
primitive data using concept hierarchies. Similarly, a low-
level answer set can be transformed into a high-level one by
mapping a set of primitive data in the answer set to a set
of corresponding high-level ones according to user’s need.
The interactions between query conditions and rule bodies
(conditions) also need the data/constant mapping among
different levels. For example, to examine whether a query
is relevant to a certain generalized relation, the query can
be restated at the same concept level as that in the rule.

5.3.2 Answer explanation

Another intelligent query answering method is answer ex-
planation, which explains the answers to a query by pre-
sentation of the associated rules, demonstration of the rea-
soning process, or illustration of the general information.

The summarization of the statistics of an answer set
discussed above can also be employed as a technique for
answer explanation. The following example demonstrates
that it is often necessary to provide explanations to the
answers when the query condition follows or contradicts a
rule or an integrity constraint.

Example 5.5 If a query condition follows or contradicts a
rule or an integrity constraint, the query can be answered
by presentation of the knowledge rules rather than prim-
itive data (a form of lazy evaluation), or by presentation
of the rules together with the answer set as a means of
explanation.

For example, suppose there is a generalized rule, “all of
the teaching assistants are graduate students”. The query
“find all of the undergraduate students who are teaching
assistants” can be answered by returning an empty set
without accessing extensional database. Moreover, it is
cooperative to associate the rule as an explanation.

Similarly, if “all of the teaching assistants have good or
excellent GPAs” is a generalized rule, the query “find all of
the teaching assistants whose GPAs are greater than 2.57,
may return “all of the teaching assistants”, together with
the rule. Specific teaching assistant names are presented
only when the user requests for more details.

The above processes can be implemented by testing the
query condition against the (generalized) rule for contain-
ment or contradiction. If the query passes the test, lazy
evaluation can be applied rather than returning detailed

answers. O

5.3.3 Answer comparison

Queries can also be answered intelligently by answer com-
parison, which compares or contrasts the general charac-
teristics of its answers with some similar queries. Answer
comparison may involve two steps: (i) rewriting a query
into a neighborhood query, and (ii) generalization, sum-
marization and comparison of two answer sets, one to the



original query and one to the neighborhood query, at a gen-
eral level. The first step, rewriting a query into a neighbor-
hood query, can be performed by query intent analysis and
substitution of some query constant(s) in the original query
by the closest higher level concept(s) using the concept hi-
erarchies. The second step involves learning characteristic
and discriminant rules using knowledge discovery tools [9]
or MLDBs [12].

Example 5.6 In answering the query, “find all of the grad-
uate students with excellent GPAs”, it is interesting to
find the undergraduate students with similar characteris-
tics or the graduate students with weaker GPAs and com-
pare the general characteristics and statistics between these
Such comparisons may lead to some interest-
ing observations, such as “36% graduate students vs. only
12.5% undergraduate students have excellent GPAs”, as
shown in Table 7. a

answers.

5.4 Layer mapping for intelligent query an-
swering in multiple layered databases

A multiple layered database (MLDB) may facilitate intel-
ligent query answering because some dynamic, relatively
costly knowledge discovery process(es) can be saved by

storing associated or summarized information in the MLDB.

However, there may arise two new problems in intelligent
query answering in MLDBs: (1) how to locate the most
appropriate layer in an MLDB in response to a particular
query? and (2) how to perform information transformation
if the information at a certain layer does not quite match
that in the query?

The following method can be applied for layer mapping
and information transformation for intelligent query an-
swering.

Algorithm 5.1 Layer mapping and information transfor-
mation for intelligent query answering in multiple layered
databases.

Input. A query and a multiple layered database.

Output. An intelligent answer to the query using the
MLDB.

Method.

1. Mapping the query to an appropriate layer. Map the
constants in the query condition and inquired infor-
mation to an appropriate layer in the MLDB. The ap-
propriate layer for intelligent query answering should
be the lowest layer which covers all the information
provided in the query, and each of its concept level
is not higher than the information provided in the
query. This can be done by marking the attributes
in the lowest layer which covers the corresponding
attribute concept in the query and finding the lowest
layer which covers all the marks. It is possible that
such a layer may involve more than one relation.
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2. Transforming the information in the layer for intel-
ligent query answering. Assume that the informa-
tion provided in the selected layer is in the form of
a prime relation. First, extract the query-relevant
information from the layer. Second, generalize the
information in the layer so that each attribute re-
sides at the same concept level as those in the query.
Notice that if a join needs to be performed on more
than one generalized relation, each of the joining re-
lations must be a key-preserving relation for the join
attributes [12]. Otherwise, the join has to be per-
formed on its corresponding highest key-preserving
layer.

. Perform corresponding query answering mechanism
based on the wuser’s requirement and the query in-
tent analysis. For example, if the intelligent query
answering is to compare the answer with the neigh-
borhood information, the obtained generalized tuples
are compared with other corresponding tuples at the

same layer. a

Rationale of Algorithm 5.1.

Step 1 is to find the most appropriate layer for intelli-
gent query answering. First, a layer must be high enough
to cover the concept in the query. However, a too high layer
is too general to make the answer intelligent. Thus the ap-
propriate layer should be the lowest layer which covers all
the information provided in the query. Step 2 is to extract
and transform the information in the layer for intelligent
query answering. A generalized relation often covers wider
scope than a query does. Thus the query-relevant informa-
tion should be extracted from the layer. Some information
in the layer could be lower than that in the query. Thus
generalization should be performed to make each attribute
reside at the same concept level as those provided in the
query. Moreover, joining on non-key-preserving attributes
may lead to information loss [12]. Thus, lossless join should
be performed. Step 3 performs appropriate query answer-
ing based on our discussion in the previous subsections.

O

Example 5.7 Suppose a student is interested in the grade
distribution of senior-level science courses. The query is
in relevance to the attributes Cnum, Department, Grade
in two data relations, Course and Grade, in the Univer-
sity database. Since a higher layered relation SGC' (as
shown in Example 4.4 and Figure 8) contains the general-
ization of the join of the three relations, Course’, Grade,
and Student’, and each of its concept levels is not higher
than those provided in the query, the query can be an-
swered intelligently by examining SGC’ only. Note that
SGC' could not have been used if the query were to ask the
grade distribution of a particular student since SGC” stores
only the information at a level higher than that of partic-
ular students. Since the concept “science” is more gen-
eral than individual departments (“physics”, “computer
science”, etc.), generalization should be performed on SGC’



to generalize the attribute values in Department. Irrel-
evant attributes such as Semester and Instructor can be
removed and identical tuples be merged to derive a gener-
alized relation. If the query is to be answered intelligently
by presenting more specific information about the grade
distributions, some attributes (such as Semester) or lower
level concepts (such as individual departments) may also
be retained. More detailed information should be printed
by accessing lower layered data only if further requirements
are expressed explicitly.

Notice that as indicated in Step 2 of Algorithm 5.1, if
a join needs to be performed on a generalized relation at
answering a query, each of the join relation must be a key-
preserving relation. For example, to answer a query about
course information and the grade distribution of senior-
level science courses, SGC’ can still be used since SGC'
is a key-preserving relation on the join attribute Cnum.
However, SGC’ cannot be used to answer a query about
the grade distribution of female students since SGC’ is not
a key-preserving relation on the join attribute Sname. In
this case, join should be performed on Student’, Grading
and Course’. O

6 Discussion and Conclusion

A framework has been presented for intelligent query an-
swering in a knowledge-rich database composed of deduc-
tive and knowledge discovery components. The availability
of generalized rules, concept hierarchies and knowledge dis-
covery tools greatly enhance the power of intelligent query
answering. First, it expands the spectrum of knowledge
queries from inquiring deduction rules to inquiring general
regularity of data, such as characteristic rules, discriminant
rules, data evolution regularities, etc. [9]. Second, it facili-
tates the query intent analysis since the notions of general-
ization, aggregation, neighborhood, similarity, etc. can be
studied systematically using the generalized knowledge and
concept hierarchies. Third, it facilitates intelligent query
answering since answers can be presented in general terms,
summarized by statistical information, and compared with
similar groups of data at a high level. Finally, the intelli-
gent query answering can be implemented efficiently using
generalized rules and knowledge discovery tools such as
prime relations, feature tables, multiple layered databases,
and other implementation techniques.

The enhanced power of intelligent query answering may
lead to two problems: superfluous “intelligent” answers
and the risk on database security.

The first problem indicates that one may suffer from ob-
taining too many superfluous “interesting” answers to a
query because there are many ways for a query to be an-
swered intelligently. Techniques should be developed to
control the answer generation process in intelligent query
answering. In general, one may assume that an appropri-
ate knowledge level is associated with each user. A user
usually poses queries at his/her corresponding knowledge
level and expects the answers to be presented at the same
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level. If the contents of the answer set are not at such
level, generalization or specialization should be performed
on the answer set as concept level adjustment. Further,
with user modeling and query intent analysis, only those
answers which match the query intent and the user model
will be presented. More desirably, an intelligent query an-
swering process can be triggered or directed by interaction
with users. For example, after obtaining the preliminary
set of answers to a query, some following-up questions can
be raised by users, such as “in more detail?”, “in sum-
mary?”, “why?”, “other options?”, “comparing with oth-
ers?” , etc. These questions indicate what kind of intelligent
answers are expected. Then the corresponding intelligent
query-answering mechanisms can be evoked.

The second problem indicates that with the extended
power of intelligent query answering, some sensitive or con-
fidential information could be disclosed inappropriately to
someone who should not know it [21]. One technique which
may enhance the database security is to associate with a
user model certain kinds of constraints on accessing rights.
For example, if the user is a student (easily known from
the login name), the constraints on intelligent answering of
his/her query in a university database will be quite different
from the same query posed by a university administrator.
Sensitive information will not be disclosed to the users who
do not have appropriate access rights. However, because
of the power and complexity of deduction and knowledge
discovery, it is difficult to tell to what extent that accessing
certain piece of information may eventually lead to the dis-
closure of sensitive information by a sequence of deduction
and induction. Therefore, more study should be performed
on ensuring database security in intelligent query answer-
ing in databases augmented with deduction and knowledge
discovery components.

Based upon our previous study on knowledge discovery
in databases [4, 9], a prototyped experimental database
learning system, DBLearn, has been constructed [11]. Based
on the principles of attribute-oriented induction, experi-
mentation has been performed for knowledge discovery in
large databases, such as the NSERC (Natural Sciences and
Engineering Research Council of Canada) Grant Infor-
mation System. Our experimental results on direct an-
swering of data and knowledge queries are successful with
satisfactory performance. Further studies are being per-
formed on intelligent query answering using the provided
concept hierarchies and knowledge discovery tools.

The innovations of this paper can be summarized as fol-
lows. First, a knowledge-rich data model is constructed
which consists of an extended entity-relationship schema,
an extensional database, an intensional database, a set of
concept hierarchies, a set of generalized rules, and a set
of knowledge discovery tools. Second, a systematic study
has been performed on intelligent query answering with
the focus on the application of discovered knowledge, con-
cept hierarchies; and knowledge discovery tools to intelli-
gent query answering in database systems. Query answer-
ing mechanisms are classified into (1) direct answering of
data queries, (2) intelligent answering of data queries, (3)



direct answering of knowledge queries, and (4) intelligent
answering of knowledge queries. Third, techniques have
been developed for implementation of such mechanisms
using discovered knowledge and/or knowledge discovery
tools, which include generalization, data summarization,
answer transformation, rule discovery, concept clustering,
query rewriting, lazy evaluation, etc. The implementation
of these methods using multiple layered databases, prime
relations and feature tables are investigated.

Our study shows that knowledge discovery substantially
broadens the spectrum of intelligent query answering and
may have deep implications on query processing in data-
and knowledge-base systems. There are many interesting
issues which should be studied further. The systematic
development of language primitives for intelligent query
answering, new techniques for implementation of intelli-
gent query answering mechanisms using knowledge dis-
covery techniques, mechanisms for intelligent answering of
knowledge queries, security problems in intelligent query
answering, and the integration of different intelligent query
answering techniques are interesting topics for future re-
search.
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